Μαθηματική μοντελοποίηση προβλημάτων συνδυαστικής βελτιστοποίησης που εμφανίζονται σε πρακτικές εφαρμογές όπως των τηλεπικοινωνιακών δικτύων, των δικτύων υπολογιστών ή οδικών δικτύων, χρονοπρογραμματισμού, διαχείρισης πόρων, τοποθέτησης εξυπηρετητών και μεταφοράς. Γενικές τεχνικές επίλυσης προβλημάτων συνδυαστικής σελτιστοποίησης. Μέθοδοι διαχώρισης και αποτίμησης (Branch and Bound), ευριστικοί αλγόριθμοι, μεταευριστικοί αλγόριθμοι. Ανάδειξη των ορίων των αλγορίθμων και ανάπτυξη των πρόσφατων ερευνητικών εξελίξεων στο πεδίο. Δυναμικός Προγραμματισμός και προσεγγιστικοί αλγόριθμοι. Πολυωνυμικού χρόνου προσεγγιστικά σχήματα (PTAS, FPTAS). Μέθοδοι τοπικής αναζήτησης, PLS-completeness, δομές γειτονιών, εκθετικές γειτονιές αναζητούμενες πολυωνυμικά, προσεγγισιμότητα. Σύνδεση των μεθόδων τοπικής αναζήτησης με τη θεωρία παιγνίων και τη θεωρία τοπίων .
Τύπος
Κατ' επιλογήν υποχρεωτικό
Ομάδα
Α
Περιγραφή μαθήματος