Απαρίθμηση και γεννήτριες συναρτήσεις, μεταθέσεις και πολυώνυμα Euler, εκθετικές γεννήτριες συναρτήσεις, ο εκθετικός τύπος, ο τύπος αντιστροφής του Lagrange και εφαρμογές στην απαρίθμηση δένδρων. Η αρχή εγκλεισμού-αποκλεισμού και εφαρμογές. Μερικώς διατεταγμένα σύνολα, η συνάρτηση του Möbius, αντιστροφή Möbius, semimodular και γεωμετρικοί σύνδεσμοι, το θεώρημα NBC του Rota, το χαρακτηριστικό πολυώνυμο, εφαρμογές σε παρατάγματα υπερεπιπέδων και χρωματισμούς γραφημάτων, το πολυώνυμο ζήτα μιας μερικής διάταξης. Στοιχεία τοπολογικής συνδυαστικής, το σύμπλεγμα μιας μερικής διάταξης και η χαρακτηριστική Euler, μονοπλεκτικά και κυτταρικά συμπλέγματα, αποφλοιώσιμα (shellable) και Cohen-Macaulay συμπλέγματα και μερικώς διατεταγμένα σύνολα, μερικές διατάξεις του Euler και οι εξισώσεις Dehn-Sommerville. Ρητές γεννήτριες συναρτήσεις, θεωρία των P-διαμερίσεων και P-πολυώνυμα Euler, quasi-συμμετρικές συναρτήσεις.
Type
Elective Required
Group
C
Course Description