Geometric Data Analysis
Το μάθημα εστιάζει σε γεωμετρικούς πιθανοκρατικούς, προσεγγιστικούς, και ευριστικούς αλγορίθμους σε υψηλή διάσταση που αντιμετωπίζουν την «κατάρα της διάστασης» (curse of dimensionality). Δειγματοληψία μέσω τυχαίων περιπάτων σε κυρτές και μη-κυρτές περιοχές. Υπολογισμός όγκου κυρτού σώματος. Αναπαράσταση γεωμετρικών αντικειμένων Δομές γεωμετρικών δεδομένων σε γενική διάσταση, αναζήτηση περιοχής, εύρεση πλησιέστερου γείτονα με δενδρικές δομές, πιθανοκρατικούς πίνακες κατακερματισμού, και τυχαιοκρατική εμβύθιση δεδομένων. Εξόρυξη δεδομένων και αλγόριθμοι συσταδοποίησης (clustering). Εφαρμογές στη βιοπληροφορική και την επεξεργασία εικόνας.
Modal Logic
Εισαγωγή στη βασική τροπική λογική: συντακτικό, σημασιολογία (σχεσιακά μοντέλα ή μοντέλα και πλαίσια (frames) Kripke), σημαντικές ερμηνείες του τροπικού τελεστή (epistemic/doxastic logic, deontic logic, temporal logic, provability logic). Eρμηνεία της Τροπικής Λογικής: βασική θεωρία μοντέλων και πλαισίων, κατασκευές που προστατεύουν αλήθεια και εγκυρότητα, σχέση με την κλασσική λογική, πρωτοβάθμια ορισιμότητα, θεωρία αντιστοιχίας (correspondence theory). Bασική Θεωρία Αποδείξεων και Θεωρία Πληρότητας (completeness theory): φυσικές λογικές (normal modal logics), κανονιστικά μοντέλα και πληρότητα, χρήση του κανονιστικού μοντέλου, κανονιστικές λογικές (canonical logics) και φαινόμενα μη-πληρότητας (frame incompleteness results), ανάλυση λογικών με “μεταβατικά” πλαίσια (Cluster analysis of transitive logics). Διηθήσεις (filtrations) και αποδείξεις αποκρισιμότητας. Aποδεικτικά συστήματα tableaux και υπολογιστική πολυπλοκότητα. Προχωρημένα θέματα: πλούσιες τροπικές γλώσσες και εφαρμογές τους. Δυναμική Λογική (Propositional Dynamic Logic, PDL), Χρονικές Λογικές Γραμμικού και Διακλαδιζόμενου Χρόνου (Temporal Logics of Linear and Branching Time), Λογική της Αποδειξιμότητας (Provability Logic).
Optimization and Machine Learning Seminar
We are happy to announce a seminar on Optimization and Machine Learning Seminar organized by Corelab at NTUA. The goal of this seminar is to introduce the basic concepts of machine learning and convex optimization.
Automated Learning, or Machine Learning as it is usually called, describes the development of algorithmic procedures that convert experience to expertise. Usually, machine learning procedures are inspired by algorithms used in convex optimization.