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ABSTRACT

It is easy to see that every planar graph is a minor of another planar graph of maximum
degree 3. Georgakopoulos proved that every finite Ks-minor free graph is a minor of an-
other K5-minor-free graph of maximum degree 22, and inquired if this is smallest possible.
This motivates the following generalization: Let C' be a minor-closed class. What is the
minimum £ such that any graph in C'is a minor of a graph in C' of maximum degree k?
Denote the minimum by A(C') and set it to be oo if no such k exists.

We explore the value of A(C') for various minor closed classes, and eventually prove
that a minor-closed class C' excludes an apex graph if and only if there exists a proper
minor-closed superclass C” of C' with A(C”) = 3 if and only if there exists a proper
minor-closed superclass C” of C' with finite A(C"”). This complements a list of 5 other
characterizations of the minor-closed classes excluding an apex graph by Dujmovic, Morin
and Wood.

Furthermore, we extend and simplify Markov and Shi’s result that not every graph of
treewidth < k has a degree 3 expansion of treewidth < k. Finally, we simplify Geor-
gakopoulos’ proof on the existence of a countable universal graph of Forb(K5).

SUBJECT AREA: Structural Graph Theory

KEYWORDS: minor-closed classes, splittings, maximum degree, graph minor structure
theorem






NEPIAHWH

Eival eUkoAo va d¢l kaveig 611 KABe eTTiTTeEdO Ypaenua cival EAacoov evog eTITTEOOU YpO-
@nuartog péylotou Babuou 3. O MNewpyakOTTOUAOG aTTEDEIEE OTI KABE YpAPnua TTou eaIpEi
10 K5 WG €Aacoov eival EAacaov evog aAAou ypagriparog trou egaipei 1o Ky wg EAacoov
MEYIOTOU BaBUOU 22, KOl pWTNOE AV auTOS €ival 0 EAAXIOTOS duvaTov.

AuTO Trapakivei TNV £€1¢ yevikeuon. ‘Eotw C' pia KAGon kAeioTh uttd eAdooova. Moo sival
10 gAaxioTo k £T01 WoTe omolodrmorte ypdenua g C' gival EAacov evog ypa@ruaTog TNG
C' péyiotou BaBuou k; TupPoAifoups 10 EAAXIOTO UE A(C’) Kal BETOUME TNV TIUA TOU O€
00 €AV deV UTTAPXEI TETOIO K.

E&epeuvoupe TNV TIun TOUu A(C’ ) YIQ TTOIKIAEG KAAOEIG KAEIOTEG UTTO EAGOCOVA Kal TEAIKA
aTTOdEIKVUOUPE OTI pia KAGan KAEIoTr uttd eAdocova C' atrokAsiel éva atmoyeio ypapnua
w¢ éAACTOV EGV Kal JOVO €AV UTTAPXE! Jia KAEIOT uTtd ehdooova utrepkAdon C” ¢ C
ME A(C’ ’ ) — 3 €8V KaI MOVO €AV UTT APXEl KAEIOTA uTté eAdocova uttepkhdon C7 pe Tre-
mepaopévo A(C”). Auté emraugdvel pia Aiota pe 5 GAAOUG XapakTpIoPoUg Twv KAGoEWY
KAEIOTWYV UTTO EAACOOVA TTOU ATTOKAEIOUV £va aTTOYEIO Ypd@nua atro Toug Dujmovic, Morin
kal Wood.

EmimmAéov, emTekTEiVOUPE KAl ATTAOTTOIOUNE TO aTTOTEAEOPa TwWV Markov kal Shi 611 dgv €xel
KGOt ypdoenua devdpotrAdtoug < k didatraon péyioTou Baduou 3 kail devdpotAdatoug < k.
TéNOG, ATTAOTTOIOUUE TNV ATTOBEIEN TOU MEWPYAKOTTOUAOU Yyia TNV UTTapén £vog apiBuiciua
ameipou kaBoAikou ypagrpartog yia v Forb(K5).

OEMATIKH NMEPIOXH: Aopikn Bswpia ypapnudtwyv

AEZEIZ KAEIAIA: KAGO€IG KAEIOTEG UTTO eEAdooova, dIOOTTACEIG, NEYIOTOG BaBudg, douIkd
Bewpnua eAdooovwy ypapnudatwyv






21ov lavvn Kai mAeiétepo otov PiAirrro.
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“You have to play to the strengths of your environment, not its weaknesses.”

"Why did thou not look at me, Jokanaan? If thou had looked at me thou would
have loved me.”
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Splittability within minor-closed classes to graphs of low maximum degree.

1. INTRODUCTION

The organization of this text is as follows: Chapter 1 contains the introduction and lists
our results. Chapter 2 contains a minimal preliminaries section, complemented by an
extended appendix. Chapter 3 contains an overview of proofs and techniques, followed
by an extensive section with the full proofs in chapter 4; if a topic is covered by both
chapters 3 and 4, preferring chapter 3 is highly recommended. Chapters 5 and 6 contains
the two directions of our main proof.

1.1 The graph class parameter A

One may observe that every planar graph is a minor of another planar graph of maximum
degree 3. Can the reader see why? Figure 3.1 gives a simple explanation.

In 2021, Georgakopoulos observed that every K-minor free graph is a minor of another
Ks-minor-free graph of maximum degree 22, but did not find if this is smallest possible. A
graph G’ including G’ as a minor is a splitting of G.

This motivates the following question [1]: Let C' be a minor-closed class. What is the
minimum & such that any graph in C' is a minor of a graph in C' of maximum degree k?
Denote the minimum by A(C') and set it to be oo if no such k exists. This is a general,
yet elegant definition. We are thus interested in it and this text is devoted in exploring its
properties. All results, established mostly through my work, are original.

As it turns out, it is easy to show that A(Forb(K5)) also is equal to 3. One may then
ask if there is a class whose A does not fall down to 3. Note that there are classes of
A(C) < 2, but all of them consist of disjoint unions of circles and paths, and we don't
care for such trivial classes. Similarly, we don’t consider finite classes.

The answer is negative, A(Forb(Kj 3)) being equal to 4. In fact, for any k > 3,
the minor-closed class T'W_,. of graphs of treewidth < k has A(TW_,) = k. As
implied in the definition of A(C'), there are also classes C' for which no k exists so that
every graph in C'is a minor of a graph in C' of maximum degree k. The class of stars '
{Kl,k\k € Z-,} has A = oo, because the only way to include a star as a minor is to
use a bigger star.

Of more interest to me are structural question that might arise. Let C' be a minor-closed
class, and change an excluded minor "a little bit” to obtain another class C”. Given A(C'),
can we say something about A(C”)? If there is an elegant way to approach this ques-
tion, it evades me. What if C is just any superclass of C'? Is A an increasing function

"Technically, this is not a minor-closed class. No matter; take the minor-closure of stars instead, which
is almost same.

25 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

perhaps, ie C C C' = A(C) < A(C’)? Not the case; the planar graphs are a
superset of the class of stars. The apex graphs in turn include the planar graphs, but as
we will see they have A = 00, so it is not decreasing either. The function A does not
seem to have any clear general pattern at first glance.

Georgakopoulos conjectured that at least every proper minor-closed class C' has a proper
minor-closed superclass C’ of finite A(C”). We proved this conjecture to be wrong in
fact;

Theorem 1. If a proper minor-closed graph class C' D the apex graphs, then A(C’ ) =
0.

Now, we may ask if there is a strict subclass of the apex graphs with the property that
all classes above it have A(C') = oo. As far as smaller classes are concerned, we
do already have that such a class would have to include all planar graphs; By a known
theorem, if minor-closed C' excludes a planar graph, it is a subclass of TW_, for some
k. So such a class must include all planar graphs, but not all apex graphs. Can we make
the "floor” of the planar graphs and the “ceiling” of apex graphs collapse on each other?
As it turns out, apex graphs are the cutoff.

Theorem 2. For a proper minor-closed class C, the following are equivalent:

1. C excludes an apex graph;
2. there is a minor-closed superclass C’ O C' such that A(C") is finite.

3. there is a minor-closed superclass C’ O C such that A(C") = 3;

Note that apex-minor-free graphs arise in a variety of settings. In particular, for a number
of graph parameters f, a minor-closed class C' has bounded f if and only if some apex
graphis not in C (see [2, 3, 4, 5] for examples).

The above statement still holds if, for some fixed constant k > 3, instead of A(C”) = 3

we demand A(C”) = k or if we instead demand A(C”) < k. It still holds if for any of
the equivalent cases, we further demand that C” also excludes an apex graph as a minor.

1.2 Other results

Theorem 2 isn’t the only result that has ties to the bibliography: Markov and Shi [6] proved
that for every graph G there is a graph G’ with maximum degree 3 such that GG is a minor
of G and TW(G") < TW(G) + 1. Moreover, this treewidth bound is best possible
for TW(G) > 18.

In particular, for £ > 18, Markov and Shi [6] constructed a graph (G of treewidth k such

O. Milolidakis 26
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that if G’ is a minor of a graph G’ with maximum degree 3, then TW (G") > k + 1.
In our terminology, for k > 18, A(TW _,) > 4. The aforementioned result that for
k>3, A(TW_,) = k extends this. As it turned out the construction used for my proof
is similar to theirs. The proof in this text could be considered notionally simpler.

Let's mention other results of this thesis. The linklessly embeddable graphs £ are a
well studied 3-dimensional analogue of the planar graphs [7]. It is reasonable to ask if,
like with planar graphs, one may by some geometric argument replace each node of a
linklessly embeddable graph GG by some bounded-degree graph to show that A(L') =3
or at least finite. But since the linklessly embeddable graphs are a superclass of the apex
graphs, by theorem 1 the answer is negative:

Corollary 1. A(L)=00.

Likewise, by theorem 1 we have the following.

Corollary 2. A(Forb(K,,)) = oo forn > 6, A(Forb(K,, ,,)) = oo forn > 4.

Finally | simplify Georgakopoulos’ proof that there is a universal graph for the class of
countably infinite /{s-minor-free graphs [1]. A universal graph for a class of infinite graphs
(' is a graph in C' that includes all graphs in C' as minors, and it is interesting in the sense
that it serves as a representative for the entire class. Universal graphs and related prob-
lems have been studied in the literature [8], [9].

Other results in this text is that the class of outerplanar and series-parallel graphs have
A = 3, and that for k > 3 the class of graphs of pathwidth at most k, PW _;, has

27 O. Milolidakis
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2. DEFINITIONS AND PRELIMINARIES

Originally, the aim in this section was to collect and introduce, in a rigorous manner from
the ground up, all notions needed during this thesis or at least to clarify what is left to
common sense or used as a black box. As a byproduct, it was quite large and for this
reason it has been moved to the appendix, which the reader may check as needed. A
minimal version is here instead.

2.1 Preliminaries

All graphs are simple and undirected. All graphs are finite unless stated otherwise. Though
the focus of this thesis is on finite graphs, a result on infinite graphs is also presented. All
infinite graphs are countable. The reader may also refer to Diestel [10], the standard
reference book.

2.1.1 Basics

If I is a set of pairs of vertices of G, we define G— F' to be the graph (V (G), E(G)\ F),
and G + F tobe (V(G), E(G) U F). In an abuse of notation, G — e := G — {e}
and G + e := G + {e}. To join vertex u to vertex v in G means to add (u,v) to G.
To join subgraph S to subgraph S, of G means to join (u,v) in G forallu € Sy,v € S,.

Given graphs GG, GG, we define the disjoint union of G| and G, , denoted G| + G5, to
be G, U G where G, is a graph isomorphic to G5, so that V (G,) NV (G5) = ().

For subgraphs S, S, of a graph G, an S, S, edge is an edge with one endpoint on
S, and one endpoint on S,. We say that .S;, S, are adjacent or neighbors if there is an

51,95 edge in G.

2.1.2 Minors

Given a graph (G and a (possibly single-vertex) connected subgraph S of (7, the contrac-
tion G /S is the graph obtained from G — V' (S) by adding a new vertex v ¢ adjacent to
every neighbour of S'in V(G) \ V(.5). We say G/ S is obtained from G by contracting
S. Given a set of vertices U of G such that G[U] is connected, the contraction of U is
defined to be the contraction of G[U .

Let G and G’ be graphs. Assume that for some subgraph R of GG there are pairwise dis-
joint subgraphs Ry, R, ..., Ry of R and there is a bijection Ry <> vy, Ry <> vy,

. R|V(G/)| < U|V(G/)|’ where V(G/) = {'Ul, ...,’U|V<G/>‘}, such that (Ui7vj> -

29 O. Milolidakis
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E(GQ") iff R;, R, are adjacent. Then (& contains G a minor, denoted G >,,, G”. G'is
called an expansion or splitting of G .

A bijection p(v;) = R, as above, is called a model of G" in G.. We call R, the bag
or branch of v; in G and also denote it B(v,) or u(v;). For H C G, we denote with
{1(H) the subgraph of G induced by the U,y gy 14(v)-

Given a graph class C, denote by minor-closure(C') the set {G : G <,, G’ for some
G’ e C}.

By the famous Robertson-Seymour theorem, every class closed under minors can be
characterized by a finite set of forbidden minors. If the excluded minors of G are H, H,, ...
we may denote C by Forb(H,, H,, ...).

2.1.3 Apex graphs

A graph is apex if it is planar or becomes planar after the removal of a single vertex. Given
agraph class C, a graph is apex-C'ifitis in C or if there is a vertex whose removal makes
G belong to C'.

2.1.4 Graphs on Surfaces

The reader is probably already familiar with planar graphs. Some of the most deep results
in minor theory mention graphs embeddable on surfaces more complex than the plane
or the sphere, such as the torus. See the index for an exhaustive list of definitions and
discussions.

Figure 2.1: The torus. Courtesy: Wikipedia.

Much like graphs can be embedded on the plane, they can be embedded on topological
surfaces. A surface is a connected compact Hausdorff topological space locally home-
omorphic to R2. Mohar and Thomassen'’s Topological graph theory [11] provides for a
rigorous introduction to the topic.

A graph is embeddable on a surface if we can draw it on the surface so that edges do not
intersect:

O. Milolidakis 30
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Definition 1. A graph G is embeddable on surface X if there is a function f mapping
vertices to elements of X, and edges to simple curves on X so that f(v,) # f(v,) for
vy # vy, and curve f(uv) connects f(u) and f(v), and has no intersection with the
image of other vertices and only intersects other edges on its endpoints.

f is an embeddeding of G on X. The image of f, f[(V(G) U E(G))], is called the
embedded graph, and though it is technically not a graph, one may produce a graph from
one in the obvious manner. For ease of notation, the embedded graph is also abusively
denoted f(G).

A graph embeddable on R? is called planar. A graph embedded on R? is called plane.

Definition 2. A face of an embedded graph G on X is a region of X \ G.

Given a face of an embedded graph (7, the boundary of the face is an embedded subgraph
of (5. If this subgraph is a cycle, call it a facial cycle.

Definition 3. Let G be an embeddable graph, let f be an embedding, and let the bound-

ary b of a face of f(G) be a cycle, i.e let G limited to the vertices and edges of f~1(b)
be a cycle. We call the boundary of b a facial cycle.

31 O. Milolidakis
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3. OVERVIEW OF PROOFS AND TECHNIQUES, OPEN PROBLEMS

The goal of this subsection is to present sketches of proofs of this text in an easily readable
manner. Chapter 4 of this text containing the full proofs is a bit more bulky and pedantic
than we would like; thus, if the reader reads this overview and does not really look into
chapter 4, it will have done its job well.

3.1 Classes with a geometric interpretation

We proceed to find the /A value of a few minor-closed classes. We start with graphs that
have geometric interpretations; the planar graphs, the graphs of euler genus < k for fixed
k € N, the outerplanar graphs, and the series-parallel graphs, all of which have A = 3.
Interestingly, all of them admit the same approach: Replace each vertex with a cycle. The
following image shows that planar graphs have A = 3.

e

Figure 3.1: By replacing each vertex of a plane graph with a circle on the boundary of an open ball
around the vertex, we may create a plane graph of maximum degree 3 containing the first as a minor.

Given k, much the same can be said for the class of graphs embeddable on a surface of
euler genus k£ ', showing this class has A = 3 as well. The proof for outerplanar graphs
is summed up in the following figure.

Do~ Py~ D~

Figure 3.2: For (G an outerplanar graph with common face f for all vertices, do as with planar graphs
to obtain G’, then remove the edge intersecting f.

The proof that the class of series-parallel graphs has A = 3 is omitted. It would not be
hard to prove for the interested reader.

This notion doesn’t become important until chapter 6, so we don’t spend more time on it here. See 14
for a definition. Further information is on the appendix.
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3.2 Classes closed under clique-sums

We move on to graph classes closed under clique-sums; Forb(Ky), Forb(Kj 3) and,
let k > 3 be fixed, T'W_,.. Surprisingly, they also admit a unified approach.

Definition 4. Given graphs (G, H such that G N H is a clique, their clique sum G @ H is
defined by taking G U H and possibly removing a few edges of the clique. See figure3.3.

L ]
r'/ IS
f 0

oO—0

Figure 3.3: Two clique sums to create a single big graph. Notice how a few clique edges are removed.
Courtesy: Wikipedia.

Definition 5. The clique sum of GG and H on clique G N H of k vertices is called a k-sum.
The clique sum of GG and H on clique G N H of < k vertices is called a < k-sum.

Notice that 0-sums are well defined, and are the disjoint union. Now, we would like to
clique-sum without caring about vertex labels.

Theorem 3 (Wagner [12]). A graph G excludes Ky as a minor if and only if it can be
constructed by the < 3-clique-sums of planar graphs and the Wagner graph W[8] See
figure 3.4.

Theorem 4 (Wagner [12]). A graph G excludes Ks 3 as a minor if and only if it can be
constructed by the < 2-clique-sums of planar graphs and K.

Definition 6. A graph is said to have treewidth < k iff it can be constructed by the clique
sum of graphs of < k + 1 vertices.

Definition 7. A graph is said to have treewidth = k iff it has treewidth < k, but it doesn’t
have treewidth < k£ — 1.

The aforementioned definition of treewidth is somewhat unorthodox, but | find it to be most
intuitive. Isn’t it much simpler to conceptualize than tree-decompositions?
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Figure 3.4: The Wagner graph W[S], also known as the 8-wheel. Courtesy: Wikipedia.

We develop the toolset for the key lemma that will allow us to approach all 3 problems
in a unified fashion. Our reward will be that the proofs giving a (strict as it turns out) upper
bound to their A value will be quite easy and short.

Definition 8. Denote by B[C] the clique sum closure of class C . Denote by &=<"[C]
the < n-sum closure of class C.

Definition 9. B is a base for C' under < n-sums if ®="[B] = C. Bis a base for C
under clique sums if §[B] = C.

Definition 10. Let G’ >, G, with model function . For clique K € G, let its vertex
set be {u,,...}, let K’ € G’ be isomorphic clique with vertex set {u}, ...} such that
u; € p(u,;). We call K’ a representor clique of K under .

Notice that clique representation is transitive under minors: If G <, G’ <_ G” and K
is a clique of G represented under 11 by K’ in G’ and K is represented under 1" in G”
by K”, then K is represented under p o p” by K”.

Definition 11. Given graphs (G, H, their Cartesian product GO H is the graph with vertex
set V(G) x V(H) where two vertices (u, v) and (u’, v") are adjacent if either u = u’
andvv’ € E(H) orv=v"anduu’ € E(G).

Intuitively, for each vertex of H take a copy of (&, and if two vertices in H are connected,
connect the corresponding (G copies by their identical vertices.

Figure 3.5: The Cartesian product of two graphs Courtesy: Wikipedia.
250G € C = Ged[ClandG, G’ € ®[C] = G& G € d[C].
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Definition 12. For fixed u € G, we denote by by (u, H ) the GOH limited to all vertices
of the form (u, v) where v ranges over H. We call (u, H) the H-subgraph of V (G) X
V' (H) corresponding to w.

We may now give the key lemma we will be using. P, is the path of 2 vertices.

Lemma 1. Let d > 3. Let C be a minor-closed class closed under n-sums, such that
P,0K,, € C. Let B be a base for C under < n-sums. For every graph G in B, let G’
in C be a graph with

- G' > G.
« Every maximal clique in G has a representor clique in G’ .
- A(G') < d.

Then A(C') < d.

We give a short overview of why this lemma holds in the end of the section. The next
chapter with the full proofs does not use the lemma, but they are much easier with it, so |
recommend focusing on this chapter.

Proposition 1. A(forb(Kj5)) = 3.

Given planar graph GG, we call the graph G” > GG of maximum degree 3 as in the proof
that the class of planar graphs has A = 3 the ballooning of GG, and denote it BI(G). The
cycle we replace vertex v € G with we denote by Bl(v).

Proof of proposition 1. We use lemma 1, where C'is of course Forb(K5) and n = 3.
The base B is the Wagner graph along with the class B’ of planar graphs GG such that
all embedded triangles abc of G have either an empty interior or an empty exterior. B’
is enough to construct all planar graphs with clique-sums; for let G be a planar graph
embeddable so some triangle abc has neither empty interior nor exterior, then by the def-
initions of planarity and the Jordan curve theorem, the triangle is a separator, and thus it
can be further decomposed into the 3-clique-sum of smaller planar graphs. Therefore by
Wagner’s theorem, the clique sum closure of B gives Forb(Ky).

We now find forevery G € Ba G’ € C asinlemma 1. The Wagner graph has maximum
degree 3 so it already is of the desired form (the corresponding G’ € C being again the
Wagner graph). For G € B’, G’ € C will be as follows. Let abc be a triangle in G of
empty interior or exterior. Add a new triangle a’b’c’ to GG, a joined to a’, b joined to b’,
¢ joined to ¢’, and embed it in the empty face. See image 3.6. Do this for all triangles
of (G. Now balloon (7, but leave the vertices of the new triangles as is. This completes
the construction of G”. It is clearly still planar and has maximum degree at most 3. By
contracting as explained in the image, we regain the original graph, a’b’¢’ being a repre-
sentor of abc. For any potential maximal 2-cliques uv of GG, the unique Bl(u) — Bl(v)
edge is a representor. O
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K =K =k

Figure 3.6: A triangle of G modified step by step. By contracting along same-colored segments, we
regain the original graph.

Proposition 2. A(forb(K33)) <4

Proof. We use lemma lemma 1 where n = 2. The base B is the K graph along with
the class B’ of planar graphs G such that all embedded triangles abc of G have either
an empty interior or an empty exterior. We now find forevery G € Ba G’ € C asin
lemma 1. If G'is K5, then G” is also K. If G is a planar graph, then G” is BI(G). The
reader may verify the rest. O

Proposition 3. A(TW_,) <k

We use lemma 1 where n = k. The base B is the graphs of at most k£ + 1 vertices. We
should first prove that P,0K, € C.

Proposition 4. K, 0P, € TW_,..

Proof. Seefigure 3.7. Let G, bea K, graph,letV(G;) = {1,2,...,n} and clique sum
itwitha K, ; graph Gy, letits nodes be {1, 2, ..., n, 1"}. Afterwards, we clique sum G/,
witha K, ;,itsnodesbeing {1’, 2, ..., n, 2"}, then the node setwillbe {1, 2", 3, ..., n, 3}
and so on n times. In the final graph, {1,2,...,n} and {1’,2,...,n"} are cliques, with
(7,7") connected for all i € {1,2,...,n}. Remove surplus edges as needed (note one
can use clique-sums to remove edges without adding any new vertex). ]

In fact, we proved that K,,0F, € PW_,, where PW_, is the class of graphs of path-
width 7 or less. - -
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Figure 3.7: Creating a K3DP2. We start from the outermost triangle, call it xyz, and create the
innermost triangle =’ v’ 2’ by clique-sums, one vertex at a time. The red edges are xx’, yy’, 22’

Proof of proposition 3. As mentioned take lemma 1 for n = k and B the graphs of at
most k + 1 vertices. We are in fact already done. For G € B, G’ is again G. O

We move on to lower bounds. We prove that A(forb(K3 3)) # 3. As it cannot be 2 or
1 either, this combined with A(forb(Kj3 3)) < 4 implies that A(forb(K; 3)) = 4.

Proposition 5. A(forb(K33)) >4

Proof. To give the idea in brief, by Wagner any graph in forb(K3,3) is constructed by the
< 2 sum of planar graphs and K. Now, observe by geometric intuition that the < 2 sum
of planar graphs remains planar, therefore to create a non-planar graph of forb(Kg,g)

using Wagner’s theorem a Kz must be used at some point. Also observe the only way
to reduce the degree of a vertex with a < 2 sum is to use a 2-sum that does not add
vertices and removes a single edge, call this a frivial 2-sum. But rather than remove an
edge by a trivial clique sum, we can remove it after the last (non-trivial) clique sum that
utilizes the edge. Therefore any G' € forb(K373) can be constructed by a series of

clique-sums where no trivial 2-sum occurs. Therefore, a non-planar G € forb(K; 5)

must have degree 4 or more as the K that was added while building it this way cannot
have the degrees of its vertices reduced. Of course, if G € forb(K3’3) is non-planar

and G’ € forb(Kj 3) includes G as a minor, then G must also be non-planar, and

thus A(G’) > 4. The reader may also refer to section 4.2.2 for this proof, which | find to
be of satisfactory quality. O

Similarly, we would like to prove that for n > 3, A(TWSn) > n.

Proposition 6. A(TW_,,) > n
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To prove this, we want a graph G' € TW_,, so that any graph G" € TW_,, including it

as a minor must have A(G’) > n. In [13], Markov and Shi showed that there is a graph
G of treewidth n and no degree 3 expansion of treewidth n.

Let there be an n + 1-clique graph with vertex set {1,2,...,n + 1}, called the cen-
tral clique K. Fori € {1,2,....,n + 1} add a vertex labeled i’ and join * it to the
subclique {1,...,7 — 1,7 + 1,...,n,n + 1}. Call the n + 1-clique with vertex set
{1,...,i—1,7',i+1,...,n,n+ 1} by the name K (*). This completes the construction
of graph G. ltis clear that it is in T'W_,, as each vertex we joined can be added by a
clique sum. Markov’s and Shi’s example was the same, but they also removed all edges
with both ends in the central clique of G.

We use the following known lemma. In case the reader is not familiar with the notion,
the definition of tree-decompositions can be found in section 4.3.

Lemma 2. Let G contain a clique K, let G’ contain G as a minor, and let (X, T') be
a tree-decomposition of G’. Then there is some vertex t € T such that its bag B(t)
contains for each v € V (K) a vertex from (1(v).

Call any such t a model carrier of K, and denote it £ ;. What follows is both an extension
and a notional simplification of Markov’s and Shi’s result.

Proof of proposition 6. Let G be the graph constructed above. Let G' > = G as a minor
with model function /1, where G” € TW_,,. We will show A(G”) > n.

To do this, we will show that any tree decomposition (X, 7T") of G’ looks like fig. 3.8;
that is, removing the centre clique model carrier seperates the tree such that for all 7, 7,
t i) and t ;) do not share a connected component. This will imply that any vertex v in
B(t g ) must have d(v) > n, by the following argument (recall V(K. )={1,....n+1}):

Let v, be both in B(t ) (the bag of the model carrier of K} and in u(i’) (the mi-
nor branch of ¢"). For G’ to include G as a minor, there must be a path from v, to all
vertices of B(t ), except the one vertex of B(t ) also in (%) (observe this path in-

tersects B(t_) only at its endpoint, as each vertex of B(ty ) belongs to a different
minor branch). A vertexin B(t, )N (%) thus receives n internally disjoint paths, 1 from

each of the n K'Y model carriers, where 7 = j (they are internally disjoint as by a known
theorem removing B(t ) from G’ separates all the v; from each other). Thus, each

vertex of B(th) has degree > n.

To see that any tree decomposition has the form of fig. 3.8, assume towards contradic-
tion that a connected component of 7'\ ¢ ;- has model carriers for both K™ and K2

3We remind that to join a vertex to a graph H means to connect it to all vertices in H
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w.l.g. Now let v; where 7 # 1 be the vertex € (i) N B(txa)), and let v be the vertex
€ p(1) N B(tge). Letu, be the vertex € w(i) and Btk ). Since G' >, G, for

eachi € {1,...,n+ 1} there is a (possibly trivial) path from v, to u,, all of them pairwise
vertex disjoint. So we have n + 1 pairwise vertex disjoint such paths. This cannot be,
as by known tree decomposition properties, there must be a separator of size at most n
eliminating all paths from B(t ;. ) to B(f i) U B(t (2 ) (namely let ¢ be the first vertex

inthe t;r —t 1) path, then B(t ;- )N B(t) separates B(t ) from the bag of any other
vertex t” in the connected component of ¢ in 1"\ Tk ). O

K(l) model carrier

K
‘Centre clique L
model model
carrier . .
K (2) carrier
model
carrier

K(4) model carrier

Figure 3.8: Example tree-decomposition of G’ for n = 3. The centre bag model carrier separates
the model carriers of K (%),

The same proof with slightly different arguments and reinterpreted notation can be found
in the extended version.

We finish this section with a high level overview of the proof of lemma 1:

For H in a minor-closed class C' which has the required properties of lemma 1, H can be
constructed by the clique-sum G; ® G, @ ... where G, € B. We wantto find H' € C
that includes H as a minor and has A(H’) < d. The idea is to use the GG, provided by
the lemma instead to build H'; If G and G, were clique summed over common clique
K, we use its maximal representor K’ in G| and G, and clique sum them. This way,
H' := G| ® G5 @ ... is awell defined clique-sum. One may check that by contracting
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each graph G, that H' comprises of back into GG;, we obtain H. Finally, the vertices of
H that did not participate in a clique sum have degree at most d. All that remains is to
deal with the potentially high degree of the common cliques, as they may participate in an
unbounded number of clique sums. The next lemma given without proof follows easily by
iterated clique-summing:

Lemma 3. Let C' be a graph class closed under n-clique-sums such that the graph product
K, OP, isin C. Then K,,[0T is in C' for any tree I" of more than 1 vertex.

Notice lemma 1 satisfies the requirements for lemma 3. To deal with the potentially high
degree of the common cliques, before clique summing G’l on G’2 on common clique K,
we first clique sum on K’ the graph KT for some big enough comb T'. See figure
3.10 for an example with a 2-comb.

Definition 13. Let u,u,...u;, be a path graph, and for each u,, add a vertex v;, and join
it to u,. The resulting graph is called the comb graph of length k or k-comb graph. The
subpath % u,...u; is called the spine of the comb graph and u; is the ith spine vertex.
The v, are the teeth of the comb. See figure 3.9.

Pl

Figure 3.9: The 1, 2, 3, 4 and 5 comb graphs. Courtesy: Wolframalpha

Figure 3.10 explains how we use the newly clique summed graph. It is simple to contract
the new graph back into G’l. Since we remove clique edges, we keep an additional tooth
clique not to be used in clique-sums (A3 in the figure), which will help us regain our clique’s
edges once the contractions happen; to keep the maximum degree of this tooth clique low,
we further break it up into a path of cliques K0P, each clique retaining a single edge of
K, see figure 3.11. Once this is done, the maximum degree will be d. This completes the
description of how we build the splitting of H.
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Figure 3.10: A representor clique 2, where a comb of cliques is attached. Tooth clique A1 is used
in place of A for a clique sum, and then A2 is used in place of /A for a second clique sum. Extend
the comb if more clique sums are needed. By contracting along same colored components, we
reobtain A and it is as if we had clique summed everything on AA. Remove dotted edges after the
comb of cliques in no longer needed for sums. This yields a graph of low maximum degree. The last
clique A3 is not used in a clique sum, but stays as is so that the edges of A are reobtained when
contracting along same colored components.

Figure 3.11: Example with 3-clique. A 3-clique K is replaced with a clique path K[OP, where the
dashed edges are removed. This keeps the maximum degree down to 3 no matter how big the clique,
and one may simply contract upwards to regain the clique.

The full proof of this lemma (of a more general form actually) is in section 6, though it may
be somewhat bulky.
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Overviews of the main proof (chapters 5 and 6) are not included. Chapter 5 is decently
written, and the interested reader may look into it.

3.3 Open problems

This section quickly touches on some potential open problems.

Recall if C' is a class, apex-C' is the class of graphs (G that are in C or that have a
vertex v so that G \ v is in C. One may observe that except the strict superclasses of
the class of apex graphs, the two examples we have given of a minor-closed class C' of
A(C) = o0, are the stars * and the apex graphs. Now, both are of the form apex-C,
where C' is a minor-closed class; for the apex graphs C' is of course the planar graphs,
and for the stars (' is the class of the disjoint union of single-vertex graphs. Furthermore,
| recently proved the following, not included in this text.

Proposition 7. If C'is a minor-closed proper class, A(apex — C') = oo.

This hints the following is an approachable problem.

Problem 1. What minor-closed classes C' have finite A(C')?

One could conjecture it is all the classes C' not of the form apex-C" for some minor-closed
class C’. Thisis not true, as the class of stars union the class of paths has A = oo without
being of this form. Naturally, this counterexample feel unethical, so one could formulate
a conjecture similar to the above that eliminates such pathological counterexamples.

On another note, when | proved that Forb(K3’3) = 4, I made an interesting observation.

For a minor-closed class C, one way to reformulate the definition of A(C') is to define
A(C') as the minimum & so that C' =minor-closure({G € C|A(G) < k}). Forclasses
C of A(C) = k > 3, one may then ask what minor-closure({G € C|A(G) < 3}) is,
or more generally, for any k" smaller than k& what minor-closure({G € C|A(G) < k'})
is. For K373—minor—free graphs the interesting question is when £* = 3 and the answer is
easy; minor-closure({G' € forb(K3 3) | A(G) < 3})= the planar graphs, as every non-

planar G € Forb(Kg’g) cannot have maximum degree 3 as we have seen in proposition
5.

We asked this question for Forb(K3’3) and got a natural graph class as a response.

By repeating this question with other minor-closed graph classes of high A we could
again find elegant and natural graph classes, or we might even find undiscovered ones.
Let TW_, be the class of graphs of treewidth k or less. C' := minor — closure({G €
TW_,. | A(G) < 3}) is a treewidth-like minor-closed class. Could it be formulated as a
natural variation of treewidth? Notice TW_,_; C C C TW_,.

4Again, this is technically not a minor-closure class; think of its minor-closure when we speak of it
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Simple treewidth is an interesting minor-closed variation of treewidth with geometric appli-
cations, also with the property that TW_,._; C STW_,. C TW_,, where STW_, is
the class of graphs with simple treewidth at most k. Could C' = STW<k? The answer to
this conjecture is negative, as A(STW<k) > k (it has the same construction G showing
A(STW_,,) > k as proposition 6). The question remains.

Problem 2. Does C' have a natural description with treewidth like properties?

On another topic, given minor-closed class C, with A(C') = k, which we know the ex-
cluded minors of, it is not way too difficult to find the excluded minors of minor-closure{G €
C|A(G) < K’} where kK’ < k. To see this, one may try describing the excluded minors
of minor-closure({G' € TW_,.|A(G) < 3}) as a function of the minors of TW_,., by

finding minor-minimal constructions (such as the graph (G of proposition 6) showing that

Problem 3. Can we express a minor-closed class C'” whose excluded minors we do not
know as minor-closure{G € C|A(G) < k’}, where C'is a minor-closed class whose
excluded minors we do know?

If we could, it is very possible we could find the excluded minors of C’. If the answer to
the question is that we cannot, another question would be to find other functions f from
the set of minor closed graph classes to the set of minor closed graph classes, with the
property that if we know the excluded minors of C' we can find the excluded minors of
f(C); once we have enough such functions, we might have enough expressive power to
achieve what problem 3 requests.

Here is a final toy question | found interesting. Let APEX be the class of apex graphs.

Problem 4. Notice minor — closure({G € APEX | A(G) < 3}) C minor —
closure({G € APEX | A(G) < 4}) C minor — closure({G € APEX |
A(G) < 5}) C ... € minor — closure({G € APEX | A(G) < 1000}) C ...
Do its classes admit an interesting description?

It is easy to observe this hierarchy does not collapse, and it has an unbounded number
of proper inclusions. | still do not know if its classes admit an interesting description or if
they relate to each other in a meaningful manner.
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4. THE A VALUE OF VARIOUS MINOR-CLOSED CLASSES

In this section, we find the /A value of a few minor-closed classes, such as K5-minor-free
graphs. This is the extended version of chapter 3, the overview. | would strongly advise
the reader to look into the overview first, as the present section is more pedantic and
extensive than we would like.

4.1 Planar graphs, Graphs of Euler genus < k, Outerplanar graphs, Linklessly
embeddable graphs

4.1.1 Planar graphs

It is easy to conclude that every planar graph has a planar graph of maximum degree 3
by visual intuition alone. The following figure illustrates that.

—

Figure 4.1: By replacing each vertex of a plane graph with a circle on the boundary of an open ball
around the vertex, we may create a plane graph of maximum degree 3 containing the first as a minor.

Let's write the actual proof! We remind that a planar graph has a function f mapping its
vertices to points and its edges to curves on the plane. Note that an embedded graph is a
compact subset of R2, being the finite union of compact sets, curves being compact as the
continuous image of the compact set [0,1]. We remind that the initial segment of a curve
([0, 1]) is a subset of the curve of the form ¢([0, a]) or ¢([a, 1]). The following lemma
says that with the right embedding, for each vertex one may find a closed ball centered
on the vertex, only including the vertex and initial segments of the edges incident to the
vertex (that is, edges only exit the ball once).

Lemma 4. Let G be a planar graph. G has an embedding f with the following properties:
For every embedded vertex f(v), there is a closed ball centered on f(v) such that

» The closed ball includes no other embedded vertices.
» The closed ball intersects only embedded edges incident to v.

» The closed ball intersects only an initial segment of those edges.

Proof. Let f be any planar embedding of G. For a ball of f(v) without other vertices
inside, simply pick a ball with radius smaller than the minimum distance between f(v)
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and other embedded vertices, min,, d(f(u), f(v)), where d() is the euclidean distance.
Moving to edges not incident to v, suppose towards contradiction that every closed ball
around v intersects such an edge. Let E be the set of edges incident to v. We can thus
pick a sequence a,, of f(G'\ E \ v) such that as n increases, the distance from f(v)
decreases and tends to 0, e.g a,, = some element of distance < 1/n. By definition, this
sequence converges to f(v). Furthermore, f(G \ E \ v) is compact in R? and thus
closed, therefore f(v) € f(G \ E \ v), a contradiction to the definition of embeddings.
Moving to edges incident to v, pick some ¢ such that B_(v) intersects from f(G) only
f(v) and those edges. Simply erase the inside of the ball (except v of course) and recon-
nect v with its edges by a straight line segment going from f(v) to where the embedded
edge last exits B, (v), erasing it before that point (to explain where to connect it in rigor-
ous terms, let ([0, 1]) where e : [0,1] — R? be such an embedded edge, with ¢(0)
being v. Let z be sup, |e(y) € B.(v)]. Connect v to e(x)). It is simple geometry this
remains an embedding satisfying the lemma. O

For every embedding, we thus found an embedding very similar to it with all these nice
properties. The reader may inquire whether these properties hold without changing the
original embedding, in other words, if they are true for all embeddings. The answer is
actually negative! There are graphs such that the final property does not hold.

For example: Let there be function

g(z) = {xsin(l/x), if 2 € (0, 1]

0, ifz =20

Figure 4.2: Function x sin(l/m). Our intuition can be false in topology, even on R2.

Notice that ¢ is a continuous function on [0, 1], i.e a curve. Let G be some planar graph
with some embedding such that ¢(0) and ¢(1) are embedded vertices u,; and u of G,
and ¢([0, 1]) is an embedded edge. For some r, > 0, all circles of radius less that r in-

tersect the edge at least twice. (Indeed, its distance from the origin is :1:\/1 + sinz(l/x).

The reader may verify the rest by setting values of the form 1/k7r for very large k.) Now,
let v be an embedded vertex of distance less than r to u. There is no ball of 1 satisfying
both properties 1 and 3 of the lemma for this embedding.
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Theorem 5. Let PLANAR be the class of planar graphs. A(PLANAR)=3.

Proof. Let GG be a planar graph. Take the embedding of lemma 4, and take the balls small
enough that they do not intersect and let v be a vertex of degree > 3. Erase everything
inside the closed ball of v, then let p,, ..., p,. be the points where the boundary of the
closed ball last intersected the edges of v e, ..., €, the p, ordered in a counterclockwise
manner starting from some point of the boundary of the ball. Add the p, back as embed-
ded vertices v;. Then, connect p; with p, ,; by a curve running along the perimeter of
the boundary and also connect p,. with p; in the same manner (of course these are well
defined curves. Take the polar coordinate formula, mapping the angle to points on the cir-
cle.). Notice that all such vertices are of degree at most 3, and that their contraction yields
the original graph. Doing this for every vertex of degree > 3, we create an embedded
graph of maximum degree 3 including G as a minor. [

Much the same holds for graphs embeddable on a surface of euler genus k, equivalently
graphs of euler genus < k.

4.1.2 Graphs of Euler genus < k

Definition 14. Let X be a surface built from the sphere after adding k handles. Then its
euler genus is 2k.

Let ) be a surface built from the sphere after adding k crosscaps. Then its euler genus
is k.

The classification theorem of closed surfaces states that any connected closed surface is
homeomorphic to a surface as in the above definition, where £ > 0.

9 E=
o' e

Figure 4.3: Surfaces where we have added 2 or 3 handles respectively. The double and triple torus.
Courtesy: Wikipedia.

Definition 15. The euler genus of a graph is the smallest integer n such that G can be
embedded on the surface of euler genus n.

We may abusively call a graph of Euler genus n a graph of genus n2; in this text we always
refer to the Euler Genus.

The fact that every graph of euler genus k is included as minor in a graph of euler genus
k and maximum degree 3 is visualized in much the same manner and the proof is almost
identical. We simply have to work with the open discs provided by the definition of a
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surface instead of open balls. We present them without proofs.

Note than for a point x of a surface, and any ball of x, there exists an open disc inside
the ball. To see this, let D be an open disc of x homeomorphic to the open ball of R? by
homeomorphism f, take an open ball O of 2, map it by f to R2. f[O] is an open set (by
homeomorphism) and thus it has inside an open ball centered on x. Map this open ball
back to the surface by f~1. Thus, for any ball B_(z) C D, we have found a subset D’
of B_(x), mapped by f to an open ball of R2. Limiting f to D', it is easy to see that we
still have a homeomorphism.

f
—
<«— f(x)

& ©)

Figure 4.4: Reasoning about open discs through their homeomorphism to the open ball.

Lemma 5. Let G be a graph with embedding f on some surface. For every embed-
ded vertex f(v), there is an open ball centered on f(v) and an open disc inside the ball
including no other embedded vertices, and only embedded edges incident to v. Further-
more, let g : [0,1] — R? be one such embedded edge. If g(0) = f(v) the open disc
only contains a subset of the form g([0, €]). If g(1) = f(v) the open disc only contains
a subset of the form g([1 — £, 1]).

Theorem 6. LetEUL_GENUS_ be the class of graphs of euler genus < k. A(EUL_GENUS _;)=3.

Definition 16. Given graph GG, we call the graph G’ >, G of maximum degree 3 as
in the proof that A(PLAN AR) = 3 the fattening or ballooning of (G, and denote it
BI(G). The circle we replace vertex v € G with we denote by Bl(v). This is also the
model function showing G >, G.

4.1.3 Outerplanar graphs
The outerplanar graphs are closely related to planar graphs. One expects that the same

methods apply, and indeed this is the case. Let OUTERPLANAR be the class of outer-
planar graphs.
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Theorem 7. A(OUTERPLANAR) =3

The proof is summed up in the following figure.

Figure 4.5: A picture is a thousand words. It unfortunately is not also a proof.

Proof. Let G be an outerplanar graph. There is a common face f of R? \ G on which
all vertices lie. So for a small enough ¢ a closed ball B,,(¢) around a vertex v intersects
with f. More specifically, its boundary intersects f. To prove this, observe that for £ small
enough, there is a point p € f with d(v, p) > €, and a simple curve ¢ : [0,1] — R?
connecting v and p and having interior in f. The function d,, mapping a point of R? to
the distance from point v is continuous, therefore dv o ¢ is continuous, and by the mean
value theorem for all ¢” € (0, €) there is a point on the interior of the curve with distance
g’ from v. Let P, be such a point. Even more specifically, since f is open, we may take
an open ball of f around p.s, and by geometry notice that its entire intersection with the
boundary of B, (¢) isin f.

We create from G a graph G’ := BI(G) asin the proof of A(PLAN AR) = 3. Clearly
G’ >,,, G by contracting Bl(v) for each v. Notice that this still holds if we remove any
1 edge from each Bl(v).

Since the edges of Bl(v) cover the circle Bl(v) was embedded on, atleast one such edge
e must intersect the boundary of f. We remove it. Both the ball bounding circle Bl(v)

and f are faces, i.e maximal connected sets of R? \ G, with an intersecting boundary,
so G’ \ e now has a face= the interior of e U f U the ball bounding Bl(v). This face
intersects all vertices of Bl(v). Doing this for all Bl(v), we acquire an outerplanar graph
of maximum degree 3 containing GG as a minor. O

4.1.4 Linklessly Embeddable graphs

With all the above positive results in mind, one may thus conjecture that the linklessly
embeddable graphs, a well-known three dimensional analogue of the planar graphs con-
sisting of all graphs that have a linkless or flat embedding on 3D-space, also has a low A.
This is not the case. As we will see, the linklessly embeddable graphs have A = oo.

The facts proved in this section, while not at all trivial in a topological sense, were for

the most part visually obvious. We try to find the A value of various minor-closed classes,
and in doing so, we move on to less obvious results.
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4.2 Forb(Kj;) and forb(K3’3) graphs

Chapter 3 includes an overview of this section; reading it first is strongly recommended.

4.21 Kx-minor-free graphs

In [1], Georgakopoulos proved the existence of a countably infinite K5 -minor-free universal
graph. As a corollary of his results, he obtained that every finite Ks-minor-free graph is a
minor of another finite K-minor-free graph of maximum degree < 22. A natural question
to ask is if this number can be lowered. Let forb(/(5) be the class of K s-minor-free graphs.
We prove that A(forb(f5))=3.

Definition 17. Given graphs (G, H and isomorphic clique subgraphs S C G, Si C
H, their clique sum G' @ H over common cliques S and S is defined by identifying
G and H over Sy and S¢;. We may denote this G ©g_ g, H.

Theorem 3 by Wagner is essential.

We do not use the following observation, but it is nice to notice that for theorem 3 4-clique-
sums would not add any extra graph creating power (Indeed, take Whitney’s theorem that
up to isomorphism, K, can be embedded in only one "manner” in the plane. Then notice
that anything we add by 4-sums we could have added by at most 4 3-sums, one for each
face of the K,). Thus a nice way to reformulate this theorem is that K5-minor-free graphs
are precisely the clique-sum closure of planar graphs and W[8]

The following two lemmas are the main mechanisms used in the proof that A(forb( K 5))=3.

One is lemma 3.

Figure 4.6: The cartesian product of a tree and a 4-clique, visualized.
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Its proof is conceptually very simple; imagine K,,[J7" as a tree where instead of vertices
we have cliques. Much like we can create any tree by adding each of its edges one by
one starting from the root in a DFS or BFS manner, we can create K,, (07" by adding each
of its n-cliques in the same order.

Proof. Let there be graph K, 7 for some tree T'. We have that V(K0T )=(V (T') x
{1,...,n}yand ((t{,v;), (t5,v5)) € E(K,O0T) < t; = t, or (t; neighbors t, in
T and v{ = vy).

The result is by induction of the number of vertices of I". If 1" is the edge graph, then
the result holds trivially. Now let K (07" for all 1" of some fixed number of vertices n.
Let there be T of n + 1 vertices. This is constructed by some 7' of 1 vertices after
adding a vertex t, to 7" and joining it to the correct vertex t;. We have K,00T" € C.
Clique sum either of the cliques of K, (0P, to the clique of K, ,[J1" corresponding to ¢,
i.e to the subgraph of K, (07 induced by {(¢1,7)|i € {1,...,n}}. The resulting graph
is (isomorphic to) K ,,(07": Relabel the new n vertices as (o, 1), ..., (t5, n) and notice
that (¢,, 1) neighbors (t, j) iff (t, = t) or t, neighbors tin 7" and i = j). O

We remind G; @ g, G, is the clique sum of G, and G, over isomoprhic cliques
K, C G;and K, C G,
Lemma 6. Let P, P, be some graphs. Let P = P, @, Ps. Letthere be graph

P| > . Py, et be the model, such that j1( K, ) has a clique K with one node in each
branch and let there be similar graph P;. Then P & K! K Py, > P.

o, B

g & ’I/
(B« &

Figure 4.7: Example for size 3 cliques of graphs P; and F,. To the right the triangle Ki is depicted,
one vertex in each branch of K.

Proof. Let jiq, ji be the model functions mapping connected components of P/ to P;.
We define the branches of P’ := P @D k1, kI, i.e the model function 1 from connected

components of P’ to vertices in P. Let vertex v of P ¢ the common clique, let it only
€ P,. Then p(v) := p,;(v). Letv € the common clique. Then 1 (v) := 4 (v) U pg(v).

If v € P, v ¢ the common clique, let it only € P, then (u,v) € G = (u,v) €
P, = p,(u), p,;(v) are neighbors => (u), (v) are neighbors .

If v € the common clique K of P’, then (u,v) € P = (u,v) € one of the P,
containing K; = p,(u), p,;(v) neighbor => p(u), pu(v) neighbor. O
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We now move on to the proof that A(forb(K5))=3. Our previous result for planar graphs
is of use. It suffices to consider clique sums that do not remove edges. Furthermore, we
divert our attention mostly to the case of 3-sums. The reader may fill in the rest easily.

Before diving in, let us explain the proof conceptually. We decompose the K5 minor free
graph, to the clique sum of planar graphs, and we replace each planar graph with a bigger
planar graph of maximum degree 3 containing it as a minor. We add a few extra triangles
so that clique sums between big planar graphs are still possible. The triangles are placed
so that the clique sum of the big planar graphs contains the clique sum of the original
planars as a minor. By adding enough such triangles, we never need reuse a triangle,
keeping the maximum degree low. My approach bloats the graphs quite a bit; it is not my
intention to present the most economical approach in vertex or edge number.

Theorem 8. A(forb(K;))=3.

Let G be a K5-minor-free graph. We construct the K --minor-free graph of maximum de-
gree 3 containing G step by step, because it makes the construction easier to understand
and better motivated.

Let G be a K;-minor-free graph. Let G, ..., G be its < 3-clique-sum decomposition
into planar graphs and Wagner graphs, clique summed in this order. We can assume all
embedded triangles abc of (planar graphs) GG, have either an empty interior or an empty
exterior; for let this not be the case, then by the definitions of planarity and the Jordan
curve theorem, the triangle is a separator, and thus it can be further decomposed into the
3-clique-sum of smaller planar graphs. By the Jordan-Schoenflies Curve Theorem, this
region is homeomorphic either to the interior or the exterior of a circle C' of radius 1 on
[R“. One may then add a new triangle a’b’c’ to GG, a joined to a’, b joined to b’, ¢ joined
to ¢/, and embed it in the empty face. '

Do this for all triangles of (G, to obtain graph H,. See figure 4.8

Visually, adding the triangle of course looks obvious, but for illustration purposes and since it's nice not
to have gaps in our understanding, let's explain it. Let H be the homeomorphism function, and w.l.g. let the
empty face be homeomorphic to the interior of C'. One may embed the triangle by e.g taking a circle of half
radius to C' and same centre, noting the point P, Where the line segment from H(a) to the centre of C'
intersects the smaller circle, let points p,, and p . be defined in the same manner, and letting the embedded
triangle be the embedded vertices H (p,), H 1(p,), H (p.), and the embedded edges of the
triangle be the the reverse under H of the 3 arcs of the small circle. Similar arguments apply if the empty
face of abc is homeomorphic to the exterior of C.
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Attachor
triangles

Figure 4.8: A triangle of G, modified step by step. G, H,, G, G7, G? are pictured in order.
By contracting along same-colored segments, we regain the original graph. By clique summing on
attachor triangles, we keep the maximum degree low. Delete dotted edges after you’re done.

We call a triangle added in this manner on the empty face bounding abc a representor
triangle of abc, and denote it a’b’c’. Now let G, >, H, be planar graph of maxi-
mum degree 3 created by H; by replacing each vertex v with Bl(v) as in the proof that
A(PLANARS = 3), but leaving the vertices of representor triangles as is. This way,
we can keep doing 3-sums. For every edge uv of G, call the unique Bl(u) — Bl(v)
edge the representor edge of uv. For every vertex u of (G, add an additional vertex u” to
GG’ and embed it on the circle Bl(u) is embedded on, on the interior of an edge and let
that u’ be the representor of u. Naturally, replace that edge xw v’ is on with the edges
zu’ and u’w, embedded on the circle.

Theorem 9. (G1 @ ... &G}, >, G, @ ... ® G},), where if G; and G; | were clique
summed on common cliques abc and de f, G, and G, | were clique summed on com-
mon cliques a’b’c’” and d’e’ f’. See image 4.10. (Analogously, if G; and G, were
clique summed on a common 1-clique or 2-clique, G; 1 were clique summed on the rep-
resentors of those cliques).

{ﬁ.@kgkﬁ%

Figure 4.9: The clique sum of 3 planar graphs, leading to a graph of max degree >3.
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Figure 4.10: The graphs G; are clique summed over the shaded triangles now.

We discuss only 3-sums from now on. 2 and 1 sums are completely analogous.

Proof. Notice that G; >, G, by contracting each Bl(v) to get back v and for each
representor triangle x'y’ 2" contracting x’ to x, y’ to y, 2’ to z. Therefore, let 1, be the
model function of G, > G, x" € u;(x),y" € p,;(y), 2" € p;(2),and Gy & G, >,,
G, & G5 by lemma 6. Furthermore, representor triangles in G'; @ G+ continue to have a
vertex in each branch of the triangle they model. (G1®G5) B G5 >, (G1BG,) G,
by lemma 6. Furthermore, representor triangles continue to have a vertex in each branch
of the triangle they model, and so on. The result follows inductively. O

In this manner, we obtain a graph G’ = (G| ®...® G,) containing G as a minor, with all
non-representor vertices having degree 3 or less. However, if an unbounded amount of
clique sums occur on a specific representor, we could still get a G’ of unbounded degree.
Utilizing clique sums, we make some additional modifications to G;. See figure 4.11.

Leta’b’c’ be arepresentor triangle in G;. Let K301 P, be graph with vertexset ({1, 2, ..., k} X
1,2,3}). We call the clique corresponding to the nth vertex of Py, i.e for fixed n €
1,2, ..., k} we call the clique of K30 P, induced by the vertices (p, k) with p = n the

nth clique of KO P,.. Clique sum the 1st /{5 of a K300, graph to a representor triangle

a’b’c’ to obtain G. We call the nth clique of a K300F, in G} added in this manner

to representor triangle a’b’c’ the nth copy of a’b’¢’ (with this terminology, a’b’c’ is the

1st copy of a’b’c”). By lemma 3, the graph remains K ;-minor-free. Make the analogous

modifications for 2 and 1 sums. Again, we discuss only of 3-sums - the reader may verify

2 and 1 sums have completely analogous proofs.

Theorem 10. (G ® ...® G}, >,, G1 ® ... ® G},), where if G and G, | were clique
summed on common cliques a’b’c” and d’e’ f’, G} and G/, | were clique summed on
the ith copy of a’b’c’ and d’e’ f’. See images 4.9 and 4.10 again and then 4.11.
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Figure 4.11: The graphs G/ are clique summed over the attachor triangles now. A1 is summed

to A1’ and A2 to A2’. By contracting along same colored components, we obtain (G. Remove
dotted edges after the last sum. This yields a graph of maximum degree 3.

Proof. Notice that G > (. This is done by contracting the first vertex of all copies
of representor triangle a’b’c’ of G/, i.e the path of the K0P, induced by the vertices
(p, k) with k& = 1. Then by contracting the second vertex of all copies of representor
triangle a’b’c’, and the the third. Do this for all representor triangles. Notice that every
copy has 1 vertex in each branch of the a’b’ ¢’ model. By lemma 6, the result then follows
inductively as in the previous proof. [

Notice that G := (G| ®...®G),) has maximum degree 6. Naturally we still call triangles
in G” copies if they came from a copy of GG, for some i. Vertices that don’t belong to a
representor copy have maximum degree 3 still. Unused copies have degree 4. At most,
we have two copies of representor triangles clique summed on each other for a degree of
6. This can be reduced to 4 as well. Notice that the last copy of each representor remains
unused.

Claim 1. Let zyz be a copy of a representor triangle of G” except the kth copy. G” >
G’ still holds after removing edges xy, yz, zx of G” and doing this for all such xyz.

Proof. Let x1yz be some representor. The model function showing G” > G’ contracts
the first vertex of each xyz copy together, the second vertex of each copy together, and
the third vertex of each copy together (regaining xyz). It suffices that one copy retain its
edges, because the rest of the edges are redundant once the contraction is finished. [

Now non-copies have degree at most 3, and copies have at most 4. Can the maximum
degree be reduced to 3?7 The answer is positive. We further modify the clique sums.

Let a’b’c” be a representor triangle in ;. We clique sum to a’b’ ¢’ the first spine clique
of K307 where T is the k comb. We call the spine cliques of K37 the copies of a’b’c’
and the teeth clique the attachors. Do this for all representor triangles to obtain Gg”.
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Theorem M. G ® ... ® G} >,, G1 @ ... ® G}, where if G; and G}, | were clique
summed on common cliques a’b’c” and d'e’ f', G} and G, | were clique summed on
the attachor of the ith copy of a’b’c’ and d’e’ ’. This still holds after removing all edges
of (GY®...8G)) from A to A, where A ranges over any copy of representor triangles
and any attachor except the attachor of the copy numbered k.

Proof. Notice that G' > ;. This is seen by contracting each attachor to its copy to
obtain G/. Attachors of copies of a’b’ ¢’ still have one vertex in each branch of the a’b’ ¢’
model. G” := G ®...® G, >,, G’ then follows inductively from lemma 6 as before.
Furthermore, notice thatin G”” as all copies and attachors of a representor triangle a’b’ ¢’
are contracted regaining a’b’¢’, it suffices that one copy or attachor retain its edges to get
a’b’c’ from the contraction. The other edges are unneeded. The attachor of the copy k
of a’b’ ¢’ fills this role. O

Notice that G”” after removing the aforementioned edges has maximum degree 3.

Corollary 3. A(forb(K5)) = 3.

4.2.2 K3’3-minor-free graphs, a first lower bound and an afterthought

In this section, we will show that A(forb(Kg’g))=4, that is, for every forb(K373) graph there
isa forb(K373) graph of maximum degree 4 including it as a minor, but not all forb(K3’3)
graphs have a forb(K3’3) graph of maximum degree 3 including the first a minor. This is
the first example of a graph class with a bounded A value different than 3.

Just like with K5-minor free graphs, Wagner discovered theorem 4, which is of use.
Naturally, the proof that A(forb(K3’3))=4 repeats many of the arguments of the previous

subsection. Let’s center our attention at the proof that A(forb(K373));£ 3, our first lower
bound.

Fact 1. Let G, G, be two planar graphs. Then, their < 2-sum over some edge or vertex
remains planar.

One may observe this by geometric intuition or by using Wagner’s characterization of pla-
nar graphs, and the fact that the clique sums of two graphs cannot have higher Hadwinger
number greater than both the first graph and the second.

This implies that to create a non-planar graph by clique summing planar graphs and K5
graphs, one must use a K at some point, which has vertices of degree 4. Now, observe
that with the exception of a trivial 2-sum which only removes an edge, (we remind that
one may use clique sums to remove any edge of a graph without adding any vertices),
< 2-sums cannot reduce the degree of a vertex. We arrive at the following conclusion
which we now prove:

Theorem 12. If (5 is non-planar K 373-minor-free graph, then A(G) > 4.
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Definition 18. Let G = G; & G, such that V(G) = V(G,) or V(G) = V(G,). In
other words, the clique sum did not add any vertices. We call such a clique sum trivial.

Proof. Let G = G| @ ... ® G, be a series of 2-sums of planar graphs and K graphs,
creating a non-planar graph. By the above, at least 1 /K5 was used in the construction of
(G. Now, observe that:

* 1-sums cannot reduce the degree of vertex.

* We can assume that no trivial 2-sums occur; rather than remove an edge by a trivial
clique sum, we can remove it after the last clique sum that utilizes the edge.

c If (G ®... 0 G,;_1) ® G, is a 2-sum over common edge uv, we can assume that
the degree of uand vin (G, ®...®G,_;) andin G, is greater than 1; If not, let w.l.g
v have degree 1in GG,, we can replace the 2-sum (G; @ ... ® G;_;) & G, on uv
witha 1-sum (G; ® ... G, ;) @ (G; \ v) on u, and if the edge uv was removed
during the 2-sum operation, we add after the 1 sum a trivial 2 sum to remove it.

Thus, G may be built by < 2-sums of planar graphs and K, no 2-sum being trivial or
occurring over an edge with a vertex of degree < 1, and at least 1 K5 must have been
used during its construction. But notice that using these ingredients, once a graph GG, has
been clique summed during the building of (G, none of its vertices can have their degree
lowered in G. Therefore, the vertices of the K graph must have degree > 4. ]

Now, let there be non-planar K3’3—minor—free graph (G. For a K3,3-minor-free G’ to

include G as a minor, G’ must also be non-planar of course. Therefore, it has A(G”) >
4. This proves that A(K3 3 — MINOR — FREE) > 4.

As for the proof that every K3’3—minor—free graph is a minor of a K3,3—minor-free of max-
imum degree 4, the same arguments as for K 5-minor-free graphs apply. A proof sketch
is given.

Theorem 13. A(forb(K33)) =4

Proof Sketch. Let G be a K5 3-minor-free graph built by the clique-sum G @ ... © Gy.
Let G be the fattening BI(G,) if G is a planar graph and let it remain K if G, is K.
For every uv edge in planar graph GG, clique sum to the unique Bl(u) — Bl(v) edge in
G, the first torso K, of the graph K,0T" where T is the k-comb. Do this for all uv to
obtain G . If G, is a K5 graph, clique sum K,0T" on every edge to obtain GG/ instead.
G @.8G, <, G] @ ... ® GY where if G, is < 2 clique summed to G, ; on
common cliques uv and wz, G is < 2 clique summed to G ; on the attachor of the
ith copy of the representors of uv and wz. Let G” := G7 @ ... ® G}, and notice that
G is still included as a minor if we remove all edges corresponding to copies or attachors
except the kth attachor (i.e all edges uv where uv is a copy or attachor)). Observe that
after removing those edges, G” has maximum degree at most 4, the 4 because of the G,
isomorphic to K. O

57 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

Remark 1. There is something quite interesting to notice here. For a minor-closed class
C, one way to reformulate the definition of A(C') is to define A(C') as the minimum k
so that C' =minor-closure{G € C|A(G) < k}. Forclasses C of A(C) = k > 3,
one may ask what minor-closure{G € C|A(G) < 3} is, or more generally, for any &k’
smaller than k what minor-closure{G € C|A(G) < k'}is. For K3 3-minor-free graphs

the answer is easy; minor-closure{ G € forb(K3 3) | A(G) < 3}=the planar graphs, as
every such G is built by the 2-sum of planar graphs and subgraphs of K5, which are also
lanar.

Eepeating this question with other minor-closed graph classes of high A, we may find
elegant and natural graph classes, just as we did with K373-minor-free graphs, and even
undiscovered ones. As a foreshadowing, let TW_,. be the class of graphs of treewidth k
orless. {G € TW_,, | A(G) < 3} lies strictly between TW_,._; and TW_,.. Could
it be formulated as a variation of treewidth, like simple treewidth?

4.2.3 K, -minor free graphs for n > 6, Kn,n-minor-free graphs for n > 4.

The lack of structural theorems and characterizations for K z-minor-free graphs makes
them particularly hard to work with. Specific results giving some information that come to
mind are [14] and [15] and of course the proof of Jorgersen’s conjecture for large graphs
[16], which aren’t very helpful. It is thus nice that we are able to prove that the class of
K g-minor free graphs, has A(forb(Kg)) = oo. In fact, the following is a corollary of
the main theorem of this thesis:

Theorem 14. A(forb(K,,)) = oo, foralln > 6. A(forb(K, ,)) = oo, for all
n > 4.

4.3 Graphs of pathwidth < £, Graphs of treewidth < k

Chapter 3 includes an overview of the results on treewidth; reading it first is strongly rec-
ommended.

We have already defined treewidth through clique sums in section 3.2.

Definition 19. A graph has pathwidth < k iff it can be constructed by the clique sum
of graphs Gl, GQ, ..., each graph clique summed to the previous in the sequence, i.e.

V(G V.. UV(G)) N V(G 10)=(V(G) NVI(Gi40)-

Definition 20. A graph is said to have treewidth = k iff it has treewidth < k, but it doesn’t
have treewidth < k — 1. Similarly for pathwidth.

Notice that in treewidth, by definition of clique sums each new graph we add as we build
G can be thought to be added to a single previous graph, i.e for all 2 there is j < 7 + 1
such that (V (G4) U.... UV(G,) N V(Gy,1)=(V(G;) NV (Gyyy).
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Definition 21. Let there be a graph G constructible by the clique-sum of graphs G ¢, ..., G,
in this order. A corresponding tree decomposition is the tuple (X, T') with set X =
{V(G,),V(Gy),...} and T a tree with V/(T') = {V(G,),V(G,),...}. To define
E(T), for each ¢ > 1 pick a single arbitrary j < 7 + 1 such that (V(G;) U ... U
V(G,))NV(G1)=(V(G;) N V(G 1), and have V(G,) be adjacent to V' (G). A
path decomposition is a tree decomposition where 1" is a path. The width of the decom-
position is the size of the largest bag -1.

We call V (G,) the bags of GG, and given t € T’ denote the corresponding vertex set V.
Every tree decomposition has a corresponding clique sum sequence and vice versa .

Definition 22. Given a graph (G, an expansion or splitting of G is any graph G’ > = G.

In [13], Markov and Shi showed that every graph of treewidth < k has a degree 3 expan-
sion of treewidth < k + 1, and that the +1 is necessary for k > 19,i.e, A(TW_,) > 3
for k > 19. We extend and simplify their results; let TV _, be the class of graphs of
treewidth < £, and PW_,. be the class of graphs of pathwidth < k. We show that

A(PW_,) = A(TW_,) = kforall k. Our proof that A(TW_,.) > k is notionally
simpler in comparison. a

We remind that a graph has treewidth < £k iff it can be constructed by the clique sum
of graphs of < k + 1 vertices. A graph has pathwidth < k iff it can be constructed by
the clique sum of graphs Gl, GQ, ..., each graph cligue summed to the previous in the
sequence, i.e. (V(G)U...UV(G,))NV(G,1)=(V(G;) NV (G,.1).

Proposition 4 is key, the statement still holding and the proof being same for PW_ . Itis
proved in the same manner that one proves that the n X n grid has treewidth < k.

Instantly, we have as a corollary that K, (0P, € PW_,, for all paths P; of length 4, and
by lemma 3 that K,,00T" € T'W_,, for any graph T'. Let's first observe that every graph
in PW_,, has a degree 3 splitting in PW,  :

4.3.1 Pathwidth < n

Let there be graph G of pathwidth < n, constructed by graphs G4, ..., G, clique summed
in this order. To observe that every graph in PW_,, has a degree 3 splitting in PW, _ ;,
simply replace graph G; with the following graph G}: Take G, 0P, ;. ) .2, and 16t P g 2
have vertex set p,, D, ... and G, vertex set U, U, .... Let e, ... be the edges of G;.
Delete all edges except e, in the (G, corresponding to p,, delete all edges except e, in
the GG; corresponding to p; and so on. Use the leftmost and rightmost cliques to per-
form the clique-sums: Add to the GZ- corresponding to p; the clique Gz- was summed on

2Simply take the vertices of the tree to be ¢ f; , take the bag of ¢ ;; to be V(H ), and connect ¢ ;.
and tHj in the tree decomposition if H; was chosen for Hj to cliqgue sum on. See [17] for a full and more
detailed proof.
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with G;_; and to the G, corresponding to p| (.42 the clique G it was summed on
with Gz‘+1- This completes the construction of graph G; of pathwidth < n + 1 (G and
G, are replaced with G10P g )11 and G0 g, )|+1 of course). G is defined as

19 G,... ® G, G clique summed on G, ; on their rightmost G; and leftmost G, ;

copy of course. After clique summing G, with G} ;, remove the edges of the clique. Itis
easy to see that G’ >, G with maximum degree 3.
We move on to the proof that A(PW<n) — n. This is seperated in a lower and upper

bound result. We first prove A(PW_,,) < n.

Proposition 8. A(PW_, ) < n.

Proof. Let there be pathwidth < n graph G = G| @ G5 ® ... & G, clique summed
in this order. It suffices to consider only the case where all the GG, are isomorphic to the
n + 1-clique. All other GG in PW_,, are subgraphs of such a graph. It also suffices to
prove this for connected G.

O. Milolidakis 60



Splittability within minor-closed classes to graphs of low maximum degree.

Figure 4.12: The clique sum of 3 4-cliques to create (G and part of the corresponding G’ below it.
G’l appears fully. The bold edge is the edge we do not remove in each triangle. It is easy to see that
if we contract G , downwards, and GG 5 upwards, we regain G, .
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Figure 4.13: The rest of G/2 in G’ for illustration purposes.

Let v € (G be some vertex. Similarly with above, we define the following graph G’l.
See figure 4.12: Let I/ = ey, ... be the edge set of G; \ v. Let there be graph G 4, =
(G1 \ v)OP g1, where P g 1 = pypy... is the path graph of | E| + 1 vertices, and

V(G \v) = {uq,u,,...}. Now remove all edges of (G, \ v, p;) except e, all edges
of (G1 \ v, p,) except €,, and so on, and remove all edges of (G \ v, P ;1)

We wish to add v, and to do that we have to drop another vertex. Let v’ # U be some
vertex in G} and not in GG, (it is safe to assume such a vertex exists w.l.g.). Do the same
in G, \ v, i.e define G = (G \ v")OPF /|1, where £ is the edge set of Gy \ v/,
and remove edges as before; remove all edges of (G \ v’, p;) except €7, all edges of
(G1\ V', py) except €5, and so on, and remove all edges of (G} \ v, g/ 1), only this
time keep the edges of the clique G; was clique-summed on to G5 with (We shall use
them for a clique sum. After the sum occurs, we shall remove those edges t00).

Now take the disjoint union of G 4 and G 5 (G \ v)OP ;1 and (G \ V)0 gr|11)
and identify same named vertices from (G \ v, P 1) and from (G \ v, P, ) to obtain
G

This is a graph of width n and maximum degree n (if we forget about the edges needed for
the clique sum, which will be removed anyway), and by contracting in G the subgraphs
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(u1,Pg11) and (uq,P g ;1) together into 1 vertex, (uy,P ;1) and (ug, P gy yq) to-
gether into 1 vertex, and so on, and (U’,P|E|+1) into 1 vertex and (U7P|E’|+1) into 1 vertex,
we obtain G;.

Do the same for the other G, only unlike before have P ., instead of Py ¢, and have
a clique on (G; \ v, p;) of G 4 and (G, \ V, P |+2) Of G g (for the sums). Clique sum
G, with G ; in the obvious manner, removing the edges of the cliques after the clique

sum. It is simple to observe that G’l S, G’2 @ ... has maximum degree n, is of pathwidth
< n, and contains (G as a minor by contracting as above.

]

We now move on to the second lower bound of this text. We need a graph (G of pathwidth
at most 12 such that any graph of pathwidth at most n containing it as a minor has maximum
degree > n. This graph is the following:

Let there be a K, clique with vertex set {1, 2, ...,n}. n-sum to it 1000 n + 1-cliques,
let the ith be {1, 2, ..., n,i}. This completes the construction of G.

Proposition 9. There is no graph G’ of pathwidth at most . containing G as a minor with

A(G") < n.

The following well-known lemma (see e.g Diestel [10]) is of use:

Lemma 7. Let G contain an n-clique, let G’ contain G as a minor, and let there be a tree-
decomposition of G’. Then there is some bag of the tree-decomposition which contains
a vertex from each minor branch of the n-clique.

Path-decompositions being tree-decompositions, this theorem applies here as well. We
now prove proposition 9.

Proof. Let there be graph G’ € PW, containing GG as a minor, and let G’ be created by
the clique sums G7 ® G, @ .... By proposition 7, for any of the 3 (n + 1)-cliques of G
there is a GG such that GG, contains a vertex of each minor branch of the (n + 1)-cliques.
Let G, G;, G}, be these graphs, i’ < j° < k. Now, all graphs between G, and G},
need to have a vertex from each branch of the central K, clique. Therefore, the extra
node of G; cannot be split. For let this be the case, let it be split into u and 1, this edge
does not fit anywhere. O

We move on to Tng:- The reader will notice that arguments are naturally similar.

4.3.2 Graphs of treewidth < n

We begin with the lower bound. In [13], Markov and Shi showed that there is a graph GG
of treewidth n and no degree 3 expansion of treewidth n. The example graph (G we use
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is very similar in comparison and we now define it; let there be an n + 1-clique graph
with vertex set {1,2,...,n + 1}, called the central clique. For every n-subclique with
vertex set {1,...,i — 1,9+ 1,...,m,n + 1}, add a vertex labeled i’ and join it to the

subclique, call this n + 1-clique by the name KSJ)Fl This completes the construction of

graph G. Markov’s and Shi's example was the same, but they also removed all edges with
both ends in the central clique of G. The following is both an extension and a notional
simplification of their result.

Proposition 10. A(TW_,,) > n

This is a slightly different proof to the one presented in the overview. Notation is a bit
different here; For tree decomposition (X, T"), model carriers denote tree-decomposition
bags rather than tree decomposition vertices ¢t € V' (T'). Also, the bag of ¢ is denoted V,
instead of B(t).

Proof. Let G’ > G as a minor with model function p, where G’ € TW_, .. By lemma

7, for any tree-decomposition of GG’ if there is an n + 1 clique in GG, there is some bag
of the tree-decomposition which contains a vertex from each minor branch of the n + 1
clique. Call this a model carrier of that n + 1-clique.

Let there be a width n tree-decomposition of G’. Notice that any tree decomposition
vertex ¢ adjacent to the centre clique bag carrier ¢, must drop a centre clique bag node,
e, forsome i € {1,...,n}, u(i) NV, is not empty but 11(¢) N V} is, for there cannot
be n + 1 (possibly trivial) distinct paths from one bag to the other, as their intersection is
a separator. Therefore there is a single centre clique model carrier. In fact this holds for
all n + 1 clique model carriers.

As every bag adjacent to the centre model bag must drop a vertex, the first internal vertex

t;, on the path from the central bag carrier to the Kff) model carrier drops the bag vertex
of 2. Thus no vertex whose path to ¢ uses ¢,, may have a vertex of the minor branch of

1. All such vertices induce a subtree of the tree-decomposition, with K,(f) in it. Lacking

vertices from the model of 7, for j #* ¢ no other Kq(lj) model carrier is included in this
subtree.
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K

K®
) mn
Centre bag

model |

carrier

K

Figure 4.14: Example tree-decomposition of G’ for n = 3. The centre bag model carrier separates
the K 5; ).

Let v, be both in the model carrier of Kff) and in the minor branch of ¢’. For G’ to include
(7 as a minor, there must be a path from v, to all n nodes of the central bag carrier, except

the one in the model of ¢. This path is internally disjoint to other such paths from a similar

node v, ofa KT(Lj) carrier, J # 1. A vertex in the centre bag model carrier and the model of
1 thus receives n internally disjoint paths from each of the n KT@ model carriers, where
7 # 7 Thus, each vertex of the central bag model carrier has degree > n. O

We move on to the other direction. We have used the following ideas many times already,
so we over them quickly.

Proposition 1. A(TW_, ) < n.

Let G be a graph produced by the clique sum of graphs G, G,..., G, in this order. It
suffices to assume that the Gi are isomorphic n + 1-cliques, as G made from such Gi
includes all other graphs in T'W_, as a subgraph.

Just like with previous classes, let there be some Gl- with n-clique K, and let there be
graph TOK,, where T is the k + 1-comb graph, and K, has vertex set {uy, ..., u,, }.
Call the subclique of T'TIK,, corresponding to the first spine vertex the first spine clique,
and the subclique of T'0K,, corresponding to the first hair vertex the first hair clique. n-
sum G, and TOK,, by identifying K and the first spine clique. Do this for all n cliques
of size n of G; to obtain G,

Call the ¢th spine clique of the TTK, attached to K the ¢th copy of K, and the corre-
sponding hair clique the ith attachor and call the entire T/, the comb representor of
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K. Also for any clique of &, call a clique of size n of G, containing it a representor clique.

Obviously G; >, G,. Itis not hard to observe that in GG, if we remove all edges of
a comb representor with both endpoints in the same copy or attachor, but leave the last
attachor (numbered k + 1) intact, we still contain GZ- as a minor; simply contract the ver-
tices of the comb representor corresponding to vertex v; of T'UK, , then contract the
vertices corresponding to v,, and so on for all v,. We reobtain the original clique.

We now proceed to the clique sums.

Proposition12. G, @ ... 8 G, <,,, G| ® ... ® G}, where if G, | was m-summed to
the G ; subgraph of G| @ ... @ G, on isomorphic cliques K and K, then G, " was
m summed to the G;- subgraph of (G} @ ... ® G) on the following isomorphic cliques:
The ith attachor of the clique representors of K and K.

To obtain G as a minor of G’ := G @ ... @ G}, for each G, go to the G, subgraph
of G’, and for each n clique K of size n + 1 of GG;, contract the vertices of the comb
representor of K corresponding to vertex v; (we remind, the clique K, of TOK,, has
vertex set vq, v,, ...), then contract the vertices corresponding to v,, and so on for all v,

It is easy to observe that doing this for all G, subgraphs of G’, we obtain G.
Furthermore, if we remove all edges of a comb representor with both endpoints in the
same copy or attachor but leave the last attachor (numbered k + 1) intact, we still contain
(G as a minor by the same contractions. Remove those edges from all comb representors
to obtain G”.

We have observed that G” >, G. Furthermore, A(G”) = n, as the original vertices of
the G, in G” and the last clique attachor of each comb has degree n, while other vertices
of G” have degree at most n. This completes the proof of the proposition.

By the two results of this subsection, we have that A(TW_, ) = n.
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5. MAIN THEOREM PART 1: MINOR CLOSURE OF A CLASS ('
CONTAINING ALL PYRAMIDS, WHERE A(C') FINITE.

A natural question to ask is if A is increasing with respect to the subset relationship.
This is not the case; STARS C the class of planar graphs C the class of apex graphs
(where STARS is minor closure of the class of stars), but their A value is 0o, 3 and 0o
respectively. We do however have the following: Let .4 be the class of apex graphs.

Theorem 15. If a proper minor closed class C' O A, then A(C') = .

This gives one direction of theorem 2, our main theorem. Formulated otherwise:

Theorem 16. If for a minor closed class C O A it holds that A(C') = k € N, then C
contains all graphs.

For non zero natural numbers IV, M, the N x M grid graph is the graph with vertex set
{1,2,...., N} x{1,2,..., M} and edge set {((4, 7), (¢',5")) : |i—¢'| +|j—7'| = 1}.
See figure A.1.

The N -pyramid is the graph created by taking a N x N grid, adding a vertex, and joining
it to all vertices of the grid.

Clearly a pyramid is an apex graph. As we now show, to prove Theorem 16, it suffices to
prove the following: If a graph contains a large enough pyramid as a minor by a graph of
A(G) < ¢, then it contains an arbitrarily large clique.

Theorem 17. Foreveryn, c € N, there exists N such that if A(G) < ¢, and (G contains
the N -pyramid as a minor, then G contains K, as a minor.

We prove theorem 17 implies theorem 16.

Proof. If C' includes all apex graphs as a minor with graphs of A(G) < k for some
k, then it includes all N-pyramids with graphs of A(G) < k, and then it includes all
cliques. u

We thus now only focus on Theorem 17. Let H be a subgraph of graph G. An H—path in
(G is a path of (7 internally disjoint from H with endpoints in H. To prove theorem 17, the
high level idea is to prove that if A(G) < cand G >, alarge enough IN-pyramid, then
G >,,an N x N grid H with many H -paths, their endpoints positioned to our liking

(Lemma 8). It is well-known that a large enough grid H with (;) H -paths with endpoints
far apart from each other contains a K, clique: See lemma 9.

Lemma 8. Foreveryn,c € N, there is N and s such that if A(G) < ¢ and G contains
the N -pyramid as a minor, then GG also contains as a minor the N x N grid, call it H,
with n pairwise edge-disjoint S-paths with discreet endpoints, where S is any subgraph
of H of more than s vertices.
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Let G be a graph and u,v € V(G). The distance d(u,v) is the length (number of
edges) of the shortest path between them.

Lemma 9. [18] If G is a wall with pairwise disjoint G-paths P, ..., P<n) where n > 1,

2

there exists d > 0 such that if any 2 GG-path endpoints p € P, p" € P; have d(p,p’) >
d, thenG >, K,.

A wallis an (n X 2n) grid, where ordering edges from top to bottom for each vertical path,
we remove from the first vertical path the even ordered edges, from the second vertical
path the odd ordered edges, from the third the even ordered edges and so on. Finally we
remove degree 1 edges and then arbitrarily subdivide edges.

Figure 5.1: A 4 X 8 grid and a corresponding wall

Importantly, notice that lemma 9 also holds for (n X 2n) grids.
We are now ready to prove theorem 17.

Proof of Theorem 17. Fix some n and c¢. We want to prove that for some large enough
N = N(c), if a graph G has maximum degree at most ¢, it will contain K, as a minor
if it contains the /N -pyramind as a minor. By lemma 8, for some large enough N, G

will contain as a minor the N X N grid, call it H, with (g) pairwise disjoint H -paths

with discreet endpoints. Select some (N /2 x N) subgrid H’ of the grid, and have the
endpoints be in a subgraph S of H' such that for all u; # uy € S, dy/(uq,uy) > d.
Bylemma 9, G >, K. O

We present a few corollaries before proving lemma 1.

Corollary 4. If C' is a proper minor-closed superclass of the apex graphs, then A(C') =
Q.

The linklessly embeddable graphs are a well known 3-dimensional equivalent of the planar
graphs. It is reasonable to ask if, like with planar graphs, one may by some geometric
argument replace each node of a linklessly embeddable graph (G by some other structure
to extend A(PLANARS) = 3 to linklessly embeddable graphs. As the apex graphs
are a subclass of the linklessly embeddable graphs, the answer is negative.

O. Milolidakis 68



Splittability within minor-closed classes to graphs of low maximum degree.

Corollary 5. Let £ be the class of linklessly-embeddable graphs. A(L)=00.

Corollary 6. Let C' be a class containing all apex graphs as minors. For some k, let f be
any function mapping a graph to a graph containing it as a minor with maximum degree
k. Then f|C] contains all graphs as minors.

Now follows the proof of lemma 8.

Proof. Let there be integer . We would like to prove that if a graph G of A(G) < ¢
contains a big enough pyramid as a minor, let it be a N (n, ¢)-pyramid, let S(n, c) be a
big enough subgraph of its grid, it contains the N (n, c) x N (n, c¢) grid with n pairwise
edge-disjoint S-paths with discreet endpoints (/N and .S to be specified later).

So let a be the apex vertex of the N(n, c)—pyramid and X its grid and let i1 be the model
function mapping vertices of the pyramid to connected components of (5. In (G contract
(v) for all grid vertices v € X to obtain X. We will use a to find n jumps, with endpoints
in S C X. We remove edges until ;(a) is a tree, and it has precisely one p(a) — X
edge towards each vertex of S'and 0 to X \ S.

Of course 2 vertices of j1(a) neighboring S along with the path of 1(a) between them
form an S-path, but S-paths being internally disjoint, using it could make us lose many
other S-paths. How should we proceed?

We may assume all subtrees in ji(a) have a vertex neighboring S. If not, we remove
them. We may also assume all vertices of y(a) that only neighbor 1i(a) have degree >
3. If they have degree 1 we delete them, and if they have degree 2 we dissolve them.
We then take a maximal path P = uq, u,... in u(a). Call the u; neighboring X good
vertices, and the rest bad. Bad u; vertices can be contracted into good vertices; since
they must have degree>2 each must neighbor a subtree (which does not intersect P or
other such subtrees, else there would be a cycle), which must include a vertex neighboring
S. Remove all other vertices of the subtree except the path connecting u, to the vertex
neighboring .5, then contract this path. Path P now has only good vertices, every two of
which form the internal vertices of an S-path. How large is P? Notice that at the time we
pick it, ,u(a) still has maximum degree < ¢ and as it neighbors every vertex of .9, ,u(a)

still has more than NTQ vertices. Fixing ¢ and letting N and thus |V (u(a))| grow larger

and larger, the diameter of 14(a) must also increase, and thus the length of its maximum
path. Pick s large enough for ii(a) to have diametre at least 2n. Pick N large enough
X canfit.S. O

Remark 2. Nowhere in this lemma did we use the fact that X is a grid. Indeed, rather
than just pyramids, it holds for any infinite family of finite graphs as long as they all have
a vertex connected to all other vertices.
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6. MAIN THEOREM PART 2: A SUPERCLASS OF A =3 FOR ANY
CLASS EXCLUDING AN APEX GRAPH

Definition 23. A graph class is proper if it does not include all graphs.

We have proved that any proper minor-closed class including all apex graphs must have
A = o0, and any attempts to relax this fact to smaller classes while working on this
thesis had failed. On the other hand, given a minor-closed class C' excluding a planar
graph, we have inspected that it is contained in a superclass C” of finite A(C"), in fact
of A(C") = 3. We suspect the following.

Theorem 18. Let C' be a minor-closed class excluding an apex graph as a minor. There
exists a proper minor-closed class C" 2 C with A(C”) = 3.

In [2] Dujmovi¢, Morin and Wood proved that the following are equivalent for a proper
minor-closed graph class C.

1. (' forbids an apex graph as a minor.

2. (' has bounded local treewidth.

3. C has linear local treewidth.

4. Every graph in C has bounded layered treewidth.

5. Every graph in G admits layered separations of bounded width.

6. For some k, every graph in C' can be constructed by the clique-sum of strongly
k-almost embeddable graphs.

Theorem 16 in combination with theorem 18, complements this result by adding the fol-
lowing characterization:

Theorem 19. A proper minor-closed class C' excludes an apex graph as a minor if and
only if it has a minor-closed superclass C” with A(C") = 3.

The class C” of theorem 19 will by construction also exclude an apex graph. Furthermore,
by theorem 16 one may replace A(C") = 3 with A(C") < k for any finite k. Therefore,
theorem 19 can be reformulated as:

Theorem 20. A proper minor-closed class C' excludes an apex graph as a minor if and

only if it has a minor-closed superclass C’ excluding an apex graph as a minor and with

finite A(C").
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Theorems 19 and 20 give theorem 2.

We prove the equivalence of theorem 19 with condition 6 above. Condition 6 is a corollary
of a strengthening [19] of the graph minor structure theorem of Robertson and Seymour
[20]. The theorem of Robertson and Seymour says that much like K 5-minor-free graphs
can be built by clique-summing planar graphs and the Wagner graph, so can the K-
minor-free graphs be built by clique summing graphs from a correctly selected family, the
family of k-almost-embeddable graphs.

Theorem 21 (The graph minor structure theorem). Let there be a graph H, and let G €
the H-minor-free graphs. Then (G can be constructed from the clique-sum of k-almost
embeddable graphs, where k = k(H).
Furthermore, it suffices to use graphs almost embeddable on surfaces that H does not
embed on (of genus k or possibly less).

As an instant corollary, the graph minor structure theorem also holds for minor-closed
graph families excluding more than 1 graph as a minor.

Now let us define what a k-almost embeddable graph is. Rather than take a planar graph
to clique-sum, we take a graph embeddable on some surface of euler genus at most k&,
we embed it, and then choose up to k faces, to which we add potentially non-embeddable
layers of "depth” < k. Finally we add k apex vertices.

Let’s start by defining the non-embeddable layers of an almost embeddable graph, called
vortices.

Definition 24. Let there be a graph G embedded on a surface. Let C = vy, v,, ..., v,

be a facial cycle ' of G. Let there be graph G’, and add 2 G’ to G. Let there be a C-
decomposition of G’ with bags B, , ..., B,, . Pick a distinct node u, from each bag B, ,

and in G’ + G identify v, and u; for all 7 to obtain a new graph G”. Adding a vortex G’
to G over vy, ...,v,, and uq, ..., u,, is defined to be this sequence of operations. If the
C-decomposition of G’ has width k, then the vortex has depth k. We call G’ a vortex of
G”.

The reader may picture the vortex added inside the face. Since we usually do not care
about the specific choice of G’, we simply say we add a vortex to GG on C'. We now
proceed to define a k-almost embeddable graph.

Definition 25. Let there be a graph (G. Let G be embeddable on a surface of Euler genus
< k. For some embedding, choose up to k pairwise disjoint facial cycles of G. Add
to each of them a vortex of depth up to k, to obtain G’. Finally, add up to k vertices
to G’ to obtain G”, called the apex vertices of G”, and join them to any vertex in G”
(including other apex vertices). G” is called a k-almost embeddable graph. We call G the

1A facial cycle is a cycle which is the boundary of a face of the embedded graph G.
2We remind we have defined the addition two graphs to be their disjoint union.
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embedded part of G” and call G” almost embeddable on the surface G’ was embedded
on.

Reminding the minor structure theorem, for any H, all H-minor-free graphs can be con-
structed from the clique sum of k-almost embeddable graphs, where k = k(H ). For ex-
cluded minors H belonging to a more specific family of graphs, there exist more specific
results than the graph minor structure theorem; for apex graphs it is mentioned above. If H
is restricted to the planar graphs, then a G' € forb(H ) can be constructed from the clique-
sum of graphs of < k vertices, where k = k(H ) (in other words, treewidth(G) < k).
One could go on.

As already mentioned, on the other hand Dvofak and Thomas proved a strengthening
of the graph minor structure theorem in the general case.

Definition 26. Given graph H and surface ¥, let «( H, Y) be the minimum number of
vertices one need remove from H to make it embeddable on >_.

Theorem 22 (The graph minor structure theorem strengthened [19]). The graph minor
structure theorem holds even if we only use graphs almost-embedded on surface Y. such
that every triangle of their embedded part is the boundary of a face homeomorphic to an
open ball of R?, and all but a(H, X)-1 of their apex vertices neighbor only other apex
vertices and vortices.

If H is an apex graph, then a(H,Y) = 1 of course. Condition 6 of theorem 18 follows:

Definition 27. A strongly k-almost embeddable is a k-almost embeddable graph where
also all apex vertices neighbor only other apex vertices and vortex vertices.

Corollary 7. Let there be an apex graph H, and let G € the H-minor-free graphs.
Then (G can be constructed from the clique-sum of strongly k-almost embeddable graphs,
where k = k(H).

As implied by theorem 18, the converse also holds; if there is k such that every graph
in some class can be constructed from the clique-sum of strongly k-almost embeddable
graphs, then it excludes some apex graph.

The strengthened graph minor structure theorem has an important implication; We need
only clique-sum almost embeddable graphs whose embedded part has no K, subgraph,
or is trivially a K, graph.

Corollary 8. Let there be connected graph G #+ K, embedded on some surface such
that every triangle is the boundary of an open disc. Then G has no 4-cliques.

Proof. Let there be a K, with vertex set abcd in the graph GG with embedding f. As G is
connected and not a K4, there must be a vertex v adjacent to some vertex of abcd, let it
be adjacent to a. f(a) has an open disc containing it and an initial segment of each edge
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incident to it. Without loss of generality, let the incident edges be clockwise around a in
the order ab, ac, ad, av. Any face a participates in must include two clockwise adjacent
edges in its boundary . Therefore, there is no face including only adb in its boundary. [

Naturally, the minor structure theorem would not be very interesting if it turned out that for
some k we can create all graphs using k-almost embeddable ones. The following is a
well known fact.

Theorem 23. Letthere be k € Z- . Let C' be the the class of all graphs that can be con-
structed by clique-summing k-almost embeddable graphs. Then minor — closure(C')
is proper. *

This theorem holds for strongly k-almost embeddable graphs, as they are a subset of k-
almost embeddable graphs *.

In Jim Geelen’s publicly available Introduction to Graph Minors course lectures, adding
a vortex had a simpler definition, which is useful to us;

Definition 28. Let there be a graph G embedded on a surface. Let C' = vy, v,, ..., v,
be a facial cycle of G. Add a K, clique to (7, and identify its first vertex to v;. Add another
K, clique, and identify its first vertex to v, and so on. The clique identified with v; is called
the vortex clique of v;. Now, join the clique of v; to the clique of v, join the clique of v,
to the clique of v3 and so on. Also join the clique of v; to the clique of v,,.

We call this sequence of operations as adding a simple vortex of depth k. The subgraph
induced by the added cliques (i.e the union of the vortex clique of v; over all ¢) is a simple
vortex. The circle induced by the ith vertex of all simple vortex cliques is the ith layer of
the simple vortex. We always have C' be the 1st layer of the simple vortex.

Clearly this definition is different. The reader may notice that a simple vortex of depth k
is a vortex of depth 2k + 1 (the +1 needed because decompositions have that pointless
-1 in their definition). Now, a k-depth vortex need not be isomorphic to any simple vortex,
for example take a vortex which has a vertex neighboring all vertices of the facial cycle
(this is possible if the vertex is in all branches of the cycle decomposition). However, any
k-depth vortex is a minor of a (k + 1)-depth simple vortex:

3Indeed, for fixed k none of the operations involved in constructing a k-almost embeddable graph can
create an arbitrarily large clique minor; By Euler’s formula for high genus (theorem 44), a graph (G embedded
on a surface of euler genus k must have at most m < 3n — 6 + 3k where n are the vertices and m the
edges of the graph, therefore too large a clique will not be embeddable on the surface. Graphs embeddable
on a specific surface being closed under minors, G can’t have too large a clique minor either for specific
k. Similarly, adding k apex graphs can increase the Hadwinger number by at most k, and the clique sum
of graphs GG and G5 cannot create any larger clique minor either. For adding a vortex of depth k cannot
create an arbitarily large minor, and more on the minor structure theorem, we refer the interested reader to
Jim Geelen’s graph minor recorded lectures, lecture 3 [21].

“4This is significantly useful for our purposes, as opposed to the other characterizations of the class of apex
graphs in theorem 18, such as layered treewidth, where the minor closure of graphs of layered treewidth k
contains all graphs, even for £ = 3. Indeed, the 3- dimensional n X n X 2 grid graph has layered TW 3
and a K, minor, take a row from the first level and a column from the second to be each branch.
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Proposition 13. Let there be embedded graph (G on some surface, with facial cycle C' =
Uy, ..., V,, and add vortex V of depth k on C' to obtain G’. Alternatively, add to G a simple
vortex sV of depth k + 1 to obtain G”. sV contains V' as a minor.

Proof. Let B, be the bags of the C-decomposition of V' of width k. We slowly contract
and remove nodes from sV to prove it contains a V' minor. In sV, forallv; € C, remove
vertices from the simple vortex clique of v, until it has as many vertices as B, does.
Let’s now specify the model function p. If u € BU1 and € no other vortex bz;g, pick
p(u) = u” where u” is a vertex belonging to the simple vortex clique of v;. If u € B,
also belongs to other bags, an,jv ey an, Bvl, ey Bvi, pick an unused by p vertex
from the simple vortex cliques of Uy iy +es Vg and let the path P they define be modeled to

u, i.e p1(P) = u. Repeat this process for vertices of B,,_notin B, and so on. We never
run out of unoccupied vertices in a simple vortex clique. If we do, let the simple vortex
clique of v, be such a clique, then B,, has more than k + 1 vertices (a contradiction), as
by construction of (. every occupied vertex of the simple vortex clique of v, corresponds
to exactly one vertex of B, . It suffices to prove that if u and u” are adjacent in V' then

f1(u) and p(u’) arein sV. u neighbors u’ in V' = they share a bag B, = (by
construction) the simple-vortex clique of v; has a vertex which 1 corresponds to u and a
vertex which p corresponds to v’ = u(u) and p(u’) neighbor. O

Corollary 9. Let there be graphs G’ and G as above. G’ >, G.

Proof. For vertices u of G' that are in the vortex V/, let model function p showing G” >,
GG be same as before, but making sure to set p(v;) = v, forv; € C. If u is not in the
vortex, once again set (1(u) = u. Letthere be vertex v ¢ avortex. (v,u) € E(G) =

(v,u) € BE(G") = (u(u), p(v)) € E(G). O

We are now ready to prove theorem 19. By theorem 7 any minor closed class C' excluding
an apex graph can for some k be built by the clique sum of strongly k-almost embeddable
graphs GG. We will show that any such graph G, is the minor of a graph G built by the
clique sum of strongly f(k? + k)-almost embeddable graphs with A(G”) = 3. Taking
the graph class of all such GG’, and taking its minor closure, we obtain a proper minor-
closed graph class C” of A(C”) = 3 which contains C'.

Rather than instantly give the final construction, it is more natural to see it produced step
by step, adding more ingredients in each step. For each intermediate step we prove a few
facts which we reuse in the next steps. If C' is not a minor-closed class, set A(C') to be

A(MINOR — CLOSURE(C)).

Let C'; (k) be the class of graphs of genus < k, embeddable so each triangle bounds
an open disc.

75 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

Let C5(k) be the class of graphs that can be obtained by adding at most k vortices of
depth at most k to a graph of C, (k) (the graph of C (k) embedded so that each triangle
bounds an open disc of course).

Let C'5(k) be the class of graphs that can be obtained by adding at most k apex ver-
tices to a graph of (k) where the apex vertices may neighbor only other apex vertices
and vortex vertices, i.e the class of strongly k-almost embeddable graphs. It is easy to
see that much like planar graphs, A(C;(k)) = 3. We will add as few ingredients as
possible; we will show that A(@[Cl(k)]]) = 3. We will then show that &[C5 (k)] has a
proper minor-closed superclass of A = 3. We will then do the same for ®[C,(k)].

Proof. By [1], if a (finite) graph (G is embedded on a surface, for any v € G there is
an open disc D, containing from GG only v and an initial segment of edges incident to v
®. Take the discs small enough that their boundaries do not intersect. Erase everything
inside the closed disc D,, of v, then let p, ..., p;. be the points where the boundary of the
closed disc intersected the edges of v €4, ..., €, ordered in a counterclockwise manner.
Add the p; back as embedded vertices v,. Then, connect p, with p; , ; by a curve running
along the perimeter of the cycle. Call the resulting graph G”. Notice that A(G”) < 3 and
G’ >, G, the model function is y(v)= all vertices of G’ embedded on D(v). 0

Definition 29. Given graph GG, we call the graph G’ >, G of maximum degree 3 as
in the above proof the fattening or ballooning of (G, and denote it Bl (G) The cycle we
replace vertex v € G with we denote by Bl(v). °

We will prove that any graph G built by the clique sum of graphs of C'; (k) is a minor of a
G’ built by the clique sum of graphs of C (k) and A(G”) = 3. We will use theorem 1.
Also notice the following.

Proposition 14. Let G < G'. If K’ € G’ is a representor clique of K € G under p,
we may remove from G all pu(u) — p(v) edges, except the edges of K', for all distinct
pairs u, v € K and still contain G as a minor under [u. ]

Almost entirely, in the following we want to restrict ourselves to a unique specific repre-
sentor for each clique. This motivates the following definition.

Definition 30. Let G <, G’ under (. Correspond to some cliques in GG a representor
of theirs in G’. Call any such correspondence function from cliques in G to representor
cliques in G’ a representation. Call any 1-1 correspondence function a 7-1 representation
and if all cliques are represented call it total. Call the image of the correspondence function
the set of selected representors.

We may have to change the embedding a bit. Importantly, facial cycles remain same, and more generally
the subgraphs induced by the boundary of faces remain same.
®This is also the model function showing G’ >, G
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We have already given theorem 1. This theorem is a specialization of a slightly more
general theorem. For a maximal clique of a graph G, call its representor clique in G’ >
GG a max representor clique.

Theorem 24. Letd > 3. Let there be a minor-closed class C' closed under n-sums, such
that P,OK,, € C. Let B be a base for C' under < n-sums. For every graph GG in B, let
there be graph G’ in C' with

- G’ >, G and there is a representation so that
« Every maximal clique in G has a selected representor clique in G’ .

« Every vertex v of G’ of degree greater than d has degree at most d — s if we remove
for every selected max representor clique K it is in the edges of G’ K|, where s is
the number of selected max representor cliques v is in.

Then A(C') < d.
This theorem is also a specialization of an even more general theorem! A degree k ex-
pansion or splitting of G is a graph G' > G with A(G") = k.

Theorem 25. Let d > 3. Let there be a class C’ closed under n-sums, such that
P,0K, € C'. Let B be a base for minor-closed class C' under < n-sums. For ev-
ery graph G in B, let there be graph G’ in C’ with

- G’ >, G and there is a representation so that

« Every maximal clique in G has a selected representor clique in G’ .

« Everyvertexv of G’ of degree greater than d has degree at most d— s, if we remove
for every selected max representor clique K it is in the edges of G’ K|, where s is
the number of selected max representor cliques v is in.

Then every graph in C has an expansion of degree < d in C".

We remind one notation we use for clique sums: Given graphs G, H such that G N H
is a clique, their clique sum GG @ H is defined by the operation G U H. If G N H=K,
denote this clique sum by G @, H.

Lemma 10. Let G = ((G ©k, G3) ®k, G3)®f, - Let G; >, G, be graphs with
model function (i, such that for every clique K of G, G; has a representor clique K.

(G} Dk GY) D, Gé>@K§--- is well-defined. If G, ; is clique summed on ((G1 ®x G3) @
... ® g,  G;)oncommon clique K ;, then K; must C some graph G, j < i. K; € G; = K/ e
G, = K, e ((Gy®r GLD...0 G

i 1 K 2 K, 7

J
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/

P e Q”I / 2
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Figure 6.1: Example where K is a triangle. Graph P, @ ;. P, is a minor of P] @ ./ P,

Proof. Call any Kj a common clique. We define the branches of G’ i.e the model function
p1from vertices in G to connected components of G”: u(v) := |, p;(v), where p1,(v) =
Difv ¢ G,.

If v € G, v ¢ any common clique, letitonly € G, then (u,v) € G = (u,v) €
G, = p,;(u), u;(v) neighbor = p(u), u(v) neighbor.

If v € some common clique K of G’, then (u,v) € G = (u,v) € one of the G,
containing K = p,;(u), p;(v) neighbor = (), u(v) neighbor. O

The proof is conceptually very simple; imagine K, (07" as a tree where instead of vertices
we have cliques. Much like we can create any tree by adding each of its edges one by
one starting from the root in a DFS or BFS manner, we can create K ,,(07" by adding each
of its n-cliques in the same order.

Proof. Let there be graph K, 07 some tree T'. We have that V (K,07)=(V(T) x
{1,...,n})yand ((t;,v;), (t5,v5)) € E(K,0T) <= t; = t, or (t; neighbors t, in
T and v; = vy).

The result is by induction of the number of vertices of T'. If T" is the edge graph, then
the result holds trivially. Now let K 07" for all 1" of some fixed number of vertices n.
Let there be T of n + 1 vertices. This is constructed by some 1" of n vertices after
adding a vertex t, to 1" and joining it to the correct vertex t;. We have K 1T € C.
Clique sum either of the cliques of K, (1P, to the clique of K, (0T correspondlng to ¢y,
i.e to the subgraph of K, (07" induced byf (t,9)|i € {1, .. n}} The resulting graph
is (isomorphic to) K, 07" Relabel the new 1 vertices as (tz, 1), ..., (t5,n) and notice
that (o, 1) nelghbors (t,7)iff (t; =t) ort, neighbors tin 1" and i = 7). O

We proceed with the proof of theorem 25.

Proof. Let there be graph G of C built by the clique sum of base graphs G @ ¢ ... B,
Gk. Suppose there exist graphs G; € C’ with the aforementioned conditions, where s
is the model function for G, >, G,. Notice that since every maximal clique in G; has
a selected representor in G;, every clique in G has a representor in G’ By lemma 10,
(G1 @k, Gy @y - By Gy) =2 G =, G where K € G is a representor of
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K, under i, ; and a representor of G, under 11, G ; being the graph of G that GG, was
clique summed while building G.

The common cliques Ki’ of G’ could have an arbitrarily large degree, so we make some
adjustments. As P,OOK,, € C" and C’ is closed under n-sums, by lemma 3 TOK,, €
C" where T is the k + 1 comb graph. We remind we call the subclique of TOK,, cor-
responding to the ¢th spine vertex of the comb the 7th spine clique, and the subclique
of TDKn corresponding to the ¢th hair vertex the ¢th hair clique. Furthermore, we call
the sub-comb of TJK,, corresponding to ith vertex of K, the ith comb running along
TOK,,.

To each selected max representor clique K’ of G;, let K’ have [ vertices, [-sum a
P,0K,, where P, is the path of two vertices. Call the [-clique of P,00K; not used in
the clique sum the copy of K. To the copy of K, l-sum the first spine clique of a TO K,
to obtain G € C’. Call the TOK; clique summed to the copy of K its representor
comb. G} >, G of course, and let model function 4; showing that be y1)(v) = v if v
is not in a max representor clique and if v € some max representor clique /&, let v be the
jth vertex of K, then let pi;;(v) be the jth subcomb of the representor comb of K and the
jth vertex of K.

By construction of u, if K’ is a selected max representor clique of G, all spine and hair
cliques of the representor comb of K’ in G/ are representors of K’ under ;. We may
use lemma 10 again; (G] ® G5 & ... ® G;) =: G” >,, G’, where if during the
construction of G’ graph G; was clique summed on the subgraph G;- on their common
clique K, then G is clique summed on G;-’ using the ith hair clique of the representor
comb of K] in G; and the ith hair clique of the representor comb of K in G;-.

Notice that lemma 10 gives us a specific model function " showing G” > G’: The
bag ' (v) is the union of all u;(v), if v € G,. By our choice of u;, we conclude that if
v is in a selected max clique of G’ under p, let v be its jth vertex, then u” puts in 1/ (v)
vertex v of G” as well as the entire jth subcomb of its representor comb. Thus, by propo-
sition 14, G” > G’ even if for every selected max representor we remove edges with
both endpoints in the representor, and for its representor comb we remove all edges with
both endpoints on the same spine or hair clique, except from one such clique. Let G” be
G” where we do just that, retaining only the edges of the last hair clique of every comb
representor.

It suffices to prove that A(G”") < d. Asit turns out, we will need one more small change
to do that. Let v € G”. We have the following cases.

« v does not belong to any representor comb or selected max clique of G”. In this
case, v also € (G’ and its degree remained unchanged during all of the above.

dgm(v) = dg(v) < d.

« v belongs to what was a selected max-clique representor K’ in G’. If it has 1
vertex, then by construction d»(v) = 1. For every selected max representor
clique K it was in, we removed the edges of G’[ K] and connected v to a copy of
K, and made no other changes to the edges of v. By the conditions of the theorem,
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dgm(v) < (d —s) + s = d. Notice that dzm (v) < dg/(v), as the removal of
each G'[ K| reduces the degree of v by 1 at least, so we need only consider v of

dG/ (’U) > d

- v belongs to the spine clique of a comb representor. d.»(v) is at most 3; It is
incident precisely to an edge with endpoint the previous spine clique, the next spine
clique if it has one, and its hair clique.

* v belongs to the hair clique of a comb representor. If the hair clique was not used
in a clique sum and it is not the last hair clique, by construction d (v)=1. If it was
used in a clique sum, by construction note that no hair clique is used in more than
1 clique sum, d (v)=2. If it is the last hair clique, let it have [ vertices, then by
construction v has degree [.

We now make changes to lower the degree of vertices of the last hair clique of a repre-
sentor comb to 3, obtaining the intended claim. Let K be a last hair clique, let its edge set
bee,...,e,,. Letthere be graph P K, where P _, is the path of m nodes. Let the K
corresponding to the ith path vertex of P (1K be called its ¢th clique, and the subpath
corresponding to the ith clique vertex be the ith subpath running along P K. Clique
sum to K the first clique of a P, ,C0K. Then remove from the ith clique all edges with
both endpoints in the clique except e,. Itis easy to see that all vertices of a P, (/X added
in this manner have max degree 3, and by contracting the 2th subpath running along the
P_0OK we get G”. Doing this for all hair cliques yields a graph G"” with the required
properties. ]

Using the previous lemmas, we can prove that A(®[C (k)]) = 3 fairly quickly.
Proposition 15. A(®[C,(k)]) = 3.

Proof. We use theorem 1. The base B of ®[C (k)] is of course C (k). Let there be
graph G € B. We can assume that every triangle has an empty interior or exterior,
else it is a separator and we can further decompose (G to the clique sum of other base
graphs. Let it be the interior, the other cases are analogous. On the open disc that has as
boundary a triangle of G with vertex set abc, add a new triangle a’b’ ¢’ embedded there,
and connectatoa’,btob’, ctoc’. Let G’ be the ballooning ® BI((G), except we have not
ballooned the vertices of any of the new triangles. Notice that A(G") = 3. G' >, G
by contracting each Bl(v) back into v, and for each new triangle, a’b’c’ to a’ to a, b’ to
b, ¢’ toc. a’b’c’ in G is a representor of abc in G. Let 1 be this model function. Each
2-clique uv € G has as representor the by construction unique Bl(u) — Bl(v) edge of
G’. By theorem 1, we have A(®[C (k)]) = 3. O

8We remind a ballooning or fattening of (G means to replace each vertex v with a cycle C' embedded
on the boundary of an open disc around the vertex, the vertices of C' connected in a clockwise manner and
each vertex of C' adjacent to a single neighbor of v.
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We now add the next ingredient, vortices. We will use theorem 25 to show that B[C5 (k)]
has a degree 3 expansion in C’ = ®[C4(2k)]. °. In other words, for every G €
@LCQUC)], there is G € ®[C5(2k)] with G' > G and A(G") = 3. Putting all those
GG’ in a set, and taking the minor closure of the set, we obtain a minor-closed superclass
of ®[C, (k)] of A = 3 which is proper by theorem 23.

Proposition 16. A(®[C,(k)]) has a proper minor-closed superclass of A =3,

Once again, the base is C5(k). Let there be graph G in C,y(k), with embedded part
Emb(G) and at most k vortices of depth at most k added to pairwise disjoint facial cy-
cles C,...C,.

Let G’ be GG with every vortex of depth d replaced by a simple vortex of depth d + 1,
as in proposition 13 and corollary 9. Use the model function defined there, call it fi,,.
Observe that there is a representation R, under (i,; if a clique K of G is in Emb(G)
trivially R, (K) = K. If aclique K of G is notin Emb(G), it is in a vortex. In this
case, let its facial cycle be C' = v;v,..., then there must be a vortex bag Bvi itis in. By

construction of 1, , every vertex of Bvi contains in its model in G” a distinct vertex of the
simple vortex clique of v,. But every vertex in the simple vortex clique of v, is adjacent.
R, (K) is those simple vortex vertices.

As clique representation is transitive under minors, it suffices to find for every G’ a graph
G" >,, G’ of ®[Cy(2k + 1)] such that there is a representation under some model
function p satisfying the conditions of theorem 25. Then, there will be such a representa-
tion for G” > G under i o [,

Add triangles and repeat the same fattening procedure as before on Emb(G) to obtain
Emb(G)’. This time, rather than add 1 extra triangle a’b’c¢’ to the empty face of trian-
gle abc of Emb(G), we add two triangles a’b’c” and a”b”¢”, a’b’ ¢’ embedded on the
empty face bounded by abc, a”b” ¢” on the empty face bounded by a’b’¢’, a joined to @’
a’ joined to @” and so on. Both new triangles are not fattened. Call a’b’c’ and a”b”¢”
the first and second copies of abc respectively. Fortunately, after fattening facial cycles
are (almost) retained:

Definition 31. For v € Emb(G), let D, be the disc on the boundary of which the cycle
Bl(v) was embedded on. Let Bl(v — u) or Bl(u < v) be the vertex of Bl(v) incident
to the unique Bl(v) — Bl(u) edge of Emb(G)’".

If C' = u,...u,, where n > 3 is a facial cycle in Emb(G), then there is a facial cycle
C” in Emb(G)’, first with 1 or 2 vertices from Bl(u, ), then with vertices from Bl(u,),
and so on: Start from the vertex Bl(u,; — u5). Follow the Bl(u,) — Bl(u,) edge to
Bl(ug = uy). € deppie(ug) > 2, thereis an edge Bl(uy < usy) — Bl(uy — us)
in Bl(u,). Follow along it. Then take the Bl(u, — u5) edge and so on. Call C”
the corresponding facial cycle of C'. For triangles of Emb(G) call their second copy in
Emb(G)’ the corresponding facial cycle.

If to construct G’ a simple vortex of depth k was added to a facial cycle of Emb(G), add

%In fact, we can show that A (®[C5(k)])=3
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to the corresponding facial cycle of Emb(G)” a simple vortex of depth & to obtain G”.
We prove G” fulfils the conditions of theorem 25.

- To prove that G” >, G’, let u, be the model function showing that, for v in the
embedded part of G” let j5(v) = pq(v), where i (v) is the model function of
the proof that A(@[C;(k)]) = 3, modified by putting a” in the same bag as a’
and a for triangles abc € G’ of course. For v € a vortex, let the facial cycle be
C' = v, v,... and let v belong to the simple vortex clique of v;, let v be the ith vertex
of the clique. Let C” be the corresponding facial cycle and notice C” of G” is also
in Emb(G”) = Emb(G)’. If C' = v vyv4, then C” = v]vjvs and let 115(v) be
the ith vertex of the simple vortex clique of v} . Else, set 15(v) to be the ith vertices
of the vortex cliques of Bl(v;_; < v;) and Bl(v; — v;, ). Itis easy to observe

that the contraction in G” of each minor bag j(v) yields G”.

+ We find a representation R, under 1, so each maximal clique K is represented.

For a cliques K of Emb(G), set Ry(K) = R,(K), where for triangles K we
use their first copy in G” to represent them.
With regard to simple vortex cliques K of G’, let the simple vortex be of depth [
and added on the facial cycle C' = UqUy...U,,. There are precisely n maximal
cliques of 2[ vertices; the simple vortex clique of u,; U the simple vortex clique of
w;, 1, fori € {1,...,n}, where u,,; = uy. Its selected representor R(K) in
G” is the simple vortex clique of Bl(u; — u,,,)U the simple vortex clique of
Bl(u; <= uyq).

« We prove the third condition. If v € G”, is not in a vortex, then by construction it has
max degree 3 unless if itis in the first copy a’b’ ¢’ of a triangle abc. In this case itis a
selected representor of abc, and it represents no other cliques. For the condition to
be satisfied it must have at most 3 — 1 edges adjacent to it, after removing the edges
of a’b’c’, which is the case. If v is in a vortex, notice that all edges of the vortex
have both endpoints in a selected max clique representor, and v belongs to exactly 2
selected representors. After removing the edges of the selected cliques, d(v) =1
if v is on the facial cycle, and d(v) = 0 otherwise, satisfying the condition.

Therefore, every G € ®[C, (k)] has a degree 3 expansionin G’ € ®[C,(2k)]. Taking
the minor closure of all such GG’, we obtain a proper minor-closed class of /A 3 containing

®[Cy(k)]-

We now add the final ingredient, apex vertices only neighboring other apex vertices and
vortex vertices. We will prove that &[C5(k)], i.e the clique sum closure of strongly k-
almost embeddable graphs has a proper minor-closed superclass of A = 3. By charac-
terization 6 of the minor-closed classes excluding an apex graph, we thus obtain the right
direction of theorem 19.

Proposition 17. &[C5(k)] has a proper minor closed superclass of A = 3.

O. Milolidakis 82



Splittability within minor-closed classes to graphs of low maximum degree.

Let G € C5(k). We will find an expansion of G in C3(k? + k), satisfying the conditions

of theorem 25. Naturally, the base B is once again C5(k) and C” is ®[C5(k? + k)].
It suffices to consider only (G whose apex vertices neighbor all other apex vertices and
all vortex vertices. All other graphs in C3(k) are subgraphs of such graphs and if Gl -
G4 <,, G where G5, <, GG’ has a representation under p satisfying the conditions of
theorem 25, so does Gy <. G’.

Let C be a facial cycle of Emb(G). Let G’ be G where instead of adding a vortex
of depth k, we add a simple vortex of depth £ 4+ 1 to (', and then connect all apex
vertices to it. As in the previous proposition, G’ >, G under a model function /i,
and there is a total representation 7 under p,,: If K is a clique not intersecting the apex
vertices, r(K) = R,,(K) as we have already explained in the previous proposition. If
K intersects only apex vertices, then trivially (K ) = u,,(K) = K. If K intersects
apex and the simple vortex’s vertices, let the subcliques comprised by those vertices be
K, and K, respectively, then r(K,) = K ,and r(K,,) = R, (K,,).

Therefore it suffices to prove theorem 25 for G’ in the place of (G. We now construct
the expansion G” of G’ with the desired properties; let G” be defined exactly as in the
previous proposition (fatten emb(G) as in the previous proposition, adding two copies to
the empty face of each triangle), apex vertices neighboring all vortex vertices and all other
apex vertices.We still have to lower the degree of apex vertices.

Definition 32. Define the cycle induced by the th vertex of all simple vortex cliques of a
simple vortex to be the ith layer of the simple vortex. We always have C be the 1st layer
of the simple vortex.

We replace each simple vortex of depth & 4 1 of G” with a simple vortex of depth 2k + 1.
Apex vertices no longer neighbor all vortex vertices; instead, give some ordering to the
apex vertices, the ith apex vertex neighbors a single vertex of the £ + 1 + ¢th layer of
the first clique of the simple vortex. Finally, for each apex vertex a, add to G” a path of
aq04...ay_ 1, identify a with a;, remove the edge between a and its ith vortex neighbor
and have the ith vortex neighbor be adjacent to a;, ; instead. Call this the representor
path of a. This completes the construction of G”. Notice that, treating the vertices of path
representors as apex vertices, G” € C5(k(k + 1)) It now suffices to prove the three
conditions of theorem 25.

« G” >, G’: For the ith apex vertex v of G’, let r3(v) be the ith apex vertex of
G" together with its representor path, together with the (k + 1 + ¢)th layer of all
simple vortices. Otherwise, let (15(v) be 5 (v) as in the previous proposition.

s Let R3(K) be the representation. By the previous proposition, we have that ev-
ery maximal clique K not having apex vertices has a representation R, (K ). Let
R4(K) = R5(K) in this case. If K is the set of all apex vertices of G’, then
R4(K) =K. If K=K, U K_, is a set of apex vertices and simple vortex vertices
of G’, which by construction and maximality of & must consist precisely of all apex
vertices and the simple vortex cliques of two consecutive facial cycle vertices, let
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them be ¢; and ¢, 1, then R(K) is the two simple vortex cliques of ¢; and ¢;, ; in

e

- If v € G” is an original apex vertex, then it belongs to a single max selected
representor, that of all apex vertices. It has degree 1 excluding edges from that
clique. If it does not, but still belongs to a path representor of an apex vertex, then
it has degree 3 and belongs to no representor clique. If v is not an apex vertex, the
same as in the previous proposition holds.

This completes the proof of the right direction of theorem 19.
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7. EXISTENCE OF COUNTABLY INFINITE K ;-UNIVERSAL GRAPH.

Given a class of infinite countable graphs C, a universal graph G is a graph such that
G >, G’ forall G’ € C. In[1], Georgakopoulos proved that there is a universal
K -minor-free graph. The following is a simplification of this resuilt.

Theorem 26. There is a universal K minor free graph.

In [1], Georgakopoulos proved the existence of a countably infinite /(s universal graph with
regard to the minor relationship. I later reproved his result with a simpler construction. This
section is a quickly written sketch of this proof. In this chapter, if G’ > G with model 1

and S C G, we denote 1(S) by G’* instead.

For the remainder of this proof, we may assume without loss of generality that clique sum
operations do not remove edges of the clique.

Let K5f be an infinite K5 free graph. By the paper of Thomas and Kritz [22], there exists a
sequence {G,} o <countabie A SUChthat G, 1 = G,®” P, where P, is planar (or w[8]) and
G, = K;fand G, = liminfg_, G 4. Let{P,},< be the corresponding planar graphs
(or wi8]). Let Py (o), Pny(1), --- be some enumeration of them. We print /), then dovetail
the enumeration and print PN(Z-) once the < 3 nodes it was clique-summed on during the
construction of K5f have already been printed (don’t print already printed PN(i)). Seeing
clique sums as a union of graphs, it is easily seen that an ordering {Pa}agw arises such
that Gy = Py, G,.1 = G, ®* P,.; and G, = K f. More generally,

Theorem 27. Let a countable graph be k-summable over some I’ for some finite k, let the
corresponding sequence be {G .} < counabie x- Then there also exists such a sequence of
the form {G }

a<w

In the case clique sums remove edges this still holds. Break {G',},<countabie » IN tWO
sequences, one not removing and the other only removing edges.

SoletKsf=((Py @, ) ®a, P3)®a, - foraclass of countable planars P; (or w(8]).

Lemma 11. Let G = (P, ®, P) ®a, P5)®n, - for arbitrary countable graphs P,
and cliques /A, where for some k € N all A, are of size at most k . Let P/ > P, be

graphs such that for every clique A\ of P; of size < k, P,/ has a clique A’ with one
node in each branch. Then ((P{ @®x/ Py) ®ar P3) ®pr ... = G >, G.
1 2 3
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o

P1 &
(B«

Proof. We define the branches of G’ forming G. Let v ¢ any common clique, let it only
€ P,. Then G’V := P, Letv € some common clique A. Then G’* := Up-a P/

Ifv € G, v ¢ any common clique, letitonly € P;, then (u,v) € G = (u,v) €
P, = P/" P/’ neighbor = G’",G"" neighbor.

(2
If v € some common clique A, then (u,v) € G => (u,v) € one of the planar P,
containing A = P,”*, P.’" neighbor = G’", G"" neighbor. O

(2

We now begin to construct the universal K s-minor free graph. For a countable locally finite
planar graph (G, we inflate the nodes of G to obtain G’: Take a generous embedding of
(7, and for every node v, take an open ball containing only v and its edges, delete the
inside of the ball, and put a new vertex on the deg(v) points the edges of v first intersect
the boundary, let these nodes be v, v,,.... Connect them in clockwise order around
the boundary, with edges embedded on the boundary. Clearly G’ remains planar and
G’ > G by contracting the v;. We inflate edges of G’ to obtain BI(G). For every edge

(vi,uj), u # v, notice there can only be one such edge for each vertex, add a node
before and after v; in the boundary, let them be v}, v;, repeat for u; then connect v; with
u; and v} with u’. Then subdivide (v, u), (v ,u’) to add a new node to each, let it be
t’,t” and connect the new nodes to v; and u;. BI(G) remains planar and BI(G) > G’
by contracting the (v;,t), (v, t”), (v;, v;), (v}, 07 ), (u;, u;), (u;, u;’)

S & —Pp o - FRIE
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Oq

Let Bl(Up) be any universal planar graph Up inflated as above.

Claim 2. Let P be planar. BI(U,)" has a triangle A" with one vertex in each branch of
Bl(Up)A, forall A € P.

Proof. Let A = xyz € P. Pick a subpath of each of the three branch sets of UpA to
form a minimal K3 minor of P, let them be P, P, P,. The subpaths can be chosen

so that the minimal K3 minor contains no node or edge of Uf embedded on one of its
two sides, w.l.g let it be the interior. Notice that the inner circle C,, of the fattened Ky
minimal minor thus contains no node or edge of Bl(Up)P. It is thus easy to see that

Bl(Up)P\Cm > Uf > P. Letuv be the P, — P, edge of the K3 minimal minor in U]f.
By construction of Bl(Up)P, there is an edge (u;, v;) between BI(U,,)" and BI(U,,)"

and they both neighbor an inner circle node t”. By reallocating C),, to Bl(Up)PZ, we
have the desired triangle.

We now define the universal Ks-free graph Uy ;. Let BI(U,)[1] := BI(U,). Let
BI(U,)[i+ 1] be BI(U,,)|i] clique summed with BI(U,,) or W[8] over all possible clique

. o0 .
pairs. Ug_, :=J,_, BI(U,,)[d].
Theorem 28. Uy, is a universal Ks-free graph.
Proof. Let K5f be any Ky-free graph, Ksf= (P @ P,) @ P3)® ... Notice that BI(U,,)

has the properties of P, of lemma 1. It follows that, let P/ := BI(U,,) for all i, K5f’ =

((P{ & Py) & P3)& ... for suitably selected cliques contains Kf as a minor. But by
definition of Ust, Ksf’ is contained in it as a subgraph. O
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ABBREVIATIONS - ACRONYMS

Al Artificial Intelligence

SPARQL SPARQL Protocol and RDF Query Language
OWL Web Ontology Language

OGC Open Geospatial Consortium
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APPENDIX A. BASIC DEFINITIONS

Graph theory has the unusual phenomenon that while graphs are technically duplets of
sets, we tend to think of them not as sets but visually. Furthermore, when we refer to
e.g the clique of size 3 GG, we don'tdiscuss if G =({1, 2,3}, {(1,2),(2,3),(3,1)}) or
G =({4,5,6},{(4,5),(5,6),(6,4)}), really we only care that it belongs to the equiva-
lence class of graphs isomorphicto ({1, 2,3}, {(1,2),(2,3),(3,1)}). As a byproduct,
well understood definitions are oftentimes hand-wavy and not technically rigorous.

The aim in this section is to introduce, in a rigorous manner from the ground up, notions
needed during this thesis or at least to clarify what is left to common sense.

As a byproduct, the introduction section is quite large; the reader may skip it and refer
to it as needed.

A.1 Basics

All graphs are simple and undirected. All graphs are finite unless stated otherwise. Though
the focus of this thesis is on finite graphs, some results on infinite graphs are also pre-
sented. All infinite graphs are countable. The reader may also refer to Diestel [10], the
standard reference book.

Definition 33. A pair is a set of cardinality 2.

Definition 34. A graph is an ordered pair G = (V, E), where V is a finite set and E is
a set of pairs of V. We call the elements of V' the vertices of (G and the elements of F/
the edges of . For each edge ¢ = {v,u} € E, we call the vertices v and u ends of e

and say that the vertices v and u are connected or adjacent or neighbors in (G. The order
of Gis | V.

In an abuse of notation, we write uv or (u, v) rather than {u, v} for edges.

Definition 35. An infinite graph is defined in the same manner as a finite graph, the only
difference being that V' must be infinite. Similarly, a countable graph has vertex set V'
countable.

Definition 36. For subgraph H; of graph G = (V| E), we say that H; and v € V are
connected or adjacent or neighbors in G if there is u € H, with u, v adjacent in GG. For
subgraphs H,, H, of graph G = (V, F), we say that H, and H,, are connected or
adjacent or neighbors in G if there are uw € H,, v € H, with u, v adjacent in G.

Definition 37. Graph H = (V, E ) is a subgraph of graph G = (V5, E ), denoted
H CGifVy CVgand By C Eq. H is an induced subgraph of G if Vi C V5 and
E; is E limited precisely to pairs with both ends in 1. The induced subgraph of G’ with
vertex set S C V, is denoted G[.5].
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Definition 38. For subgraphs S, S, of a graph G, an .S, S, edge is an edge with one
endpoint on S; and one endpoint on S,. We say that S;, S, touch or are adjecent or
neighbors if there is an S, S5 edge in G.

Definition 39. Graph H = (V};, E'};) is isomorphic to graph G = (V5, E;), denoted
H = @ if there is a 1-1 and onto function f : V(G) — V(H) such that (u,v) €
E(G) < (f(u), f(v)) € E(H). We may call G a relabelling of H.

Definition 40. Let G = (V,FE) and let v € V. The degree of v in G d(v) is the
number of edges with it as an endpoint, [{ (v, u) : (v,u) € E}|.

We define a few basic graphs.

The trivial or single vertex graph is the graph of 1 vertex, ({v}, {}). In rigorous terms:

Definition 41. A trivial or single vertex graph is any graph belonging to the graph isomor-
phism class of ({1}, {}).

A path is a non-empty graph P = (V, E) of the form V' = {vy, vy, ..., v} E =
{<UO7 Ul)? (Ul7 1)2)7 e (Uk:—lv Uk:>} Rigorously:

Definition 42. A path graph P oflengthn > 0 is any graph belonging to the graph isomor-

phism class of the graph with vertexset {1, 2, ..., n, n+1} andedge set {(1, 2), (2, 3), ..., (n, n+
1)} A path graph of length 0 is defined to be a single-vertex graph and is called trivial.

A path graph is a graph belonging to the graph isomorphism class of the path graph of

length n for some n.

Some additional notation for paths is of use. Let P be path with edge set (v, V), ..., (U1, V%)
We often denote P as v,v,...v;, or as (vy, v5), (vy, v3), .... Other notation follows.

Definition 43. Let P be path v,v,...v,. v, and vy, are its endpoints or ends. int(P) :
Vg, ..., U_1 are its internal vertices. Pv; := v vy...v;. v;P := v,v, ...}, Pv; :=
Ulvz...vi. ’UiP'Uj = Uivi+1...7]j_1vj.
Definition 44. A cycle is any graph belonging to the graph isomorphism class of the graph
with vertexset {1, 2, ...,n} andedge set{ (1, 2), (2,3), ..., (n—1,n), (n, 1)} for some
n.

Definition 45. A clique is any graph belonging to the graph isomorphism class of the
graph with vertex set V' = {1, 2, ..., n} for some n and edge set all pairs of V. The size
of the clique is n.

Given graph (3, rather than say G has a clique subgraph K, we say K is a clique of G.
The same goes for the other named graphs.
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Definition 46. For non zero natural numbers N, M, the N x M grid graph is the graph
with vertex set 1,2, ..., N x 1,2, ..., M and edge set { (4, j), (¢/,j)) : |i —4'| +|j —
j'| = 1}. See figure A.1.

Figure A.1: The 4 X 7 grid graph.

A.2 Graph operations

When defining graphs, it is often easier to do so using graph operators. Just like with num-
ber operations, a graph operator is a function & that takes two graphs as input and outputs
a graph. Given two graphs G|, G we usually write G; ® G to denote ®(G1,G5). A
few definitions follow.

Definition 47. Given two graphs G = (Vo, E), H = (Vy, Ey), define the graph
union G U H as (V5 U Vy, Eq U Eyy) and the graph intersection G N H as (Vi N
Vi, Ec N Ey). Gy NGy = 0, then G and H are disjoint.

Definition 48. If U is a set of vertices, we define G — U as G[V; \ U]. In an abuse of
notation, if U is the single-vertex graph v we write G — v rather than G — {v} and if G’
is a graph, G — G’ rather than G — V(G").

If F'is a set of pairs of vertices of G, we define G— F to be the graph (V (G), E(G)\F),
and G+ Ftobe (V(G), E(G)UF). In an abuse of notation, G — e := G — {e} and
G + e := G + {e}. To join vertex u to vertex v in G means to add (u, v) to G. To join
subgraph S to subgraph S, of G means to join (u,v) in G forallu € S;,v € S,,.

Definition 49. Given graphs G, (G5 we define the disjoint union or graph sum or graph
addition of G and G5, denoted G + G5, to be Gy UGS, where GY is a graph isomorphic
to G so that G; N G5 = ).

Notice the similarity to the disjoint union of sets. Indeed, we could have very easily defined
the disjoint union of graphs using it.

By "the subgraph S of G5 in G; + G,” it is obvious what we mean, but as the goal of
this section is rigor: We changed the labels of G, while defining G; + G,. Let f be
the isomorphism in the above definition, and let S C G,. By the subgraph S of G, in
G, + G5 we mean the subgraph induced by f(Vs) in G; + G5. The same is said for
vertices v of G,.

Definition 50. Given graph (&, adding a vertex is defined as the graph sum of (G and the
single vertex graph.
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Definition 51. Given a graph G = (V, F), to identify or glue vertices u and v of G
means to replace all instances of u and v in V' and E with a new element w ¢ V.
Remove any loops or parallel edges.

Definition 52. Take graphs G, G5, and let.S C (G, be isomorphicto S” C G, let f be
the isomorphism. The identification of G, and G over S and S” is G| + G, whereby
we identify in G; + G, the vertex v € G} with f(v) € G4. See figure A.2.

k Identify m —>

Figure A.2: Intuitively, one may picture the identification of two graphs over e.g isomorphic triangles
as putting the vertices of one on top of the vertices of the other.

Definition 53. Given graphs G, H, their Cartesian product GO H is the graph with vertex
set V(G) x V(H ) where two vertices (u, v) and (u’,v") are adjacent if either u = u’
andvv’ € E(H)orv=1v"anduu’ € E(G).

Intuitively, for each vertex of H take a copy of (7, and if two vertices in H are connected,
connect the corresponding (G copies by their identical vertices.

Figure A.3: The Cartesian product of two graphs Courtesy: Wikipedia.

Definition 54. For fixed u € G, we denote by by (u, H ) the GOH limited to all vertices
of the form (u, v) where v ranges over H. We call (u, H) the H-subgraph of V (G) X
V' (H) corresponding to .

Definition 55. Given graphs (, H such that G N H is a clique, their clique sum G @ H

is defined by taking G U H and possibly removing a few edges of the clique. See figures
A2, A4
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Figure A.4: Two clique sums to create a single big graph. Notice how a few clique edges are removed.
Courtesy: Wikipedia.

For the operation to be well defined, the edges to be removed must be declared. Still, we
often make statements that stand regardless of the specific choice of removed edges. In
this case, as happens often in graph theory, we omit mention of the edges to be removed.
Similarly, we may omit mention of the cliques the two graphs are clique summed on.

Definition 56. The clique sum of G and H on clique GN H of k vertices is called a k-sum.
The clique sum of G and H on clique G N H of < k vertices is called a < k-sum.

Notice that 0-sums are well defined, and are the disjoint union. Now, we would like to
clique-sum without caring about vertex labels.

Definition 57. Given graphs (G, H and isomorphic clique subgraphs S C G, Si C
H, their clique sum G' @ H over common cliques S and S is defined by identifying
G and H over Sy and S;. We may denote this G ©g_ g H.

Similarly with the disjoint union, suppose some G’ C (G, we may make mention of G’ as
a subgraph of GG GBSGaSH H, ignoring the relabelling that occurred.

A.3 Treewidth

We now introduce the treewidth of a graph. While it is usually defined as the minimum nec-
essary bag size of a tree-decomposition, | find its definition through clique-sums of smaller
graphs, equivalently carefully selected unions of smaller graphs, to provide a better un-
derstanding of the notion, and understanding naturally is the primary goal when dealing
with theory.

The following says that a graph has treewidth < k if it can be built by the clique sum
of graphs of order < k + 1.
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Definition 58. Let there be a natural number k. Let there be graph [, of order < k41,
and let graph H,, be a graph of order < k + 1. Let G5 be H; @ H,.Let there be a graph
H of order < k + 1. Let G5 be G5 @ H. Let there be a graph H, of order < k + 1.
Let G, be G5 @ H,. Any graph (G, that can be built by this procedure is said to belong
to the class of graphs T'W . of graphs of treewidth < k.

Definition 59. If a graphs G belongs to T'W_. but not T'W_,._ 1, then it is said to be a
graph of treewidth k.

The previous definition says that graphs of treewidth k are precisely the graphs which in
order to be constructed as described above, it suffices and there need be some graphs
H, of order as large as k + 1.

The reader may inquire why the +1 exists in the definition. Itis a historical convention with
no substantial meaning.

The classic notion of a tree-decomposition of a graph is directly related to a construc-
tion of it by clique-sums and vice-versa. Given a graph constructed by the clique sums of
graphs Hi, we can find a tree-decomposition; simply take the vertices of the tree to be
tp,. take the bag of 7 ; to be V(H;), and connect ty, and tHj in the tree decomposition

if I, was chosen for Hj to clique sum on. See [17] for a full and more detailed proof.

Definition 60. Let there be graph GG constructed by the clique sumof graphs H,, H,, ..., H
as described in the definition of treewidth. We call V' ( H,) the bags of GG, and denote them

as By or B(H,). If minor bags are involved as well, we call them the tree-decomposition
bags to avoid confusion.

The following says that a graph has treewidth < k if it can be constructed by starting from
a graph H of order at most k£ and iteratively glueing graphs H; of order at most & on top
to build a bigger graph, each time selecting a previously added graph Hj, 7 < 1 toglue
on. While this is my definition of choice, | have funnily enough never seen another human
or text mention it. We thus do not use the following alternative definition of treewidth in
this text, but | still wished to include it.

Theorem 29. Let there be a natural number k. Let there be graph H, of order < k + 1
, and let graph H, be a graph of order < k + 1. Let G5 be H; U H,. Let there be a
graph H of order < k + 1 such that G, N Hy C H, or G, N Hy C H,. Let G5 be
G, U H,. Let there be a graph H, of order < k + 1 such that G; " H, C H, or H,
or H, and so on. A graph G, belongs to T'W _ . iff it can be built by this procedure.

To shortly touch on this, indeed, if one can build a graph by the unions of smaller graphs
as described above, one can also build it by clique sums of the same smaller graphs, with
some extra edges so that the clique sum is well-defined, removed when no longer needed.
The mainstream definition of treewidth is not utilized in this text and is thus not presented.

Definition 61. Let there be graph F' with vertex set vy, ..., v,,. Let there be graph H;.
Let G, be H, U H,. Let there be a graph H such that G, N Hy C | ] H, taken over
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all H; such that (v;,v5) € E(F'). Let G5 be G5 U Hj. Let there be a graph H, such
that G5 N H, C | J H, taken over all H, such (v;,v,) € E(F') and so on, n times.
Any graph GG, that can be built in this manner by H,; of order < k + 1 is said to have
an F' — decomposition of width k. We call V (H,) the bags of (G, and denote them
as By, or B(H,). If minor bags are involved as well, we call them the F-decomposition
bags to avoid confusion.

A.4 Minors, Topological Minors

Subgraphs capture the intuitive notion that a graph is inside another graph. One may
however protest that given graphs (G, and G, where G’ is obtained from (G by replacing
some edge of G with a path of degree 2 nodes, (G is inside GG/, because the path basically
functions as an edge. Taking this idea a step further, given a graph G and G’, where G’
is obtained from (G by replacing some node v of (G with a connected graph adjacent to all
nodes v was adjacent to, one may say G is inside G’ because the connected graph can
function as a big node.

It is helpful to define the operations of suppression and contraction before proceeding.

Definition 62. Given a graph G and a (possibly trivial) path P = v,v,...v;, of G of
d(v;) = 2 for all v;, where [, the neighbor of v; € G \ P, and r the neighbor of
v, € G\ P are distinct, the operation of suppressing the path in GG, denoted suppr (P)
outputs a graph G’ = G — P + (I, r).

Given a graph (G and a (possibly single-vertex) connected subgraph S of (7, the operation
of contracting S in GG, denoted GG /S, outputs a graph G’ = G — S+ a new vertex vg
neighboring all vertices of G — S that S did in G. Given a set of nodes U of (G, the
contraction of U is defined to be the contraction of G[U].

Definition 63. Let G be a graph, and let S be a subgraph of G. Let S, be suppr ¢(P) for
some path P of G (chosen so that the suppression is well-defined). Let S5 be supprg, (P")

for some path P’ of S; and so on. If a graph G’ is isomorphic to some .S; that can be
constructed in this manner from G, then G contains G’ a topological minor, denoted

G>, G

Definition 64. Let (G be a graph, let S be a subgraph of G and let H be a connected
subgraph of S. Let S, be S/H. Let H' be a connected subgraph of S,. Let S5 be
Sy/H'. If a graph G’ is isomorphic to some S; that can be constructed in this manner
from G, then G contains G" a minor, denoted G' >, G”.

Observing that if a node that arose from a contraction is used in another contraction, we
could have just done a single big contraction instead, one may verify that the following are
equivalent:

Theorem 30. The following are equivalent for two graphs G, G’:
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1) G>_ G

(2) Forsome subgraph R of G there are pairwise disjoint subgraphs R, R,, ..., R|V(G/>|
of R such that (((R/R,)/Ry)/...)/ Ry () is isomorphic to G’

(3) Forsome subgraph R of G there are pairwise disjoint subgraphs R, R, ..., Ry
of R and there is a bijection R, <+ v{, Ry <> v, ..., R|V<G/>| < Vv where
V(G') = {vy, s vjy gy} such that (v;,v;) € E(G') iff R;, R; are adjacent.

We work most with the third definition. Some terminology is of use.

Definition 65. A bijection 1(v;) = R, asin (3), is called a model of G’ in G. We call R;
the bag or branch of v, in G and also denote it B(v,) or G. For H C G, we denote

with 1(H ) or B(H ) or G* the subgraph of G induced by the Uvev(m B(v).

As with edges removed after clique sums, when a statement holds for any choice of p or
[ is clear by context, we omit mention of L.

Definition 66. Give a graph class C, we call C' closed under minors or minor-closed if

G e CandG >,, G implies G’ € C.

Definition 67. Give a graph class (', denote by minor-closure(C) its minor closure, i.e

minor-closure(C)={G : G <,, G’ forsome G’ € C'}

Definition 68. A graph G forbids a graph G’ as a minorif G %, G'.

Definition 69. By Forb(G) we denote the class of graphs not containing G as a minor.
It is easy to observe this class is closed under minors.

Definition 70. A minor-closed graph class C' does not contain a graph (G as a minor if
G ¢ C. Agraph G is a forbidden minor of C' or excluded minor of C' or in the obstruction
set of C' if C forbids GG as a minor and G is minimal in this regards, i.e G’ € C for all
other G’ <, G.

The following by Robertson and Seymour is one of the deepest results in all of graph
theory. It was proved over a series of 20 papers amounting to 500 pages, over a period
of 20 years.

Theorem 31 (The graph minor theorem [23]). Every graph class C' closed under minors
can be characterized by a finite set of forbidden minors.
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APPENDIX B. TOPOLOGY FUNDAMENTALS

As in other subjects in graph theory, and especially in the one that proceeds, one may
reason about concepts through visual intuition rather than rigor, and this is often what the
community does in practise. Mohar’s Topological graph theory [11]) provides for a more
rigorous introduction to the topic, though he assumes some topological knowledge. For
the topology fundamentals, we recommend Kinsey’s topology of surfaces [24]. While this
thesis is not focused on topology or bibliography, and thus many topological results are
listed without proof, we still try to be as analytical and rigorous as possible.

The reader is probably already familiar with planar graphs. Some of the most deep results
in minor theory mention graphs embeddedable on surfaces more complex than the plane
or the sphere, such as the torus.

Figure B.1: The torus. Courtesy: Wikipedia.

B.1 Elements of surfaces

Let (X, T) be a topological space. Let an element of X be any x € X. Some defini-
tions apply more generally, but we only care about metrizable spaces, in fact only about
surfaces, which we define shortly.

Definition 71. A curve or arc on X is the image f([0, 1]) of a continuous function f from
[0,1] to X. A curve is simple if f is 1-1. The curve connects f(0) and f(1), which are
called the ends or endpoints of the curve, while f((0, 1)) is its interior. For a, b € [0, 1],
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a subset of the curve of the form f([a, b]) is called a segment of the curve, while a subset
of the form f([0, a]) or f([a, 1]) is called an initial segment. A simple closed curve is a
curve such that fis 1-1 on (0,1) and f(0) = f(1).

Notice that as the image of a continuous function on a compact set, a curve is compact.

Definition 72. A topological space (X, T) is path or arcwise or curve connected if for
every two points in it, there is a simple curve connecting them. A subset of X is called path-
connected if the subspace induced by X under the subspace topology is path-connected.

A maximal path-connected subset of X is called a path-connected component or region
of X.

A surface is a connected compact Hausdorff topological space locally homeomorphic to
R2. Intuitively, the reader may visualize them as 3 dimensional shapes, such as donuts,
coffee mugs, spheres, chairs, e.t.c.

Definition 73. A topological space (X, T) is called Hausdorff if for all distinct x,y € X,
there are disjoint U, and U, withx € U, y € U,,.

Hausdorff spaces have nice properties metric spaces do. It says we have enough open
sets to separate points.

Definition 74. A topological space (X, 7) is called locally homeomorphic to (X', 7") if
for all distinct z € X, there is O € 7 including x and homeomorphic to (X', 7) in the
subspace topology.

Many subsets of R? are homeomorphic to R?, such as any open ball of radius 1. Any of
them could have been used in this definition.

Definition 75. Given a topological space (X, 7) an open disc is a subset of (X, T
homeomorphic to the open ball of radius 1 of R2. A closed disc is a subset of (X, T
homeomorphic to the closed ball of radius 1 of R2.

S— ——

Surfaces have a few nice natural properties. For example:

Theorem 32. A surface is a path-connected space. In fact, we could define them to be
path-connected instead of connected without loss of generality.

Theorem 33. Every surface is a metrizable space.

The reasoning is that a compact Hausdorff space is metrizable if it is locally metrizable,
and surfaces are locally metrizable because they are locally homeomorphic to R2.
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B.2 Graphs on Surfaces

A graph is embeddable on a surface if we can draw it on the surface so that edges do not
intersect.

Definition 76. A graph (G is embeddable on (X, 7') if there is a function f mapping ver-
tices to elements of X, and edges to simple curves on X so that f(v;) # f(vy) for
vy F vs, and curve f(uwv) connects f(u) and f(v), and has no intersection with the
image of other vertices and only intersects other edges on its endpoints.

f is an embeddeding of G on X. The image of f, f[(V(G) U E(G))], is called the
embedded graph, and though it is technically not a graph, one may produce a graph from
one in the obvious manner. For ease of notation, the embedded graph is also abusively
denoted f(G).

As the finite union of compact sets, any embedded graph is compact and therefore closed.

Definition 77. A face of an embedded graph G on (X, ) is a region of X \ G (equipped
with the subspace topology of course).

Given a face of an embedded graph (7, the boundary of the face is an embedded subgraph
of (5. If this subgraph is a cycle, it call it a facial cycle.

Definition 78. Let there be embeddable graph G, let f be an embedding, and let the
boundary b of a face of f((G) be a cycle, i.e let G limited to the vertices and edges of

f71(b) be a cycle. We call the boundary of b a facial cycle.

Definition 79. A graph embeddable on the plane R? (with the standard topology always)
is called planar. The embedded graph is called the plane graph.

Planar graphs are often introduced with arcs being polygonal. However, the two definitions
are equivalent (see Mohar’s Topological graph theory chapter 2.1 [11]).

Definition 80. A curve is polygonal if it is the union of a finite number of straight line
segments. A straight line segment is a curve that is a subset of a line of R2.

Theorem 34. A graph is embeddable on the plane if and only if it is embeddable on the
plane with edges mapped to polygonal curves.

For proofs on planar graphs, topological tools on R? are useful. The Jordan Curve theorem
is an intuitively obvious but infamously difficult to prove theorem. Naturally, we make use
of it.

Theorem 35 (The Jordan Curve Theorem). Let C' be a simple closed curve on R?2. R2\C
has exactly two connected components, one being bounded and the other unbounded,
with C' as the boundary of both.
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The bounded component is called the interior, while the unbounded is called the exterior.
The following extension exists.

Theorem 36 (The Jordan-Schoenflies Curve Theorem). For any two simple closed curves
C,, C,, their interiors are homeomorphic and their exteriors are homeomorphic.

A graph is embeddable on the plane if and only if it is embeddable on the sphere. The
following theorem provides for a well-defined topology on the sphere that is useful for
embeddings.

Theorem 37. The unit sphere S"1:= {x € R : \/2? + ... + 22 = 1} is a complete
metric space when equipped with the metric, d(x,y) := arccos(x - y) where - denotes
the standard dot product.

We need only consider the sphere 52 on R3. The next theorem following from the defini-
tions of homeomorphity and embeddability.

Theorem 38. Let there be two homeomorphic surfaces Y., X5. Then a graph is embed-
dable on X3, if and only if it is embeddable on X,

Theorem 39. The sphere minus an element is homeomorphic to the plane.

Clearly any embedded graph on the sphere is not equal to the sphere. Thus

Corollary 10. A graph can be embedded on the plane if and only if it can be embedded
on the sphere.

As mentioned, we wish to embed graphs on other surfaces as well. While intuitively we
can visualize what a torus or a double-torus is, and therefore work with graphs embedded
on it, it would be nice to also define those surfaces, starting from topology.

9 E=
o' e

Figure B.2: Surfaces of genus 2 and 3 respectively. The double and triple torus. Courtesy:
Wikipedia.

B.3 Genus of surfaces and graphs, the classification theorem, handles and cross-
caps, topological operations

Definition 81. A topological space (X , T) is called locally Euclidean of dimension n if for
every x € X, x has an open neighborhood U € 7 homeomorphic to R (that is, the
subspace topology of (X, 7) limited to U, (U, 7(;) has a homeomorphism h : U — R™).
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Intuitively, it is easy to define the torus; simply take the square [0,1]X[0,1], "glue together”
the top side with the bottom side to obtain a hollow cylinder, then glue together the two
opposing ends of the cylinder. One may do this with a piece of paper.

We want to formally define the intuitive notion of gluing topological sets together. This is
done through the quotient topology.

Definition 82. Let = (X, 7) be a topological space. Let there be function f : X — Y.
The biggest or finest continuous topology induced by X and f on Y is (Y, 7") where

O er'iff f[F1O") er.

Definition 83. Let = (X, 7') be a topological space. Let ~ be an equivalence relation on
X. The quotient or identification set X /~ is {[x]|z € X} where [x] is the equivalence
set of z under ~. The function f(z) = [z] is called the identification or quotient mapping.

The reader may notice that this space has sets as elements. This is of no importance;
we could very well replace them with their representing element, and to avoid notational
overencumbering we do.

One may visualize the identification set as X with equivalent points glued or contracted on
each other. We now add a topology on the quotient set, because to work with notions such
as continuity we need to have an underlying topological space. In the following we still
work with general topology, but all spaces we work with will be metrizable, and | have found
that thinking with metric distance functions often provides better understanding, so let me
briefly mention the quotient metric as a side note. What should the metric d’ of X/N
after gluing together some points of (X, d) be? Let x be a point in X, not glued to other
points. Clearly its distance from y € X remains same if all other points of X of distances
< d(x,y) from x are also not glued. If however a glued point z exists in this ball, we must
consider if using it allows us to reach y in a shorter fashion. Thus d’(z, y) is something
like in fy,epy(d(z,w) + d(w,y)), in fact we should also consider other equivalence
classes that one may utilize, possibly in succession. This only defines a pseudometric,
as it may yield distinct elements of distance 0 (try [-1,1] with the Euclidean metric and [-
1,0) contracted to the same equivalence set and (0,1] contracted). For specific metrizable
topological sets and well chosen equivalence partitions, this does yield a metric, which
induces the quotient topology.

Definition 84. Let = (X, 7) be a topological space. Let ~ be an equivalence relation
on X. X/N equipped with the biggest topology making the identification mapping con-
tinuous is called the quotient or identification topology of X on ~.

Definition 85. Let (X, 7) be a topological space. To glue x and ” € X means to take
the quotient space on X defined by the equivalence relationship z~x’.

We can now properly define the topological space of the torus.
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Definition 86. Let there be the metric space [0, 1] x [0, 1], equipped with the euclidean
metric and take the topological space induced by the metric. For all ¢ & [0, 1], glue
[0, t] with [1, t]. The resulting topological space is called a cylinder. The cylinder has two
opposing ends, the sets {[t, 0]t € [0, 1]} and {[t, 1]|t € [0, 1]}.

Let there be the metric space [0, 1] x [0, 1], equipped with the euclidean metric and take
the topological space induced by the metric. For all t € [0, 1], glue [0, t] with [1, ¢], and
then for all t € [0, 1] glue [t, 0] with [t, 1] (the opposing ends). The resulting donut-
shaped topological space is called the torus.

We now present a fundamental theorem in the topology of surfaces, the classification
theorem, which says that any surface can be constructed by the sphere and a few simple
operations. Some definitions are needed.

Definition 87. To remove a subset .S of a topological space (X, 7) means to take the
subspace topology induced by X \ S.

Much like with graphs, the disjoint union of sets expresses the idea of putting both sets
separately together.

Definition 88. The disjoint union of two not necessarily disjoint sets A, B is the set
{(z, )|z € A} U{(z,2)|z € B}.

Definition 89. The disjoint union topology of two topological spaces A, B with bases
U,, U, is the disjoint union of A and B equipped with the base defined by the disjoint
union of U, and Uy,

It is interesting to notice that the following is equivalent: Let f be the natural map from
A U B to the disjoint union of A, B. We can define the disjoint union topology as the
disjoint union of A, B equipped with the biggest topology making f continuous.

This was the case for the quotient topology as well. Thus it starts to become clear that
the finest/biggest topology making f continuous is the one that conserves best the initial
topological space in the image space.

Definition 90. Let there be a surface \S. Let there be two subsets C';, (), of S homeo-
morphic to an open ball of R?, and let the closure of C; and C,, be disjoint. Remove C
and C, from S, take the disjoint union of the resulting topological space with a cylinder,
and glue one end of the cylinder to the boundary of C'; in the natural manner and the other
end to the boundary of C'5. We then say we added a handle to S.

Definition 91. Let there be a surface S. Let there be a subset C' of .S homeomorphic to
an open ball of R?. Remove C from S, and if z, ' € S \ C are on the boundary of C
and diametrically opposite (on the circle homeomorphic to C' of course), glue them. We
then say we added a crosscap to S.

Adding a crosscap is homeomorphic to adding a mobius strip.
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Theorem 40 (The classification theorem). Let S be a compact surface. S is homeomor-
phic to one of the following:

1. The sphere after adding k € 7, handles.

2. The sphere after adding k € Zzo crosscaps.

Definition 92. The genus of a connected orientable surface is the maximum amount of
pair-wise disjoint simple closed curves that can be removed without rendering it discon-
nected. The non-orientable genus of a connected non-orientable surface is the maximum
amount of pair-wise disjoint simple closed curves that can be removed without rendering
it disconnected. '

Theorem 41. The genus of an orientable surface is equal to the number of handles we
need to add to construct it starting with a sphere. The non-orientable genus of a non-
orientable surface is equal to the number of cross-caps we need to add to construct it
starting with a sphere.

Thus, up to homeomorphism there is only one surface of orientable or non-orientable
genus g, the surface of obtained from the sphere after adding g handles or g crosscaps.
Euler’s theorem says that for an embedded graph in the plane, n — m + f = 2 where n
is the number of vertices, m the edges, and f the distinct faces. This results extends to
higher (non-orientable) genus surfaces.

Definition 93. Let S be a surface. Then for some possibly negative integer Y, called the
euler characteristic of S, and for any embedded graph (G on X such that every face is
homeomorphic to an open ballin R2, n — m + f = x.

Theorem 42. Let G be a graph embedded on Y3 and not embeddable on a surface of
lower genus. Then every face is homeomorphic to an open ball in R?

Definition 94. The genus of a graph G is the smallest integer n such that G can be
embedded on the surface of genus n. The non-orientable genus of an graph GG is the
smallest integer n such that G can be embedded on the non-orientable surface of genus
n.

Definition 95. The euler genus of a surface with euler characteristic x is 2 — .

Theorem 43. Let X be a surface built from the sphere after adding k handles. Then its
euler genus is 2k.
Let 3. be a surface built from the sphere after adding k crosscaps. Then its euler genus

is k.

So if we add 10 handles to the sphere and then 1 cross-cap, this is a non-orientable surface. Can we
really build the same surface by just adding cross-caps? Yes! We need 2 crosscaps for each handle
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In other words, the Euler genus of a non-orientable surface is its non-orientable genus,
and the Euler genus of an orientable surface is double its genus. With this in mind, working
with the euler genus instead of the regular genus and non-orientable genus is somewhat of
an overcomplication for our purposes. In any case, The graph theory community seems
to like not to concern itself with whether a surface is orientable or non-orientable and
abolishing the established conventions is not a priority of this text.

Definition 96. The euler genus of a graph is the smallest integer n such that GG can be
embedded on the surface of euler genus n.

Euler’s theorem implies that for any planar graph GG of n vertices and m edges, m <
3n — 6. This also generalizes to graphs embeddable on higher genus surfaces:

Theorem 44. Let G be embeddable on 3. Then m < 3n — 6 + 3eul_genus(X).
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