
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

MASTER’S PROGRAM ”ALGORITHMS, LOGIC AND DISCRETE MATHEMATICS”

MSc THESIS

Splittability within minor-closed classes to graphs of low
maximum degree.

Orestis C. Milolidakis

Supervisors: Agelos Georgakopulos, Professor University of Warwick
Pagourtzis Aris, Professor National Technical University of Athens

ATHENS

FEBRUARY 2025





ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΑΛΓΟΡΙΘΜΟΙ, ΛΟΓΙΚΗ ΚΑΙ ΔΙΑΚΡΙΤΑ
ΜΑΘΗΜΑΤΙΚΑ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διασπάσεις εντός κλάσεων κλειστών υπό ελάσσονα
προς γραφήματα χαμηλού μέγιστου βαθμού

Ορέστης Κ. Μηλολιδάκης

Επιβλέποντες: Άγγελος Γεωργακόπουλος, Καθηγητής Πανεπιστήμιο του Ουόρικ
Παγουρτζής Άρης, Καθηγητής Εθνικό Μετσόβιο Πολυτεχνείο

ΑΘΗΝΑ

ΦΕΒΡΟΥΑΡΙΟΣ 2025





MSc THESIS

Splittability within minor-closed classes to graphs of low maximum degree.

Orestis C. Milolidakis
S.N.: 71115142100013

SUPERVISORS: Agelos Georgakopulos, Professor University of Warwick
Pagourtzis Aris, Professor National Technical University of Athens

EXAMINATION COMMITTEE:
Agelos Georgakopulos, Professor, University of Warwick
Achlioptas Dimitris, Professor, National and Kapodistrian University of Athens
Giannopoulou Archontia, Assistant Professor, National and Kapodistrian University of
Athens

Examination Date: 21th March 2025





ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Διασπάσεις εντός κλάσεων κλειστών υπό ελάσσονα προς γραφήματα χαμηλού μέγιστου
βαθμού

Ορέστης Κ. Μηλολιδάκης
Α.Μ.: 71115142100013

ΕΠΙΒΛΈΠΟΝΤΕΣ: Άγγελος Γεωργακόπουλος, Καθηγητής Πανεπιστήμιο του Ουόρικ
Παγουρτζής Άρης, Καθηγητής Εθνικό Μετσόβιο Πολυτεχνείο

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ:
Άγγελος Γεωργακόπουλος, Καθηγητής, Πανεπιστήμιο του Ουόρικ
Αχλιόπτας Δημήτρης, Καθηγητής, Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Γιαννοπούλου Αρχοντία, Επίκουρη Καθηγήτρια, Εθνικό και Καποδιστριακό
Πανεπιστήμιο Αθηνών

Ημερομηνία Εξέτασης: 21 Μαρτίου 2025





ABSTRACT

It is easy to see that every planar graph is a minor of another planar graph of maximum
degree 3. Georgakopoulos proved that every finite K5-minor free graph is a minor of an-
other K5-minor-free graph of maximum degree 22, and inquired if this is smallest possible.
This motivates the following generalization: Let 𝐶 be a minor-closed class. What is the
minimum 𝑘 such that any graph in 𝐶 is a minor of a graph in 𝐶 of maximum degree 𝑘?
Denote the minimum by Δ(𝐶) and set it to be ∞ if no such 𝑘 exists.
We explore the value of Δ(𝐶) for various minor closed classes, and eventually prove
that a minor-closed class 𝐶 excludes an apex graph if and only if there exists a proper
minor-closed superclass 𝐶′ of 𝐶 with Δ(𝐶′) = 3 if and only if there exists a proper
minor-closed superclass 𝐶′ of 𝐶 with finite Δ(𝐶′). This complements a list of 5 other
characterizations of the minor-closed classes excluding an apex graph by Dujmovic, Morin
and Wood.
Furthermore, we extend and simplify Markov and Shi’s result that not every graph of
treewidth ≤ k has a degree 3 expansion of treewidth ≤ 𝑘. Finally, we simplify Geor-
gakopoulos’ proof on the existence of a countable universal graph of 𝐹𝑜𝑟𝑏(𝐾5).

SUBJECT AREA: Structural Graph Theory

KEYWORDS: minor-closed classes, splittings, maximum degree, graph minor structure
theorem





ΠΕΡΙΛΗΨΗ

Είναι εύκολο να δει κανείς ότι κάθε επίπεδο γράφημα είναι έλασσον ενός επιπέδου γρα-
φήματος μέγιστου βαθμού 3. Ο Γεωργακόπουλος απέδειξε ότι κάθε γράφημα που εξαιρεί
το K5 ως έλασσον είναι έλασσον ενός άλλου γραφήματος που εξαιρεί το K5 ως έλασσον
μέγιστου βαθμού 22, και ρώτησε αν αυτός είναι ο ελάχιστος δυνατόν.
Αυτό παρακινεί την εξής γενίκευση. Έστω 𝐶 μία κλάση κλειστή υπό ελάσσονα. Ποιο είναι
το ελάχιστο 𝑘 έτσι ώστε οποιοδήποτε γράφημα της 𝐶 είναι έλασον ενός γραφήματος της
𝐶 μέγιστου βαθμού 𝑘; Συμβολίζουμε το ελάχιστο με Δ(𝐶) και θέτουμε την τιμή του σε
∞ εάν δεν υπάρχει τέτοιο 𝑘.
Εξερευνούμε την τιμή του Δ(𝐶) για ποικίλες κλάσεις κλειστές υπό ελάσσονα και τελικά
αποδεικνύουμε ότι μια κλάση κλειστή υπό ελάσσονα 𝐶 αποκλείει ένα απόγειο γράφημα
ως έλασσον εάν και μόνο εάν υπάρχει μια κλειστή υπό ελάσσονα υπερκλάση 𝐶′ της 𝐶
με Δ(𝐶′) = 3 εάν και μόνο εάν υπ άρχει κλειστή υπό ελάσσονα υπερκλάση 𝐶′ με πε-
περασμένο Δ(𝐶′). Αυτό επαυξάνει μια λίστα με 5 άλλους χαρακτηρισμούς των κλάσεων
κλειστών υπό ελάσσονα που αποκλείουν ένα απόγειο γράφημα από τους Dujmovic, Morin
και Wood.
Επιπλέον, επεκτείνουμε και απλοποιούμε το αποτέλεσμα των Markov και Shi ότι δεν έχει
κάθε γράφημα δενδροπλάτους≤ k διάσπαση μέγιστου βαθμού 3 και δενδροπλάτους≤ 𝑘.
Τέλος, απλοποιούμε την απόδειξη του Γεωργακόπουλου για την ύπαρξη ενός αριθμίσιμα
άπειρου καθολικού γραφήματος για την 𝐹𝑜𝑟𝑏(𝐾5).

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Δομική θεωρία γραφημάτων

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κλάσεις κλειστές υπό ελάσσονα, διασπάσεις, μέγιστος βαθμός, δομικό
θεώρημα ελάσσονων γραφημάτων





Στον Γιάννη και πλειότερο στον Φίλιππο.
Γιατί ήταν ό,τι δεν ήταν οι υπόλοιποι.





”You have to play to the strengths of your environment, not its weaknesses.”

”Why did thou not look at me, Jokanaan? If thou had looked at me thou would
have loved me.”
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Splittability within minor-closed classes to graphs of low maximum degree.

1. INTRODUCTION

The organization of this text is as follows: Chapter 1 contains the introduction and lists
our results. Chapter 2 contains a minimal preliminaries section, complemented by an
extended appendix. Chapter 3 contains an overview of proofs and techniques, followed
by an extensive section with the full proofs in chapter 4; if a topic is covered by both
chapters 3 and 4, preferring chapter 3 is highly recommended. Chapters 5 and 6 contains
the two directions of our main proof.

1.1 The graph class parameter Δ

One may observe that every planar graph is a minor of another planar graph of maximum
degree 3. Can the reader see why? Figure 3.1 gives a simple explanation.

In 2021, Georgakopoulos observed that every K5-minor free graph is a minor of another
K5-minor-free graph of maximum degree 22, but did not find if this is smallest possible. A
graph 𝐺′ including 𝐺 as a minor is a splitting of 𝐺.
This motivates the following question [1]: Let 𝐶 be a minor-closed class. What is the
minimum 𝑘 such that any graph in 𝐶 is a minor of a graph in 𝐶 of maximum degree 𝑘?
Denote the minimum by Δ(𝐶) and set it to be ∞ if no such 𝑘 exists. This is a general,
yet elegant definition. We are thus interested in it and this text is devoted in exploring its
properties. All results, established mostly through my work, are original.

As it turns out, it is easy to show that Δ(𝐹𝑜𝑟𝑏(𝐾5)) also is equal to 3. One may then
ask if there is a class whose Δ does not fall down to 3. Note that there are classes of
Δ(𝐶) ≤ 2, but all of them consist of disjoint unions of circles and paths, and we don’t
care for such trivial classes. Similarly, we don’t consider finite classes.

The answer is negative, Δ(𝐹𝑜𝑟𝑏(𝐾3,3)) being equal to 4. In fact, for any 𝑘 ≥ 3,
the minor-closed class 𝑇 𝑊≤𝑘 of graphs of treewidth ≤ 𝑘 has Δ(𝑇 𝑊≤𝑘) = 𝑘. As
implied in the definition of Δ(𝐶), there are also classes 𝐶 for which no 𝑘 exists so that
every graph in 𝐶 is a minor of a graph in 𝐶 of maximum degree 𝑘. The class of stars 1

{𝐾1,𝑘|𝑘 ∈ ℤ≥0} has Δ = ∞, because the only way to include a star as a minor is to
use a bigger star.

Of more interest to me are structural question that might arise. Let 𝐶 be a minor-closed
class, and change an excluded minor ”a little bit” to obtain another class𝐶′. GivenΔ(𝐶),
can we say something about Δ(𝐶’)? If there is an elegant way to approach this ques-
tion, it evades me. What if 𝐶’ is just any superclass of 𝐶? Is Δ an increasing function

1Technically, this is not a minor-closed class. No matter; take the minor-closure of stars instead, which
is almost same.

25 O. Milolidakis
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perhaps, i.e 𝐶 ⊆ 𝐶′ ⟹ Δ(𝐶) ≤ Δ(𝐶′)? Not the case; the planar graphs are a
superset of the class of stars. The apex graphs in turn include the planar graphs, but as
we will see they have Δ = ∞, so it is not decreasing either. The function Δ does not
seem to have any clear general pattern at first glance.

Georgakopoulos conjectured that at least every proper minor-closed class𝐶 has a proper
minor-closed superclass 𝐶’ of finite Δ(𝐶’). We proved this conjecture to be wrong in
fact;

Theorem 1. If a proper minor-closed graph class 𝐶 ⊇ the apex graphs, then Δ(𝐶) =
∞.

Now, we may ask if there is a strict subclass of the apex graphs with the property that
all classes above it have Δ(𝐶) = ∞. As far as smaller classes are concerned, we
do already have that such a class would have to include all planar graphs; By a known
theorem, if minor-closed 𝐶 excludes a planar graph, it is a subclass of 𝑇 𝑊≤𝑘 for some
𝑘. So such a class must include all planar graphs, but not all apex graphs. Can we make
the ”floor” of the planar graphs and the ”ceiling” of apex graphs collapse on each other?
As it turns out, apex graphs are the cutoff.

Theorem 2. For a proper minor-closed class 𝐶 , the following are equivalent:

1. 𝐶 excludes an apex graph;

2. there is a minor-closed superclass 𝐶′ ⊇ 𝐶 such that Δ(𝐶′) is finite.
3. there is a minor-closed superclass 𝐶′ ⊇ 𝐶 such that Δ(𝐶′) = 3;

Note that apex-minor-free graphs arise in a variety of settings. In particular, for a number
of graph parameters 𝑓 , a minor-closed class 𝐶 has bounded 𝑓 if and only if some apex
graph is not in 𝐶 (see [2, 3, 4, 5] for examples).

The above statement still holds if, for some fixed constant 𝑘 ≥ 3, instead of Δ(𝐶′) = 3
we demand Δ(𝐶′) = 𝑘 or if we instead demand Δ(𝐶′) ≤ 𝑘. It still holds if for any of
the equivalent cases, we further demand that 𝐶′ also excludes an apex graph as a minor.

1.2 Other results

Theorem 2 isn’t the only result that has ties to the bibliography: Markov and Shi [6] proved
that for every graph 𝐺 there is a graph 𝐺′ with maximum degree 3 such that 𝐺 is a minor
of 𝐺′ and 𝑇 𝑊(𝐺′) ≤ 𝑇 𝑊(𝐺) + 1. Moreover, this treewidth bound is best possible
for 𝑇 𝑊(𝐺) ≥ 18.
In particular, for 𝑘 ≥ 18, Markov and Shi [6] constructed a graph 𝐺 of treewidth 𝑘 such
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that if 𝐺 is a minor of a graph 𝐺′ with maximum degree 3, then 𝑇 𝑊(𝐺′) ≥ 𝑘 + 1.
In our terminology, for 𝑘 ≥ 18, Δ(𝑇 𝑊 ≤𝑘) ≥ 4. The aforementioned result that for
𝑘 ≥ 3, Δ(𝑇 𝑊 ≤𝑘) = 𝑘 extends this. As it turned out the construction used for my proof
is similar to theirs. The proof in this text could be considered notionally simpler.

Let’s mention other results of this thesis. The linklessly embeddable graphs ℒ are a
well studied 3-dimensional analogue of the planar graphs [7]. It is reasonable to ask if,
like with planar graphs, one may by some geometric argument replace each node of a
linklessly embeddable graph 𝐺 by some bounded-degree graph to show that Δ(ℒ) = 3
or at least finite. But since the linklessly embeddable graphs are a superclass of the apex
graphs, by theorem 1 the answer is negative:

Corollary 1. Δ(ℒ)=∞.

Likewise, by theorem 1 we have the following.

Corollary 2. Δ(𝐹𝑜𝑟𝑏(𝐾𝑛)) = ∞ for 𝑛 ≥ 6, Δ(𝐹𝑜𝑟𝑏(𝐾𝑛,𝑛)) = ∞ for 𝑛 ≥ 4.

Finally I simplify Georgakopoulos’ proof that there is a universal graph for the class of
countably infinite𝐾5-minor-free graphs [1]. A universal graph for a class of infinite graphs
𝐶 is a graph in 𝐶 that includes all graphs in 𝐶 as minors, and it is interesting in the sense
that it serves as a representative for the entire class. Universal graphs and related prob-
lems have been studied in the literature [8], [9].

Other results in this text is that the class of outerplanar and series-parallel graphs have
Δ = 3, and that for 𝑘 ≥ 3 the class of graphs of pathwidth at most 𝑘, 𝑃𝑊 ≤𝑘, has
Δ(𝑃𝑊 ≤𝑘) = 𝑘.

27 O. Milolidakis





Splittability within minor-closed classes to graphs of low maximum degree.

2. DEFINITIONS AND PRELIMINARIES

Originally, the aim in this section was to collect and introduce, in a rigorous manner from
the ground up, all notions needed during this thesis or at least to clarify what is left to
common sense or used as a black box. As a byproduct, it was quite large and for this
reason it has been moved to the appendix, which the reader may check as needed. A
minimal version is here instead.

2.1 Preliminaries

All graphs are simple and undirected. All graphs are finite unless stated otherwise. Though
the focus of this thesis is on finite graphs, a result on infinite graphs is also presented. All
infinite graphs are countable. The reader may also refer to Diestel [10], the standard
reference book.

2.1.1 Basics

If𝐹 is a set of pairs of vertices of𝐺, we define𝐺−𝐹 to be the graph (𝑉 (𝐺), 𝐸(𝐺)∖𝐹),
and 𝐺 + 𝐹 to be (𝑉 (𝐺), 𝐸(𝐺) ∪ 𝐹). In an abuse of notation, 𝐺 − 𝑒 ∶= 𝐺 − {𝑒}
and 𝐺 + 𝑒 ∶= 𝐺 + {𝑒}. To join vertex 𝑢 to vertex 𝑣 in 𝐺 means to add (𝑢, 𝑣) to 𝐺.
To join subgraph𝑆1 to subgraph𝑆2 of𝐺means to join (𝑢, 𝑣) in𝐺 for all𝑢 ∈ 𝑆1, 𝑣 ∈ 𝑆2.

Given graphs 𝐺1, 𝐺2 we define the disjoint union of 𝐺1 and 𝐺2 , denoted 𝐺1 + 𝐺2, to
be 𝐺1 ∪ 𝐺′

2 where 𝐺′
2 is a graph isomorphic to 𝐺2 so that 𝑉 (𝐺1) ∩ 𝑉 (𝐺′

2) = ∅.
For subgraphs 𝑆1, 𝑆2 of a graph 𝐺, an 𝑆1, 𝑆2 edge is an edge with one endpoint on
𝑆1 and one endpoint on 𝑆2. We say that 𝑆1, 𝑆2 are adjacent or neighbors if there is an
𝑆1, 𝑆2 edge in 𝐺.

2.1.2 Minors

Given a graph 𝐺 and a (possibly single-vertex) connected subgraph 𝑆 of 𝐺, the contrac-
tion 𝐺/𝑆 is the graph obtained from 𝐺 − 𝑉 (𝑆) by adding a new vertex 𝑣𝑆 adjacent to
every neighbour of 𝑆 in 𝑉 (𝐺) ∖ 𝑉 (𝑆). We say 𝐺/𝑆 is obtained from 𝐺 by contracting
𝑆. Given a set of vertices 𝑈 of 𝐺 such that 𝐺[𝑈] is connected, the contraction of 𝑈 is
defined to be the contraction of 𝐺[𝑈].
Let 𝐺 and 𝐺′ be graphs. Assume that for some subgraph 𝑅 of 𝐺 there are pairwise dis-
joint subgraphs 𝑅1, 𝑅2, ..., 𝑅|𝑉 (𝐺′)| of 𝑅 and there is a bijection 𝑅1 ↔ 𝑣1, 𝑅2 ↔ 𝑣2,
..., 𝑅|𝑉 (𝐺′)| ↔ 𝑣|𝑉 (𝐺′)|, where 𝑉 (𝐺′) = {𝑣1, ..., 𝑣|𝑉 (𝐺′)|}, such that (𝑣𝑖, 𝑣𝑗) ∈
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𝐸(𝐺′) iff 𝑅𝑖, 𝑅𝑗 are adjacent. Then 𝐺 contains 𝐺′ a minor, denoted 𝐺 ≥𝑚 𝐺′. 𝐺 is
called an expansion or splitting of 𝐺′.

A bijection 𝜇(𝑣𝑖) = 𝑅𝑖 as above, is called a model of 𝐺′ in 𝐺. We call 𝑅𝑖 the bag
or branch of 𝑣𝑖 in 𝐺 and also denote it 𝐵(𝑣𝑖) or 𝜇(𝑣𝑖). For 𝐻 ⊆ 𝐺, we denote with
𝜇(𝐻) the subgraph of 𝐺 induced by the ∪𝑣∈𝑉 (𝐻)𝜇(𝑣).
Given a graph class 𝐶 , denote by minor-closure(𝐶) the set {𝐺 ∶ 𝐺 ≤𝑚 𝐺′ for some
𝐺′ ∈ 𝐶}.
By the famous Robertson-Seymour theorem, every class closed under minors can be
characterized by a finite set of forbiddenminors. If the excludedminors of𝐺 are𝐻1, 𝐻2, ...,
we may denote 𝐶 by 𝐹𝑜𝑟𝑏(𝐻1, 𝐻2, ...).

2.1.3 Apex graphs

A graph is apex if it is planar or becomes planar after the removal of a single vertex. Given
a graph class𝐶 , a graph is apex-𝐶 if it is in𝐶 or if there is a vertex whose removal makes
𝐺 belong to 𝐶 .

2.1.4 Graphs on Surfaces

The reader is probably already familiar with planar graphs. Some of the most deep results
in minor theory mention graphs embeddable on surfaces more complex than the plane
or the sphere, such as the torus. See the index for an exhaustive list of definitions and
discussions.

Figure 2.1: The torus. Courtesy: Wikipedia.

Much like graphs can be embedded on the plane, they can be embedded on topological
surfaces. A surface is a connected compact Hausdorff topological space locally home-
omorphic to ℝ2. Mohar and Thomassen’s Topological graph theory [11] provides for a
rigorous introduction to the topic.

A graph is embeddable on a surface if we can draw it on the surface so that edges do not
intersect:
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Definition 1. A graph 𝐺 is embeddable on surface 𝑋 if there is a function 𝑓 mapping
vertices to elements of 𝑋, and edges to simple curves on 𝑋 so that 𝑓(𝑣1) ≠ 𝑓(𝑣2) for
𝑣1 ≠ 𝑣2, and curve 𝑓(𝑢𝑣) connects 𝑓(𝑢) and 𝑓(𝑣), and has no intersection with the
image of other vertices and only intersects other edges on its endpoints.
𝑓 is an embeddeding of 𝐺 on 𝑋. The image of 𝑓 , 𝑓[(𝑉 (𝐺) ∪ 𝐸(𝐺))], is called the
embedded graph, and though it is technically not a graph, one may produce a graph from
one in the obvious manner. For ease of notation, the embedded graph is also abusively
denoted 𝑓(𝐺).

A graph embeddable on ℝ2 is called planar. A graph embedded on ℝ2 is called plane.

Definition 2. A face of an embedded graph 𝐺 on 𝑋 is a region of 𝑋 ∖ 𝐺.

Given a face of an embedded graph𝐺, the boundary of the face is an embedded subgraph
of 𝐺. If this subgraph is a cycle, call it a facial cycle.

Definition 3. Let 𝐺 be an embeddable graph , let 𝑓 be an embedding, and let the bound-
ary 𝑏 of a face of 𝑓(𝐺) be a cycle, i.e let 𝐺 limited to the vertices and edges of 𝑓−1(𝑏)
be a cycle. We call the boundary of 𝑏 a facial cycle.
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3. OVERVIEW OF PROOFS AND TECHNIQUES, OPEN PROBLEMS

The goal of this subsection is to present sketches of proofs of this text in an easily readable
manner. Chapter 4 of this text containing the full proofs is a bit more bulky and pedantic
than we would like; thus, if the reader reads this overview and does not really look into
chapter 4, it will have done its job well.

3.1 Classes with a geometric interpretation

We proceed to find the Δ value of a few minor-closed classes. We start with graphs that
have geometric interpretations; the planar graphs, the graphs of euler genus ≤ 𝑘 for fixed
𝑘 ∈ ℕ, the outerplanar graphs, and the series-parallel graphs, all of which have Δ = 3.
Interestingly, all of them admit the same approach: Replace each vertex with a cycle. The
following image shows that planar graphs have Δ = 3.

Figure 3.1: By replacing each vertex of a plane graph with a circle on the boundary of an open ball
around the vertex, we may create a plane graph of maximum degree 3 containing the first as a minor.

Given 𝑘, much the same can be said for the class of graphs embeddable on a surface of
euler genus 𝑘 1, showing this class has Δ = 3 as well. The proof for outerplanar graphs
is summed up in the following figure.

Figure 3.2: For𝐺 an outerplanar graph with common face 𝑓 for all vertices, do as with planar graphs
to obtain 𝐺′, then remove the edge intersecting 𝑓 .

The proof that the class of series-parallel graphs has Δ = 3 is omitted. It would not be
hard to prove for the interested reader.

1This notion doesn’t become important until chapter 6, so we don’t spend more time on it here. See 14
for a definition. Further information is on the appendix.
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3.2 Classes closed under clique-sums

We move on to graph classes closed under clique-sums; 𝐹𝑜𝑟𝑏(𝐾5), 𝐹𝑜𝑟𝑏(𝐾3,3) and,
let 𝑘 ≥ 3 be fixed, 𝑇 𝑊≤𝑘. Surprisingly, they also admit a unified approach.

Definition 4. Given graphs 𝐺, 𝐻 such that 𝐺∩𝐻 is a clique, their clique sum 𝐺⊕𝐻 is
defined by taking 𝐺 ∪ 𝐻 and possibly removing a few edges of the clique. See figure3.3.

Figure 3.3: Two clique sums to create a single big graph. Notice how a few clique edges are removed.
Courtesy: Wikipedia.

Definition 5. The clique sum of𝐺 and𝐻 on clique𝐺∩𝐻 of 𝑘 vertices is called a 𝑘-sum.
The clique sum of 𝐺 and 𝐻 on clique 𝐺 ∩ 𝐻 of ≤ 𝑘 vertices is called a ≤ 𝑘-sum.

Notice that 0-sums are well defined, and are the disjoint union. Now, we would like to
clique-sum without caring about vertex labels.

Theorem 3 (Wagner [12]). A graph 𝐺 excludes K5 as a minor if and only if it can be
constructed by the ≤ 3-clique-sums of planar graphs and the Wagner graph 𝑊[8]. See
figure 3.4.

Theorem 4 (Wagner [12]). A graph 𝐺 excludes K3,3 as a minor if and only if it can be
constructed by the ≤ 2-clique-sums of planar graphs and 𝐾5.

Definition 6. A graph is said to have treewidth ≤ 𝑘 iff it can be constructed by the clique
sum of graphs of ≤ 𝑘 + 1 vertices.

Definition 7. A graph is said to have treewidth = 𝑘 iff it has treewidth ≤ 𝑘, but it doesn’t
have treewidth ≤ 𝑘 − 1.

The aforementioned definition of treewidth is somewhat unorthodox, but I find it to be most
intuitive. Isn’t it much simpler to conceptualize than tree-decompositions?
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Figure 3.4: The Wagner graph 𝑊[8], also known as the 8-wheel. Courtesy: Wikipedia.

We develop the toolset for the key lemma that will allow us to approach all 3 problems
in a unified fashion. Our reward will be that the proofs giving a (strict as it turns out) upper
bound to their Δ value will be quite easy and short.

Definition 8. Denote by ⊕[𝐶] the clique sum closure of class 𝐶 2. Denote by ⊕≤𝑛[𝐶]
the ≤ 𝑛-sum closure of class 𝐶 .

Definition 9. 𝐵 is a base for 𝐶 under ≤ 𝑛-sums if ⊕≤𝑛[𝐵] = 𝐶 . 𝐵 is a base for 𝐶
under clique sums if ⊕[𝐵] = 𝐶 .

Definition 10. Let 𝐺′ ≥𝑚 𝐺, with model function 𝜇. For clique 𝐾 ∈ 𝐺, let its vertex
set be {𝑢1, ...}, let 𝐾′ ∈ 𝐺′ be isomorphic clique with vertex set {𝑢′

1, ...} such that
𝑢′

𝑖 ∈ 𝜇(𝑢𝑖). We call 𝐾′ a representor clique of 𝐾 under 𝜇.
Notice that clique representation is transitive under minors: If 𝐺 ≤𝑚 𝐺′ ≤𝑚 𝐺″ and 𝐾
is a clique of 𝐺 represented under 𝜇 by 𝐾′ in 𝐺′ and 𝐾′ is represented under 𝜇′ in 𝐺″
by 𝐾″, then 𝐾 is represented under 𝜇 ∘ 𝜇′ by 𝐾″.

Definition 11. Given graphs𝐺, 𝐻 , theirCartesian product𝐺□𝐻 is the graph with vertex
set 𝑉 (𝐺) × 𝑉 (𝐻) where two vertices (𝑢, 𝑣) and (𝑢′, 𝑣′) are adjacent if either 𝑢 = 𝑢′
and 𝑣𝑣′ ∈ 𝐸(𝐻) or 𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐸(𝐺).
Intuitively, for each vertex of 𝐻 take a copy of 𝐺, and if two vertices in 𝐻 are connected,
connect the corresponding 𝐺 copies by their identical vertices.

Figure 3.5: The Cartesian product of two graphs Courtesy: Wikipedia.

2So 𝐺 ∈ 𝐶 ⟹ 𝐺 ∈ ⊕[𝐶] and 𝐺, 𝐺′ ∈ ⊕[𝐶] ⟹ 𝐺 ⊕ 𝐺′ ∈ ⊕[𝐶].

35 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

Definition 12. For fixed 𝑢 ∈ 𝐺, we denote by by (𝑢, 𝐻) the 𝐺□𝐻 limited to all vertices
of the form (𝑢, 𝑣) where 𝑣 ranges over 𝐻 . We call (𝑢, 𝐻) the 𝐻-subgraph of 𝑉 (𝐺) ×
𝑉 (𝐻) corresponding to 𝑢.
We may now give the key lemma we will be using. 𝑃2 is the path of 2 vertices.

Lemma 1. Let 𝑑 ≥ 3. Let 𝐶 be a minor-closed class closed under 𝑛-sums, such that
𝑃2□𝐾𝑛 ∈ 𝐶 . Let 𝐵 be a base for 𝐶 under ≤ 𝑛-sums. For every graph 𝐺 in 𝐵, let 𝐺′
in 𝐶 be a graph with

• 𝐺′ ≥𝑚 𝐺.

• Every maximal clique in 𝐺 has a representor clique in 𝐺′.

• Δ(𝐺′) ≤ 𝑑.
Then Δ(𝐶) ≤ 𝑑.
We give a short overview of why this lemma holds in the end of the section. The next
chapter with the full proofs does not use the lemma, but they are much easier with it, so I
recommend focusing on this chapter.

Proposition 1. Δ(𝑓𝑜𝑟𝑏(𝐾5)) = 3.
Given planar graph 𝐺, we call the graph 𝐺′ ≥𝑚 𝐺 of maximum degree 3 as in the proof
that the class of planar graphs has Δ = 3 the ballooning of 𝐺, and denote it 𝐵𝑙(𝐺). The
cycle we replace vertex 𝑣 ∈ 𝐺 with we denote by 𝐵𝑙(𝑣).
Proof of proposition 1. We use lemma 1, where 𝐶 is of course 𝐹𝑜𝑟𝑏(𝐾5) and 𝑛 = 3.
The base 𝐵 is the Wagner graph along with the class 𝐵′ of planar graphs 𝐺 such that
all embedded triangles 𝑎𝑏𝑐 of 𝐺 have either an empty interior or an empty exterior. 𝐵′
is enough to construct all planar graphs with clique-sums; for let 𝐺 be a planar graph
embeddable so some triangle 𝑎𝑏𝑐 has neither empty interior nor exterior, then by the def-
initions of planarity and the Jordan curve theorem, the triangle is a separator, and thus it
can be further decomposed into the 3-clique-sum of smaller planar graphs. Therefore by
Wagner’s theorem, the clique sum closure of 𝐵 gives 𝐹𝑜𝑟𝑏(𝐾5).
We now find for every𝐺 ∈ 𝐵 a𝐺′ ∈ 𝐶 as in lemma 1. TheWagner graph has maximum
degree 3 so it already is of the desired form (the corresponding 𝐺′ ∈ 𝐶 being again the
Wagner graph). For 𝐺 ∈ 𝐵′, 𝐺′ ∈ 𝐶 will be as follows. Let 𝑎𝑏𝑐 be a triangle in 𝐺 of
empty interior or exterior. Add a new triangle 𝑎′𝑏′𝑐′ to 𝐺, 𝑎 joined to 𝑎′, 𝑏 joined to 𝑏′,
𝑐 joined to 𝑐′, and embed it in the empty face. See image 3.6. Do this for all triangles
of 𝐺. Now balloon 𝐺, but leave the vertices of the new triangles as is. This completes
the construction of 𝐺′. It is clearly still planar and has maximum degree at most 3. By
contracting as explained in the image, we regain the original graph, 𝑎′𝑏′𝑐′ being a repre-
sentor of 𝑎𝑏𝑐. For any potential maximal 2-cliques 𝑢𝑣 of 𝐺, the unique 𝐵𝑙(𝑢) − 𝐵𝑙(𝑣)
edge is a representor.
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Figure 3.6: A triangle of 𝐺 modified step by step. By contracting along same-colored segments, we
regain the original graph.

Proposition 2. Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) ≤ 4

Proof. We use lemma lemma 1 where 𝑛 = 2. The base 𝐵 is the 𝐾5 graph along with
the class 𝐵′ of planar graphs 𝐺 such that all embedded triangles 𝑎𝑏𝑐 of 𝐺 have either
an empty interior or an empty exterior. We now find for every 𝐺 ∈ 𝐵 a 𝐺′ ∈ 𝐶 as in
lemma 1. If 𝐺 is 𝐾5, then 𝐺′ is also 𝐾5. If 𝐺 is a planar graph, then 𝐺′ is 𝐵𝑙(𝐺). The
reader may verify the rest.

Proposition 3. Δ(𝑇 𝑊≤𝑘) ≤ 𝑘

We use lemma 1 where 𝑛 = 𝑘. The base 𝐵 is the graphs of at most 𝑘 + 1 vertices. We
should first prove that 𝑃2□𝐾𝑛 ∈ 𝐶 .

Proposition 4. 𝐾𝑛□𝑃2 ∈ 𝑇 𝑊≤𝑛.

Proof. See figure 3.7. Let𝐺1 be a𝐾𝑛 graph, let 𝑉 (𝐺1) = {1, 2, ..., 𝑛} and clique sum
it with a𝐾𝑛+1 graph𝐺2, let its nodes be {1, 2, ..., 𝑛, 1′}. Afterwards, we clique sum𝐺2
with a𝐾𝑛+1, its nodes being {1′, 2, ..., 𝑛, 2′}, then the node set will be {1′, 2′, 3, ..., 𝑛, 3′}
and so on 𝑛 times. In the final graph, {1, 2, ..., 𝑛} and {1′, 2′, ..., 𝑛′} are cliques, with
(𝑖, 𝑖′) connected for all 𝑖 ∈ {1, 2, ..., 𝑛}. Remove surplus edges as needed (note one
can use clique-sums to remove edges without adding any new vertex).

In fact, we proved that 𝐾𝑛□𝑃2 ∈ 𝑃𝑊≤𝑛 where 𝑃𝑊≤𝑛 is the class of graphs of path-
width 𝑛 or less.
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Figure 3.7: Creating a 𝐾3□𝑃2. We start from the outermost triangle, call it 𝑥𝑦𝑧, and create the
innermost triangle 𝑥′𝑦′𝑧′ by clique-sums, one vertex at a time. The red edges are 𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′

.

Proof of proposition 3. As mentioned take lemma 1 for 𝑛 = 𝑘 and 𝐵 the graphs of at
most 𝑘 + 1 vertices. We are in fact already done. For 𝐺 ∈ 𝐵, 𝐺′ is again 𝐺.

We move on to lower bounds. We prove that Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) ≠ 3. As it cannot be 2 or
1 either, this combined with Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) ≤ 4 implies that Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) = 4.

Proposition 5. Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) ≥ 4

Proof. To give the idea in brief, by Wagner any graph in 𝑓𝑜𝑟𝑏(𝐾3,3) is constructed by the
≤ 2 sum of planar graphs and 𝐾5. Now, observe by geometric intuition that the ≤ 2 sum
of planar graphs remains planar, therefore to create a non-planar graph of 𝑓𝑜𝑟𝑏(𝐾3,3)
using Wagner’s theorem a 𝐾5 must be used at some point. Also observe the only way
to reduce the degree of a vertex with a ≤ 2 sum is to use a 2-sum that does not add
vertices and removes a single edge, call this a trivial 2-sum. But rather than remove an
edge by a trivial clique sum, we can remove it after the last (non-trivial) clique sum that
utilizes the edge. Therefore any 𝐺 ∈ 𝑓𝑜𝑟𝑏(𝐾3,3) can be constructed by a series of
clique-sums where no trivial 2-sum occurs. Therefore, a non-planar 𝐺 ∈ 𝑓𝑜𝑟𝑏(𝐾3,3)
must have degree 4 or more as the 𝐾5 that was added while building it this way cannot
have the degrees of its vertices reduced. Of course, if 𝐺 ∈ 𝑓𝑜𝑟𝑏(𝐾3,3) is non-planar
and 𝐺′ ∈ 𝑓𝑜𝑟𝑏(𝐾3,3) includes 𝐺 as a minor, then 𝐺′ must also be non-planar, and
thus Δ(𝐺′) ≥ 4. The reader may also refer to section 4.2.2 for this proof, which I find to
be of satisfactory quality.

Similarly, we would like to prove that for 𝑛 ≥ 3, Δ(𝑇 𝑊≤𝑛) ≥ 𝑛.

Proposition 6. Δ(𝑇 𝑊≤𝑛) ≥ 𝑛
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To prove this, we want a graph 𝐺 ∈ 𝑇 𝑊≤𝑛 so that any graph 𝐺′ ∈ 𝑇 𝑊≤𝑛 including it
as a minor must have Δ(𝐺′) ≥ 𝑛. In [13], Markov and Shi showed that there is a graph
𝐺 of treewidth 𝑛 and no degree 3 expansion of treewidth 𝑛.
Let there be an 𝑛 + 1-clique graph with vertex set {1, 2, ..., 𝑛 + 1}, called the cen-
tral clique 𝐾𝑐. For 𝑖 ∈ {1, 2, ..., 𝑛 + 1} add a vertex labeled 𝑖′ and join 3 it to the
subclique {1, ..., 𝑖 − 1, 𝑖 + 1, ..., 𝑛, 𝑛 + 1}. Call the 𝑛 + 1-clique with vertex set
{1, ..., 𝑖 − 1, 𝑖′, 𝑖 + 1, ..., 𝑛, 𝑛 + 1} by the name 𝐾(𝑖). This completes the construction
of graph 𝐺. It is clear that it is in 𝑇 𝑊≤𝑛 as each vertex we joined can be added by a
clique sum. Markov’s and Shi’s example was the same, but they also removed all edges
with both ends in the central clique of 𝐺.

We use the following known lemma. In case the reader is not familiar with the notion,
the definition of tree-decompositions can be found in section 4.3.

Lemma 2. Let 𝐺 contain a clique 𝐾, let 𝐺′ contain 𝐺 as a minor, and let (𝑋, 𝑇 ) be
a tree-decomposition of 𝐺′. Then there is some vertex 𝑡 ∈ 𝑇 such that its bag 𝐵(𝑡)
contains for each 𝑣 ∈ 𝑉 (𝐾) a vertex from 𝜇(𝑣).

Call any such 𝑡 amodel carrier of 𝐾, and denote it 𝑡𝐾. What follows is both an extension
and a notional simplification of Markov’s and Shi’s result.

Proof of proposition 6. Let 𝐺 be the graph constructed above. Let 𝐺′ ≥𝑚 𝐺 as a minor
with model function 𝜇, where 𝐺′ ∈ 𝑇 𝑊≤𝑛. We will show Δ(𝐺′) ≥ 𝑛.
To do this, we will show that any tree decomposition (𝑋, 𝑇 ) of 𝐺′ looks like fig. 3.8;
that is, removing the centre clique model carrier seperates the tree such that for all 𝑖, 𝑗,
𝑡𝐾(𝑖) and 𝑡𝐾(𝑗) do not share a connected component. This will imply that any vertex 𝑣 in
𝐵(𝑡𝐾𝑐

) must have 𝑑(𝑣) ≥ 𝑛, by the following argument (recall 𝑉 (𝐾𝑐)={1,...,n+1}):
Let 𝑣𝑖 be both in 𝐵(𝑡𝐾(𝑖)) (the bag of the model carrier of 𝐾(𝑖)) and in 𝜇(𝑖′) (the mi-
nor branch of 𝑖′). For 𝐺′ to include 𝐺 as a minor, there must be a path from 𝑣𝑖 to all
vertices of 𝐵(𝑡𝐾𝑐

), except the one vertex of 𝐵(𝑡𝐾𝑐
) also in 𝜇(𝑖) (observe this path in-

tersects 𝐵(𝑡𝐾𝑐
) only at its endpoint, as each vertex of 𝐵(𝑡𝐾𝑐

) belongs to a different
minor branch). A vertex in 𝐵(𝑡𝐾𝑐

)∩𝜇(𝑖) thus receives 𝑛 internally disjoint paths, 1 from
each of the 𝑛 𝐾(𝑗) model carriers, where 𝑖 ≠ 𝑗 (they are internally disjoint as by a known
theorem removing 𝐵(𝑡𝐾𝑐

) from 𝐺′ separates all the 𝑣𝑗 from each other). Thus, each
vertex of 𝐵(𝑡𝐾𝑐

) has degree ≥ 𝑛.
To see that any tree decomposition has the form of fig. 3.8, assume towards contradic-
tion that a connected component of 𝑇 ∖ 𝑡𝐾𝑐

has model carriers for both 𝐾(1) and 𝐾(2)

3We remind that to join a vertex to a graph 𝐻 means to connect it to all vertices in 𝐻
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w.l.g. Now let 𝑣𝑖 where 𝑖 ≠ 1 be the vertex ∈ 𝜇(𝑖) ∩ 𝐵(𝑡𝐾(1)), and let 𝑣1 be the vertex
∈ 𝜇(1) ∩ 𝐵(𝑡𝐾(2)). Let 𝑢𝑖 be the vertex ∈ 𝜇(𝑖) and 𝐵(𝑡𝐾𝑐

). Since 𝐺′ ≥𝑚 𝐺, for
each 𝑖 ∈ {1, ..., 𝑛+1} there is a (possibly trivial) path from 𝑣𝑖 to 𝑢𝑖, all of them pairwise
vertex disjoint. So we have 𝑛 + 1 pairwise vertex disjoint such paths. This cannot be,
as by known tree decomposition properties, there must be a separator of size at most 𝑛
eliminating all paths from 𝐵(𝑡𝐾𝑐

) to 𝐵(𝑡𝐾(1)) ∪ 𝐵(𝑡𝐾(2)) (namely let 𝑡 be the first vertex
in the 𝑡𝐾𝑐

−𝑡𝐾(1) path, then𝐵(𝑡𝐾𝑐
)∩𝐵(𝑡) separates𝐵(𝑡𝐾𝑐

) from the bag of any other
vertex 𝑡′ in the connected component of 𝑡 in 𝑇 ∖ 𝑇𝐾𝑐

).

Figure 3.8: Example tree-decomposition of 𝐺′ for 𝑛 = 3. The centre bag model carrier separates
the model carriers of 𝐾(𝑖).

The same proof with slightly different arguments and reinterpreted notation can be found
in the extended version.

We finish this section with a high level overview of the proof of lemma 1:

For 𝐻 in a minor-closed class 𝐶 which has the required properties of lemma 1, 𝐻 can be
constructed by the clique-sum 𝐺1 ⊕ 𝐺2 ⊕ ... where 𝐺𝑖 ∈ 𝐵. We want to find 𝐻′ ∈ 𝐶
that includes 𝐻 as a minor and has Δ(𝐻′) ≤ 𝑑. The idea is to use the 𝐺′

𝑖 provided by
the lemma instead to build 𝐻′; If 𝐺1 and 𝐺2 were clique summed over common clique
𝐾, we use its maximal representor 𝐾′ in 𝐺′

1 and 𝐺′
2 and clique sum them. This way,

𝐻′ ∶= 𝐺′
1 ⊕ 𝐺′

2 ⊕ ... is a well defined clique-sum. One may check that by contracting
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each graph 𝐺′
𝑖 that 𝐻′ comprises of back into 𝐺𝑖, we obtain 𝐻 . Finally, the vertices of

𝐻 that did not participate in a clique sum have degree at most 𝑑. All that remains is to
deal with the potentially high degree of the common cliques, as they may participate in an
unbounded number of clique sums. The next lemma given without proof follows easily by
iterated clique-summing:

Lemma 3. Let𝐶 be a graph class closed under𝑛-clique-sums such that the graph product
𝐾𝑛□𝑃2 is in 𝐶 . Then 𝐾𝑛□𝑇 is in 𝐶 for any tree 𝑇 of more than 1 vertex.

Notice lemma 1 satisfies the requirements for lemma 3. To deal with the potentially high
degree of the common cliques, before clique summing 𝐺′

1 on 𝐺′
2 on common clique 𝐾′,

we first clique sum on 𝐾′ the graph 𝐾′□𝑇 for some big enough comb 𝑇 . See figure
3.10 for an example with a 2-comb.

Definition 13. Let 𝑢1𝑢2...𝑢𝑘 be a path graph, and for each 𝑢𝑖, add a vertex 𝑣𝑖, and join
it to 𝑢𝑖. The resulting graph is called the comb graph of length 𝑘 or 𝑘-comb graph. The
subpath 𝑢1𝑢2...𝑢𝑘 is called the spine of the comb graph and 𝑢𝑖 is the 𝑖𝑡ℎ spine vertex.
The 𝑣𝑖 are the teeth of the comb. See figure 3.9.

Figure 3.9: The 1, 2, 3, 4 and 5 comb graphs. Courtesy: Wolframalpha

Figure 3.10 explains how we use the newly clique summed graph. It is simple to contract
the new graph back into 𝐺′

1. Since we remove clique edges, we keep an additional tooth
clique not to be used in clique-sums (Δ3 in the figure), which will help us regain our clique’s
edges once the contractions happen; to keep the maximum degree of this tooth clique low,
we further break it up into a path of cliques 𝐾□𝑃 , each clique retaining a single edge of
𝐾, see figure 3.11. Once this is done, the maximum degree will be 𝑑. This completes the
description of how we build the splitting of 𝐻 .
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Figure 3.10: A representor clique Δ, where a comb of cliques is attached. Tooth clique Δ1 is used
in place of Δ for a clique sum, and then Δ2 is used in place of Δ for a second clique sum. Extend
the comb if more clique sums are needed. By contracting along same colored components, we
reobtain Δ and it is as if we had clique summed everything on Δ. Remove dotted edges after the
comb of cliques in no longer needed for sums. This yields a graph of low maximum degree. The last
clique Δ3 is not used in a clique sum, but stays as is so that the edges of Δ are reobtained when
contracting along same colored components.

Figure 3.11: Example with 3-clique. A 3-clique 𝐾 is replaced with a clique path 𝐾□𝑃 , where the
dashed edges are removed. This keeps themaximum degree down to 3 nomatter how big the clique,
and one may simply contract upwards to regain the clique.

The full proof of this lemma (of a more general form actually) is in section 6, though it may
be somewhat bulky.
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Overviews of the main proof (chapters 5 and 6) are not included. Chapter 5 is decently
written, and the interested reader may look into it.

3.3 Open problems

This section quickly touches on some potential open problems.

Recall if 𝐶 is a class, apex-𝐶 is the class of graphs 𝐺 that are in 𝐶 or that have a
vertex 𝑣 so that 𝐺 ∖ 𝑣 is in 𝐶 . One may observe that except the strict superclasses of
the class of apex graphs, the two examples we have given of a minor-closed class 𝐶 of
Δ(𝐶) = ∞, are the stars 4 and the apex graphs. Now, both are of the form apex-𝐶 ,
where 𝐶 is a minor-closed class; for the apex graphs 𝐶 is of course the planar graphs,
and for the stars 𝐶 is the class of the disjoint union of single-vertex graphs. Furthermore,
I recently proved the following, not included in this text.

Proposition 7. If 𝐶 is a minor-closed proper class, Δ(𝑎𝑝𝑒𝑥 − 𝐶) = ∞.

This hints the following is an approachable problem.

Problem 1. What minor-closed classes 𝐶 have finite Δ(𝐶)?
One could conjecture it is all the classes𝐶 not of the form apex-𝐶′ for some minor-closed
class𝐶′. This is not true, as the class of stars union the class of paths hasΔ = ∞without
being of this form. Naturally, this counterexample feel unethical, so one could formulate
a conjecture similar to the above that eliminates such pathological counterexamples.

On another note, when I proved that𝐹𝑜𝑟𝑏(𝐾3,3) = 4, I made an interesting observation.
For a minor-closed class 𝐶 , one way to reformulate the definition of Δ(𝐶) is to define
Δ(𝐶) as the minimum 𝑘 so that𝐶 =minor-closure({𝐺 ∈ 𝐶|Δ(𝐺) ≤ 𝑘}). For classes
𝐶 of Δ(𝐶) = 𝑘 > 3, one may then ask what minor-closure({𝐺 ∈ 𝐶|Δ(𝐺) ≤ 3}) is,
or more generally, for any 𝑘′ smaller than 𝑘 what minor-closure({𝐺 ∈ 𝐶|Δ(𝐺) ≤ 𝑘′})
is. For 𝐾3,3-minor-free graphs the interesting question is when 𝑘′ = 3 and the answer is
easy; minor-closure({𝐺 ∈ forb(𝐾3,3) | Δ(𝐺) ≤ 3})= the planar graphs, as every non-
planar𝐺 ∈ 𝐹𝑜𝑟𝑏(𝐾3,3) cannot have maximum degree 3 as we have seen in proposition
5.

We asked this question for 𝐹𝑜𝑟𝑏(𝐾3,3) and got a natural graph class as a response.
By repeating this question with other minor-closed graph classes of high Δ we could
again find elegant and natural graph classes, or we might even find undiscovered ones.
Let TW≤𝑘 be the class of graphs of treewidth 𝑘 or less. 𝐶 ∶= 𝑚𝑖𝑛𝑜𝑟 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝐺 ∈
𝑇 𝑊≤𝑘 | Δ(𝐺) ≤ 3}) is a treewidth-like minor-closed class. Could it be formulated as a
natural variation of treewidth? Notice 𝑇 𝑊≤𝑘−1 ⊂ 𝐶 ⊂ 𝑇 𝑊≤𝑘.

4Again, this is technically not a minor-closure class; think of its minor-closure when we speak of it
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Simple treewidth is an interesting minor-closed variation of treewidth with geometric appli-
cations, also with the property that 𝑇 𝑊≤𝑘−1 ⊂ 𝑆𝑇 𝑊≤𝑘 ⊂ 𝑇 𝑊≤𝑘, where 𝑆𝑇 𝑊≤𝑘 is
the class of graphs with simple treewidth at most 𝑘. Could𝐶 = 𝑆𝑇 𝑊≤𝑘? The answer to
this conjecture is negative, asΔ(𝑆𝑇 𝑊≤𝑘) ≥ 𝑘 (it has the same construction𝐺 showing
Δ(𝑆𝑇 𝑊≤𝑘) ≥ 𝑘 as proposition 6). The question remains.

Problem 2. Does 𝐶 have a natural description with treewidth like properties?

On another topic, given minor-closed class 𝐶 , with Δ(𝐶) = 𝑘, which we know the ex-
cludedminors of, it is not way too difficult to find the excludedminors of minor-closure{𝐺 ∈
𝐶|Δ(𝐺) ≤ 𝑘′} where 𝑘′ < 𝑘. To see this, one may try describing the excluded minors
of minor-closure({𝐺 ∈ 𝑇 𝑊≤𝑘|Δ(𝐺) ≤ 3}) as a function of the minors of 𝑇 𝑊≤𝑘, by
finding minor-minimal constructions (such as the graph 𝐺 of proposition 6) showing that
Δ(𝑇 𝑊≤𝑘) ≥ 𝑘′ + 1.
Problem 3. Can we express a minor-closed class 𝐶′ whose excluded minors we do not
know as minor-closure{𝐺 ∈ 𝐶|Δ(𝐺) ≤ 𝑘′}, where 𝐶 is a minor-closed class whose
excluded minors we do know?

If we could, it is very possible we could find the excluded minors of 𝐶′. If the answer to
the question is that we cannot, another question would be to find other functions 𝑓 from
the set of minor closed graph classes to the set of minor closed graph classes, with the
property that if we know the excluded minors of 𝐶 we can find the excluded minors of
𝑓(𝐶); once we have enough such functions, we might have enough expressive power to
achieve what problem 3 requests.

Here is a final toy question I found interesting. Let APEX be the class of apex graphs.

Problem 4. Notice 𝑚𝑖𝑛𝑜𝑟 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝐺 ∈ 𝐴𝑃𝐸𝑋 | Δ(𝐺) ≤ 3}) ⊂ 𝑚𝑖𝑛𝑜𝑟 −
𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝐺 ∈ 𝐴𝑃 𝐸𝑋 | Δ(𝐺) ≤ 4}) ⊆ 𝑚𝑖𝑛𝑜𝑟 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝐺 ∈ 𝐴𝑃𝐸𝑋 |
Δ(𝐺) ≤ 5}) ⊆ ... ⊆ 𝑚𝑖𝑛𝑜𝑟 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒({𝐺 ∈ 𝐴𝑃𝐸𝑋 | Δ(𝐺) ≤ 1000}) ⊆ ....
Do its classes admit an interesting description?

It is easy to observe this hierarchy does not collapse, and it has an unbounded number
of proper inclusions. I still do not know if its classes admit an interesting description or if
they relate to each other in a meaningful manner.
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4. THE Δ VALUE OF VARIOUS MINOR-CLOSED CLASSES

In this section, we find the Δ value of a few minor-closed classes, such as K5-minor-free
graphs. This is the extended version of chapter 3, the overview. I would strongly advise
the reader to look into the overview first, as the present section is more pedantic and
extensive than we would like.

4.1 Planar graphs, Graphs of Euler genus ≤ 𝑘, Outerplanar graphs, Linklessly
embeddable graphs

4.1.1 Planar graphs

It is easy to conclude that every planar graph has a planar graph of maximum degree 3
by visual intuition alone. The following figure illustrates that.

Figure 4.1: By replacing each vertex of a plane graph with a circle on the boundary of an open ball
around the vertex, we may create a plane graph of maximum degree 3 containing the first as a minor.

Let’s write the actual proof! We remind that a planar graph has a function 𝑓 mapping its
vertices to points and its edges to curves on the plane. Note that an embedded graph is a
compact subset ofℝ2, being the finite union of compact sets, curves being compact as the
continuous image of the compact set [0,1]. We remind that the initial segment of a curve
𝑐([0, 1]) is a subset of the curve of the form 𝑐([0, 𝑎]) or 𝑐([𝑎, 1]). The following lemma
says that with the right embedding, for each vertex one may find a closed ball centered
on the vertex, only including the vertex and initial segments of the edges incident to the
vertex (that is, edges only exit the ball once).

Lemma 4. Let 𝐺 be a planar graph. 𝐺 has an embedding 𝑓 with the following properties:
For every embedded vertex 𝑓(𝑣), there is a closed ball centered on 𝑓(𝑣) such that

• The closed ball includes no other embedded vertices.

• The closed ball intersects only embedded edges incident to 𝑣.
• The closed ball intersects only an initial segment of those edges.

Proof. Let 𝑓 be any planar embedding of 𝐺. For a ball of 𝑓(𝑣) without other vertices
inside, simply pick a ball with radius smaller than the minimum distance between 𝑓(𝑣)
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and other embedded vertices, min𝑣 𝑑(𝑓(𝑢), 𝑓(𝑣)), where 𝑑() is the euclidean distance.
Moving to edges not incident to 𝑣, suppose towards contradiction that every closed ball
around 𝑣 intersects such an edge. Let 𝐸 be the set of edges incident to 𝑣. We can thus
pick a sequence 𝑎𝑛 of 𝑓(𝐺 ∖ 𝐸 ∖ 𝑣) such that as 𝑛 increases, the distance from 𝑓(𝑣)
decreases and tends to 0, e.g 𝑎𝑛 = some element of distance ≤ 1/𝑛. By definition, this
sequence converges to 𝑓(𝑣). Furthermore, 𝑓(𝐺 ∖ 𝐸 ∖ 𝑣) is compact in ℝ2 and thus
closed, therefore 𝑓(𝑣) ∈ 𝑓(𝐺 ∖ 𝐸 ∖ 𝑣), a contradiction to the definition of embeddings.
Moving to edges incident to 𝑣, pick some 𝜀 such that 𝐵𝜀(𝑣) intersects from 𝑓(𝐺) only
𝑓(𝑣) and those edges. Simply erase the inside of the ball (except 𝑣 of course) and recon-
nect 𝑣 with its edges by a straight line segment going from 𝑓(𝑣) to where the embedded
edge last exits 𝐵𝜀(𝑣), erasing it before that point (to explain where to connect it in rigor-
ous terms, let 𝑒([0, 1]) where 𝑒 ∶ [0, 1] → ℝ2 be such an embedded edge, with 𝑒(0)
being 𝑣. Let 𝑥 be sup𝑦[𝑒(𝑦) ∈ 𝐵𝜀(𝑣)]. Connect 𝑣 to 𝑒(𝑥)). It is simple geometry this
remains an embedding satisfying the lemma.

For every embedding, we thus found an embedding very similar to it with all these nice
properties. The reader may inquire whether these properties hold without changing the
original embedding, in other words, if they are true for all embeddings. The answer is
actually negative! There are graphs such that the final property does not hold.

For example: Let there be function

𝑞(𝑥) = {𝑥 sin(1/𝑥), if 𝑥 ∈ (0, 1]
0, if 𝑥 = 0

Figure 4.2: Function 𝑥 sin(1/𝑥). Our intuition can be false in topology, even on ℝ2.

.
Notice that 𝑞 is a continuous function on [0, 1], i.e a curve. Let 𝐺 be some planar graph
with some embedding such that 𝑞(0) and 𝑞(1) are embedded vertices 𝑢1 and 𝑢2 of 𝐺,
and 𝑞([0, 1]) is an embedded edge. For some 𝑟0 > 0, all circles of radius less that 𝑟0 in-

tersect the edge at least twice. (Indeed, its distance from the origin is 𝑥√1 + sin2(1/𝑥).
The reader may verify the rest by setting values of the form 1/𝑘𝜋 for very large 𝑘.) Now,
let 𝑣 be an embedded vertex of distance less than 𝑟0 to𝑢1. There is no ball of𝑢1 satisfying
both properties 1 and 3 of the lemma for this embedding.
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Theorem 5. Let PLANAR be the class of planar graphs. Δ(PLANAR)=3.

Proof. Let 𝐺 be a planar graph. Take the embedding of lemma 4, and take the balls small
enough that they do not intersect and let 𝑣 be a vertex of degree ≥ 3. Erase everything
inside the closed ball of 𝑣, then let 𝑝1, ..., 𝑝𝑘 be the points where the boundary of the
closed ball last intersected the edges of 𝑣 𝑒1, ..., 𝑒𝑘, the 𝑝𝑖 ordered in a counterclockwise
manner starting from some point of the boundary of the ball. Add the 𝑝𝑖 back as embed-
ded vertices 𝑣𝑖. Then, connect 𝑝𝑖 with 𝑝𝑖+1 by a curve running along the perimeter of
the boundary and also connect 𝑝𝑘 with 𝑝1 in the same manner (of course these are well
defined curves. Take the polar coordinate formula, mapping the angle to points on the cir-
cle.). Notice that all such vertices are of degree at most 3, and that their contraction yields
the original graph. Doing this for every vertex of degree ≥ 3, we create an embedded
graph of maximum degree 3 including 𝐺 as a minor.

Much the same holds for graphs embeddable on a surface of euler genus 𝑘, equivalently
graphs of euler genus ≤ 𝑘.

4.1.2 Graphs of Euler genus ≤ 𝑘

Definition 14. Let Σ be a surface built from the sphere after adding 𝑘 handles. Then its
euler genus is 2𝑘.
Let Σ be a surface built from the sphere after adding 𝑘 crosscaps. Then its euler genus
is 𝑘.

The classification theorem of closed surfaces states that any connected closed surface is
homeomorphic to a surface as in the above definition, where 𝑘 ≥ 0.

Figure 4.3: Surfaces where we have added 2 or 3 handles respectively. The double and triple torus.
Courtesy: Wikipedia.

Definition 15. The euler genus of a graph is the smallest integer 𝑛 such that 𝐺 can be
embedded on the surface of euler genus 𝑛.

We may abusively call a graph of Euler genus 𝑛 a graph of genus 𝑛; in this text we always
refer to the Euler Genus.

The fact that every graph of euler genus 𝑘 is included as minor in a graph of euler genus
𝑘 and maximum degree 3 is visualized in much the same manner and the proof is almost
identical. We simply have to work with the open discs provided by the definition of a
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surface instead of open balls. We present them without proofs.
Note than for a point 𝑥 of a surface, and any ball of 𝑥, there exists an open disc inside
the ball. To see this, let 𝐷 be an open disc of 𝑥 homeomorphic to the open ball of ℝ2 by
homeomorphism 𝑓 , take an open ball 𝑂 of 𝑥, map it by 𝑓 to ℝ2. 𝑓[𝑂] is an open set (by
homeomorphism) and thus it has inside an open ball centered on 𝑥. Map this open ball
back to the surface by 𝑓−1. Thus, for any ball 𝐵𝜀(𝑥) ⊆ 𝐷, we have found a subset 𝐷′

of 𝐵𝜀(𝑥), mapped by 𝑓 to an open ball of ℝ2. Limiting 𝑓 to 𝐷′, it is easy to see that we
still have a homeomorphism.

Figure 4.4: Reasoning about open discs through their homeomorphism to the open ball.

Lemma 5. Let 𝐺 be a graph with embedding 𝑓 on some surface. For every embed-
ded vertex 𝑓(𝑣), there is an open ball centered on 𝑓(𝑣) and an open disc inside the ball
including no other embedded vertices, and only embedded edges incident to 𝑣. Further-
more, let 𝑔 ∶ [0, 1] → ℝ2 be one such embedded edge. If 𝑔(0) = 𝑓(𝑣) the open disc
only contains a subset of the form 𝑔([0, 𝜀]). If 𝑔(1) = 𝑓(𝑣) the open disc only contains
a subset of the form 𝑔([1 − 𝜀, 1]).

Theorem6. Let EUL_GENUS≤𝑘 be the class of graphs of euler genus≤ 𝑘. Δ(EUL_GENUS≤𝑘)=3.

Definition 16. Given graph 𝐺, we call the graph 𝐺′ ≥𝑚 𝐺 of maximum degree 3 as
in the proof that Δ(𝑃𝐿𝐴𝑁𝐴𝑅) = 3 the fattening or ballooning of 𝐺, and denote it
𝐵𝑙(𝐺). The circle we replace vertex 𝑣 ∈ 𝐺 with we denote by 𝐵𝑙(𝑣). This is also the
model function showing 𝐺′ ≥𝑚 𝐺.

4.1.3 Outerplanar graphs

The outerplanar graphs are closely related to planar graphs. One expects that the same
methods apply, and indeed this is the case. Let OUTERPLANAR be the class of outer-
planar graphs.
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Theorem 7. Δ(𝑂𝑈𝑇 𝐸𝑅𝑃𝐿𝐴𝑁𝐴𝑅) = 3

The proof is summed up in the following figure.

Figure 4.5: A picture is a thousand words. It unfortunately is not also a proof.

Proof. Let 𝐺 be an outerplanar graph. There is a common face 𝑓 of ℝ2 ∖ 𝐺 on which
all vertices lie. So for a small enough 𝜀 a closed ball 𝐵𝑣(𝜀) around a vertex 𝑣 intersects
with 𝑓 . More specifically, its boundary intersects 𝑓 . To prove this, observe that for 𝜀 small
enough, there is a point 𝑝 ∈ 𝑓 with 𝑑(𝑣, 𝑝) > 𝜀, and a simple curve 𝑐 ∶ [0, 1] → ℝ2

connecting 𝑣 and 𝑝 and having interior in 𝑓 . The function 𝑑𝑣 mapping a point of ℝ2 to
the distance from point 𝑣 is continuous, therefore 𝑑𝑣 ∘ 𝑐 is continuous, and by the mean
value theorem for all 𝜀′ ∈ (0, 𝜀) there is a point on the interior of the curve with distance
𝜀′ from 𝑣. Let 𝑝𝜀′ be such a point. Even more specifically, since 𝑓 is open, we may take
an open ball of 𝑓 around 𝑝𝜀′, and by geometry notice that its entire intersection with the
boundary of 𝐵𝑣(𝜀) is in 𝑓 .
We create from𝐺 a graph𝐺′ ∶= 𝐵𝑙(𝐺) as in the proof ofΔ(𝑃𝐿𝐴𝑁𝐴𝑅) = 3. Clearly
𝐺′ ≥𝑚 𝐺 by contracting 𝐵𝑙(𝑣) for each 𝑣. Notice that this still holds if we remove any
1 edge from each 𝐵𝑙(𝑣).
Since the edges of𝐵𝑙(𝑣) cover the circle𝐵𝑙(𝑣)was embedded on, at least one such edge
𝑒 must intersect the boundary of 𝑓 . We remove it. Both the ball bounding circle 𝐵𝑙(𝑣)
and 𝑓 are faces, i.e maximal connected sets of ℝ2 ∖ 𝐺, with an intersecting boundary,
so 𝐺′ ∖ 𝑒 now has a face= the interior of 𝑒 ∪ f ∪ the ball bounding 𝐵𝑙(𝑣). This face
intersects all vertices of 𝐵𝑙(𝑣). Doing this for all 𝐵𝑙(𝑣), we acquire an outerplanar graph
of maximum degree 3 containing 𝐺 as a minor.

4.1.4 Linklessly Embeddable graphs

With all the above positive results in mind, one may thus conjecture that the linklessly
embeddable graphs, a well-known three dimensional analogue of the planar graphs con-
sisting of all graphs that have a linkless or flat embedding on 3D-space, also has a low Δ.
This is not the case. As we will see, the linklessly embeddable graphs have Δ = ∞.

The facts proved in this section, while not at all trivial in a topological sense, were for
the most part visually obvious. We try to find the Δ value of various minor-closed classes,
and in doing so, we move on to less obvious results.
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4.2 Forb(𝐾5) and forb(𝐾3,3) graphs

Chapter 3 includes an overview of this section; reading it first is strongly recommended.

4.2.1 K5-minor-free graphs

In [1], Georgakopoulos proved the existence of a countably infinite K5-minor-free universal
graph. As a corollary of his results, he obtained that every finite K5-minor-free graph is a
minor of another finite K5-minor-free graph of maximum degree ≤ 22. A natural question
to ask is if this number can be lowered. Let forb(𝐾5) be the class of𝐾5-minor-free graphs.
We prove that Δ(forb(𝐾5))=3.

Definition 17. Given graphs 𝐺, 𝐻 and isomorphic clique subgraphs 𝑆𝐺 ⊆ 𝐺, 𝑆𝐻 ⊆
𝐻 , their clique sum 𝐺 ⊕ 𝐻 over common cliques 𝑆𝐺 and 𝑆𝐻 is defined by identifying
𝐺 and 𝐻 over 𝑆𝐻 and 𝑆𝐺. We may denote this 𝐺 ⊕𝑆𝐺,𝑆𝐻

𝐻 .

Theorem 3 by Wagner is essential.

We do not use the following observation, but it is nice to notice that for theorem 3 4-clique-
sums would not add any extra graph creating power (Indeed, take Whitney’s theorem that
up to isomorphism, K4 can be embedded in only one ”manner” in the plane. Then notice
that anything we add by 4-sums we could have added by at most 4 3-sums, one for each
face of the K4). Thus a nice way to reformulate this theorem is that K5-minor-free graphs
are precisely the clique-sum closure of planar graphs and 𝑊[8].
The following two lemmas are the main mechanisms used in the proof that Δ(forb(𝐾5))=3.

One is lemma 3.

Figure 4.6: The cartesian product of a tree and a 4-clique, visualized.
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Its proof is conceptually very simple; imagine 𝐾𝑛□𝑇 as a tree where instead of vertices
we have cliques. Much like we can create any tree by adding each of its edges one by
one starting from the root in a DFS or BFS manner, we can create 𝐾𝑛□𝑇 by adding each
of its 𝑛-cliques in the same order.
Proof. Let there be graph 𝐾𝑛□𝑇 for some tree 𝑇 . We have that 𝑉 (𝐾𝑛□𝑇 )=(𝑉 (𝑇 ) ×
{1, ..., 𝑛}) and ((𝑡1, 𝑣1), (𝑡2, 𝑣2)) ∈ 𝐸(𝐾𝑛□𝑇 ) ⟺ 𝑡1 = 𝑡2 or (𝑡1 neighbors 𝑡2 in
𝑇 and 𝑣1 = 𝑣2).
The result is by induction of the number of vertices of 𝑇 . If 𝑇 is the edge graph, then
the result holds trivially. Now let 𝐾𝑛□𝑇 for all 𝑇 of some fixed number of vertices 𝑛.
Let there be 𝑇 ′ of 𝑛 + 1 vertices. This is constructed by some 𝑇 of 𝑛 vertices after
adding a vertex 𝑡2 to 𝑇 and joining it to the correct vertex 𝑡1. We have 𝐾𝑛□𝑇 ∈ 𝐶 .
Clique sum either of the cliques of 𝐾𝑛□𝑃2 to the clique of 𝐾𝑛□𝑇 corresponding to 𝑡1,
i.e to the subgraph of 𝐾𝑛□𝑇 induced by {(𝑡1, 𝑖)|𝑖 ∈ {1, ..., 𝑛}}. The resulting graph
is (isomorphic to) 𝐾𝑛□𝑇 ′: Relabel the new 𝑛 vertices as (𝑡2, 1), ..., (𝑡2, 𝑛) and notice
that (𝑡2, 𝑖) neighbors (𝑡, 𝑗) iff (𝑡2 = 𝑡) or 𝑡2 neighbors 𝑡 in 𝑇 ′ and 𝑖 = 𝑗).
We remind 𝐺1 ⊕𝐾1,𝐾2

𝐺2 is the clique sum of 𝐺1 and 𝐺2 over isomoprhic cliques
𝐾1 ⊆ 𝐺1 and 𝐾2 ⊆ 𝐺2.

Lemma 6. Let 𝑃1, 𝑃2 be some graphs. Let 𝑃 = 𝑃1 ⊕𝐾1,𝐾2
𝑃2. Let there be graph

𝑃 ′
1 ≥𝑚 𝑃1, let 𝜇1 be the model, such that 𝜇(𝐾1) has a clique 𝐾′

1 with one node in each
branch and let there be similar graph 𝑃 ′

2. Then 𝑃 ′
1 ⊕𝐾′

1,𝐾′
2

𝑃 ′
2 ≥𝑚 𝑃 .

Figure 4.7: Example for size 3 cliques of graphs𝑃1 and𝑃2. To the right the triangle𝐾′
1 is depicted,

one vertex in each branch of 𝐾.

Proof. Let 𝜇1, 𝜇2 be the model functions mapping connected components of 𝑃 ′
𝑖 to 𝑃𝑖.

We define the branches of𝑃 ′ ∶= 𝑃 ′
1⊕𝐾′

1,𝐾′
2
𝑃 ′

2, i.e the model function𝜇 from connected
components of 𝑃 ′ to vertices in 𝑃 . Let vertex 𝑣 of 𝑃 ∉ the common clique, let it only
∈ 𝑃𝑖. Then 𝜇(𝑣) ∶= 𝜇𝑖(𝑣). Let 𝑣 ∈ the common clique. Then 𝜇(𝑣) ∶= 𝜇1(𝑣)∪𝜇2(𝑣).
If 𝑣 ∈ 𝑃 , 𝑣 ∉ the common clique, let it only ∈ 𝑃𝑖, then (𝑢, 𝑣) ∈ 𝐺 ⟹ (𝑢, 𝑣) ∈
𝑃𝑖 ⟹ 𝜇𝑖(𝑢), 𝜇𝑖(𝑣) are neighbors ⟹ 𝜇(𝑢), 𝜇(𝑣) are neighbors .
If 𝑣 ∈ the common clique 𝐾1 of 𝑃 ′, then (𝑢, 𝑣) ∈ 𝑃 ⟹ (𝑢, 𝑣) ∈ one of the 𝑃𝑖
containing 𝐾1 ⟹ 𝜇𝑖(𝑢), 𝜇𝑖(𝑣) neighbor ⟹ 𝜇(𝑢), 𝜇(𝑣) neighbor.
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We now move on to the proof that Δ(forb(𝐾5))=3. Our previous result for planar graphs
is of use. It suffices to consider clique sums that do not remove edges. Furthermore, we
divert our attention mostly to the case of 3-sums. The reader may fill in the rest easily.

Before diving in, let us explain the proof conceptually. We decompose the 𝐾5 minor free
graph, to the clique sum of planar graphs, and we replace each planar graph with a bigger
planar graph of maximum degree 3 containing it as a minor. We add a few extra triangles
so that clique sums between big planar graphs are still possible. The triangles are placed
so that the clique sum of the big planar graphs contains the clique sum of the original
planars as a minor. By adding enough such triangles, we never need reuse a triangle,
keeping the maximum degree low. My approach bloats the graphs quite a bit; it is not my
intention to present the most economical approach in vertex or edge number.

Theorem 8. Δ(forb(𝐾5))=3.

Let 𝐺 be a 𝐾5-minor-free graph. We construct the 𝐾5-minor-free graph of maximum de-
gree 3 containing 𝐺 step by step, because it makes the construction easier to understand
and better motivated.

Let 𝐺 be a 𝐾5-minor-free graph. Let 𝐺1, ..., 𝐺𝑘 be its ≤ 3-clique-sum decomposition
into planar graphs and Wagner graphs, clique summed in this order. We can assume all
embedded triangles 𝑎𝑏𝑐 of (planar graphs) 𝐺𝑖 have either an empty interior or an empty
exterior; for let this not be the case, then by the definitions of planarity and the Jordan
curve theorem, the triangle is a separator, and thus it can be further decomposed into the
3-clique-sum of smaller planar graphs. By the Jordan-Schoenflies Curve Theorem, this
region is homeomorphic either to the interior or the exterior of a circle 𝐶 of radius 1 on
ℝ2. One may then add a new triangle 𝑎′𝑏′𝑐′ to 𝐺, 𝑎 joined to 𝑎′, 𝑏 joined to 𝑏′, 𝑐 joined
to 𝑐′, and embed it in the empty face. 1

Do this for all triangles of 𝐺𝑖 to obtain graph 𝐻𝑖. See figure 4.8

1Visually, adding the triangle of course looks obvious, but for illustration purposes and since it’s nice not
to have gaps in our understanding, let’s explain it. Let 𝐻 be the homeomorphism function, and w.l.g. let the
empty face be homeomorphic to the interior of 𝐶. One may embed the triangle by e.g taking a circle of half
radius to 𝐶 and same centre, noting the point 𝑝𝑎 where the line segment from 𝐻(𝑎) to the centre of 𝐶
intersects the smaller circle, let points 𝑝𝑏 and 𝑝𝑐 be defined in the same manner, and letting the embedded
triangle be the embedded vertices 𝐻−1(𝑝𝑎), 𝐻−1(𝑝𝑏), 𝐻−1(𝑝𝑐), and the embedded edges of the
triangle be the the reverse under 𝐻 of the 3 arcs of the small circle. Similar arguments apply if the empty
face of 𝑎𝑏𝑐 is homeomorphic to the exterior of 𝐶.
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Figure 4.8: A triangle of 𝐺𝑖 modified step by step. 𝐺𝑖 𝐻𝑖, 𝐺′
𝑖, 𝐺″

𝑖 , 𝐺‴
𝑖 are pictured in order.

By contracting along same-colored segments, we regain the original graph. By clique summing on
attachor triangles, we keep the maximum degree low. Delete dotted edges after you’re done.

We call a triangle added in this manner on the empty face bounding 𝑎𝑏𝑐 a representor
triangle of 𝑎𝑏𝑐, and denote it 𝑎′𝑏′𝑐′. Now let 𝐺′

𝑖 ≥𝑚 𝐻𝑖 be planar graph of maxi-
mum degree 3 created by 𝐻𝑖 by replacing each vertex 𝑣 with 𝐵𝑙(𝑣) as in the proof that
Δ(𝑃𝐿𝐴𝑁𝐴𝑅𝑆 = 3), but leaving the vertices of representor triangles as is. This way,
we can keep doing 3-sums. For every edge 𝑢𝑣 of 𝐺, call the unique 𝐵𝑙(𝑢) − 𝐵𝑙(𝑣)
edge the representor edge of 𝑢𝑣. For every vertex 𝑢 of 𝐺, add an additional vertex 𝑢′ to
𝐺′ and embed it on the circle 𝐵𝑙(𝑢) is embedded on, on the interior of an edge and let
that 𝑢′ be the representor of 𝑢. Naturally, replace that edge 𝑥𝑤 𝑢′ is on with the edges
𝑥𝑢′ and 𝑢′𝑤, embedded on the circle.

Theorem 9. (𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑘 ≥𝑚 𝐺1 ⊕ ... ⊕ 𝐺𝑘), where if 𝐺𝑖 and 𝐺𝑖+1 were clique
summed on common cliques 𝑎𝑏𝑐 and 𝑑𝑒𝑓 , 𝐺′

𝑖 and 𝐺′
𝑖+1 were clique summed on com-

mon cliques 𝑎′𝑏′𝑐′ and 𝑑′𝑒′𝑓 ′. See image 4.10. (Analogously, if 𝐺𝑖 and 𝐺𝑖+1 were
clique summed on a common 1-clique or 2-clique, 𝐺′

𝑖+1 were clique summed on the rep-
resentors of those cliques).

Figure 4.9: The clique sum of 3 planar graphs, leading to a graph of max degree >3.

53 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

Figure 4.10: The graphs 𝐺′
𝑖 are clique summed over the shaded triangles now.

We discuss only 3-sums from now on. 2 and 1 sums are completely analogous.

Proof. Notice that 𝐺′
𝑖 ≥𝑚 𝐺𝑖 by contracting each 𝐵𝑙(𝑣) to get back 𝑣 and for each

representor triangle 𝑥′𝑦′𝑧′ contracting 𝑥′ to 𝑥, 𝑦′ to 𝑦, 𝑧′ to 𝑧. Therefore, let 𝜇𝑖 be the
model function of 𝐺′

𝑖 ≥𝑚 𝐺𝑖, 𝑥′ ∈ 𝜇𝑖(𝑥), 𝑦′ ∈ 𝜇𝑖(𝑦), 𝑧′ ∈ 𝜇𝑖(𝑧), and 𝐺′
1 ⊕ 𝐺′

2 ≥𝑚
𝐺1 ⊕𝐺2 by lemma 6. Furthermore, representor triangles in 𝐺′

1 ⊕𝐺′
2 continue to have a

vertex in each branch of the triangle they model. (𝐺′
1 ⊕𝐺′

2)⊕𝐺′
3 ≥𝑚 (𝐺1 ⊕𝐺2)⊕𝐺3

by lemma 6. Furthermore, representor triangles continue to have a vertex in each branch
of the triangle they model, and so on. The result follows inductively.

In this manner, we obtain a graph𝐺′ = (𝐺′
1 ⊕...⊕𝐺′

𝑘) containing𝐺 as a minor, with all
non-representor vertices having degree 3 or less. However, if an unbounded amount of
clique sums occur on a specific representor, we could still get a 𝐺′ of unbounded degree.
Utilizing clique sums, we make some additional modifications to 𝐺′

𝑖. See figure 4.11.

Let𝑎′𝑏′𝑐′ be a representor triangle in𝐺′
𝑖. Let𝐾3□𝑃𝑘 be graphwith vertex set ({1, 2, ..., 𝑘}×

{1, 2, 3}). We call the clique corresponding to the 𝑛𝑡ℎ vertex of 𝑃𝑘, i.e for fixed 𝑛 ∈
{1, 2, ..., 𝑘} we call the clique of 𝐾3□𝑃𝑘 induced by the vertices (𝑝, 𝑘) with 𝑝 = 𝑛 the
nth clique of 𝐾3□𝑃𝑘. Clique sum the 1st 𝐾3 of a 𝐾3□𝑃𝑘 graph to a representor triangle
𝑎′𝑏′𝑐′ to obtain 𝐺″

𝑖 . We call the 𝑛th clique of a 𝐾3□𝑃𝑘 in 𝐺″
𝑖 added in this manner

to representor triangle 𝑎′𝑏′𝑐′ the 𝑛th copy of 𝑎′𝑏′𝑐′ (with this terminology, 𝑎′𝑏′𝑐′ is the
1st copy of 𝑎′𝑏′𝑐′). By lemma 3, the graph remains 𝐾5-minor-free. Make the analogous
modifications for 2 and 1 sums. Again, we discuss only of 3-sums - the reader may verify
2 and 1 sums have completely analogous proofs.

Theorem 10. (𝐺″
1 ⊕ ... ⊕ 𝐺″

𝑘 ≥𝑚 𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑘), where if 𝐺′
𝑖 and 𝐺′

𝑖+1 were clique
summed on common cliques 𝑎′𝑏′𝑐′ and 𝑑′𝑒′𝑓 ′, 𝐺″

𝑖 and 𝐺″
𝑖+1 were clique summed on

the 𝑖𝑡ℎ copy of 𝑎′𝑏′𝑐′ and 𝑑′𝑒′𝑓 ′. See images 4.9 and 4.10 again and then 4.11.
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Figure 4.11: The graphs 𝐺″
𝑖 are clique summed over the attachor triangles now. Δ1 is summed

to Δ1′ and Δ2 to Δ2′. By contracting along same colored components, we obtain 𝐺. Remove
dotted edges after the last sum. This yields a graph of maximum degree 3.

Proof. Notice that 𝐺″
𝑖 ≥ 𝐺′

𝑖. This is done by contracting the first vertex of all copies
of representor triangle 𝑎′𝑏′𝑐′ of 𝐺″

𝑖 , i.e the path of the 𝐾3□𝑃𝑘 induced by the vertices
(𝑝, 𝑘) with 𝑘 = 1. Then by contracting the second vertex of all copies of representor
triangle 𝑎′𝑏′𝑐′, and the the third. Do this for all representor triangles. Notice that every
copy has 1 vertex in each branch of the 𝑎′𝑏′𝑐′ model. By lemma 6, the result then follows
inductively as in the previous proof.

Notice that𝐺″ ∶= (𝐺″
1⊕...⊕𝐺″

𝑘) hasmaximum degree 6. Naturally we still call triangles
in 𝐺″ copies if they came from a copy of 𝐺″

𝑖 for some 𝑖. Vertices that don’t belong to a
representor copy have maximum degree 3 still. Unused copies have degree 4. At most,
we have two copies of representor triangles clique summed on each other for a degree of
6. This can be reduced to 4 as well. Notice that the last copy of each representor remains
unused.
Claim 1. Let 𝑥𝑦𝑧 be a copy of a representor triangle of 𝐺″ except the 𝑘th copy. 𝐺″ ≥𝑚𝐺′ still holds after removing edges 𝑥𝑦, 𝑦𝑧, 𝑧𝑥 of 𝐺″ and doing this for all such 𝑥𝑦𝑧.

Proof. Let 𝑥𝑦𝑧 be some representor. The model function showing 𝐺″ ≥𝑚 𝐺′ contracts
the first vertex of each 𝑥𝑦𝑧 copy together, the second vertex of each copy together, and
the third vertex of each copy together (regaining 𝑥𝑦𝑧). It suffices that one copy retain its
edges, because the rest of the edges are redundant once the contraction is finished.

Now non-copies have degree at most 3, and copies have at most 4. Can the maximum
degree be reduced to 3? The answer is positive. We further modify the clique sums.

Let 𝑎′𝑏′𝑐′ be a representor triangle in 𝐺′
𝑖. We clique sum to 𝑎′𝑏′𝑐′ the first spine clique

of𝐾3□𝑇 where 𝑇 is the 𝑘 comb. We call the spine cliques of𝐾3□𝑇 the copies of 𝑎′𝑏′𝑐′

and the teeth clique the attachors. Do this for all representor triangles to obtain 𝐺‴
𝑖 .
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Theorem 11. 𝐺‴
1 ⊕ ... ⊕ 𝐺‴

𝑘 ≥𝑚 𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑘, where if 𝐺′
𝑖 and 𝐺′

𝑖+1 were clique
summed on common cliques 𝑎′𝑏′𝑐′ and 𝑑′𝑒′𝑓 ′, 𝐺‴

𝑖 and 𝐺‴
𝑖+1 were clique summed on

the attachor of the 𝑖𝑡ℎ copy of 𝑎′𝑏′𝑐′ and 𝑑′𝑒′𝑓 ′. This still holds after removing all edges
of (𝐺‴

1 ⊕...⊕𝐺‴
𝑘 ) fromΔ toΔ, whereΔ ranges over any copy of representor triangles

and any attachor except the attachor of the copy numbered 𝑘.

Proof. Notice that 𝐺‴
𝑖 ≥ 𝐺′

𝑖. This is seen by contracting each attachor to its copy to
obtain 𝐺″

𝑖 . Attachors of copies of 𝑎′𝑏′𝑐′ still have one vertex in each branch of the 𝑎′𝑏′𝑐′

model. 𝐺‴ ∶= 𝐺‴
1 ⊕...⊕𝐺‴

𝑘 ≥𝑚 𝐺′ then follows inductively from lemma 6 as before.
Furthermore, notice that in𝐺‴ as all copies and attachors of a representor triangle 𝑎′𝑏′𝑐′
are contracted regaining 𝑎′𝑏′𝑐′, it suffices that one copy or attachor retain its edges to get
𝑎′𝑏′𝑐′ from the contraction. The other edges are unneeded. The attachor of the copy 𝑘
of 𝑎′𝑏′𝑐′ fills this role.

Notice that 𝐺‴ after removing the aforementioned edges has maximum degree 3.

Corollary 3. Δ(𝑓𝑜𝑟𝑏(𝐾5)) = 3.

4.2.2 𝐾3,3-minor-free graphs, a first lower bound and an afterthought

In this section, we will show that Δ(forb(𝐾3,3))=4, that is, for every forb(𝐾3,3) graph there
is a forb(𝐾3,3) graph of maximum degree 4 including it as a minor, but not all forb(𝐾3,3)
graphs have a forb(𝐾3,3) graph of maximum degree 3 including the first a minor. This is
the first example of a graph class with a bounded Δ value different than 3.

Just like with 𝐾5-minor free graphs, Wagner discovered theorem 4, which is of use.
Naturally, the proof that Δ(forb(𝐾3,3))=4 repeats many of the arguments of the previous
subsection. Let’s center our attention at the proof that Δ(forb(𝐾3,3))≠ 3, our first lower
bound.
Fact 1. Let 𝐺1, 𝐺2 be two planar graphs. Then, their ≤ 2-sum over some edge or vertex
remains planar.

One may observe this by geometric intuition or by using Wagner’s characterization of pla-
nar graphs, and the fact that the clique sums of two graphs cannot have higher Hadwinger
number greater than both the first graph and the second.
This implies that to create a non-planar graph by clique summing planar graphs and 𝐾5
graphs, one must use a 𝐾5 at some point, which has vertices of degree 4. Now, observe
that with the exception of a trivial 2-sum which only removes an edge, (we remind that
one may use clique sums to remove any edge of a graph without adding any vertices),
≤ 2-sums cannot reduce the degree of a vertex. We arrive at the following conclusion
which we now prove:

Theorem 12. If 𝐺 is non-planar 𝐾3,3-minor-free graph, then Δ(𝐺) ≥ 4.
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Definition 18. Let 𝐺 = 𝐺1 ⊕ 𝐺2, such that 𝑉 (𝐺) = 𝑉 (𝐺1) or 𝑉 (𝐺) = 𝑉 (𝐺2). In
other words, the clique sum did not add any vertices. We call such a clique sum trivial.

Proof. Let 𝐺 = 𝐺1 ⊕ ... ⊕ 𝐺𝑘 be a series of 2-sums of planar graphs and 𝐾5 graphs,
creating a non-planar graph. By the above, at least 1 𝐾5 was used in the construction of
𝐺. Now, observe that:

• 1-sums cannot reduce the degree of vertex.

• We can assume that no trivial 2-sums occur; rather than remove an edge by a trivial
clique sum, we can remove it after the last clique sum that utilizes the edge.

• If (𝐺1 ⊕ ... ⊕ 𝐺𝑖−1) ⊕ 𝐺𝑖 is a 2-sum over common edge 𝑢𝑣, we can assume that
the degree of 𝑢 and 𝑣 in (𝐺1⊕...⊕𝐺𝑖−1) and in𝐺𝑖 is greater than 1; If not, let w.l.g𝑣 have degree 1 in 𝐺𝑖, we can replace the 2-sum (𝐺1 ⊕ ... ⊕ 𝐺𝑖−1) ⊕ 𝐺𝑖 on 𝑢𝑣
with a 1-sum (𝐺1 ⊕ ... ⊕ 𝐺𝑖−1) ⊕ (𝐺𝑖 ∖ 𝑣) on 𝑢, and if the edge 𝑢𝑣 was removed
during the 2-sum operation, we add after the 1 sum a trivial 2 sum to remove it.

Thus, 𝐺 may be built by ≤ 2-sums of planar graphs and 𝐾5, no 2-sum being trivial or
occurring over an edge with a vertex of degree ≤ 1, and at least 1 𝐾5 must have been
used during its construction. But notice that using these ingredients, once a graph 𝐺𝑖 has
been clique summed during the building of 𝐺, none of its vertices can have their degree
lowered in 𝐺. Therefore, the vertices of the 𝐾5 graph must have degree ≥ 4.
Now, let there be non-planar 𝐾3,3-minor-free graph 𝐺. For a 𝐾3,3-minor-free 𝐺′ to
include 𝐺 as a minor, 𝐺′ must also be non-planar of course. Therefore, it has Δ(𝐺′) ≥
4. This proves that Δ(𝐾3,3 − 𝑀𝐼𝑁𝑂𝑅 − 𝐹𝑅𝐸𝐸) ≥ 4.
As for the proof that every 𝐾3,3-minor-free graph is a minor of a 𝐾3,3-minor-free of max-
imum degree 4, the same arguments as for 𝐾5-minor-free graphs apply. A proof sketch
is given.
Theorem 13. Δ(𝑓𝑜𝑟𝑏(𝐾3,3)) = 4

Proof Sketch. Let 𝐺 be a 𝐾3,3-minor-free graph built by the clique-sum 𝐺1 ⊕ ... ⊕ 𝐺𝑘.
Let 𝐺′

𝑖 be the fattening 𝐵𝑙(𝐺𝑖) if 𝐺𝑖 is a planar graph and let it remain 𝐾5 if 𝐺𝑖 is 𝐾5.
For every 𝑢𝑣 edge in planar graph 𝐺𝑖, clique sum to the unique 𝐵𝑙(𝑢) − 𝐵𝑙(𝑣) edge in
𝐺′

𝑖 the first torso 𝐾2 of the graph 𝐾2□𝑇 where 𝑇 is the 𝑘-comb. Do this for all 𝑢𝑣 to
obtain 𝐺″

𝑖 . If 𝐺𝑖 is a 𝐾5 graph, clique sum 𝐾2□𝑇 on every edge to obtain 𝐺″
𝑖 instead.

𝐺1 ⊕ ... ⊕ 𝐺𝑘 ≤𝑚 𝐺″
1 ⊕ ... ⊕ 𝐺″

𝑘 where if 𝐺𝑖 is ≤ 2 clique summed to 𝐺𝑖+1 on
common cliques 𝑢𝑣 and 𝑤𝑧, 𝐺″

𝑖 is ≤ 2 clique summed to 𝐺″
𝑖+1 on the attachor of the

𝑖𝑡ℎ copy of the representors of 𝑢𝑣 and 𝑤𝑧. Let 𝐺″ ∶= 𝐺″
1 ⊕ ... ⊕ 𝐺″

𝑘 and notice that
𝐺 is still included as a minor if we remove all edges corresponding to copies or attachors
except the 𝑘th attachor (i.e all edges 𝑢𝑣 where 𝑢𝑣 is a copy or attachor)). Observe that
after removing those edges, 𝐺″ has maximum degree at most 4, the 4 because of the 𝐺𝑖
isomorphic to 𝐾5.

57 O. Milolidakis



Splittability within minor-closed classes to graphs of low maximum degree.

Remark 1. There is something quite interesting to notice here. For a minor-closed class
𝐶 , one way to reformulate the definition of Δ(𝐶) is to define Δ(𝐶) as the minimum 𝑘
so that 𝐶 =minor-closure{𝐺 ∈ 𝐶|Δ(𝐺) ≤ 𝑘}. For classes 𝐶 of Δ(𝐶) = 𝑘 > 3,
one may ask what minor-closure{𝐺 ∈ 𝐶|Δ(𝐺) ≤ 3} is, or more generally, for any 𝑘′
smaller than 𝑘 what minor-closure{𝐺 ∈ 𝐶|Δ(𝐺) ≤ 𝑘′} is. For 𝐾3,3-minor-free graphs
the answer is easy; minor-closure{𝐺 ∈ forb(𝐾3,3) | Δ(𝐺) ≤ 3}= the planar graphs, as
every such 𝐺 is built by the 2-sum of planar graphs and subgraphs of 𝐾5, which are also
planar.
Repeating this question with other minor-closed graph classes of high Δ, we may find
elegant and natural graph classes, just as we did with 𝐾3,3-minor-free graphs, and even
undiscovered ones. As a foreshadowing, let TW≤𝑘 be the class of graphs of treewidth 𝑘
or less. {𝐺 ∈ 𝑇 𝑊≤𝑘 | Δ(𝐺) ≤ 3} lies strictly between 𝑇 𝑊≤𝑘−1 and 𝑇 𝑊≤𝑘. Could
it be formulated as a variation of treewidth, like simple treewidth?

4.2.3 𝐾𝑛-minor free graphs for 𝑛 ≥ 6, 𝐾𝑛,𝑛-minor-free graphs for 𝑛 ≥ 4.

The lack of structural theorems and characterizations for 𝐾6-minor-free graphs makes
them particularly hard to work with. Specific results giving some information that come to
mind are [14] and [15] and of course the proof of Jorgersen’s conjecture for large graphs
[16], which aren’t very helpful. It is thus nice that we are able to prove that the class of
𝐾6-minor free graphs, has Δ(𝑓𝑜𝑟𝑏(𝐾6)) = ∞. In fact, the following is a corollary of
the main theorem of this thesis:

Theorem 14. Δ(𝑓𝑜𝑟𝑏(𝐾𝑛)) = ∞, for all 𝑛 ≥ 6. Δ(𝑓𝑜𝑟𝑏(𝐾𝑛,𝑛)) = ∞, for all
𝑛 ≥ 4.

4.3 Graphs of pathwidth ≤ 𝑘, Graphs of treewidth ≤ 𝑘

Chapter 3 includes an overview of the results on treewidth; reading it first is strongly rec-
ommended.

We have already defined treewidth through clique sums in section 3.2.

Definition 19. A graph has pathwidth ≤ 𝑘 iff it can be constructed by the clique sum
of graphs 𝐺1, 𝐺2, ..., each graph clique summed to the previous in the sequence, i.e.
(𝑉 (𝐺1) ∪ ... ∪ 𝑉 (𝐺𝑖)) ∩ 𝑉 (𝐺𝑖+1)=(𝑉 (𝐺𝑖) ∩ 𝑉 (𝐺𝑖+1).
Definition 20. A graph is said to have treewidth = 𝑘 iff it has treewidth ≤ 𝑘, but it doesn’t
have treewidth ≤ 𝑘 − 1. Similarly for pathwidth.
Notice that in treewidth, by definition of clique sums each new graph we add as we build
𝐺 can be thought to be added to a single previous graph, i.e for all 𝑖 there is 𝑗 < 𝑖 + 1
such that (𝑉 (𝐺1) ∪ ... ∪ 𝑉 (𝐺𝑖)) ∩ 𝑉 (𝐺𝑖+1)=(𝑉 (𝐺𝑗) ∩ 𝑉 (𝐺𝑖+1).
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Definition 21. Let there be a graph𝐺 constructible by the clique-sum of graphs𝐺1, ..., 𝐺𝑘,
in this order. A corresponding tree decomposition is the tuple (𝑋, 𝑇 ) with set 𝑋 =
{𝑉 (𝐺1), 𝑉 (𝐺2), ...} and 𝑇 a tree with 𝑉 (𝑇 ) = {𝑉 (𝐺1), 𝑉 (𝐺2), ...}. To define
𝐸(𝑇 ), for each 𝑖 ≥ 1 pick a single arbitrary 𝑗 < 𝑖 + 1 such that (𝑉 (𝐺1) ∪ ... ∪
𝑉 (𝐺𝑖)) ∩ 𝑉 (𝐺𝑖+1)=(𝑉 (𝐺𝑗) ∩ 𝑉 (𝐺𝑖+1), and have 𝑉 (𝐺𝑖) be adjacent to 𝑉 (𝐺𝑗). A
path decomposition is a tree decomposition where 𝑇 is a path. The width of the decom-
position is the size of the largest bag -1.

We call 𝑉 (𝐺𝑖) the bags of 𝐺, and given 𝑡 ∈ 𝑇 denote the corresponding vertex set 𝑉𝑡.
Every tree decomposition has a corresponding clique sum sequence and vice versa 2.

Definition 22. Given a graph 𝐺, an expansion or splitting of 𝐺 is any graph 𝐺′ ≥𝑚 𝐺.

In [13], Markov and Shi showed that every graph of treewidth ≤ k has a degree 3 expan-
sion of treewidth ≤ 𝑘 + 1, and that the +1 is necessary for 𝑘 ≥ 19, i.e, Δ(𝑇 𝑊≤𝑘) > 3
for 𝑘 ≥ 19. We extend and simplify their results; let 𝑇 𝑊≤𝑘 be the class of graphs of
treewidth ≤ 𝑘, and 𝑃𝑊≤𝑘 be the class of graphs of pathwidth ≤ 𝑘. We show that
Δ(𝑃𝑊≤𝑘) = Δ(𝑇 𝑊≤𝑘) = 𝑘 for all 𝑘. Our proof that Δ(𝑇 𝑊≤𝑘) ≥ 𝑘 is notionally
simpler in comparison.

We remind that a graph has treewidth ≤ 𝑘 iff it can be constructed by the clique sum
of graphs of ≤ 𝑘 + 1 vertices. A graph has pathwidth ≤ 𝑘 iff it can be constructed by
the clique sum of graphs 𝐺1, 𝐺2, ..., each graph clique summed to the previous in the
sequence, i.e. (𝑉 (𝐺1) ∪ ... ∪ 𝑉 (𝐺𝑖)) ∩ 𝑉 (𝐺𝑖+1)=(𝑉 (𝐺𝑖) ∩ 𝑉 (𝐺𝑖+1).
Proposition 4 is key, the statement still holding and the proof being same for 𝑃𝑊≤𝑛. It is
proved in the same manner that one proves that the 𝑛 × 𝑛 grid has treewidth ≤ 𝑘.
Instantly, we have as a corollary that 𝐾𝑛□𝑃𝑖 ∈ 𝑃𝑊≤𝑛 for all paths 𝑃𝑖 of length 𝑖, and
by lemma 3 that 𝐾𝑛□𝑇 ∈ 𝑇 𝑊≤𝑛 for any graph 𝑇 . Let’s first observe that every graph
in 𝑃𝑊≤𝑛 has a degree 3 splitting in 𝑃𝑊𝑛+1:

4.3.1 Pathwidth ≤ 𝑛

Let there be graph𝐺 of pathwidth≤ 𝑛, constructed by graphs𝐺1, ..., 𝐺𝑘 clique summed
in this order. To observe that every graph in 𝑃𝑊≤𝑛 has a degree 3 splitting in 𝑃𝑊𝑛+1,
simply replace graph𝐺𝑖 with the following graph𝐺′

𝑖: Take𝐺𝑖□𝑃|𝐸(𝐺𝑖)|+2, and let𝑃|𝐸(𝐺𝑖)|+2
have vertex set 𝑝1, 𝑝2, ... and 𝐺𝑖 vertex set 𝑢1, 𝑢2, .... Let 𝑒1, ... be the edges of 𝐺𝑖.
Delete all edges except 𝑒1 in the 𝐺𝑖 corresponding to 𝑝2, delete all edges except 𝑒2 in
the 𝐺𝑖 corresponding to 𝑝3 and so on. Use the leftmost and rightmost cliques to per-
form the clique-sums: Add to the 𝐺𝑖 corresponding to 𝑝1 the clique 𝐺𝑖 was summed on

2Simply take the vertices of the tree to be 𝑡𝐻𝑖
, take the bag of 𝑡𝐻𝑖

to be 𝑉 (𝐻𝑖), and connect 𝑡𝐻𝑖
and 𝑡𝐻𝑗

in the tree decomposition if 𝐻𝑖 was chosen for 𝐻𝑗 to clique sum on. See [17] for a full and more
detailed proof.
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with 𝐺𝑖−1 and to the 𝐺𝑖 corresponding to 𝑝|𝐸(𝐺𝑖)|+2 the clique 𝐺𝑖 it was summed on
with 𝐺𝑖+1. This completes the construction of graph 𝐺′

𝑖 of pathwidth ≤ 𝑛 + 1 (𝐺1 and
𝐺𝑘 are replaced with 𝐺1□𝑃|𝐸(𝐺1)|+1 and 𝐺1□𝑃|𝐸(𝐺𝑘)|+1 of course). 𝐺′ is defined as
𝐺′

1 ⊕ 𝐺′
2... ⊕ 𝐺′

𝑘, 𝐺′
𝑖 clique summed on 𝐺′

𝑖+1 on their rightmost 𝐺𝑖 and leftmost 𝐺𝑖+1
copy of course. After clique summing 𝐺′

𝑖 with 𝐺′
𝑖+1, remove the edges of the clique. It is

easy to see that 𝐺′ ≥𝑚 𝐺 with maximum degree 3.
We move on to the proof that Δ(𝑃𝑊≤𝑛) = 𝑛. This is seperated in a lower and upper
bound result. We first prove Δ(𝑃𝑊≤𝑛) ≤ 𝑛.

Proposition 8. Δ(𝑃𝑊≤𝑛) ≤ 𝑛.

Proof. Let there be pathwidth ≤ 𝑛 graph 𝐺 = 𝐺1 ⊕ 𝐺2 ⊕ ... ⊕ 𝐺𝑘, clique summed
in this order. It suffices to consider only the case where all the 𝐺𝑖 are isomorphic to the𝑛 + 1-clique. All other 𝐺 in 𝑃𝑊≤𝑛 are subgraphs of such a graph. It also suffices to
prove this for connected 𝐺.

O. Milolidakis 60



Splittability within minor-closed classes to graphs of low maximum degree.

Figure 4.12: The clique sum of 3 4-cliques to create 𝐺 and part of the corresponding 𝐺′ below it.
𝐺′

1 appears fully. The bold edge is the edge we do not remove in each triangle. It is easy to see that
if we contract 𝐺𝐴 downwards, and 𝐺𝐵 upwards, we regain 𝐺1.
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Figure 4.13: The rest of 𝐺′
2 in 𝐺′ for illustration purposes.

Let 𝑣 ∈ 𝐺1 be some vertex. Similarly with above, we define the following graph 𝐺′
1.

See figure 4.12: Let 𝐸 = 𝑒1, ... be the edge set of 𝐺1 ∖ 𝑣. Let there be graph 𝐺𝐴 =
(𝐺1 ∖ 𝑣)□𝑃|𝐸|+1, where 𝑃|𝐸|+1 = 𝑝1𝑝2... is the path graph of |𝐸| + 1 vertices, and
𝑉 (𝐺1 ∖ 𝑣) = {𝑢1, 𝑢2, ...}. Now remove all edges of (𝐺1 ∖ 𝑣, 𝑝1) except 𝑒1, all edges
of (𝐺1 ∖ 𝑣, 𝑝2) except 𝑒2, and so on, and remove all edges of (𝐺1 ∖ 𝑣, 𝑃|𝐸|+1).
We wish to add 𝑣, and to do that we have to drop another vertex. Let 𝑣′ ≠ 𝑣 be some
vertex in 𝐺1 and not in 𝐺2 (it is safe to assume such a vertex exists w.l.g.). Do the same
in 𝐺1 ∖ 𝑣′, i.e define 𝐺𝐵 = (𝐺1 ∖ 𝑣′)□𝑃|𝐸′|+1, where 𝐸′ is the edge set of 𝐺1 ∖ 𝑣′,
and remove edges as before; remove all edges of (𝐺1 ∖ 𝑣′, 𝑝1) except 𝑒′

1, all edges of
(𝐺1 ∖ 𝑣′, 𝑝2) except 𝑒′

2, and so on, and remove all edges of (𝐺1 ∖ 𝑣, 𝑃|𝐸′|+1), only this
time keep the edges of the clique 𝐺1 was clique-summed on to 𝐺2 with (We shall use
them for a clique sum. After the sum occurs, we shall remove those edges too).

Now take the disjoint union of 𝐺𝐴 and 𝐺𝐵 ((𝐺1 ∖ 𝑣)□𝑃|𝐸|+1 and (𝐺1 ∖ 𝑣′)□𝑃|𝐸′|+1)
and identify same named vertices from (𝐺1 ∖𝑣, 𝑃|𝐸|+1) and from (𝐺1 ∖𝑣′, 𝑃1) to obtain
𝐺′

1.
This is a graph of width 𝑛 and maximum degree 𝑛 (if we forget about the edges needed for
the clique sum, which will be removed anyway), and by contracting in 𝐺′

1 the subgraphs
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(𝑢1,𝑃|𝐸|+1) and (𝑢1,𝑃|𝐸′|+1) together into 1 vertex, (𝑢2,𝑃|𝐸|+1) and (𝑢2,𝑃|𝐸′|+1) to-
gether into 1 vertex, and so on, and (𝑣′,𝑃|𝐸|+1) into 1 vertex and (𝑣,𝑃|𝐸′|+1) into 1 vertex,
we obtain 𝐺1.
Do the same for the other𝐺𝑖, only unlike before have𝑃|𝐸|+2 instead of𝑃|𝐸|+1, and have
a clique on (𝐺𝑖 ∖ 𝑣, 𝑝1) of 𝐺𝐴 and (𝐺𝑖 ∖ 𝑣, 𝑝|𝐸′|+2) of 𝐺𝐵 (for the sums). Clique sum
𝐺′

𝑖 with 𝐺′
𝑖+1 in the obvious manner, removing the edges of the cliques after the clique

sum. It is simple to observe that 𝐺′
1 ⊕ 𝐺′

2 ⊕ ... has maximum degree 𝑛, is of pathwidth
≤ 𝑛, and contains 𝐺 as a minor by contracting as above.

We now move on to the second lower bound of this text. We need a graph 𝐺 of pathwidth
at most𝑛 such that any graph of pathwidth at most𝑛 containing it as aminor hasmaximum
degree ≥ 𝑛. This graph is the following:
Let there be a 𝐾𝑛 clique with vertex set {1, 2, ..., 𝑛}. 𝑛-sum to it 1000 𝑛 + 1-cliques,
let the 𝑖th be {1, 2, ..., 𝑛, 𝑖}. This completes the construction of 𝐺.

Proposition 9. There is no graph 𝐺′ of pathwidth at most 𝑛 containing 𝐺 as a minor with
Δ(𝐺′) < 𝑛.

The following well-known lemma (see e.g Diestel [10]) is of use:

Lemma 7. Let 𝐺 contain an 𝑛-clique, let 𝐺′ contain 𝐺 as a minor, and let there be a tree-
decomposition of 𝐺′. Then there is some bag of the tree-decomposition which contains
a vertex from each minor branch of the 𝑛-clique.

Path-decompositions being tree-decompositions, this theorem applies here as well. We
now prove proposition 9.

Proof. Let there be graph 𝐺′ ∈ 𝑃𝑊𝑘 containing 𝐺 as a minor, and let 𝐺′ be created by
the clique sums 𝐺′

1 ⊕ 𝐺′
2 ⊕ .... By proposition 7, for any of the 3 (𝑛 + 1)-cliques of 𝐺

there is a 𝐺′
𝑖 such that 𝐺′

𝑖 contains a vertex of each minor branch of the (𝑛 + 1)-cliques.
Let 𝐺′

𝑖, 𝐺′
𝑗, 𝐺′

𝑘 be these graphs, 𝑖′ ≤ 𝑗′ ≤ 𝑘′. Now, all graphs between 𝐺′
𝑖 and 𝐺′

𝑘
need to have a vertex from each branch of the central 𝐾𝑛 clique. Therefore, the extra
node of 𝐺′

𝑗 cannot be split. For let this be the case, let it be split into 𝑢 and 𝑢′, this edge
does not fit anywhere.

We move on to 𝑇 𝑊≤𝑘. The reader will notice that arguments are naturally similar.

4.3.2 Graphs of treewidth ≤ 𝑛

We begin with the lower bound. In [13], Markov and Shi showed that there is a graph 𝐺
of treewidth 𝑛 and no degree 3 expansion of treewidth 𝑛. The example graph 𝐺 we use
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is very similar in comparison and we now define it; let there be an 𝑛 + 1-clique graph
with vertex set {1, 2, ..., 𝑛 + 1}, called the central clique. For every 𝑛-subclique with
vertex set {1, ..., 𝑖 − 1, 𝑖 + 1, ..., 𝑛, 𝑛 + 1}, add a vertex labeled 𝑖′ and join it to the
subclique, call this 𝑛 + 1-clique by the name 𝐾(𝑖)

𝑛+1. This completes the construction of
graph𝐺. Markov’s and Shi’s example was the same, but they also removed all edges with
both ends in the central clique of 𝐺. The following is both an extension and a notional
simplification of their result.

Proposition 10. Δ(𝑇 𝑊≤𝑛) ≥ 𝑛

This is a slightly different proof to the one presented in the overview. Notation is a bit
different here; For tree decomposition (𝑋, 𝑇 ), model carriers denote tree-decomposition
bags rather than tree decomposition vertices 𝑡 ∈ 𝑉 (𝑇 ). Also, the bag of 𝑡 is denoted 𝑉𝑡
instead of 𝐵(𝑡).

Proof. Let 𝐺′ ≥𝑚 𝐺 as a minor with model function 𝜇, where 𝐺′ ∈ 𝑇 𝑊≤𝑛. By lemma
7, for any tree-decomposition of 𝐺′, if there is an 𝑛 + 1 clique in 𝐺, there is some bag
of the tree-decomposition which contains a vertex from each minor branch of the 𝑛 + 1
clique. Call this a model carrier of that 𝑛 + 1-clique.
Let there be a width 𝑛 tree-decomposition of 𝐺′. Notice that any tree decomposition
vertex 𝑡 adjacent to the centre clique bag carrier 𝑡𝑐 must drop a centre clique bag node,
i.e, for some 𝑖 ∈ {1, ..., 𝑛}, 𝜇(𝑖) ∩ 𝑉𝑡𝑐

is not empty but 𝜇(𝑖) ∩ 𝑉𝑡 is, for there cannot
be 𝑛 + 1 (possibly trivial) distinct paths from one bag to the other, as their intersection is
a separator. Therefore there is a single centre clique model carrier. In fact this holds for
all 𝑛 + 1 clique model carriers.
As every bag adjacent to the centre model bag must drop a vertex, the first internal vertex
𝑡𝑖′ on the path from the central bag carrier to the 𝐾(𝑖)

𝑛 model carrier drops the bag vertex
of 𝑖. Thus no vertex whose path to 𝑡𝑐 uses 𝑡𝑖′ may have a vertex of the minor branch of
𝑖. All such vertices induce a subtree of the tree-decomposition, with 𝐾(𝑖)

𝑛 in it. Lacking
vertices from the model of 𝑖, for 𝑗 ≠ 𝑖 no other 𝐾(𝑗)

𝑛 model carrier is included in this
subtree.
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Figure 4.14: Example tree-decomposition of 𝐺′ for 𝑛 = 3. The centre bag model carrier separates
the 𝐾(𝑖)

𝑛 .

Let 𝑣𝑖 be both in the model carrier of 𝐾(𝑖)
𝑛 and in the minor branch of 𝑖′. For 𝐺′ to include

𝐺 as a minor, there must be a path from 𝑣𝑖 to all 𝑛 nodes of the central bag carrier, except
the one in the model of 𝑖. This path is internally disjoint to other such paths from a similar
node 𝑣𝑗 of a𝐾(𝑗)

𝑛 carrier, 𝑗 ≠ 𝑖. A vertex in the centre bag model carrier and the model of

𝑖 thus receives 𝑛 internally disjoint paths from each of the 𝑛 𝐾(𝑗)
𝑛 model carriers, where

𝑖 ≠ 𝑗 Thus, each vertex of the central bag model carrier has degree ≥ 𝑛.

We move on to the other direction. We have used the following ideas many times already,
so we over them quickly.

Proposition 11. Δ(𝑇 𝑊≤𝑛) ≤ 𝑛.

Let 𝐺 be a graph produced by the clique sum of graphs 𝐺1, 𝐺2,..., 𝐺𝑘, in this order. It
suffices to assume that the 𝐺𝑖 are isomorphic 𝑛 + 1-cliques, as 𝐺 made from such 𝐺𝑖
includes all other graphs in 𝑇 𝑊≤𝑘 as a subgraph.
Just like with previous classes, let there be some 𝐺𝑖 with 𝑛-clique 𝐾, and let there be
graph 𝑇□𝐾𝑛 where 𝑇 is the 𝑘 + 1-comb graph, and 𝐾𝑛 has vertex set {𝑢1, ..., 𝑢𝑛}.
Call the subclique of 𝑇□𝐾𝑛 corresponding to the first spine vertex the first spine clique,
and the subclique of 𝑇□𝐾𝑛 corresponding to the first hair vertex the first hair clique. 𝑛-
sum 𝐺𝑖 and 𝑇□𝐾𝑛 by identifying 𝐾 and the first spine clique. Do this for all 𝑛 cliques
of size 𝑛 of 𝐺𝑖 to obtain 𝐺′

𝑖.
Call the 𝑖th spine clique of the 𝑇□𝐾𝑛 attached to 𝐾 the 𝑖th copy of 𝐾, and the corre-
sponding hair clique the 𝑖th attachor and call the entire 𝑇□𝐾𝑛 the comb representor of
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𝐾. Also for any clique of𝐺𝑖, call a clique of size𝑛 of𝐺𝑖 containing it a representor clique.

Obviously 𝐺′
𝑖 ≥𝑚 𝐺𝑖. It is not hard to observe that in 𝐺′

𝑖, if we remove all edges of
a comb representor with both endpoints in the same copy or attachor, but leave the last
attachor (numbered 𝑘 + 1) intact, we still contain 𝐺𝑖 as a minor; simply contract the ver-
tices of the comb representor corresponding to vertex 𝑣1 of 𝑇□𝐾𝑛, then contract the
vertices corresponding to 𝑣2, and so on for all 𝑣𝑖. We reobtain the original clique.
We now proceed to the clique sums.

Proposition 12. 𝐺1 ⊕ ... ⊕ 𝐺𝑘 ≤𝑚 𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑘, where if 𝐺𝑖+1 was 𝑚-summed to
the 𝐺𝑗 subgraph of 𝐺1 ⊕ ... ⊕ 𝐺𝑘, on isomorphic cliques 𝐾 and 𝐾′, then 𝐺𝑖+1’ was
𝑚 summed to the 𝐺′

𝑗 subgraph of (𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑖) on the following isomorphic cliques:
The 𝑖th attachor of the clique representors of 𝐾 and 𝐾′.

To obtain 𝐺 as a minor of 𝐺′ ∶= 𝐺′
1 ⊕ ... ⊕ 𝐺′

𝑘, for each 𝐺′
𝑖, go to the 𝐺′

𝑖 subgraph
of 𝐺′, and for each 𝑛 clique 𝐾 of size 𝑛 + 1 of 𝐺𝑖, contract the vertices of the comb
representor of 𝐾 corresponding to vertex 𝑣1 (we remind, the clique 𝐾𝑛 of 𝑇□𝐾𝑛 has
vertex set 𝑣1, 𝑣2, ...), then contract the vertices corresponding to 𝑣2, and so on for all 𝑣𝑗.
It is easy to observe that doing this for all 𝐺′

𝑖 subgraphs of 𝐺′, we obtain 𝐺.
Furthermore, if we remove all edges of a comb representor with both endpoints in the
same copy or attachor but leave the last attachor (numbered 𝑘 +1) intact, we still contain
𝐺 as a minor by the same contractions. Remove those edges from all comb representors
to obtain 𝐺″.
We have observed that𝐺″ ≥𝑚 𝐺. Furthermore, Δ(𝐺″) = 𝑛, as the original vertices of
the 𝐺𝑖 in 𝐺″ and the last clique attachor of each comb has degree 𝑛, while other vertices
of 𝐺″ have degree at most 𝑛. This completes the proof of the proposition.
By the two results of this subsection, we have that Δ(𝑇 𝑊≤𝑛) = 𝑛.
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5. MAIN THEOREM PART 1: MINOR CLOSURE OF A CLASS 𝐶
CONTAINING ALL PYRAMIDS, WHERE Δ(𝐶) FINITE.

A natural question to ask is if Δ is increasing with respect to the subset relationship.
This is not the case; STARS ⊆ the class of planar graphs ⊆ the class of apex graphs
(where STARS is minor closure of the class of stars), but their Δ value is ∞, 3 and ∞
respectively. We do however have the following: Let 𝒜 be the class of apex graphs.

Theorem 15. If a proper minor closed class 𝐶 ⊇ 𝒜, then Δ(𝐶) = ∞.

This gives one direction of theorem 2, our main theorem. Formulated otherwise:

Theorem 16. If for a minor closed class 𝐶 ⊇ 𝒜 it holds that Δ(𝐶) = 𝑘 ∈ ℕ, then 𝐶
contains all graphs.

For non zero natural numbers 𝑁, 𝑀 , the 𝑁 × 𝑀 grid graph is the graph with vertex set
{1, 2, ..., 𝑁}×{1, 2, ..., 𝑀} and edge set {((𝑖, 𝑗), (𝑖′, 𝑗′)) ∶ |𝑖−𝑖′|+|𝑗−𝑗′| = 1}.
See figure A.1.
The 𝑁 -pyramid is the graph created by taking a 𝑁 ×𝑁 grid, adding a vertex, and joining
it to all vertices of the grid.

Clearly a pyramid is an apex graph. As we now show, to prove Theorem 16, it suffices to
prove the following: If a graph contains a large enough pyramid as a minor by a graph of
Δ(𝐺) ≤ 𝑐, then it contains an arbitrarily large clique.
Theorem 17. For every𝑛, 𝑐 ∈ ℕ, there exists𝑁 such that ifΔ(𝐺) ≤ 𝑐, and𝐺 contains
the 𝑁 -pyramid as a minor, then 𝐺 contains 𝐾𝑛 as a minor.

We prove theorem 17 implies theorem 16.

Proof. If 𝐶 includes all apex graphs as a minor with graphs of Δ(𝐺) ≤ 𝑘 for some
𝑘, then it includes all 𝑁 -pyramids with graphs of Δ(𝐺) ≤ 𝑘, and then it includes all
cliques.

We thus now only focus on Theorem 17. Let 𝐻 be a subgraph of graph 𝐺. An 𝐻–path in
𝐺 is a path of 𝐺 internally disjoint from 𝐻 with endpoints in 𝐻 . To prove theorem 17, the
high level idea is to prove that if Δ(𝐺) ≤ 𝑐 and 𝐺 ≥𝑚 a large enough 𝑁 -pyramid, then
𝐺 ≥𝑚 an 𝑁 × 𝑁 grid 𝐻 with many 𝐻-paths, their endpoints positioned to our liking
(Lemma 8). It is well-known that a large enough grid 𝐻 with (𝑡

2) 𝐻-paths with endpoints
far apart from each other contains a 𝐾𝑡 clique: See lemma 9.

Lemma 8. For every 𝑛, 𝑐 ∈ ℕ, there is 𝑁 and 𝑠 such that if Δ(𝐺) ≤ 𝑐 and 𝐺 contains
the 𝑁 -pyramid as a minor, then 𝐺 also contains as a minor the 𝑁 × 𝑁 grid, call it 𝐻 ,
with 𝑛 pairwise edge-disjoint 𝑆-paths with discreet endpoints, where 𝑆 is any subgraph
of 𝐻 of more than 𝑠 vertices.
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Let 𝐺 be a graph and 𝑢, 𝑣 ∈ 𝑉 (𝐺). The distance 𝑑(𝑢, 𝑣) is the length (number of
edges) of the shortest path between them.

Lemma 9. [18] If 𝐺 is a wall with pairwise disjoint 𝐺-paths 𝑃1, ..., 𝑃(𝑛
2) where 𝑛 > 1,

there exists 𝑑 ≥ 0 such that if any 2 𝐺-path endpoints 𝑝 ∈ 𝑃𝑖, 𝑝′ ∈ 𝑃𝑗 have 𝑑(𝑝, 𝑝′) ≥
𝑑, then 𝐺 ≥𝑚 𝐾𝑛.

A wall is an (𝑛×2𝑛) grid, where ordering edges from top to bottom for each vertical path,
we remove from the first vertical path the even ordered edges, from the second vertical
path the odd ordered edges, from the third the even ordered edges and so on. Finally we
remove degree 1 edges and then arbitrarily subdivide edges.

Figure 5.1: A 4 × 8 grid and a corresponding wall

Importantly, notice that lemma 9 also holds for (𝑛 × 2𝑛) grids.
We are now ready to prove theorem 17.

Proof of Theorem 17. Fix some 𝑛 and 𝑐. We want to prove that for some large enough
𝑁 = 𝑁(𝑐), if a graph 𝐺 has maximum degree at most 𝑐, it will contain 𝐾𝑛 as a minor
if it contains the 𝑁 -pyramind as a minor. By lemma 8, for some large enough 𝑁 , 𝐺
will contain as a minor the 𝑁 × 𝑁 grid, call it 𝐻 , with (𝑛

2) pairwise disjoint 𝐻-paths
with discreet endpoints. Select some (𝑁/2 × 𝑁) subgrid 𝐻′ of the grid, and have the
endpoints be in a subgraph 𝑆 of 𝐻′ such that for all 𝑢1 ≠ 𝑢2 ∈ 𝑆, 𝑑𝐻′(𝑢1, 𝑢2) ≥ 𝑑.
By lemma 9, 𝐺 ≥𝑚 𝐾𝑛.

We present a few corollaries before proving lemma 1.

Corollary 4. If 𝐶 is a proper minor-closed superclass of the apex graphs, then Δ(𝐶) =
∞.

The linklessly embeddable graphs are a well known 3-dimensional equivalent of the planar
graphs. It is reasonable to ask if, like with planar graphs, one may by some geometric
argument replace each node of a linklessly embeddable graph 𝐺 by some other structure
to extend Δ(𝑃𝐿𝐴𝑁𝐴𝑅𝑆) = 3 to linklessly embeddable graphs. As the apex graphs
are a subclass of the linklessly embeddable graphs, the answer is negative.
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Corollary 5. Let ℒ be the class of linklessly-embeddable graphs. Δ(ℒ)=∞.

Corollary 6. Let 𝐶 be a class containing all apex graphs as minors. For some 𝑘, let 𝑓 be
any function mapping a graph to a graph containing it as a minor with maximum degree
𝑘. Then 𝑓[𝐶] contains all graphs as minors.

Now follows the proof of lemma 8.

Proof. Let there be integer 𝑛. We would like to prove that if a graph 𝐺 of Δ(𝐺) ≤ 𝑐
contains a big enough pyramid as a minor, let it be a 𝑁(𝑛, 𝑐)-pyramid, let 𝑆(𝑛, 𝑐) be a
big enough subgraph of its grid, it contains the 𝑁(𝑛, 𝑐) × 𝑁(𝑛, 𝑐) grid with 𝑛 pairwise
edge-disjoint 𝑆-paths with discreet endpoints (𝑁 and 𝑆 to be specified later).
So let 𝑎 be the apex vertex of the 𝑁(𝑛, 𝑐)-pyramid and 𝑋 its grid and let 𝜇 be the model
function mapping vertices of the pyramid to connected components of 𝐺. In 𝐺 contract
𝜇(𝑣) for all grid vertices 𝑣 ∈ 𝑋 to obtain𝑋. We will use 𝑎 to find 𝑛 jumps, with endpoints
in 𝑆 ⊆ 𝑋. We remove edges until 𝜇(𝑎) is a tree, and it has precisely one 𝜇(𝑎) − 𝑋
edge towards each vertex of 𝑆 and 0 to 𝑋 ∖ 𝑆.
Of course 2 vertices of 𝜇(𝑎) neighboring 𝑆 along with the path of 𝜇(𝑎) between them
form an 𝑆-path, but 𝑆-paths being internally disjoint, using it could make us lose many
other 𝑆-paths. How should we proceed?
We may assume all subtrees in 𝜇(𝑎) have a vertex neighboring 𝑆. If not, we remove
them. We may also assume all vertices of 𝜇(𝑎) that only neighbor 𝜇(𝑎) have degree ≥
3. If they have degree 1 we delete them, and if they have degree 2 we dissolve them.
We then take a maximal path 𝑃 = 𝑢1, 𝑢2... in 𝜇(𝑎). Call the 𝑢𝑖 neighboring 𝑋 good
vertices, and the rest bad. Bad 𝑢𝑖 vertices can be contracted into good vertices; since
they must have degree>2 each must neighbor a subtree (which does not intersect 𝑃 or
other such subtrees, else there would be a cycle), which must include a vertex neighboring
𝑆. Remove all other vertices of the subtree except the path connecting 𝑢𝑖 to the vertex
neighboring 𝑆, then contract this path. Path 𝑃 now has only good vertices, every two of
which form the internal vertices of an 𝑆-path. How large is 𝑃 ? Notice that at the time we
pick it, 𝜇(𝑎) still has maximum degree ≤ 𝑐 and as it neighbors every vertex of 𝑆, 𝜇(𝑎)
still has more than 𝑁2

𝑐 vertices. Fixing 𝑐 and letting 𝑁 and thus |𝑉 (𝜇(𝑎))| grow larger
and larger, the diameter of 𝜇(𝑎) must also increase, and thus the length of its maximum
path. Pick 𝑠 large enough for 𝜇(𝑎) to have diametre at least 2𝑛. Pick 𝑁 large enough
𝑋 can fit 𝑆.
Remark 2. Nowhere in this lemma did we use the fact that 𝑋 is a grid. Indeed, rather
than just pyramids, it holds for any infinite family of finite graphs as long as they all have
a vertex connected to all other vertices.
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6. MAIN THEOREM PART 2: A SUPERCLASS OF Δ = 3 FOR ANY
CLASS EXCLUDING AN APEX GRAPH

Definition 23. A graph class is proper if it does not include all graphs.

We have proved that any proper minor-closed class including all apex graphs must have
Δ = ∞, and any attempts to relax this fact to smaller classes while working on this
thesis had failed. On the other hand, given a minor-closed class 𝐶 excluding a planar
graph, we have inspected that it is contained in a superclass 𝐶′ of finite Δ(𝐶′), in fact
of Δ(𝐶′) = 3. We suspect the following.

Theorem 18. Let 𝐶 be a minor-closed class excluding an apex graph as a minor. There
exists a proper minor-closed class 𝐶′ ⊇ 𝐶 with Δ(𝐶′) = 3.

In [2] Dujmović, Morin and Wood proved that the following are equivalent for a proper
minor-closed graph class 𝐶 .

1. 𝐶 forbids an apex graph as a minor.

2. 𝐶 has bounded local treewidth.

3. 𝐶 has linear local treewidth.

4. Every graph in 𝐶 has bounded layered treewidth.

5. Every graph in G admits layered separations of bounded width.

6. For some 𝑘, every graph in 𝐶 can be constructed by the clique-sum of strongly
𝑘-almost embeddable graphs.

Theorem 16 in combination with theorem 18, complements this result by adding the fol-
lowing characterization:

Theorem 19. A proper minor-closed class 𝐶 excludes an apex graph as a minor if and
only if it has a minor-closed superclass 𝐶′ with Δ(𝐶′) = 3.

The class𝐶′ of theorem 19 will by construction also exclude an apex graph. Furthermore,
by theorem 16 one may replace Δ(𝐶′) = 3 with Δ(𝐶′) ≤ 𝑘 for any finite 𝑘. Therefore,
theorem 19 can be reformulated as:

Theorem 20. A proper minor-closed class 𝐶 excludes an apex graph as a minor if and
only if it has a minor-closed superclass 𝐶′ excluding an apex graph as a minor and with
finite Δ(𝐶′).
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Theorems 19 and 20 give theorem 2.

We prove the equivalence of theorem 19 with condition 6 above. Condition 6 is a corollary
of a strengthening [19] of the graph minor structure theorem of Robertson and Seymour
[20]. The theorem of Robertson and Seymour says that much like 𝐾5-minor-free graphs
can be built by clique-summing planar graphs and the Wagner graph, so can the 𝐾𝑛-
minor-free graphs be built by clique summing graphs from a correctly selected family, the
family of 𝑘-almost-embeddable graphs.
Theorem 21 (The graph minor structure theorem). Let there be a graph 𝐻 , and let 𝐺 ∈
the 𝐻-minor-free graphs. Then 𝐺 can be constructed from the clique-sum of 𝑘-almost
embeddable graphs, where 𝑘 = 𝑘(𝐻).
Furthermore, it suffices to use graphs almost embeddable on surfaces that 𝐻 does not
embed on (of genus 𝑘 or possibly less).

As an instant corollary, the graph minor structure theorem also holds for minor-closed
graph families excluding more than 1 graph as a minor.
Now let us define what a 𝑘-almost embeddable graph is. Rather than take a planar graph
to clique-sum, we take a graph embeddable on some surface of euler genus at most 𝑘,
we embed it, and then choose up to 𝑘 faces, to which we add potentially non-embeddable
layers of ”depth” ≤ 𝑘. Finally we add 𝑘 apex vertices.

Let’s start by defining the non-embeddable layers of an almost embeddable graph, called
vortices.

Definition 24. Let there be a graph 𝐺 embedded on a surface. Let 𝐶 = 𝑣1, 𝑣2, ..., 𝑣𝑛
be a facial cycle 1 of 𝐺. Let there be graph 𝐺′, and add 2 𝐺′ to 𝐺. Let there be a 𝐶-
decomposition of 𝐺′ with bags 𝐵𝑣1

, ..., 𝐵𝑣𝑛
. Pick a distinct node 𝑢𝑖 from each bag 𝐵𝑣𝑖

,
and in 𝐺′ + 𝐺 identify 𝑣𝑖 and 𝑢𝑖 for all 𝑖 to obtain a new graph 𝐺″. Adding a vortex 𝐺′
to 𝐺 over 𝑣1, ..., 𝑣𝑛 and 𝑢1, ..., 𝑢𝑛 is defined to be this sequence of operations. If the
𝐶-decomposition of 𝐺′ has width 𝑘, then the vortex has depth 𝑘. We call 𝐺′ a vortex of
𝐺″.

The reader may picture the vortex added inside the face. Since we usually do not care
about the specific choice of 𝐺′, we simply say we add a vortex to 𝐺 on 𝐶 . We now
proceed to define a 𝑘-almost embeddable graph.
Definition 25. Let there be a graph 𝐺. Let 𝐺 be embeddable on a surface of Euler genus
≤ 𝑘. For some embedding, choose up to 𝑘 pairwise disjoint facial cycles of 𝐺. Add
to each of them a vortex of depth up to 𝑘, to obtain 𝐺′. Finally, add up to 𝑘 vertices
to 𝐺′ to obtain 𝐺″, called the apex vertices of 𝐺″, and join them to any vertex in 𝐺″
(including other apex vertices). 𝐺″ is called a 𝑘-almost embeddable graph. We call𝐺 the

1A facial cycle is a cycle which is the boundary of a face of the embedded graph 𝐺.
2We remind we have defined the addition two graphs to be their disjoint union.
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embedded part of 𝐺″ and call 𝐺″almost embeddable on the surface 𝐺 was embedded
on.

Reminding the minor structure theorem, for any 𝐻 , all 𝐻-minor-free graphs can be con-
structed from the clique sum of 𝑘-almost embeddable graphs, where 𝑘 = 𝑘(𝐻). For ex-
cluded minors 𝐻 belonging to a more specific family of graphs, there exist more specific
results than the graphminor structure theorem; for apex graphs it is mentioned above. If𝐻
is restricted to the planar graphs, then a 𝐺 ∈ forb(𝐻) can be constructed from the clique-
sum of graphs of ≤ 𝑘 vertices, where 𝑘 = 𝑘(𝐻) (in other words, 𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ(𝐺) < 𝑘).
One could go on.

As already mentioned, on the other hand Dvořák and Thomas proved a strengthening
of the graph minor structure theorem in the general case.

Definition 26. Given graph 𝐻 and surface Σ, let 𝛼(𝐻, Σ) be the minimum number of
vertices one need remove from 𝐻 to make it embeddable on Σ.

Theorem 22 (The graph minor structure theorem strengthened [19]). The graph minor
structure theorem holds even if we only use graphs almost-embedded on surface Σ such
that every triangle of their embedded part is the boundary of a face homeomorphic to an
open ball of ℝ2, and all but 𝛼(𝐻, Σ)-1 of their apex vertices neighbor only other apex
vertices and vortices.

If 𝐻 is an apex graph, then 𝛼(𝐻, Σ) = 1 of course. Condition 6 of theorem 18 follows:

Definition 27. A strongly 𝑘-almost embeddable is a 𝑘-almost embeddable graph where
also all apex vertices neighbor only other apex vertices and vortex vertices.

Corollary 7. Let there be an apex graph 𝐻 , and let 𝐺 ∈ the 𝐻-minor-free graphs.
Then𝐺 can be constructed from the clique-sum of strongly 𝑘-almost embeddable graphs,
where 𝑘 = 𝑘(𝐻).

As implied by theorem 18, the converse also holds; if there is 𝑘 such that every graph
in some class can be constructed from the clique-sum of strongly 𝑘-almost embeddable
graphs, then it excludes some apex graph.

The strengthened graph minor structure theorem has an important implication; We need
only clique-sum almost embeddable graphs whose embedded part has no K4 subgraph,
or is trivially a K4 graph.

Corollary 8. Let there be connected graph 𝐺 ≠ 𝐾4 embedded on some surface such
that every triangle is the boundary of an open disc. Then 𝐺 has no 4-cliques.

Proof. Let there be a K4 with vertex set 𝑎𝑏𝑐𝑑 in the graph 𝐺 with embedding 𝑓 . As 𝐺 is
connected and not a 𝐾4, there must be a vertex 𝑣 adjacent to some vertex of 𝑎𝑏𝑐𝑑, let it
be adjacent to 𝑎. 𝑓(𝑎) has an open disc containing it and an initial segment of each edge
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incident to it. Without loss of generality, let the incident edges be clockwise around 𝑎 in
the order 𝑎𝑏, 𝑎𝑐, 𝑎𝑑, 𝑎𝑣. Any face 𝑎 participates in must include two clockwise adjacent
edges in its boundary . Therefore, there is no face including only 𝑎𝑑𝑏 in its boundary.
Naturally, the minor structure theorem would not be very interesting if it turned out that for
some 𝑘 we can create all graphs using 𝑘-almost embeddable ones. The following is a
well known fact.

Theorem 23. Let there be 𝑘 ∈ ℤ≥0. Let 𝐶 be the the class of all graphs that can be con-
structed by clique-summing 𝑘-almost embeddable graphs. Then 𝑚𝑖𝑛𝑜𝑟 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐶)
is proper. 3

This theorem holds for strongly 𝑘-almost embeddable graphs, as they are a subset of 𝑘-
almost embeddable graphs 4.

In Jim Geelen’s publicly available Introduction to Graph Minors course lectures, adding
a vortex had a simpler definition, which is useful to us;

Definition 28. Let there be a graph 𝐺 embedded on a surface. Let 𝐶 = 𝑣1, 𝑣2, ..., 𝑣𝑛
be a facial cycle of𝐺. Add a𝐾𝑘 clique to𝐺, and identify its first vertex to 𝑣1. Add another𝐾𝑘 clique, and identify its first vertex to 𝑣2 and so on. The clique identified with 𝑣𝑖 is called
the vortex clique of 𝑣𝑖. Now, join the clique of 𝑣1 to the clique of 𝑣2, join the clique of 𝑣2
to the clique of 𝑣3 and so on. Also join the clique of 𝑣1 to the clique of 𝑣𝑛.
We call this sequence of operations as adding a simple vortex of depth 𝑘. The subgraph
induced by the added cliques (i.e the union of the vortex clique of 𝑣𝑖 over all 𝑖) is a simple
vortex. The circle induced by the 𝑖th vertex of all simple vortex cliques is the ith layer of
the simple vortex. We always have 𝐶 be the 1st layer of the simple vortex.

Clearly this definition is different. The reader may notice that a simple vortex of depth 𝑘
is a vortex of depth 2𝑘 + 1 (the +1 needed because decompositions have that pointless
-1 in their definition). Now, a 𝑘-depth vortex need not be isomorphic to any simple vortex,
for example take a vortex which has a vertex neighboring all vertices of the facial cycle
(this is possible if the vertex is in all branches of the cycle decomposition). However, any
𝑘-depth vortex is a minor of a (𝑘 + 1)-depth simple vortex:

3Indeed, for fixed 𝑘 none of the operations involved in constructing a 𝑘-almost embeddable graph can
create an arbitrarily large cliqueminor; By Euler’s formula for high genus (theorem 44), a graph𝐺 embedded
on a surface of euler genus 𝑘 must have at most 𝑚 ≤ 3𝑛 − 6 + 3𝑘 where 𝑛 are the vertices and 𝑚 the
edges of the graph, therefore too large a clique will not be embeddable on the surface. Graphs embeddable
on a specific surface being closed under minors, 𝐺 can’t have too large a clique minor either for specific
𝑘. Similarly, adding 𝑘 apex graphs can increase the Hadwinger number by at most 𝑘, and the clique sum
of graphs 𝐺1 and 𝐺2 cannot create any larger clique minor either. For adding a vortex of depth 𝑘 cannot
create an arbitarily large minor, and more on the minor structure theorem, we refer the interested reader to
Jim Geelen’s graph minor recorded lectures, lecture 3 [21].

4This is significantly useful for our purposes, as opposed to the other characterizations of the class of apex
graphs in theorem 18, such as layered treewidth, where the minor closure of graphs of layered treewidth 𝑘
contains all graphs, even for 𝑘 = 3. Indeed, the 3- dimensional 𝑛 × 𝑛 × 2 grid graph has layered TW 3
and a 𝐾𝑛 minor, take a row from the first level and a column from the second to be each branch.
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Proposition 13. Let there be embedded graph 𝐺 on some surface, with facial cycle 𝐶 =
𝑣1, ..., 𝑣𝑛 and add vortex 𝑉 of depth 𝑘 on𝐶 to obtain𝐺′. Alternatively, add to𝐺 a simple
vortex 𝑠𝑉 of depth 𝑘 + 1 to obtain 𝐺″. 𝑠𝑉 contains 𝑉 as a minor.

Proof. Let 𝐵𝑣𝑖
be the bags of the C-decomposition of 𝑉 of width 𝑘. We slowly contract

and remove nodes from 𝑠𝑉 to prove it contains a 𝑉 minor. In 𝑠𝑉 , for all 𝑣𝑖 ∈ 𝐶 , remove
vertices from the simple vortex clique of 𝑣𝑖 until it has as many vertices as 𝐵𝑣𝑖

does.
Let’s now specify the model function 𝜇. If 𝑢 ∈ 𝐵𝑣1

and ∈ no other vortex bag, pick
𝜇(𝑢) = 𝑢′ where 𝑢′ is a vertex belonging to the simple vortex clique of 𝑣1. If 𝑢 ∈ 𝐵𝑣1
also belongs to other bags, 𝐵𝑣𝑛−𝑗

, ..., 𝐵𝑣𝑛
, 𝐵𝑣1

, ..., 𝐵𝑣𝑖
, pick an unused by 𝜇 vertex

from the simple vortex cliques of 𝑣𝑛−𝑗, ..., 𝑣𝑖, and let the path𝑃 they define bemodeled to
𝑢, i.e 𝜇(𝑃) = 𝑢. Repeat this process for vertices of 𝐵𝑣2

not in𝐵𝑣1
and so on. We never

run out of unoccupied vertices in a simple vortex clique. If we do, let the simple vortex
clique of 𝑣𝑖 be such a clique, then 𝐵𝑣𝑖

has more than 𝑘 + 1 vertices (a contradiction), as
by construction of 𝜇 every occupied vertex of the simple vortex clique of 𝑣𝑖 corresponds
to exactly one vertex of 𝐵𝑣𝑖

. It suffices to prove that if 𝑢 and 𝑢′ are adjacent in 𝑉 then
𝜇(𝑢) and 𝜇(𝑢′) are in 𝑠𝑉 . 𝑢 neighbors 𝑢′ in 𝑉 ⟹ they share a bag 𝐵𝑣𝑖

⟹ (by
construction) the simple-vortex clique of 𝑣𝑖 has a vertex which 𝜇 corresponds to 𝑢 and a
vertex which 𝜇 corresponds to 𝑢′ ⟹ 𝜇(𝑢) and 𝜇(𝑢′) neighbor.
Corollary 9. Let there be graphs 𝐺′ and 𝐺 as above. 𝐺′ ≥𝑚 𝐺.

Proof. For vertices 𝑢 of 𝐺′ that are in the vortex 𝑉 , let model function 𝜇 showing 𝐺′ ≥𝑚𝐺 be same as before, but making sure to set 𝜇(𝑣𝑖) = 𝑣𝑖 for 𝑣𝑖 ∈ 𝐶 . If 𝑢 is not in the
vortex, once again set 𝜇(𝑢) = 𝑢. Let there be vertex 𝑣 ∉ a vortex. (𝑣, 𝑢) ∈ 𝐸(𝐺) ⟹
(𝑣, 𝑢) ∈ 𝐸(𝐺′) ⟹ (𝜇(𝑢), 𝜇(𝑣)) ∈ 𝐸(𝐺′).

We are now ready to prove theorem 19. By theorem 7 any minor closed class𝐶 excluding
an apex graph can for some 𝑘 be built by the clique sum of strongly 𝑘-almost embeddable
graphs 𝐺. We will show that any such graph 𝐺, is the minor of a graph 𝐺′ built by the
clique sum of strongly 𝑓(𝑘2 + 𝑘)-almost embeddable graphs with Δ(𝐺′) = 3. Taking
the graph class of all such 𝐺′, and taking its minor closure, we obtain a proper minor-
closed graph class 𝐶′ of Δ(𝐶′) = 3 which contains 𝐶 .

Rather than instantly give the final construction, it is more natural to see it produced step
by step, adding more ingredients in each step. For each intermediate step we prove a few
facts which we reuse in the next steps. If 𝐶 is not a minor-closed class, set Δ(𝐶) to be
Δ(𝑀𝐼𝑁𝑂𝑅 − 𝐶𝐿𝑂𝑆𝑈𝑅𝐸(𝐶)).
Let 𝐶1(𝑘) be the class of graphs of genus ≤ 𝑘, embeddable so each triangle bounds
an open disc.
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Let 𝐶2(𝑘) be the class of graphs that can be obtained by adding at most 𝑘 vortices of
depth at most 𝑘 to a graph of 𝐶1(𝑘) (the graph of 𝐶1(𝑘) embedded so that each triangle
bounds an open disc of course).

Let 𝐶3(𝑘) be the class of graphs that can be obtained by adding at most 𝑘 apex ver-
tices to a graph of 𝐶2(𝑘), where the apex vertices may neighbor only other apex vertices
and vortex vertices, i.e the class of strongly 𝑘-almost embeddable graphs. It is easy to
see that much like planar graphs, Δ(𝐶1(𝑘)) = 3. We will add as few ingredients as
possible; we will show that Δ(⊕[𝐶1(𝑘)]) = 3. We will then show that ⊕[𝐶2(𝑘)] has a
proper minor-closed superclass of Δ = 3. We will then do the same for ⊕[𝐶2(𝑘)].

Proof. By [1], if a (finite) graph 𝐺 is embedded on a surface, for any 𝑣 ∈ 𝐺 there is
an open disc 𝐷𝑣 containing from 𝐺 only 𝑣 and an initial segment of edges incident to 𝑣
5. Take the discs small enough that their boundaries do not intersect. Erase everything
inside the closed disc 𝐷𝑣 of 𝑣, then let 𝑝1, ..., 𝑝𝑘 be the points where the boundary of the
closed disc intersected the edges of 𝑣 𝑒1, ..., 𝑒𝑘, ordered in a counterclockwise manner.
Add the 𝑝𝑖 back as embedded vertices 𝑣𝑖. Then, connect 𝑝𝑖 with 𝑝𝑖+1 by a curve running
along the perimeter of the cycle. Call the resulting graph 𝐺′. Notice that Δ(𝐺′) ≤ 3 and
𝐺′ ≥𝑚 𝐺, the model function is 𝜇(𝑣)= all vertices of 𝐺′ embedded on 𝐷(𝑣).
Definition 29. Given graph 𝐺, we call the graph 𝐺′ ≥𝑚 𝐺 of maximum degree 3 as
in the above proof the fattening or ballooning of 𝐺, and denote it 𝐵𝑙(𝐺). The cycle we
replace vertex 𝑣 ∈ 𝐺 with we denote by 𝐵𝑙(𝑣). 6

We will prove that any graph 𝐺 built by the clique sum of graphs of 𝐶1(𝑘) is a minor of a
𝐺′ built by the clique sum of graphs of 𝐶1(𝑘) and Δ(𝐺′) = 3. We will use theorem 1.
Also notice the following.

Proposition 14. Let 𝐺 ≤𝑚 𝐺′. If 𝐾′ ∈ 𝐺′ is a representor clique of 𝐾 ∈ 𝐺 under 𝜇,
we may remove from 𝐺′ all 𝜇(𝑢) − 𝜇(𝑣) edges, except the edges of 𝐾′, for all distinct
pairs 𝑢, 𝑣 ∈ 𝐾 and still contain 𝐺 as a minor under 𝜇.

Almost entirely, in the following we want to restrict ourselves to a unique specific repre-
sentor for each clique. This motivates the following definition.

Definition 30. Let 𝐺 ≤𝑚 𝐺′ under 𝜇. Correspond to some cliques in 𝐺 a representor
of theirs in 𝐺′. Call any such correspondence function from cliques in 𝐺 to representor
cliques in𝐺′ a representation. Call any 1-1 correspondence function a 1-1 representation
and if all cliques are represented call it total. Call the image of the correspondence function
the set of selected representors.

5Wemay have to change the embedding a bit. Importantly, facial cycles remain same, andmore generally
the subgraphs induced by the boundary of faces remain same.

6This is also the model function showing 𝐺′ ≥𝑚 𝐺
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We have already given theorem 1. This theorem is a specialization of a slightly more
general theorem. For a maximal clique of a graph 𝐺, call its representor clique in 𝐺′ ≥𝑚𝐺 a max representor clique.

Theorem 24. Let 𝑑 ≥ 3. Let there be a minor-closed class𝐶 closed under 𝑛-sums, such
that 𝑃2□𝐾𝑛 ∈ 𝐶 . Let 𝐵 be a base for 𝐶 under ≤ 𝑛-sums. For every graph 𝐺 in 𝐵, let
there be graph 𝐺′ in 𝐶 with

• 𝐺′ ≥𝑚 𝐺 and there is a representation so that

• Every maximal clique in 𝐺 has a selected representor clique in 𝐺′.

• Every vertex 𝑣 of𝐺′ of degree greater than 𝑑 has degree at most 𝑑−𝑠 if we remove
for every selected max representor clique 𝐾 it is in the edges of 𝐺′[𝐾], where 𝑠 is
the number of selected max representor cliques 𝑣 is in.

Then Δ(𝐶) ≤ 𝑑.

This theorem is also a specialization of an even more general theorem! A degree 𝑘 ex-
pansion or splitting of 𝐺 is a graph 𝐺′ ≥𝑚 𝐺 with Δ(𝐺′) = 𝑘.
Theorem 25. Let 𝑑 ≥ 3. Let there be a class 𝐶′ closed under 𝑛-sums, such that
𝑃2□𝐾𝑛 ∈ 𝐶′. Let 𝐵 be a base for minor-closed class 𝐶 under ≤ 𝑛-sums. For ev-
ery graph 𝐺 in 𝐵, let there be graph 𝐺′ in 𝐶′ with

• 𝐺′ ≥𝑚 𝐺 and there is a representation so that

• Every maximal clique in 𝐺 has a selected representor clique in 𝐺′.

• Every vertex 𝑣 of𝐺′ of degree greater than 𝑑 has degree at most 𝑑−𝑠, if we remove
for every selected max representor clique 𝐾 it is in the edges of 𝐺′[𝐾], where 𝑠 is
the number of selected max representor cliques 𝑣 is in.

Then every graph in 𝐶 has an expansion of degree ≤ 𝑑 in 𝐶′.

We remind one notation we use for clique sums: Given graphs 𝐺, 𝐻 such that 𝐺 ∩ 𝐻
is a clique, their clique sum 𝐺 ⊕ 𝐻 is defined by the operation 𝐺 ∪ 𝐻 . If 𝐺 ∩ 𝐻=𝐾,
denote this clique sum by 𝐺 ⊕𝐾 𝐻 .

Lemma 10. Let 𝐺 = ((𝐺1 ⊕𝐾1
𝐺2) ⊕𝐾2

𝐺3)⊕𝐾3
... Let 𝐺′

𝑖 ≥𝑚 𝐺𝑖 be graphs with
model function 𝜇𝑖 such that for every clique 𝐾 of 𝐺𝑖, 𝐺′

𝑖 has a representor clique 𝐾′.
Then ((𝐺′

1 ⊕𝐾′
1

𝐺′
2) ⊕𝐾′

2
𝐺′

3) ⊕𝐾′
3

... =∶ 𝐺′ ≥𝑚 𝐺. 7

7((𝐺′
1 ⊕𝐾′

1
𝐺′

2) ⊕𝐾′
2

𝐺′
3)⊕𝐾′

3
... is well-defined. If 𝐺𝑖+1 is clique summed on ((𝐺1 ⊕𝐾1

𝐺2) ⊕
... ⊕𝐾𝑖−1

𝐺𝑖) on common clique 𝐾𝑖, then 𝐾𝑖 must ⊆ some graph 𝐺𝑗, 𝑗 < 𝑖. 𝐾𝑖 ∈ 𝐺𝑗 ⟹ 𝐾′
𝑖 ∈

𝐺′
𝑗 ⟹ 𝐾′

𝑖 ∈ ((𝐺′
1 ⊕𝐾′

1
𝐺′

2) ⊕ ... ⊕𝐾′
𝑖−1

𝐺′
𝑖)
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Figure 6.1: Example where 𝐾 is a triangle. Graph 𝑃1 ⊕𝐾 𝑃2 is a minor of 𝑃 ′
1 ⊕𝐾′ 𝑃 ′

2

Proof. Call any𝐾𝑗 a common clique. We define the branches of𝐺′, i.e themodel function
𝜇 from vertices in𝐺 to connected components of𝐺′: 𝜇(𝑣) ∶= ⋃𝑖 𝜇𝑖(𝑣), where𝜇𝑖(𝑣) =
∅ if 𝑣 ∉ 𝐺𝑖.

If 𝑣 ∈ 𝐺, 𝑣 ∉ any common clique, let it only ∈ 𝐺𝑖, then (𝑢, 𝑣) ∈ 𝐺 ⟹ (𝑢, 𝑣) ∈
𝐺𝑖 ⟹ 𝜇𝑖(𝑢), 𝜇𝑖(𝑣) neighbor ⟹ 𝜇(𝑢), 𝜇(𝑣) neighbor.
If 𝑣 ∈ some common clique 𝐾 of 𝐺′, then (𝑢, 𝑣) ∈ 𝐺 ⟹ (𝑢, 𝑣) ∈ one of the 𝐺𝑖
containing 𝐾 ⟹ 𝜇𝑖(𝑢), 𝜇𝑖(𝑣) neighbor ⟹ 𝜇(𝑢), 𝜇(𝑣) neighbor.

The proof is conceptually very simple; imagine 𝐾𝑛□𝑇 as a tree where instead of vertices
we have cliques. Much like we can create any tree by adding each of its edges one by
one starting from the root in a DFS or BFS manner, we can create 𝐾𝑛□𝑇 by adding each
of its 𝑛-cliques in the same order.

Proof. Let there be graph 𝐾𝑛□𝑇 some tree 𝑇 . We have that 𝑉 (𝐾𝑛□𝑇 )=(𝑉 (𝑇 ) ×
{1, ..., 𝑛}) and ((𝑡1, 𝑣1), (𝑡2, 𝑣2)) ∈ 𝐸(𝐾𝑛□𝑇 ) ⟺ 𝑡1 = 𝑡2 or (𝑡1 neighbors 𝑡2 in
𝑇 and 𝑣1 = 𝑣2).
The result is by induction of the number of vertices of 𝑇 . If 𝑇 is the edge graph, then
the result holds trivially. Now let 𝐾𝑛□𝑇 for all 𝑇 of some fixed number of vertices 𝑛.
Let there be 𝑇 ′ of 𝑛 + 1 vertices. This is constructed by some 𝑇 of 𝑛 vertices after
adding a vertex 𝑡2 to 𝑇 and joining it to the correct vertex 𝑡1. We have 𝐾𝑛□𝑇 ∈ 𝐶 .
Clique sum either of the cliques of 𝐾𝑛□𝑃2 to the clique of 𝐾𝑛□𝑇 corresponding to 𝑡1,
i.e to the subgraph of 𝐾𝑛□𝑇 induced by {(𝑡1, 𝑖)|𝑖 ∈ {1, ..., 𝑛}}. The resulting graph
is (isomorphic to) 𝐾𝑛□𝑇 ′: Relabel the new 𝑛 vertices as (𝑡2, 1), ..., (𝑡2, 𝑛) and notice
that (𝑡2, 𝑖) neighbors (𝑡, 𝑗) iff (𝑡2 = 𝑡) or 𝑡2 neighbors 𝑡 in 𝑇 ′ and 𝑖 = 𝑗).

We proceed with the proof of theorem 25.

Proof. Let there be graph 𝐺 of 𝐶 built by the clique sum of base graphs 𝐺1 ⊕𝐾1
...⊕𝐾𝑘

𝐺𝑘. Suppose there exist graphs 𝐺′
𝑖 ∈ 𝐶′ with the aforementioned conditions, where 𝜇𝑖

is the model function for 𝐺′
𝑖 ≥𝑚 𝐺𝑖. Notice that since every maximal clique in 𝐺𝑖 has

a selected representor in 𝐺′
𝑖, every clique in 𝐺𝑖 has a representor in 𝐺′

𝑖. By lemma 10,
(𝐺′

1 ⊕𝐾′
1

𝐺′
2 ⊕𝐾′

2
... ⊕𝐾′

𝑘
𝐺′

𝑘) =∶ 𝐺′ ≥𝑚 𝐺, where 𝐾′
𝑖 ∈ 𝐺′

𝑖+1 is a representor of

O. Milolidakis 78



Splittability within minor-closed classes to graphs of low maximum degree.

𝐾𝑖 under 𝜇𝑖+1 and a representor of 𝐺𝑗 under 𝜇𝑗, 𝐺𝑗 being the graph of 𝐺 that 𝐺𝑖 was
clique summed while building 𝐺.
The common cliques 𝐾′

𝑖 of 𝐺′ could have an arbitrarily large degree, so we make some
adjustments. As 𝑃2□𝐾𝑛 ∈ 𝐶′ and 𝐶′ is closed under 𝑛-sums, by lemma 3 𝑇□𝐾𝑛 ∈
𝐶′ where 𝑇 is the 𝑘 + 1 comb graph. We remind we call the subclique of 𝑇□𝐾𝑛 cor-
responding to the 𝑖th spine vertex of the comb the 𝑖th spine clique, and the subclique
of 𝑇□𝐾𝑛 corresponding to the 𝑖𝑡ℎ hair vertex the 𝑖th hair clique. Furthermore, we call
the sub-comb of 𝑇□𝐾𝑛 corresponding to 𝑖th vertex of 𝐾𝑛 the 𝑖th comb running along
𝑇□𝐾𝑛.
To each selected max representor clique 𝐾′ of 𝐺′

𝑖, let 𝐾′ have 𝑙 vertices, 𝑙-sum a
𝑃2□𝐾𝑙, where 𝑃2 is the path of two vertices. Call the 𝑙-clique of 𝑃2□𝐾𝑙 not used in
the clique sum the copy of 𝐾′. To the copy of 𝐾′, 𝑙-sum the first spine clique of a 𝑇□𝐾𝑙,
to obtain 𝐺″

𝑖 ∈ 𝐶′. Call the 𝑇□𝐾𝑙 clique summed to the copy of 𝐾′ its representor
comb. 𝐺″

𝑖 ≥𝑚 𝐺′
𝑖 of course, and let model function 𝜇′

𝑖 showing that be 𝜇′
𝑖(𝑣) = 𝑣 if 𝑣

is not in a max representor clique and if 𝑣 ∈ some max representor clique 𝐾, let 𝑣 be the
𝑗th vertex of 𝐾, then let 𝜇′

𝑖(𝑣) be the 𝑗th subcomb of the representor comb of 𝐾 and the
𝑗th vertex of 𝐾.
By construction of 𝜇′

𝑖, if 𝐾′ is a selected max representor clique of 𝐺′
𝑖, all spine and hair

cliques of the representor comb of 𝐾′ in 𝐺″
𝑖 are representors of 𝐾′ under 𝜇′

𝑖. We may
use lemma 10 again; (𝐺″

1 ⊕ 𝐺″
2 ⊕ ... ⊕ 𝐺″

𝑘) =∶ 𝐺″ ≥𝑚 𝐺′, where if during the
construction of 𝐺′ graph 𝐺′

𝑖 was clique summed on the subgraph 𝐺′
𝑗 on their common

clique 𝐾′
𝑖 , then 𝐺″

𝑖 is clique summed on 𝐺″
𝑗 using the 𝑖th hair clique of the representor

comb of 𝐾′
𝑖 in 𝐺′

𝑖 and the 𝑖th hair clique of the representor comb of 𝐾′
𝑖 in 𝐺′

𝑗.
Notice that lemma 10 gives us a specific model function 𝜇′ showing 𝐺″ ≥𝑚 𝐺′: The
bag 𝜇′(𝑣) is the union of all 𝜇′

𝑖(𝑣), if 𝑣 ∈ 𝐺𝑖. By our choice of 𝜇′
𝑖, we conclude that if

𝑣 is in a selected max clique of 𝐺′ under 𝜇, let 𝑣 be its 𝑗th vertex, then 𝜇′ puts in 𝜇′(𝑣)
vertex 𝑣 of 𝐺″ as well as the entire 𝑗th subcomb of its representor comb. Thus, by propo-
sition 14, 𝐺″ ≥𝑚 𝐺′ even if for every selected max representor we remove edges with
both endpoints in the representor, and for its representor comb we remove all edges with
both endpoints on the same spine or hair clique, except from one such clique. Let 𝐺‴ be
𝐺″ where we do just that, retaining only the edges of the last hair clique of every comb
representor.
It suffices to prove that Δ(𝐺‴) ≤ 𝑑. As it turns out, we will need one more small change
to do that. Let 𝑣 ∈ 𝐺‴. We have the following cases.

• 𝑣 does not belong to any representor comb or selected max clique of 𝐺‴. In this
case, 𝑣 also ∈ 𝐺′ and its degree remained unchanged during all of the above.
𝑑𝐺‴(𝑣) = 𝑑𝐺(𝑣) ≤ 𝑑.

• 𝑣 belongs to what was a selected max-clique representor 𝐾′ in 𝐺′. If it has 1
vertex, then by construction 𝑑𝐺‴(𝑣) = 1. For every selected max representor
clique 𝐾′ it was in, we removed the edges of 𝐺′[𝐾′] and connected 𝑣 to a copy of
𝐾′, and made no other changes to the edges of 𝑣. By the conditions of the theorem,
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𝑑𝐺‴(𝑣) ≤ (𝑑 − 𝑠) + 𝑠 = 𝑑. Notice that 𝑑𝐺‴(𝑣) ≤ 𝑑𝐺′(𝑣), as the removal of
each 𝐺′[𝐾′] reduces the degree of 𝑣 by 1 at least, so we need only consider 𝑣 of
𝑑𝐺′(𝑣) > 𝑑.

• 𝑣 belongs to the spine clique of a comb representor. 𝑑𝐺‴(𝑣) is at most 3; It is
incident precisely to an edge with endpoint the previous spine clique, the next spine
clique if it has one, and its hair clique.

• 𝑣 belongs to the hair clique of a comb representor. If the hair clique was not used
in a clique sum and it is not the last hair clique, by construction 𝑑𝐺‴(𝑣)=1. If it was
used in a clique sum, by construction note that no hair clique is used in more than
1 clique sum, 𝑑𝐺‴(𝑣)=2. If it is the last hair clique, let it have 𝑙 vertices, then by
construction 𝑣 has degree 𝑙.

We now make changes to lower the degree of vertices of the last hair clique of a repre-
sentor comb to 3, obtaining the intended claim. Let 𝐾 be a last hair clique, let its edge set
be 𝑒1, ..., 𝑒𝑚. Let there be graph 𝑃𝑚□𝐾, where 𝑃𝑚 is the path of 𝑚 nodes. Let the 𝐾
corresponding to the 𝑖th path vertex of 𝑃𝑚□𝐾 be called its 𝑖th clique, and the subpath
corresponding to the 𝑖th clique vertex be the 𝑖th subpath running along 𝑃𝑚□𝐾. Clique
sum to 𝐾 the first clique of a 𝑃𝑚□𝐾. Then remove from the 𝑖th clique all edges with
both endpoints in the clique except 𝑒𝑖. It is easy to see that all vertices of a𝑃𝑚□𝐾 added
in this manner have max degree 3, and by contracting the 𝑖th subpath running along the
𝑃𝑚□𝐾 we get 𝐺‴. Doing this for all hair cliques yields a graph 𝐺⁗ with the required
properties.

Using the previous lemmas, we can prove that Δ(⊕[𝐶1(𝑘)]) = 3 fairly quickly.

Proposition 15. Δ(⊕[𝐶1(𝑘)]) = 3.

Proof. We use theorem 1. The base 𝐵 of ⊕[𝐶1(𝑘)] is of course 𝐶1(𝑘). Let there be
graph 𝐺 ∈ 𝐵. We can assume that every triangle has an empty interior or exterior,
else it is a separator and we can further decompose 𝐺 to the clique sum of other base
graphs. Let it be the interior, the other cases are analogous. On the open disc that has as
boundary a triangle of 𝐺 with vertex set 𝑎𝑏𝑐, add a new triangle 𝑎′𝑏′𝑐′ embedded there,
and connect 𝑎 to 𝑎′, 𝑏 to 𝑏′, 𝑐 to 𝑐′. Let𝐺′ be the ballooning 8 𝐵𝑙(𝐺), except we have not
ballooned the vertices of any of the new triangles. Notice that Δ(𝐺′) = 3. 𝐺′ ≥𝑚 𝐺
by contracting each 𝐵𝑙(𝑣) back into 𝑣, and for each new triangle, 𝑎′𝑏′𝑐′ to 𝑎′ to 𝑎, 𝑏′ to
𝑏, 𝑐′ to 𝑐. 𝑎′𝑏′𝑐′ in 𝐺′ is a representor of 𝑎𝑏𝑐 in 𝐺. Let 𝜇1 be this model function. Each
2-clique 𝑢𝑣 ∈ 𝐺 has as representor the by construction unique 𝐵𝑙(𝑢) − 𝐵𝑙(𝑣) edge of
𝐺′. By theorem 1, we have Δ(⊕[𝐶1(𝑘)]) = 3.

8We remind a ballooning or fattening of 𝐺 means to replace each vertex 𝑣 with a cycle 𝐶 embedded
on the boundary of an open disc around the vertex, the vertices of 𝐶 connected in a clockwise manner and
each vertex of 𝐶 adjacent to a single neighbor of 𝑣.
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We now add the next ingredient, vortices. We will use theorem 25 to show that ⊕[𝐶2(𝑘)]
has a degree 3 expansion in 𝐶′ = ⊕[𝐶2(2𝑘)]. 9. In other words, for every 𝐺 ∈
⊕[𝐶2(𝑘)], there is 𝐺′ ∈ ⊕[𝐶2(2𝑘)] with 𝐺′ ≥𝑚 𝐺 and Δ(𝐺′) = 3. Putting all those
𝐺′ in a set, and taking the minor closure of the set, we obtain a minor-closed superclass
of ⊕[𝐶2(𝑘)] of Δ = 3 which is proper by theorem 23.

Proposition 16. Δ(⊕[𝐶2(𝑘)]) has a proper minor-closed superclass of Δ =3.

Once again, the base is 𝐶2(𝑘). Let there be graph 𝐺 in 𝐶2(𝑘), with embedded part
𝐸𝑚𝑏(𝐺) and at most 𝑘 vortices of depth at most 𝑘 added to pairwise disjoint facial cy-
cles 𝐶1, ...𝐶𝑘.
Let 𝐺′ be 𝐺 with every vortex of depth 𝑑 replaced by a simple vortex of depth 𝑑 + 1,
as in proposition 13 and corollary 9. Use the model function defined there, call it 𝜇𝑠𝑣.
Observe that there is a representation 𝑅𝑠𝑣 under 𝜇𝑠𝑣; if a clique 𝐾 of 𝐺 is in 𝐸𝑚𝑏(𝐺)
trivially 𝑅𝑠𝑣(𝐾) = 𝐾. If a clique 𝐾 of 𝐺 is not in 𝐸𝑚𝑏(𝐺), it is in a vortex. In this
case, let its facial cycle be 𝐶 = 𝑣1𝑣2..., then there must be a vortex bag 𝐵𝑣𝑖

it is in. By
construction of 𝜇𝑠𝑣, every vertex of 𝐵𝑣𝑖

contains in its model in 𝐺′ a distinct vertex of the
simple vortex clique of 𝑣𝑖. But every vertex in the simple vortex clique of 𝑣𝑖 is adjacent.𝑅𝑠𝑣(𝐾) is those simple vortex vertices.
As clique representation is transitive under minors, it suffices to find for every 𝐺′ a graph
𝐺″ ≥𝑚 𝐺′ of ⊕[𝐶2(2𝑘 + 1)] such that there is a representation under some model
function 𝜇 satisfying the conditions of theorem 25. Then, there will be such a representa-
tion for 𝐺″ ≥𝑚 𝐺 under 𝜇 ∘ 𝜇𝑠𝑣.
Add triangles and repeat the same fattening procedure as before on 𝐸𝑚𝑏(𝐺) to obtain
𝐸𝑚𝑏(𝐺)′. This time, rather than add 1 extra triangle 𝑎′𝑏′𝑐′ to the empty face of trian-
gle 𝑎𝑏𝑐 of 𝐸𝑚𝑏(𝐺), we add two triangles 𝑎′𝑏′𝑐′ and 𝑎″𝑏″𝑐″, 𝑎′𝑏′𝑐′ embedded on the
empty face bounded by 𝑎𝑏𝑐, 𝑎″𝑏″𝑐″ on the empty face bounded by 𝑎′𝑏′𝑐′, 𝑎 joined to 𝑎′,
𝑎′ joined to 𝑎″ and so on. Both new triangles are not fattened. Call 𝑎′𝑏′𝑐′ and 𝑎″𝑏″𝑐″
the first and second copies of 𝑎𝑏𝑐 respectively. Fortunately, after fattening facial cycles
are (almost) retained:

Definition 31. For 𝑣 ∈ 𝐸𝑚𝑏(𝐺), let 𝐷𝑣 be the disc on the boundary of which the cycle
𝐵𝑙(𝑣) was embedded on. Let𝐵𝑙(𝑣 → 𝑢) or𝐵𝑙(𝑢 ← 𝑣) be the vertex of𝐵𝑙(𝑣) incident
to the unique 𝐵𝑙(𝑣) − 𝐵𝑙(𝑢) edge of 𝐸𝑚𝑏(𝐺)′.

If 𝐶 = 𝑢1...𝑢𝑛, where 𝑛 > 3 is a facial cycle in 𝐸𝑚𝑏(𝐺), then there is a facial cycle
𝐶″ in 𝐸𝑚𝑏(𝐺)′, first with 1 or 2 vertices from 𝐵𝑙(𝑢1), then with vertices from 𝐵𝑙(𝑢2),
and so on: Start from the vertex 𝐵𝑙(𝑢1 → 𝑢2). Follow the 𝐵𝑙(𝑢1) − 𝐵𝑙(𝑢2) edge to
𝐵𝑙(𝑢2 → 𝑢1). If 𝑑𝑒𝑚𝑏(𝐺)(𝑢2) > 2, there is an edge 𝐵𝑙(𝑢1 ← 𝑢2) − 𝐵𝑙(𝑢2 → 𝑢3)
in 𝐵𝑙(𝑢2). Follow along it. Then take the 𝐵𝑙(𝑢2 → 𝑢3) edge and so on. Call 𝐶″

the corresponding facial cycle of 𝐶 . For triangles of 𝐸𝑚𝑏(𝐺) call their second copy in
𝐸𝑚𝑏(𝐺)′ the corresponding facial cycle.
If to construct 𝐺′ a simple vortex of depth 𝑘 was added to a facial cycle of 𝐸𝑚𝑏(𝐺), add

9In fact, we can show that Δ(⊕[𝐶2(𝑘)])=3
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to the corresponding facial cycle of 𝐸𝑚𝑏(𝐺)′ a simple vortex of depth 𝑘 to obtain 𝐺″.
We prove 𝐺″ fulfils the conditions of theorem 25.

• To prove that 𝐺″ ≥𝑚 𝐺′, let 𝜇2 be the model function showing that, for 𝑣 in the
embedded part of 𝐺″ let 𝜇2(𝑣) = 𝜇1(𝑣), where 𝜇1(𝑣) is the model function of
the proof that Δ(⊕[𝐶1(𝑘)]) = 3, modified by putting 𝑎″ in the same bag as 𝑎′
and 𝑎 for triangles 𝑎𝑏𝑐 ∈ 𝐺′ of course. For 𝑣 ∈ a vortex, let the facial cycle be
𝐶 = 𝑣1𝑣2... and let 𝑣 belong to the simple vortex clique of 𝑣𝑖, let 𝑣 be the 𝑖th vertex
of the clique. Let 𝐶″ be the corresponding facial cycle and notice 𝐶″ of 𝐺″ is also
in𝐸𝑚𝑏(𝐺″) = 𝐸𝑚𝑏(𝐺)′. If𝐶 = 𝑣1𝑣2𝑣3, then𝐶″ = 𝑣″

1𝑣″
2𝑣″

3 and let 𝜇2(𝑣) be
the 𝑖th vertex of the simple vortex clique of 𝑣″

𝑖 . Else, set 𝜇2(𝑣) to be the 𝑖th vertices
of the vortex cliques of 𝐵𝑙(𝑣𝑖−1 ← 𝑣𝑖) and 𝐵𝑙(𝑣𝑖 → 𝑣𝑖+1). It is easy to observe
that the contraction in 𝐺″ of each minor bag 𝜇(𝑣) yields 𝐺′.

• We find a representation 𝑅2 under 𝜇2 so each maximal clique 𝐾 is represented.
For a cliques 𝐾 of 𝐸𝑚𝑏(𝐺), set 𝑅2(𝐾) = 𝑅1(𝐾), where for triangles 𝐾 we
use their first copy in 𝐺″ to represent them.
With regard to simple vortex cliques 𝐾 of 𝐺′, let the simple vortex be of depth 𝑙
and added on the facial cycle 𝐶 = 𝑢1𝑢2...𝑢𝑛. There are precisely 𝑛 maximal
cliques of 2𝑙 vertices; the simple vortex clique of 𝑢𝑖 ∪ the simple vortex clique of
𝑢𝑖+1, for 𝑖 ∈ {1, ..., 𝑛}, where 𝑢𝑛+1 = 𝑢1. Its selected representor 𝑅(𝐾) in
𝐺″ is the simple vortex clique of 𝐵𝑙(𝑢𝑖 → 𝑢𝑖+1)∪ the simple vortex clique of
𝐵𝑙(𝑢𝑖 ← 𝑢𝑖+1).

• We prove the third condition. If 𝑣 ∈ 𝐺″, is not in a vortex, then by construction it has
max degree 3 unless if it is in the first copy 𝑎′𝑏′𝑐′ of a triangle 𝑎𝑏𝑐. In this case it is a
selected representor of 𝑎𝑏𝑐, and it represents no other cliques. For the condition to
be satisfied it must have at most 3−1 edges adjacent to it, after removing the edges
of 𝑎′𝑏′𝑐′, which is the case. If 𝑣 is in a vortex, notice that all edges of the vortex
have both endpoints in a selected max clique representor, and 𝑣 belongs to exactly 2
selected representors. After removing the edges of the selected cliques, 𝑑(𝑣) = 1
if 𝑣 is on the facial cycle, and 𝑑(𝑣) = 0 otherwise, satisfying the condition.

Therefore, every 𝐺 ∈ ⊕[𝐶2(𝑘)] has a degree 3 expansion in 𝐺′ ∈ ⊕[𝐶2(2𝑘)]. Taking
the minor closure of all such 𝐺′, we obtain a proper minor-closed class of Δ 3 containing
⊕[𝐶2(𝑘)].
We now add the final ingredient, apex vertices only neighboring other apex vertices and
vortex vertices. We will prove that ⊕[𝐶3(𝑘)], i.e the clique sum closure of strongly 𝑘-
almost embeddable graphs has a proper minor-closed superclass of Δ = 3. By charac-
terization 6 of the minor-closed classes excluding an apex graph, we thus obtain the right
direction of theorem 19.

Proposition 17. ⊕[𝐶3(𝑘)] has a proper minor closed superclass of Δ = 3.
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Let 𝐺 ∈ 𝐶3(𝑘). We will find an expansion of 𝐺 in 𝐶3(𝑘2 + 𝑘), satisfying the conditions
of theorem 25. Naturally, the base 𝐵 is once again 𝐶3(𝑘) and 𝐶′ is ⊕[𝐶3(𝑘2 + 𝑘)].
It suffices to consider only 𝐺 whose apex vertices neighbor all other apex vertices and
all vortex vertices. All other graphs in 𝐶3(𝑘) are subgraphs of such graphs and if 𝐺1 ⊆
𝐺2 ≤𝑚 𝐺′ where 𝐺2 ≤𝑚 𝐺′ has a representation under 𝜇 satisfying the conditions of
theorem 25, so does 𝐺1 ≤𝑚 𝐺′.
Let 𝐶 be a facial cycle of 𝐸𝑚𝑏(𝐺). Let 𝐺′ be 𝐺 where instead of adding a vortex
of depth 𝑘, we add a simple vortex of depth 𝑘 + 1 to 𝐶 , and then connect all apex
vertices to it. As in the previous proposition, 𝐺′ ≥𝑚 𝐺 under a model function 𝜇𝑠𝑣,
and there is a total representation 𝑟 under 𝜇𝑠𝑣: If 𝐾 is a clique not intersecting the apex
vertices, 𝑟(𝐾) = 𝑅𝑠𝑣(𝐾) as we have already explained in the previous proposition. If
𝐾 intersects only apex vertices, then trivially 𝑟(𝐾) = 𝜇𝑠𝑣(𝐾) = 𝐾. If 𝐾 intersects
apex and the simple vortex’s vertices, let the subcliques comprised by those vertices be
𝐾𝑎 and 𝐾𝑠𝑣 respectively, then 𝑟(𝐾𝑎) = 𝐾𝑎, and 𝑟(𝐾𝑠𝑣) = 𝑅𝑠𝑣(𝐾𝑠𝑣).
Therefore it suffices to prove theorem 25 for 𝐺′ in the place of 𝐺. We now construct
the expansion 𝐺‴ of 𝐺′ with the desired properties; let 𝐺″ be defined exactly as in the
previous proposition (fatten 𝑒𝑚𝑏(𝐺) as in the previous proposition, adding two copies to
the empty face of each triangle), apex vertices neighboring all vortex vertices and all other
apex vertices.We still have to lower the degree of apex vertices.

Definition 32. Define the cycle induced by the 𝑖th vertex of all simple vortex cliques of a
simple vortex to be the ith layer of the simple vortex. We always have 𝐶 be the 1st layer
of the simple vortex.

We replace each simple vortex of depth 𝑘+1 of 𝐺″ with a simple vortex of depth 2𝑘+1.
Apex vertices no longer neighbor all vortex vertices; instead, give some ordering to the
apex vertices, the 𝑖th apex vertex neighbors a single vertex of the 𝑘 + 1 + 𝑖th layer of
the first clique of the simple vortex. Finally, for each apex vertex 𝑎, add to 𝐺″ a path of
𝑎1𝑎2...𝑎𝑘+1, identify 𝑎 with 𝑎1, remove the edge between 𝑎 and its 𝑖th vortex neighbor
and have the 𝑖th vortex neighbor be adjacent to 𝑎𝑖+1 instead. Call this the representor
path of 𝑎. This completes the construction of𝐺‴. Notice that, treating the vertices of path
representors as apex vertices, 𝐺‴ ∈ 𝐶3(𝑘(𝑘 + 1)) It now suffices to prove the three
conditions of theorem 25.

• 𝐺‴ ≥𝑚 𝐺′: For the 𝑖th apex vertex 𝑣 of 𝐺′, let 𝜇3(𝑣) be the 𝑖th apex vertex of
𝐺‴ together with its representor path, together with the (𝑘 + 1 + 𝑖)th layer of all
simple vortices. Otherwise, let 𝜇3(𝑣) be 𝜇2(𝑣) as in the previous proposition.

• Let 𝑅3(𝐾) be the representation. By the previous proposition, we have that ev-
ery maximal clique 𝐾 not having apex vertices has a representation 𝑅2(𝐾). Let
𝑅3(𝐾) = 𝑅2(𝐾) in this case. If 𝐾 is the set of all apex vertices of 𝐺′, then
𝑅3(𝐾) = 𝐾. If 𝐾=𝐾𝑎 ∪ 𝐾𝑠𝑣 is a set of apex vertices and simple vortex vertices
of 𝐺′, which by construction and maximality of 𝐾 must consist precisely of all apex
vertices and the simple vortex cliques of two consecutive facial cycle vertices, let
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them be 𝑐𝑖 and 𝑐𝑖+1, then 𝑅(𝐾) is the two simple vortex cliques of 𝑐𝑖 and 𝑐𝑖+1 in
𝐺″.

• If 𝑣 ∈ 𝐺‴ is an original apex vertex, then it belongs to a single max selected
representor, that of all apex vertices. It has degree 1 excluding edges from that
clique. If it does not, but still belongs to a path representor of an apex vertex, then
it has degree 3 and belongs to no representor clique. If 𝑣 is not an apex vertex, the
same as in the previous proposition holds.

This completes the proof of the right direction of theorem 19.
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7. EXISTENCE OF COUNTABLY INFINITE 𝐾5-UNIVERSAL GRAPH.

Given a class of infinite countable graphs 𝐶 , a universal graph 𝐺 is a graph such that
𝐺 >𝑚 𝐺′ for all 𝐺′ ∈ 𝐶 . In [1], Georgakopoulos proved that there is a universal
𝐾5-minor-free graph. The following is a simplification of this result.

Theorem 26. There is a universal 𝐾5 minor free graph.

In [1], Georgakopoulos proved the existence of a countably infinite𝐾5 universal graphwith
regard to the minor relationship. I later reproved his result with a simpler construction. This
section is a quickly written sketch of this proof. In this chapter, if 𝐺′ ≥𝑚 𝐺 with model 𝜇
and 𝑆 ⊆ 𝐺, we denote 𝜇(𝑆) by 𝐺′𝑆 instead.

For the remainder of this proof, we may assume without loss of generality that clique sum
operations do not remove edges of the clique.

Let K5f be an infinite K5 free graph. By the paper of Thomas and Kritz [22], there exists a
sequence {𝐺𝛼}𝛼≤countable 𝜆 such that𝐺𝑎+1 = 𝐺𝑎⊕3 𝑃𝑎 where𝑃𝑎 is planar (or w[8]) and
𝐺𝜆 = 𝐾5𝑓 and 𝐺𝑎 = lim inf𝛽<𝑎 𝐺𝛽. Let {𝑃𝛼}𝛼≤𝜆 be the corresponding planar graphs
(or w[8]). Let 𝑃𝑁(0), 𝑃𝑁(1), ... be some enumeration of them. We print 𝑃0, then dovetail
the enumeration and print 𝑃𝑁(𝑖) once the ≤ 3 nodes it was clique-summed on during the
construction of𝐾5𝑓 have already been printed (don’t print already printed𝑃𝑁(𝑖)). Seeing
clique sums as a union of graphs, it is easily seen that an ordering {𝑃𝛼}𝛼≤𝜔 arises such
that 𝐺0 = 𝑃0, 𝐺𝑎+1 = 𝐺𝑎 ⊕3 𝑃𝑎+1 and 𝐺𝜔 = 𝐾5𝑓 . More generally,

Theorem 27. Let a countable graph be 𝑘-summable over someΓ for some finite 𝑘, let the
corresponding sequence be {𝐺𝛼}𝛼≤countable 𝜆. Then there also exists such a sequence of
the form {𝐺𝛼}𝛼≤𝜔

In the case clique sums remove edges this still holds. Break {𝐺𝛼}𝛼≤countable 𝜆 in two
sequences, one not removing and the other only removing edges.

So let K5f = ((𝑃1 ⊕Δ1
𝑃2)⊕Δ2

𝑃3)⊕Δ3
..., for a class of countable planars 𝑃𝑖 (or w[8]).

Lemma 11. Let 𝐺 = ((𝑃1 ⊕Δ1
𝑃2) ⊕Δ2

𝑃3)⊕Δ3
... for arbitrary countable graphs 𝑃𝑖

and cliques Δ𝑖, where for some 𝑘 ∈ ℕ all Δ𝑖 are of size at most 𝑘 . Let 𝑃 ′
𝑖 > 𝑃𝑖 be

graphs such that for every clique Δ of 𝑃𝑖 of size ≤ 𝑘, 𝑃𝑖′Δ has a clique Δ′ with one
node in each branch. Then ((𝑃 ′

1 ⊕Δ′
1

𝑃 ′
2) ⊕Δ′

2
𝑃 ′

3) ⊕Δ′
3

... =∶ 𝐺′ >𝑚 𝐺.
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Proof. We define the branches of 𝐺′ forming 𝐺. Let 𝑣 ∉ any common clique, let it only
∈ 𝑃𝑖. Then 𝐺′𝑣 ∶= 𝑃𝑖

′𝑣
. Let 𝑣 ∈ some common clique Δ. Then 𝐺′𝑣 ∶= ⋃𝑃𝑖⊇Δ 𝑃𝑖

′𝑣
.

If 𝑣 ∈ 𝐺, 𝑣 ∉ any common clique, let it only ∈ 𝑃𝑖, then (𝑢, 𝑣) ∈ 𝐺 ⟹ (𝑢, 𝑣) ∈
𝑃𝑖 ⟹ 𝑃𝑖

′𝑢, 𝑃𝑖
′𝑣

neighbor ⟹ 𝐺′𝑢, 𝐺′𝑣
neighbor.

If 𝑣 ∈ some common clique Δ, then (𝑢, 𝑣) ∈ 𝐺 ⟹ (𝑢, 𝑣) ∈ one of the planar 𝑃𝑖
containing Δ ⟹ 𝑃𝑖

′𝑢, 𝑃𝑖
′𝑣

neighbor ⟹ 𝐺′𝑢, 𝐺′𝑣
neighbor.

We now begin to construct the universal𝐾5-minor free graph. For a countable locally finite
planar graph 𝐺, we inflate the nodes of 𝐺 to obtain 𝐺′: Take a generous embedding of
𝐺, and for every node 𝑣, take an open ball containing only 𝑣 and its edges, delete the
inside of the ball, and put a new vertex on the deg(𝑣) points the edges of 𝑣 first intersect
the boundary, let these nodes be 𝑣1, 𝑣2, .... Connect them in clockwise order around
the boundary, with edges embedded on the boundary. Clearly 𝐺′ remains planar and
𝐺′ > 𝐺 by contracting the 𝑣𝑖. We inflate edges of 𝐺′ to obtain 𝐵𝑙(𝐺). For every edge
(𝑣𝑖,𝑢𝑗), 𝑢 ≠ 𝑣, notice there can only be one such edge for each vertex, add a node
before and after 𝑣𝑖 in the boundary, let them be 𝑣′

𝑖, 𝑣″
𝑖 , repeat for 𝑢𝑗 then connect 𝑣′

𝑖 with
𝑢″

𝑗 and 𝑣″
𝑖 with 𝑢′

𝑗. Then subdivide (𝑣′
𝑖, 𝑢″

𝑗 ), (𝑣″
𝑖 ,𝑢′

𝑗) to add a new node to each, let it be
𝑡′, 𝑡″ and connect the new nodes to 𝑣𝑖 and 𝑢𝑗. 𝐵𝑙(𝐺) remains planar and 𝐵𝑙(𝐺) > 𝐺′

by contracting the (𝑣′
𝑖, 𝑡′), (𝑣″

𝑖 , 𝑡″), (𝑣𝑖, 𝑣′
𝑖), (𝑣′

𝑖, 𝑣″
𝑖 ), (𝑢𝑗, 𝑢′

𝑗), (𝑢′
𝑗, 𝑢″

𝑗 ).
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Let 𝐵𝑙(𝑈𝑝) be any universal planar graph 𝑈𝑝 inflated as above.

Claim 2. Let 𝑃 be planar. 𝐵𝑙(𝑈𝑝)𝑃 has a triangle Δ′ with one vertex in each branch of
𝐵𝑙(𝑈𝑝)Δ, for all Δ ∈ 𝑃 .

Proof. Let Δ = 𝑥𝑦𝑧 ∈ 𝑃 . Pick a subpath of each of the three branch sets of 𝑈Δ
𝑝 to

form a minimal K3 minor of 𝑃 , let them be 𝑃𝑥, 𝑃𝑦, 𝑃𝑧. The subpaths can be chosen
so that the minimal K3 minor contains no node or edge of 𝑈𝑃

𝑝 embedded on one of its
two sides, w.l.g let it be the interior. Notice that the inner circle 𝐶𝑖𝑛 of the fattened K3
minimal minor thus contains no node or edge of 𝐵𝑙(𝑈𝑝)𝑃 . It is thus easy to see that
𝐵𝑙(𝑈𝑝)𝑃 ∖𝐶𝑖𝑛 > 𝑈𝑃

𝑝 > 𝑃 . Let𝑢𝑣 be the𝑃𝑥−𝑃𝑦 edge of the K3 minimal minor in𝑈𝑃
𝑝 .

By construction of 𝐵𝑙(𝑈𝑝)𝑃 , there is an edge (𝑢𝑖, 𝑣𝑗) between 𝐵𝑙(𝑈𝑝)𝑢 and 𝐵𝑙(𝑈𝑝)𝑣

and they both neighbor an inner circle node 𝑡″. By reallocating 𝐶𝑖𝑛 to 𝐵𝑙(𝑈𝑝)𝑃𝑧, we
have the desired triangle.

We now define the universal K5-free graph U𝐾5𝑓 . Let 𝐵𝑙(𝑈𝑝)[1] ∶= 𝐵𝑙(𝑈𝑝). Let
𝐵𝑙(𝑈𝑝)[𝑖+1] be 𝐵𝑙(𝑈𝑝)[𝑖] clique summed with 𝐵𝑙(𝑈𝑝) or W[8] over all possible clique
pairs. U𝐾5𝑓 ∶= ⋃∞

𝑖=1 𝐵𝑙(𝑈𝑝)[𝑖].
Theorem 28. U𝐾5𝑓 is a universal K5-free graph.

Proof. Let K5f be any K5-free graph, K5f = ((𝑃1 ⊕ 𝑃2) ⊕ 𝑃3)⊕ ... Notice that 𝐵𝑙(𝑈𝑝)
has the properties of 𝑃 ′

𝑖 of lemma 1. It follows that, let 𝑃 ′
𝑖 ∶= 𝐵𝑙(𝑈𝑝) for all 𝑖, K5f ’ =

((𝑃 ′
1 ⊕ 𝑃 ′

2) ⊕ 𝑃 ′
3)⊕ ... for suitably selected cliques contains K5f as a minor. But by

definition of 𝑈𝐾5𝑓 , K5f ’ is contained in it as a subgraph.
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ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

SPARQL SPARQL Protocol and RDF Query Language

OWL Web Ontology Language

OGC Open Geospatial Consortium

89 O. Milolidakis





Splittability within minor-closed classes to graphs of low maximum degree.

APPENDIX A. BASIC DEFINITIONS

Graph theory has the unusual phenomenon that while graphs are technically duplets of
sets, we tend to think of them not as sets but visually. Furthermore, when we refer to
e.g the clique of size 3 𝐺, we don’t discuss if 𝐺 =({1, 2, 3}, {(1, 2) , (2, 3), (3, 1)}) or
𝐺 =({4, 5, 6}, {(4, 5), (5, 6), (6, 4)}), really we only care that it belongs to the equiva-
lence class of graphs isomorphic to ({1, 2, 3}, {(1, 2), (2, 3) , (3, 1)}). As a byproduct,
well understood definitions are oftentimes hand-wavy and not technically rigorous.
The aim in this section is to introduce, in a rigorous manner from the ground up, notions
needed during this thesis or at least to clarify what is left to common sense.

As a byproduct, the introduction section is quite large; the reader may skip it and refer
to it as needed.

A.1 Basics

All graphs are simple and undirected. All graphs are finite unless stated otherwise. Though
the focus of this thesis is on finite graphs, some results on infinite graphs are also pre-
sented. All infinite graphs are countable. The reader may also refer to Diestel [10], the
standard reference book.

Definition 33. A pair is a set of cardinality 2.

Definition 34. A graph is an ordered pair 𝐺 = (𝑉 , 𝐸), where 𝑉 is a finite set and 𝐸 is
a set of pairs of 𝑉 . We call the elements of 𝑉 the vertices of 𝐺 and the elements of 𝐸
the edges of 𝐺. For each edge 𝑒 = {𝑣, 𝑢} ∈ 𝐸, we call the vertices 𝑣 and 𝑢 ends of e
and say that the vertices 𝑣 and 𝑢 are connected or adjacent or neighbors in 𝐺. The order
of 𝐺 is |𝑉 |.

In an abuse of notation, we write 𝑢𝑣 or (𝑢, 𝑣) rather than {𝑢, 𝑣} for edges.

Definition 35. An infinite graph is defined in the same manner as a finite graph, the only
difference being that 𝑉 must be infinite. Similarly, a countable graph has vertex set 𝑉
countable.

Definition 36. For subgraph 𝐻1 of graph 𝐺 = (𝑉 , 𝐸), we say that 𝐻1 and 𝑣 ∈ 𝑉 are
connected or adjacent or neighbors in 𝐺 if there is 𝑢 ∈ 𝐻1, with 𝑢, 𝑣 adjacent in 𝐺. For
subgraphs 𝐻1, 𝐻2 of graph 𝐺 = (𝑉 , 𝐸), we say that 𝐻1 and 𝐻2 are connected or
adjacent or neighbors in 𝐺 if there are 𝑢 ∈ 𝐻1, 𝑣 ∈ 𝐻2 with 𝑢, 𝑣 adjacent in 𝐺.

Definition 37. Graph 𝐻 = (𝑉𝐻, 𝐸𝐻) is a subgraph of graph 𝐺 = (𝑉𝐺, 𝐸𝐺), denoted
𝐻 ⊆ 𝐺 if 𝑉𝐻 ⊆ 𝑉𝐺 and 𝐸𝐻 ⊆ 𝐸𝐺. 𝐻 is an induced subgraph of 𝐺 if 𝑉𝐻 ⊆ 𝑉𝐺 and
𝐸𝐻 is 𝐸𝐺 limited precisely to pairs with both ends in 𝐻 . The induced subgraph of 𝐺 with
vertex set 𝑆 ⊆ 𝑉𝐺 is denoted 𝐺[𝑆].
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Definition 38. For subgraphs 𝑆1, 𝑆2 of a graph 𝐺, an 𝑆1, 𝑆2 edge is an edge with one
endpoint on 𝑆1 and one endpoint on 𝑆2. We say that 𝑆1, 𝑆2 touch or are adjecent or
neighbors if there is an 𝑆1, 𝑆2 edge in 𝐺.

Definition 39. Graph 𝐻 = (𝑉𝐻, 𝐸𝐻) is isomorphic to graph 𝐺 = (𝑉𝐺, 𝐸𝐺), denoted
𝐻 ≅ 𝐺 if there is a 1-1 and onto function 𝑓 ∶ 𝑉 (𝐺) → 𝑉 (𝐻) such that (𝑢, 𝑣) ∈
𝐸(𝐺) ⟺ (𝑓(𝑢), 𝑓(𝑣)) ∈ 𝐸(𝐻). We may call 𝐺 a relabelling of 𝐻 .

Definition 40. Let 𝐺 = (𝑉 , 𝐸) and let 𝑣 ∈ 𝑉 . The degree of 𝑣 in 𝐺 𝑑𝐺(𝑣) is the
number of edges with it as an endpoint, |{(𝑣, 𝑢) ∶ (𝑣, 𝑢) ∈ 𝐸}|.

We define a few basic graphs.

The trivial or single vertex graph is the graph of 1 vertex, ({𝑣}, {}). In rigorous terms:
Definition 41. A trivial or single vertex graph is any graph belonging to the graph isomor-
phism class of ({1}, {}).

A path is a non-empty graph 𝑃 = (𝑉 , 𝐸) of the form 𝑉 = {𝑣0, 𝑣1, ..., 𝑣𝑘} 𝐸 =
{(𝑣0, 𝑣1), (𝑣1, 𝑣2), ..., (𝑣𝑘−1, 𝑣𝑘)}. Rigorously:
Definition 42. A path graph𝑃 of length𝑛 ≥ 0 is any graph belonging to the graph isomor-
phism class of the graphwith vertex set {1, 2, ..., 𝑛, 𝑛+1} and edge set {(1, 2), (2, 3), ..., (𝑛, 𝑛+
1)}. A path graph of length 0 is defined to be a single-vertex graph and is called trivial.
A path graph is a graph belonging to the graph isomorphism class of the path graph of
length 𝑛 for some 𝑛.

Some additional notation for paths is of use. Let𝑃 be path with edge set (𝑣1, 𝑣2), ..., (𝑣𝑘−1, 𝑣𝑘).
We often denote 𝑃 as 𝑣1𝑣2...𝑣𝑘 or as (𝑣1, 𝑣2), (𝑣2, 𝑣3), .... Other notation follows.
Definition 43. Let 𝑃 be path 𝑣1𝑣2...𝑣𝑘. 𝑣1 and 𝑣𝑘 are its endpoints or ends. 𝑖𝑛𝑡(𝑃 ) ∶=
𝑣2, ..., 𝑣𝑘−1 are its internal vertices. 𝑃𝑣𝑖 ∶= 𝑣1𝑣2...𝑣𝑖. 𝑣𝑖𝑃 ∶= 𝑣𝑖𝑣𝑖+1...𝑣𝑘. 𝑃𝑣𝑖 ∶=
𝑣1𝑣2...𝑣𝑖. 𝑣𝑖𝑃𝑣𝑗 ∶= 𝑣𝑖𝑣𝑖+1...𝑣𝑗−1𝑣𝑗.

Definition 44. A cycle is any graph belonging to the graph isomorphism class of the graph
with vertex set {1, 2, ..., 𝑛} and edge set {(1, 2), (2, 3), ..., (𝑛−1, 𝑛), (𝑛, 1)} for some
𝑛.
Definition 45. A clique is any graph belonging to the graph isomorphism class of the
graph with vertex set 𝑉 = {1, 2, ..., 𝑛} for some 𝑛 and edge set all pairs of 𝑉 . The size
of the clique is 𝑛.

Given graph 𝐺, rather than say 𝐺 has a clique subgraph 𝐾, we say 𝐾 is a clique of 𝐺.
The same goes for the other named graphs.
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Definition 46. For non zero natural numbers 𝑁, 𝑀 , the 𝑁 × 𝑀 grid graph is the graph
with vertex set 1, 2, ..., 𝑁 × 1, 2, ..., 𝑀 and edge set {((𝑖, 𝑗), (𝑖′, 𝑗′)) ∶ |𝑖 − 𝑖′| + |𝑗 −
𝑗′| = 1}. See figure A.1.

Figure A.1: The 4 × 7 grid graph.

A.2 Graph operations

When defining graphs, it is often easier to do so using graph operators. Just like with num-
ber operations, a graph operator is a function⊗ that takes two graphs as input and outputs
a graph. Given two graphs 𝐺1, 𝐺2 we usually write 𝐺1 ⊗ 𝐺2 to denote ⊗(𝐺1, 𝐺2). A
few definitions follow.

Definition 47. Given two graphs 𝐺 = (𝑉𝐺, 𝐸𝐺), 𝐻 = (𝑉𝐻, 𝐸𝐻), define the graph
union 𝐺 ∪ 𝐻 as (𝑉𝐺 ∪ 𝑉𝐻, 𝐸𝐺 ∪ 𝐸𝐻) and the graph intersection 𝐺 ∩ 𝐻 as (𝑉𝐺 ∩
𝑉𝐻, 𝐸𝐺 ∩ 𝐸𝐻). If 𝐺𝑉 ∩ 𝐺𝐻 = ∅, then 𝐺 and 𝐻 are disjoint.

Definition 48. If 𝑈 is a set of vertices, we define 𝐺 − 𝑈 as 𝐺[𝑉𝐺 ∖ 𝑈]. In an abuse of
notation, if 𝑈 is the single-vertex graph 𝑣 we write 𝐺 − 𝑣 rather than 𝐺 − {𝑣} and if 𝐺′
is a graph, 𝐺 − 𝐺′ rather than 𝐺 − 𝑉 (𝐺′).
If𝐹 is a set of pairs of vertices of𝐺, we define𝐺−𝐹 to be the graph (𝑉 (𝐺), 𝐸(𝐺)∖𝐹),
and 𝐺 + 𝐹 to be (𝑉 (𝐺), 𝐸(𝐺) ∪ 𝐹). In an abuse of notation, 𝐺 − 𝑒 ∶= 𝐺 − {𝑒} and
𝐺 + 𝑒 ∶= 𝐺 + {𝑒}. To join vertex 𝑢 to vertex 𝑣 in 𝐺 means to add (𝑢, 𝑣) to 𝐺. To join
subgraph 𝑆1 to subgraph 𝑆2 of 𝐺 means to join (𝑢, 𝑣) in 𝐺 for all 𝑢 ∈ 𝑆1, 𝑣 ∈ 𝑆2.

Definition 49. Given graphs 𝐺1, 𝐺2 we define the disjoint union or graph sum or graph
addition of𝐺1 and𝐺2, denoted𝐺1+𝐺2, to be𝐺1∪𝐺′

2 where𝐺′
2 is a graph isomorphic

to 𝐺2 so that 𝐺1 ∩ 𝐺′
2 = ∅.

Notice the similarity to the disjoint union of sets. Indeed, we could have very easily defined
the disjoint union of graphs using it.
By ”the subgraph 𝑆 of 𝐺2 in 𝐺1 + 𝐺2” it is obvious what we mean, but as the goal of
this section is rigor: We changed the labels of 𝐺2 while defining 𝐺1 + 𝐺2. Let 𝑓 be
the isomorphism in the above definition, and let 𝑆 ⊆ 𝐺2. By the subgraph 𝑆 of 𝐺2 in
𝐺1 + 𝐺2 we mean the subgraph induced by 𝑓(𝑉𝑆) in 𝐺1 + 𝐺2. The same is said for
vertices 𝑣 of 𝐺2.

Definition 50. Given graph 𝐺, adding a vertex is defined as the graph sum of 𝐺 and the
single vertex graph.
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Definition 51. Given a graph 𝐺 = (𝑉 , 𝐸), to identify or glue vertices 𝑢 and 𝑣 of 𝐺
means to replace all instances of 𝑢 and 𝑣 in 𝑉 and 𝐸 with a new element 𝑤 ∉ 𝑉 .
Remove any loops or parallel edges.

Definition 52. Take graphs𝐺1, 𝐺2, and let 𝑆 ⊆ 𝐺1 be isomorphic to 𝑆′ ⊆ 𝐺2, let 𝑓 be
the isomorphism. The identification of 𝐺1 and 𝐺2 over 𝑆 and 𝑆′ is 𝐺1 + 𝐺2, whereby
we identify in 𝐺1 + 𝐺2 the vertex 𝑣 ∈ 𝐺1 with 𝑓(𝑣) ∈ 𝐺2. See figure A.2.

Identify →
Figure A.2: Intuitively, one may picture the identification of two graphs over e.g isomorphic triangles
as putting the vertices of one on top of the vertices of the other.

Definition 53. Given graphs𝐺, 𝐻 , theirCartesian product𝐺□𝐻 is the graph with vertex
set 𝑉 (𝐺) × 𝑉 (𝐻) where two vertices (𝑢, 𝑣) and (𝑢′, 𝑣′) are adjacent if either 𝑢 = 𝑢′
and 𝑣𝑣′ ∈ 𝐸(𝐻) or 𝑣 = 𝑣′ and 𝑢𝑢′ ∈ 𝐸(𝐺).

Intuitively, for each vertex of 𝐻 take a copy of 𝐺, and if two vertices in 𝐻 are connected,
connect the corresponding 𝐺 copies by their identical vertices.

Figure A.3: The Cartesian product of two graphs Courtesy: Wikipedia.

Definition 54. For fixed 𝑢 ∈ 𝐺, we denote by by (𝑢, 𝐻) the 𝐺□𝐻 limited to all vertices
of the form (𝑢, 𝑣) where 𝑣 ranges over 𝐻 . We call (𝑢, 𝐻) the 𝐻-subgraph of 𝑉 (𝐺) ×
𝑉 (𝐻) corresponding to 𝑢.

Definition 55. Given graphs 𝐺, 𝐻 such that 𝐺 ∩ 𝐻 is a clique, their clique sum 𝐺 ⊕ 𝐻
is defined by taking 𝐺 ∪ 𝐻 and possibly removing a few edges of the clique. See figures
A.2, A.4.
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Figure A.4: Two clique sums to create a single big graph. Notice how a few clique edges are removed.
Courtesy: Wikipedia.

For the operation to be well defined, the edges to be removed must be declared. Still, we
often make statements that stand regardless of the specific choice of removed edges. In
this case, as happens often in graph theory, we omit mention of the edges to be removed.
Similarly, we may omit mention of the cliques the two graphs are clique summed on.

Definition 56. The clique sum of𝐺 and𝐻 on clique𝐺∩𝐻 of 𝑘 vertices is called a 𝑘-sum.
The clique sum of 𝐺 and 𝐻 on clique 𝐺 ∩ 𝐻 of ≤ 𝑘 vertices is called a ≤ 𝑘-sum.
Notice that 0-sums are well defined, and are the disjoint union. Now, we would like to
clique-sum without caring about vertex labels.

Definition 57. Given graphs 𝐺, 𝐻 and isomorphic clique subgraphs 𝑆𝐺 ⊆ 𝐺, 𝑆𝐻 ⊆
𝐻 , their clique sum 𝐺 ⊕ 𝐻 over common cliques 𝑆𝐺 and 𝑆𝐻 is defined by identifying
𝐺 and 𝐻 over 𝑆𝐻 and 𝑆𝐺. We may denote this 𝐺 ⊕𝑆𝐺,𝑆𝐻

𝐻 .

Similarly with the disjoint union, suppose some 𝐺′ ⊆ 𝐺, we may make mention of 𝐺′ as
a subgraph of 𝐺 ⊕𝑆𝐺,𝑆𝐻

𝐻 , ignoring the relabelling that occurred.

A.3 Treewidth

We now introduce the treewidth of a graph. While it is usually defined as the minimum nec-
essary bag size of a tree-decomposition, I find its definition through clique-sums of smaller
graphs, equivalently carefully selected unions of smaller graphs, to provide a better un-
derstanding of the notion, and understanding naturally is the primary goal when dealing
with theory.

The following says that a graph has treewidth ≤ 𝑘 if it can be built by the clique sum
of graphs of order ≤ 𝑘 + 1.
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Definition 58. Let there be a natural number 𝑘. Let there be graph 𝐻1 of order ≤ 𝑘 +1 ,
and let graph 𝐻2 be a graph of order ≤ 𝑘 + 1. Let 𝐺2 be 𝐻1 ⊕ 𝐻2.Let there be a graph𝐻3 of order ≤ 𝑘 + 1. Let 𝐺3 be 𝐺2 ⊕ 𝐻3. Let there be a graph 𝐻4 of order ≤ 𝑘 + 1.
Let 𝐺4 be 𝐺3 ⊕ 𝐻4. Any graph 𝐺𝑖 that can be built by this procedure is said to belong
to the class of graphs 𝑇 𝑊≤𝑘 of graphs of treewidth ≤ 𝑘.
Definition 59. If a graphs 𝐺 belongs to 𝑇 𝑊≤𝑘 but not 𝑇 𝑊≤𝑘−1, then it is said to be a
graph of treewidth 𝑘.
The previous definition says that graphs of treewidth 𝑘 are precisely the graphs which in
order to be constructed as described above, it suffices and there need be some graphs
𝐻𝑖 of order as large as 𝑘 + 1.
The reader may inquire why the +1 exists in the definition. It is a historical convention with
no substantial meaning.

The classic notion of a tree-decomposition of a graph is directly related to a construc-
tion of it by clique-sums and vice-versa. Given a graph constructed by the clique sums of
graphs 𝐻𝑖, we can find a tree-decomposition; simply take the vertices of the tree to be
𝑡𝐻𝑖

, take the bag of 𝑡𝐻𝑖
to be 𝑉 (𝐻𝑖), and connect 𝑡𝐻𝑖

and 𝑡𝐻𝑗
in the tree decomposition

if 𝐻𝑖 was chosen for 𝐻𝑗 to clique sum on. See [17] for a full and more detailed proof.

Definition 60. Let there be graph𝐺 constructed by the clique sum of graphs𝐻1, 𝐻2, ..., 𝐻𝑛
as described in the definition of treewidth. We call 𝑉 (𝐻𝑖) the bags of𝐺, and denote them
as𝐵𝐻𝑖

or𝐵(𝐻𝑖). If minor bags are involved as well, we call them the tree-decomposition
bags to avoid confusion.

The following says that a graph has treewidth ≤ 𝑘 if it can be constructed by starting from
a graph 𝐻1 of order at most 𝑘 and iteratively glueing graphs 𝐻𝑖 of order at most 𝑘 on top
to build a bigger graph, each time selecting a previously added graph 𝐻𝑗, 𝑗 < 𝑖 to glue
on. While this is my definition of choice, I have funnily enough never seen another human
or text mention it. We thus do not use the following alternative definition of treewidth in
this text, but I still wished to include it.

Theorem 29. Let there be a natural number 𝑘. Let there be graph 𝐻1 of order ≤ 𝑘 + 1
, and let graph 𝐻2 be a graph of order ≤ 𝑘 + 1. Let 𝐺2 be 𝐻1 ∪ 𝐻2. Let there be a
graph 𝐻3 of order ≤ 𝑘 + 1 such that 𝐺2 ∩ 𝐻3 ⊆ 𝐻1 or 𝐺2 ∩ 𝐻3 ⊆ 𝐻2. Let 𝐺3 be
𝐺2 ∪ 𝐻3. Let there be a graph 𝐻4 of order ≤ 𝑘 + 1 such that 𝐺3 ∩ 𝐻4 ⊆ 𝐻1 or 𝐻2
or 𝐻3, and so on. A graph 𝐺𝑖 belongs to 𝑇 𝑊≤𝑘 iff it can be built by this procedure.

To shortly touch on this, indeed, if one can build a graph by the unions of smaller graphs
as described above, one can also build it by clique sums of the same smaller graphs, with
some extra edges so that the clique sum is well-defined, removed when no longer needed.
The mainstream definition of treewidth is not utilized in this text and is thus not presented.

Definition 61. Let there be graph 𝐹 with vertex set 𝑣1, ..., 𝑣𝑛. Let there be graph 𝐻1.
Let 𝐺2 be 𝐻1 ∪ 𝐻2. Let there be a graph 𝐻3 such that 𝐺2 ∩ 𝐻3 ⊆ ⋃ 𝐻𝑖 taken over
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all 𝐻𝑖 such that (𝑣𝑖, 𝑣3) ∈ 𝐸(𝐹). Let 𝐺3 be 𝐺2 ∪ 𝐻3. Let there be a graph 𝐻4 such
that 𝐺3 ∩ 𝐻4 ⊆ ⋃ 𝐻𝑖 taken over all 𝐻𝑖 such (𝑣𝑖, 𝑣4) ∈ 𝐸(𝐹) and so on, 𝑛 times.
Any graph 𝐺𝑛 that can be built in this manner by 𝐻𝑖 of order ≤ 𝑘 + 1 is said to have
an 𝐹 − 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 of width 𝑘. We call 𝑉 (𝐻𝑖) the bags of 𝐺, and denote them
as 𝐵𝐻𝑖

or 𝐵(𝐻𝑖). If minor bags are involved as well, we call them the F-decomposition
bags to avoid confusion.

A.4 Minors, Topological Minors

Subgraphs capture the intuitive notion that a graph is inside another graph. One may
however protest that given graphs 𝐺, and 𝐺′, where 𝐺′ is obtained from 𝐺 by replacing
some edge of𝐺 with a path of degree 2 nodes, 𝐺 is inside𝐺′, because the path basically
functions as an edge. Taking this idea a step further, given a graph 𝐺 and 𝐺′, where 𝐺′
is obtained from 𝐺 by replacing some node 𝑣 of 𝐺 with a connected graph adjacent to all
nodes 𝑣 was adjacent to, one may say 𝐺 is inside 𝐺′ because the connected graph can
function as a big node.

It is helpful to define the operations of suppression and contraction before proceeding.

Definition 62. Given a graph 𝐺 and a (possibly trivial) path 𝑃 = 𝑣1𝑣2...𝑣𝑘 of 𝐺 of
𝑑𝐺(𝑣𝑖) = 2 for all 𝑣𝑖, where 𝑙, the neighbor of 𝑣1 ∈ 𝐺 ∖ 𝑃 , and 𝑟 the neighbor of
𝑣𝑘 ∈ 𝐺∖𝑃 are distinct, the operation of suppressing the path in𝐺, denoted 𝑠𝑢𝑝𝑝𝑟𝐺(𝑃 )
outputs a graph 𝐺′ = 𝐺 − 𝑃 + (𝑙, 𝑟).
Given a graph𝐺 and a (possibly single-vertex) connected subgraph 𝑆 of𝐺, the operation
of contracting 𝑆 in 𝐺, denoted 𝐺/𝑆, outputs a graph 𝐺′ = 𝐺 − 𝑆+ a new vertex 𝑣𝑆
neighboring all vertices of 𝐺 − 𝑆 that 𝑆 did in 𝐺. Given a set of nodes 𝑈 of 𝐺, the
contraction of 𝑈 is defined to be the contraction of 𝐺[𝑈].
Definition 63. Let𝐺 be a graph, and let𝑆 be a subgraph of𝐺. Let𝑆2 be 𝑠𝑢𝑝𝑝𝑟𝑆(𝑃 ) for
some path𝑃 of𝐺 (chosen so that the suppression is well-defined). Let𝑆2 be 𝑠𝑢𝑝𝑝𝑟𝑆1

(𝑃 ′)
for some path 𝑃 ′ of 𝑆1 and so on. If a graph 𝐺′ is isomorphic to some 𝑆𝑖 that can be
constructed in this manner from 𝐺, then 𝐺 contains 𝐺′ a topological minor, denoted
𝐺 ≥𝑡𝑚 𝐺′.

Definition 64. Let 𝐺 be a graph, let 𝑆 be a subgraph of 𝐺 and let 𝐻 be a connected
subgraph of 𝑆. Let 𝑆2 be 𝑆/𝐻 . Let 𝐻′ be a connected subgraph of 𝑆2. Let 𝑆3 be
𝑆2/𝐻′. If a graph 𝐺′ is isomorphic to some 𝑆𝑖 that can be constructed in this manner
from 𝐺, then 𝐺 contains 𝐺′ a minor, denoted 𝐺 ≥𝑚 𝐺′.

Observing that if a node that arose from a contraction is used in another contraction, we
could have just done a single big contraction instead, one may verify that the following are
equivalent:

Theorem 30. The following are equivalent for two graphs 𝐺, 𝐺′:
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(1) 𝐺 ≥𝑚 𝐺′

(2) For some subgraph𝑅 of𝐺 there are pairwise disjoint subgraphs𝑅1, 𝑅2, ..., 𝑅|𝑉 (𝐺′)|
of 𝑅 such that (((𝑅/𝑅1)/𝑅2)/...)/𝑅|𝑉 (𝐺′)| is isomorphic to 𝐺′

(3) For some subgraph𝑅 of𝐺 there are pairwise disjoint subgraphs𝑅1, 𝑅2, ..., 𝑅|𝑉 (𝐺′)|
of 𝑅 and there is a bijection 𝑅1 ↔ 𝑣1, 𝑅2 ↔ 𝑣2, ..., 𝑅|𝑉 (𝐺′)| ↔ 𝑣|𝑉 (𝐺′)|, where
𝑉 (𝐺′) = {𝑣1, ..., 𝑣|𝑉 (𝐺′)|}, such that (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝐺′) iff 𝑅𝑖, 𝑅𝑗 are adjacent.

We work most with the third definition. Some terminology is of use.

Definition 65. A bijection 𝜇(𝑣𝑖) = 𝑅𝑖 as in (3), is called a model of 𝐺′ in 𝐺. We call 𝑅𝑖
the bag or branch of 𝑣𝑖 in 𝐺 and also denote it 𝐵(𝑣𝑖) or 𝐺𝑣𝑖. For 𝐻 ⊆ 𝐺, we denote
with 𝜇(𝐻) or 𝐵(𝐻) or 𝐺𝐻 the subgraph of 𝐺 induced by the ∪𝑣∈𝑉 (𝐻)𝐵(𝑣).

As with edges removed after clique sums, when a statement holds for any choice of 𝜇 or
𝜇 is clear by context, we omit mention of 𝜇.
Definition 66. Give a graph class 𝐶 , we call 𝐶 closed under minors or minor-closed if
𝐺 ∈ 𝐶 and 𝐺 ≥𝑚 𝐺′ implies 𝐺′ ∈ 𝐶 .

Definition 67. Give a graph class 𝐶 , denote by minor-closure(𝐶) its minor closure, i.e
minor-closure(𝐶)={𝐺 ∶ 𝐺 ≤𝑚 𝐺′ for some 𝐺′ ∈ 𝐶}

Definition 68. A graph 𝐺 forbids a graph 𝐺′ as a minor if 𝐺 ≱𝑚 𝐺′.

Definition 69. By 𝐹𝑜𝑟𝑏(𝐺) we denote the class of graphs not containing 𝐺 as a minor.
It is easy to observe this class is closed under minors.

Definition 70. A minor-closed graph class 𝐶 does not contain a graph 𝐺 as a minor if
𝐺 ∉ 𝐶 . A graph 𝐺 is a forbidden minor of 𝐶 or excluded minor of 𝐶 or in the obstruction
set of 𝐶 if 𝐶 forbids 𝐺 as a minor and 𝐺 is minimal in this regards, i.e 𝐺′ ∈ 𝐶 for all
other 𝐺′ ≤𝑚 𝐺.

The following by Robertson and Seymour is one of the deepest results in all of graph
theory. It was proved over a series of 20 papers amounting to 500 pages, over a period
of 20 years.

Theorem 31 (The graph minor theorem [23]). Every graph class 𝐶 closed under minors
can be characterized by a finite set of forbidden minors.

O. Milolidakis 98



Splittability within minor-closed classes to graphs of low maximum degree.

APPENDIX B. TOPOLOGY FUNDAMENTALS

As in other subjects in graph theory, and especially in the one that proceeds, one may
reason about concepts through visual intuition rather than rigor, and this is often what the
community does in practise. Mohar’s Topological graph theory [11]) provides for a more
rigorous introduction to the topic, though he assumes some topological knowledge. For
the topology fundamentals, we recommend Kinsey’s topology of surfaces [24]. While this
thesis is not focused on topology or bibliography, and thus many topological results are
listed without proof, we still try to be as analytical and rigorous as possible.
The reader is probably already familiar with planar graphs. Some of the most deep results
in minor theory mention graphs embeddedable on surfaces more complex than the plane
or the sphere, such as the torus.

Figure B.1: The torus. Courtesy: Wikipedia.

B.1 Elements of surfaces

Let (𝑋, 𝜏) be a topological space. Let an element of 𝑋 be any 𝑥 ∈ 𝑋. Some defini-
tions apply more generally, but we only care about metrizable spaces, in fact only about
surfaces, which we define shortly.

Definition 71. A curve or arc on 𝑋 is the image 𝑓([0, 1]) of a continuous function 𝑓 from
[0,1] to 𝑋. A curve is simple if 𝑓 is 1-1. The curve connects 𝑓(0) and 𝑓(1), which are
called the ends or endpoints of the curve, while 𝑓((0, 1)) is its interior. For 𝑎, 𝑏 ∈ [0, 1],
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a subset of the curve of the form 𝑓([𝑎, 𝑏]) is called a segment of the curve, while a subset
of the form 𝑓([0, 𝑎]) or 𝑓([𝑎, 1]) is called an initial segment. A simple closed curve is a
curve such that 𝑓 is 1-1 on (0,1) and 𝑓(0) = 𝑓(1).

Notice that as the image of a continuous function on a compact set, a curve is compact.

Definition 72. A topological space (𝑋, 𝜏) is path or arcwise or curve connected if for
every two points in it, there is a simple curve connecting them. A subset of𝑋 is called path-
connected if the subspace induced by 𝑋 under the subspace topology is path-connected.
A maximal path-connected subset of X is called a path-connected component or region
of 𝑋.

A surface is a connected compact Hausdorff topological space locally homeomorphic to
ℝ2. Intuitively, the reader may visualize them as 3 dimensional shapes, such as donuts,
coffee mugs, spheres, chairs, e.t.c.

Definition 73. A topological space (𝑋, 𝜏) is called Hausdorff if for all distinct 𝑥, 𝑦 ∈ 𝑋,
there are disjoint 𝑈𝑥 and 𝑈𝑦 with 𝑥 ∈ 𝑈𝑥, 𝑦 ∈ 𝑈𝑦.

Hausdorff spaces have nice properties metric spaces do. It says we have enough open
sets to separate points.

Definition 74. A topological space (𝑋, 𝜏) is called locally homeomorphic to (𝑋′, 𝜏 ′) if
for all distinct 𝑥 ∈ 𝑋, there is Ο ∈ 𝜏 including 𝑥 and homeomorphic to (𝑋′, 𝜏 ′) in the
subspace topology.

Many subsets of ℝ2 are homeomorphic to ℝ2, such as any open ball of radius 1. Any of
them could have been used in this definition.

Definition 75. Given a topological space (𝑋, 𝜏) an open disc is a subset of (𝑋, 𝜏)
homeomorphic to the open ball of radius 1 of ℝ2. A closed disc is a subset of (𝑋, 𝜏)
homeomorphic to the closed ball of radius 1 of ℝ2.

Surfaces have a few nice natural properties. For example:

Theorem 32. A surface is a path-connected space. In fact, we could define them to be
path-connected instead of connected without loss of generality.

Theorem 33. Every surface is a metrizable space.

The reasoning is that a compact Hausdorff space is metrizable if it is locally metrizable,
and surfaces are locally metrizable because they are locally homeomorphic to ℝ2.
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B.2 Graphs on Surfaces

A graph is embeddable on a surface if we can draw it on the surface so that edges do not
intersect.

Definition 76. A graph 𝐺 is embeddable on (𝑋, 𝜏) if there is a function 𝑓 mapping ver-
tices to elements of 𝑋, and edges to simple curves on 𝑋 so that 𝑓(𝑣1) ≠ 𝑓(𝑣2) for
𝑣1 ≠ 𝑣2, and curve 𝑓(𝑢𝑣) connects 𝑓(𝑢) and 𝑓(𝑣), and has no intersection with the
image of other vertices and only intersects other edges on its endpoints.
𝑓 is an embeddeding of 𝐺 on 𝑋. The image of 𝑓 , 𝑓[(𝑉 (𝐺) ∪ 𝐸(𝐺))], is called the
embedded graph, and though it is technically not a graph, one may produce a graph from
one in the obvious manner. For ease of notation, the embedded graph is also abusively
denoted 𝑓(𝐺).

As the finite union of compact sets, any embedded graph is compact and therefore closed.

Definition 77. A face of an embedded graph 𝐺 on (𝑋, 𝜏) is a region of 𝑋 ∖𝐺 (equipped
with the subspace topology of course).

Given a face of an embedded graph𝐺, the boundary of the face is an embedded subgraph
of 𝐺. If this subgraph is a cycle, it call it a facial cycle.

Definition 78. Let there be embeddable graph 𝐺, let 𝑓 be an embedding, and let the
boundary 𝑏 of a face of 𝑓(𝐺) be a cycle, i.e let 𝐺 limited to the vertices and edges of
𝑓−1(𝑏) be a cycle. We call the boundary of 𝑏 a facial cycle.
Definition 79. A graph embeddable on the plane ℝ2 (with the standard topology always)
is called planar. The embedded graph is called the plane graph.

Planar graphs are often introduced with arcs being polygonal. However, the two definitions
are equivalent (see Mohar’s Topological graph theory chapter 2.1 [11]).

Definition 80. A curve is polygonal if it is the union of a finite number of straight line
segments. A straight line segment is a curve that is a subset of a line of ℝ2.

Theorem 34. A graph is embeddable on the plane if and only if it is embeddable on the
plane with edges mapped to polygonal curves.

For proofs on planar graphs, topological tools onℝ2 are useful. The JordanCurve theorem
is an intuitively obvious but infamously difficult to prove theorem. Naturally, we make use
of it.

Theorem 35 (The Jordan Curve Theorem). Let𝐶 be a simple closed curve onℝ2. ℝ2∖𝐶
has exactly two connected components, one being bounded and the other unbounded,
with 𝐶 as the boundary of both.
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The bounded component is called the interior, while the unbounded is called the exterior.
The following extension exists.

Theorem 36 (The Jordan-Schoenflies Curve Theorem). For any two simple closed curves
𝐶1, 𝐶2, their interiors are homeomorphic and their exteriors are homeomorphic.

A graph is embeddable on the plane if and only if it is embeddable on the sphere. The
following theorem provides for a well-defined topology on the sphere that is useful for
embeddings.

Theorem 37. The unit sphere 𝑆𝑛−1:= {𝑥 ∈ ℝ𝑛 ∶ √𝑥2
1 + ... + 𝑥2𝑛 = 1} is a complete

metric space when equipped with the metric, 𝑑(𝑥, 𝑦) ∶= arccos(𝑥 ⋅ 𝑦) where ⋅ denotes
the standard dot product.

We need only consider the sphere 𝑆2 on ℝ3. The next theorem following from the defini-
tions of homeomorphity and embeddability.

Theorem 38. Let there be two homeomorphic surfaces Σ1, Σ2. Then a graph is embed-
dable on Σ1 if and only if it is embeddable on Σ2.

Theorem 39. The sphere minus an element is homeomorphic to the plane.

Clearly any embedded graph on the sphere is not equal to the sphere. Thus

Corollary 10. A graph can be embedded on the plane if and only if it can be embedded
on the sphere.

As mentioned, we wish to embed graphs on other surfaces as well. While intuitively we
can visualize what a torus or a double-torus is, and therefore work with graphs embedded
on it, it would be nice to also define those surfaces, starting from topology.

Figure B.2: Surfaces of genus 2 and 3 respectively. The double and triple torus. Courtesy:
Wikipedia.

B.3 Genus of surfaces and graphs, the classification theorem, handles and cross-
caps, topological operations

Definition 81. A topological space (𝑋, 𝜏) is called locally Euclidean of dimension 𝑛 if for
every 𝑥 ∈ 𝑋, 𝑥 has an open neighborhood 𝑈 ∈ 𝜏 homeomorphic to ℝ𝑛 (that is, the
subspace topology of (𝑋, 𝜏) limited to𝑈 , (𝑈, 𝜏𝑈) has a homeomorphismℎ ∶ 𝑈 → ℝ𝑛).
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Intuitively, it is easy to define the torus; simply take the square [0,1]×[0,1], ”glue together”
the top side with the bottom side to obtain a hollow cylinder, then glue together the two
opposing ends of the cylinder. One may do this with a piece of paper.

We want to formally define the intuitive notion of gluing topological sets together. This is
done through the quotient topology.

Definition 82. Let = (𝑋, 𝜏) be a topological space. Let there be function 𝑓 ∶ 𝑋 → 𝑌 .
The biggest or finest continuous topology induced by 𝑋 and 𝑓 on 𝑌 is (𝑌 , 𝜏 ′) where
𝑂′ ∈ 𝜏 ′ iff 𝑓−1(Ο′) ∈ 𝜏 .
Definition 83. Let = (𝑋, 𝜏) be a topological space. Let ∼ be an equivalence relation on
𝑋. The quotient or identification set 𝑋/∼ is {[𝑥]|𝑥 ∈ 𝑋} where [𝑥] is the equivalence
set of 𝑥 under∼. The function 𝑓(𝑥) = [𝑥] is called the identification or quotient mapping.

The reader may notice that this space has sets as elements. This is of no importance;
we could very well replace them with their representing element, and to avoid notational
overencumbering we do.

One may visualize the identification set as𝑋 with equivalent points glued or contracted on
each other. We now add a topology on the quotient set, because to work with notions such
as continuity we need to have an underlying topological space. In the following we still
work with general topology, but all spaces we work with will bemetrizable, and I have found
that thinking with metric distance functions often provides better understanding, so let me
briefly mention the quotient metric as a side note. What should the metric 𝑑′ of 𝑋/∼
after gluing together some points of (𝑋, 𝑑) be? Let 𝑥 be a point in 𝑋, not glued to other
points. Clearly its distance from 𝑦 ∈ 𝑋 remains same if all other points of 𝑋 of distances
≤ 𝑑(𝑥, 𝑦) from 𝑥 are also not glued. If however a glued point 𝑧 exists in this ball, we must
consider if using it allows us to reach 𝑦 in a shorter fashion. Thus 𝑑′(𝑥, 𝑦) is something
like 𝑖𝑛𝑓𝑤∈[𝑧](𝑑(𝑥, 𝑤) + 𝑑(𝑤, 𝑦)), in fact we should also consider other equivalence
classes that one may utilize, possibly in succession. This only defines a pseudometric,
as it may yield distinct elements of distance 0 (try [-1,1] with the Euclidean metric and [-
1,0) contracted to the same equivalence set and (0,1] contracted). For specific metrizable
topological sets and well chosen equivalence partitions, this does yield a metric, which
induces the quotient topology.

Definition 84. Let = (𝑋, 𝜏) be a topological space. Let ∼ be an equivalence relation
on 𝑋. 𝑋/∼ equipped with the biggest topology making the identification mapping con-
tinuous is called the quotient or identification topology of 𝑋 on ∼.

Definition 85. Let (𝑋, 𝜏) be a topological space. To glue 𝑥 and 𝑥′ ∈ 𝑋 means to take
the quotient space on 𝑋 defined by the equivalence relationship 𝑥∼𝑥′.

We can now properly define the topological space of the torus.
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Definition 86. Let there be the metric space [0, 1] × [0, 1], equipped with the euclidean
metric and take the topological space induced by the metric. For all 𝑡 ∈ [0, 1], glue
[0, 𝑡] with [1, 𝑡]. The resulting topological space is called a cylinder. The cylinder has two
opposing ends, the sets {[𝑡, 0]|𝑡 ∈ [0, 1]} and {[𝑡, 1]|𝑡 ∈ [0, 1]}.
Let there be the metric space [0, 1] × [0, 1], equipped with the euclidean metric and take
the topological space induced by the metric. For all 𝑡 ∈ [0, 1], glue [0, 𝑡] with [1, 𝑡], and
then for all 𝑡 ∈ [0, 1] glue [𝑡, 0] with [𝑡, 1] (the opposing ends). The resulting donut-
shaped topological space is called the torus.

We now present a fundamental theorem in the topology of surfaces, the classification
theorem, which says that any surface can be constructed by the sphere and a few simple
operations. Some definitions are needed.

Definition 87. To remove a subset 𝑆 of a topological space (𝑋, 𝜏) means to take the
subspace topology induced by 𝑋 ∖ 𝑆.

Much like with graphs, the disjoint union of sets expresses the idea of putting both sets
separately together.

Definition 88. The disjoint union of two not necessarily disjoint sets 𝐴, 𝐵 is the set
{(𝑥, 1)|𝑥 ∈ 𝐴} ∪ {(𝑥, 2)|𝑥 ∈ 𝐵}.
Definition 89. The disjoint union topology of two topological spaces 𝐴, 𝐵 with bases
𝑈𝑎, 𝑈𝑏 is the disjoint union of 𝐴 and 𝐵 equipped with the base defined by the disjoint
union of 𝑈𝑎 and 𝑈𝑏.

It is interesting to notice that the following is equivalent: Let 𝑓 be the natural map from
𝐴 ∪ 𝐵 to the disjoint union of 𝐴, 𝐵. We can define the disjoint union topology as the
disjoint union of 𝐴, 𝐵 equipped with the biggest topology making 𝑓 continuous.
This was the case for the quotient topology as well. Thus it starts to become clear that
the finest/biggest topology making 𝑓 continuous is the one that conserves best the initial
topological space in the image space.

Definition 90. Let there be a surface 𝑆. Let there be two subsets 𝐶1, 𝐶2 of 𝑆 homeo-
morphic to an open ball of ℝ2, and let the closure of 𝐶1 and 𝐶2 be disjoint. Remove 𝐶1
and 𝐶2 from 𝑆, take the disjoint union of the resulting topological space with a cylinder,
and glue one end of the cylinder to the boundary of𝐶1 in the natural manner and the other
end to the boundary of 𝐶2. We then say we added a handle to 𝑆.
Definition 91. Let there be a surface 𝑆. Let there be a subset 𝐶 of 𝑆 homeomorphic to
an open ball of ℝ2. Remove 𝐶 from 𝑆, and if 𝑥, 𝑥′ ∈ 𝑆 ∖ 𝐶 are on the boundary of 𝐶
and diametrically opposite (on the circle homeomorphic to 𝐶 of course), glue them. We
then say we added a crosscap to 𝑆.

Adding a crosscap is homeomorphic to adding a mobius strip.
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Theorem 40 (The classification theorem). Let 𝑆 be a compact surface. 𝑆 is homeomor-
phic to one of the following:

1. The sphere after adding 𝑘 ∈ ℤ≥0 handles.

2. The sphere after adding 𝑘 ∈ ℤ≥0 crosscaps.

Definition 92. The genus of a connected orientable surface is the maximum amount of
pair-wise disjoint simple closed curves that can be removed without rendering it discon-
nected. The non-orientable genus of a connected non-orientable surface is the maximum
amount of pair-wise disjoint simple closed curves that can be removed without rendering
it disconnected. 1

Theorem 41. The genus of an orientable surface is equal to the number of handles we
need to add to construct it starting with a sphere. The non-orientable genus of a non-
orientable surface is equal to the number of cross-caps we need to add to construct it
starting with a sphere.

Thus, up to homeomorphism there is only one surface of orientable or non-orientable
genus 𝑔, the surface of obtained from the sphere after adding 𝑔 handles or 𝑔 crosscaps.
Euler’s theorem says that for an embedded graph in the plane, 𝑛 − 𝑚 + 𝑓 = 2 where 𝑛
is the number of vertices, 𝑚 the edges, and 𝑓 the distinct faces. This results extends to
higher (non-orientable) genus surfaces.

Definition 93. Let 𝑆 be a surface. Then for some possibly negative integer 𝜒, called the
euler characteristic of 𝑆, and for any embedded graph 𝐺 on Σ such that every face is
homeomorphic to an open ball in ℝ2, 𝑛 − 𝑚 + 𝑓 = 𝜒.
Theorem 42. Let 𝐺 be a graph embedded on Σ and not embeddable on a surface of
lower genus. Then every face is homeomorphic to an open ball in ℝ2

Definition 94. The genus of a graph 𝐺 is the smallest integer 𝑛 such that 𝐺 can be
embedded on the surface of genus 𝑛. The non-orientable genus of an graph 𝐺 is the
smallest integer 𝑛 such that 𝐺 can be embedded on the non-orientable surface of genus
𝑛.
Definition 95. The euler genus of a surface with euler characteristic 𝜒 is 2 − 𝜒.
Theorem 43. Let Σ be a surface built from the sphere after adding 𝑘 handles. Then its
euler genus is 2𝑘.
Let Σ be a surface built from the sphere after adding 𝑘 crosscaps. Then its euler genus
is 𝑘.

1So if we add 10 handles to the sphere and then 1 cross-cap, this is a non-orientable surface. Can we
really build the same surface by just adding cross-caps? Yes! We need 2 crosscaps for each handle
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In other words, the Euler genus of a non-orientable surface is its non-orientable genus,
and the Euler genus of an orientable surface is double its genus. With this in mind, working
with the euler genus instead of the regular genus and non-orientable genus is somewhat of
an overcomplication for our purposes. In any case, The graph theory community seems
to like not to concern itself with whether a surface is orientable or non-orientable and
abolishing the established conventions is not a priority of this text.

Definition 96. The euler genus of a graph is the smallest integer 𝑛 such that 𝐺 can be
embedded on the surface of euler genus 𝑛.

Euler’s theorem implies that for any planar graph 𝐺 of 𝑛 vertices and 𝑚 edges, 𝑚 ≤
3𝑛 − 6. This also generalizes to graphs embeddable on higher genus surfaces:
Theorem 44. Let 𝐺 be embeddable on Σ. Then 𝑚 ≤ 3𝑛 − 6 + 3eul_genus(Σ).
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