
Bottom-Up Evaluation of Second-Order
Datalog with Negation

Antonis Gkanios
AL1.19.003

Examination committee:
Angelos Charalambidis, Dept. of Informatics and
Telematics, Harokopio University of Athens.
Panagiotis Rondogiannis, Dept. of Informatics and
Telecommunications, National and Kapodistrian
Costas D. Koutras, Dept of Informatics and
Telecommunications, University of Peloponnese
Nikolaos Rigas, Dept. of Information Technology,
School of Liberal Arts and Sciences, The American
College of Greece.

Supervisor:
Angelos Charalambidis, Asst. Prof., Dept.
of Informatics and Telematics, Harokopio
University of Athens
Co-supervisor:
Panagiotis Rondogiannis, Prof, Dept. of
Informatics and Telecommunications,
National and Kapodistrian University of
Athens.

ABSTRACT

Extending logic programming beyond the first-order paradigm has long been a chal-
lenge due to the complexity of handling higher-order constructs and negation. This the-
sis investigates the evaluation of second-order Datalogwith negation, which extends the
expressiveness of traditional logic programming while maintaining declarative seman-
tics. Prior research introduced a three-valued immediate consequence operator to com-
pute thewell-foundedmodel for higher-order programs, yet the computational overhead
of this approach limits its scalability.

We propose a bottom-up evaluation framework that combines program transforma-
tion techniques with alternating fixpoint evaluation to systematically refine approxima-
tions of the well-founded model. This approach introduces a new way to handle nega-
tion in second-order logic programs and presents an alternative framework for evaluat-
ing the well-founded semantics. It contributes to a deeper understanding of higher-order
logic programming and its potential use in complex reasoning tasks.

ΣΎΝΟΨΗ

Η επέκταση του λογικού προγραμματισμού πέρα από τη λογική πρώτης τάξης αποτελεί
εδώ και καιρό μια πρόκληση λόγω της πολυπλοκότητας του χειρισμού δομών υψηλότερης
τάξης αλλά και της άρνησης. Η παρούσα εργασία διερευνά την αποτίμηση προγραμμάτων
Datalog δεύτερης τάξης με άρνηση, η οποία επεκτείνει την εκφραστικότητα του παραδοσιακού
λογικού προγραμματισμού διατηρώντας παράλληλα τη δηλωτική του σημασιολογία.
Προηγούμενη έρευνα εισήγαγε μεθόδους για τον υπολογισμό well-founded μοντέλων
σε προγράμματα υψηλότερης τάξης, ωστόσο η υπολογιστική επιβάρυνση αυτής της
προσέγγισης περιορίζει την άμεση επεκτασιμότητα της

Στα πλαίσια αυτής της εργασίας, προτείνουμε μία bottom-up προσέγγιση που συνδυάζει
τεχνικές μετασχηματισμού προγράμματος με μεθόδους εύρεσης σταθερού σημείουώστε
να βελτιώσει συστηματικά τις προσεγγίσεις τουwell-founded μοντέλου ενός προγράμματος.
Αυτή η προσέγγιση εισάγει έναν νέο τρόπο χειρισμού της άρνησης σε λογικά προγράμματα
δεύτερης τάξης και παρουσιάζει ένα ολοκληρωμένο πλαίσιο για την αποτίμηση τους.
Τέλος, συμβάλλει στη βαθύτερη κατανόηση του λογικού προγραμματισμού υψηλότερης
τάξης και της πιθανής χρήσης του σε σύνθετες συλλογιστικές εργασίες.

CONTENTS

1 Introduction 1
1.1 Related Work . 2

2 Second-Order Logic Programs 5

3 Evaluation of First-Order Datalog Programs 7
3.1 Relational model for first-order datalog programs 7

3.1.1 Operations on Relations . 9
3.2 Evaluation for positive programs . 10

3.2.1 Pattern Matching . 10
3.2.2 Generate Variable Substitutions in Literals 11
3.2.3 Combining Relations . 12
3.2.4 Propagating Variable Substitutions to Head Arguments 12
3.2.5 Evaluation . 13

3.3 Evaluation for programs with negation 14
3.3.1 Double Program . 15
3.3.2 Evaluating Programs . 16

4 Evaluation of Second-Order Programs 19
4.1 Relational model for second-order Datalog programs 19
4.2 Evaluation for positive programs . 21

4.2.1 Pattern Matching . 21
4.2.2 Generate Variable Substitutions in Literals 22
4.2.3 Combining Relations . 24
4.2.4 Adapting VTOA and EVAL Algorithms 25

4.3 Evaluation for programs with negation 28
4.3.1 Double Program . 28
4.3.2 Pattern Matching in Second-Order Programs 29
4.3.3 Propagating Variable Substitutions to Head Arguments 32
4.3.4 Complement of a Relation in the Second-Order Case 33
4.3.5 Combining Relations . 37
4.3.6 Adapting VTOA and EVAL Algorithms 37

4.4 Example Evaluations . 39

i

CONTENTS

5 Conclusion and Future work 45

Bibliography 49

ii

CHAPTER1
INTRODUCTION

Declarative programming paradigms are mainly represented by two approaches: func-
tional programming and logic programming. While functional programming is widely
recognized for its expressive use of higher-order functions, logic programming has tra-
ditionally operated at a first-order level. Attempts to extend logic programming into
a higher-order form have historically encountered various challenges, limiting its gen-
eral applicability. Despite limited success in specialized domains like theorem prov-
ing and meta-programming, achieving a comprehensive, general-purpose higher-order
logic programming language has remained elusive.

The development of extensional higher-order logic programming, as presented in
[1], marked a significant milestone. This advancement introduced a general-purpose
programming language thatmaintains the foundational properties of classical first-order
logic while incorporating higher-order constructs. Specifically, it enabled the use of
predicates as arguments and allowed for predicate variables, making the language ex-
pressive and suitable for a wide range of applications.

The extensional, three-valued semantics for higher-order logic programs with nega-
tion, introduced in [4], provides an immediate consequence operator for determining
the well-founded model (WFM) of a program. However, despite being designed for
this purpose, it faces challenges related to efficiency of the computation. The operator
iteratively adjusts two approximations: an under-approximation that progressively in-
creases and an over-approximation that gradually decreases until they converge. While
operations on both approximations can be computationally expensive, this is more eas-
ily observed in the case of the over-approximation, due to its typically larger initial size.
To illustrate, consider the following second-order logic program:

non_subset(P, Q) ← P(X), not Q(X).
subset(P, Q) ← not non_subset(P, Q).

Now, let us define a set of constants C = {c1, . . . , cn}. The over-approximation is
initialized in a way that every predicate in the program is considered to be true for ev-
ery possible combination of its arguments. In this example we would have to generate
every unary set P,Q such that P ⊆ C and Q ⊆ C. Generating all these sets is com-
putationally very expensive as C grows in size. In the general case, if C contains n
elements and a predicate has k arguments, where each argument is a predicate symbol
of arity ρi, then the total combinations that we will need to generate will be

∏i=k
i=1 2

ρin

1

1.1. RELATED WORK

In this thesis, we focus on the case of second-order Datalog with negation, specif-
ically the second-order, function-free subset of the language introduced in [4]. We
present a bottom-up evaluation method that combines the concept of program transfor-
mation, inspired by Kemp et al. [5], with the alternating fixpoint evaluation developed
by van Gelder [6]. Our approach systematically addresses the complexities of handling
negation, providing a more efficient solution for evaluating WFM of second-order Dat-
alog programs.

The rest of the thesis is organized as follows:

• Chapter 2 introduces the syntax of the language used in this thesis. It covers the
key constructs and formal rules that define expressions within our logic frame-
work.

• Chapter 3 studies the basic algorithms required for evaluating first-order pro-
grams, covering both positive programs and programs with negation.

• Chapter 4 explores the evaluation of second-order programs. It details the nec-
essary program transformations, adjustments to algorithms, and techniques for
handling negation in a higher-order setting.

• Chapter 5 concludes the thesis by summarizing the key findings, highlighting
the contributions of our evaluation methods, and suggesting directions for future
research.

1.1 Related Work
The study of second-order Datalog with negation has been influenced by various rea-
soning frameworks. One key approach is the use of chase-based techniques, which
have been adapted to second-order settings to facilitate reasoning over complex de-
pendencies [9]. The chase algorithm has traditionally been used in database theory to
ensure logical consistency by iteratively applying existential rules. Recent work has
extended this method to incorporate set-based reasoning, improving its applicability
for handling second-order constructs. By utilizing existential rules in conjunction with
chase procedures, researchers have developed approaches that systematically derive
logical conclusions while ensuring termination under specific conditions.

Another significant development is the application of Answer Set Programming
(ASP) techniques to second-order logic [10]. ASP provides a nonmonotonic reason-
ing framework that aligns well with second-order Datalog, particularly for handling
negation. The introduction of ASP with sets has optimized grounding strategies, re-
ducing computational overhead while maintaining expressive power. This extension
has enabled more efficient evaluations of second-order logic programs, particularly
when dealing with complex rule dependencies. However, challenges remain in effi-
ciently managing predicate variable instantiation and optimizing interactions between
higher-order rules and negation.

The evaluation of higher-order logic programs has also been explored in the con-
text of HiLog, a language that extends first-order Datalog with higher-order syntactic
capabilities while maintaining a first-order semantics [11]. Research on HiLog has
investigated bottom-up evaluation methods, adapting traditional naive and seminaive
evaluation techniques for higher-order constructs. The work demonstrates that estab-
lished Datalog evaluation algorithms can be effectively extended to HiLog, supporting

2

CHAPTER 1. INTRODUCTION

recursive queries and complex dependencies. These techniques contribute to a broader
understanding of how higher-order logic programs can be efficiently evaluated in a
bottom-up manner.

Despite these prior contributions, existing approaches do not fully address the spe-
cific challenges posed by second-order Datalog with negation. Chase-based techniques
rely on stratified programs to handle negation, which imposes restrictions on expres-
siveness. Our approach does not require stratification, allowing for a more general
handling of negation in second-order logic. ASP-based methods rely on extensive
grounding, leading to unnecessary computations. Our approach eliminates excessive
grounding while utilizing well-founded semantics instead of stable model semantics.

The methodology introduced in this thesis aims to bridge these gaps by combining
bottom-up evaluation with program transformation techniques tailored specifically for
second-order Datalog with negation. By refining well-founded semantics and utilizing
structured transformations, this approach ensures a more efficient evaluation process
that reduces redundant computations and minimizes unnecessary derivations. Future
research can build upon this work by further optimizing transformation rules, integrat-
ing hybrid reasoning techniques, and applying these methods to real-world domains
where second-order reasoning is essential.

3

1.1. RELATED WORK

4

CHAPTER2
SECOND-ORDER LOGIC PROGRAMS

In this chapter we introduce Second-Order Datalog with Negation (SODN). Our lan-
guage is based on a simple type system that supports two base types: o, the boolean
domain, and ι, the domain of individuals (data objects).There are two classes of com-
posite types: predicate π (assigned to predicate symbols) and argument ρ (assigned to
parameters of predicates).
A type can either be predicate, or argument, denoted by π and ρ respectively.

Definition 2.1. Predicate and argument types are defined to be:

π := (ρ1, . . . , ρn)→ o

ρ := ι | (ι1, . . . , ιn)→ o

Definition 2.2. The alphabet of the SODN consists of the following:

• Predicate variables of every predicate type π (denoted by capital letters such as
P and Q).

• Predicate constants of every predicate type π (denoted by lowercase letters such
as p and q).

• Individual variables of type ι (denoted by capital letters such as X and Y).

• Individual constants of type ι (denoted by lowercase letters such as a and b).

• The following logical constant symbols are defined: the conjunction symbol ∧,
the inverse implication symbol←, and the negation operator ¬.

• Left "(" and right ")" parentheses.

Definition 2.3. The set of terms is defined as follows:

• Every predicate variable (respectively predicate constant) of type π is a term of
type π;

• Every individual variable (respectively individual constant) of type ι is a term of
type ι;

5

• If E1, . . . , En are terms of type ρ1, . . . , ρn respectively and E is a term of type
(ρ1, . . . , ρn)→ o then E(E1, . . . , En) is a term of type o.

Definition 2.4. The set of expressions of SODN is defined as follows:

• A term of type ρ is an expression of type ρ.

• If E is an expression of type o then ¬E is an expression of type o.

To denote that an expression E has type τ we will write E : τ .

Definition 2.5. An atom is an expression of type o of the form p(E1, . . . , En) where
each Ei is either a variable or a constant. p is referred to as the predicate of the
atom denoted as pred(p(E1, . . . , En)). The variables of the atom will be expressed
as vars(p(E1, . . . , En)).

Definition 2.6. A literal is either an atom or the negation of an atom. If q is an atom
then q is a positive literal and ¬q is a negative literal.

Definition 2.7. A rule of SODN is of the form p(V1, . . . , Vn)← L1∧· · ·∧Lm where
p is a predicate constant of type (ρ1, . . . , ρn) → o, {Vi}1≤i≤n are distinct arguments
of type ρi respectively. {Li}1≤i≤m are literals.

The term p(V1, . . . , Vn) will be referred as the head of the rule and the conjunction
L1 ∧ · · · ∧ Lm as the body of the rule. A rule is considered safe if every variable in
the head of the rule also appears in at least one literal in the body of the rule. From this
point forward, we will only consider rules that are safe.

Definition 2.8. A program of SODN is a finite set of rules.

We will borrow some features of Prolog's syntax while writing examples and when
presenting the algorithms for the evaluation. Specifically, instead of the conjunction
symbol ∧, we will use commas to separate each expression in the body and end it with
a full stop. Finally we will use 'not' keyword instead of the negation constant operator
¬.

Example 2.9. Tthe following is a legitimate second-order program
closure(R,X,Y) ← R(X,Y).
closure(R,X,Y) ← R(X,Z), closure(R,Z,Y).

Definition 2.10. The set of predicates of a program P , denoted as pred(P), is defined
as follows:

pred(P) =
{
p, L1, . . . , Ln

∣∣ p(V1, . . . , Vn)← L1(a1, . . . , am), . . . , Ln(c1, . . . , ck) ∈ P
}

Definition 2.11. The Herbrand universe UP of a program P is the set of all data con-
stants that appear in the program.

6

CHAPTER3
EVALUATION OF FIRST-ORDER DATALOG

PROGRAMS

In this section, the goal is to familiarize the reader with the bottom-up evaluation process
that is described in [8].

We begin by defining the general notion of a relation, which serves as the founda-
tional data structure for representing facts and intermediate results in Datalog programs.
Relations encapsulate sets of tuples, and their properties directly influence how predi-
cates are internally represented and manipulated during evaluation. Building upon this
foundation, we will explore how the predicates of a Datalog program are stored inter-
nally.

The next step is the bottom-up evaluation of positive first-order Datalog programs.
By first-order, we mean that predicate variables or predicate constants are not allowed
as arguments in literals. Here, we focus on algorithms for computing their model, as
they do not involve negation, making evaluation simpler. For cases with negation,
we introduce the double program transformation to compute the well-founded model,
providing a consistent way to handle negation.

Through this chapter, we aim to build a clear understanding of the algorithms and
transformations necessary for evaluating first-order Datalog programs. Starting with
positive programs and extending to those with negation, this exploration establishes
a comprehensive foundation for the evaluation of more complex logic programming
paradigms.

3.1 Relational model for first-order datalog programs
In this part, wewill define the relationalmodel for our language based onwell-established
mathematical concepts of relations, using the model defined in [7]. This approach pro-
vides a structured framework for organizing and evaluating our logic programs with
negation.

The term relation is used here in its well-established mathematical sense. Given a
collection of sets S1, S2, . . . , Sn (which may or may not be distinct), a relation R is
defined as a subset of their Cartesian product:

R ⊆ S1 × S2 × · · · × Sn.

7

3.1. RELATIONAL MODEL FOR FIRST-ORDER DATALOG PROGRAMS

The Cartesian product of sets S1, . . . , Sn is the set of all n-tuples (v1, . . . , vn) such
that vi ∈ Si for every 1 ≤ i ≤ n. For example, if we have n = 2, S1 = {0, 1},
S2 = {a, b, c} then S1 × S2 = {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)}.

A relation is defined as any subset of this Cartesian product. For example, a relation
might consist of a smaller subset of tuples, such as {(0, a), (1, a), (1, b)}. The empty
set is another example of a relation. Relations are finite in most database contexts.

The arity or degree of a relation corresponds to the number of domains involved.
For example, a relation involving two domains has an arity of 2, and its elements are
pairs. A relation involving three domains has an arity of 3, and its elements are triplets.
Each tuple contains exactly one value from each associated domain, and the number of
components in a tuple matches the relation’s arity.

A relation can also be viewed as a table, where each row corresponds to a tuple in
the relation, and each column represents one component of the tuple. The columns are
given descriptive names N1, N2, . . . , referred to as attributes, which collectively de-
fine the relation scheme. For a relationRwith attributes (N1, . . . , Nk), scheme(R) =
{N1, . . . , Nk}. To get access to a specific columnNi we use the notationR[Ni]. View-
ing a relation in tabular form makes it easier to visualize the data and precisely define
operations, such as selection, projection, and join, by leveraging the clear organization
of rows and columns.

For the example above, if we associate name Ni with set Si then this is how our
relation would look like:

N1 N2

0 a
1 a
1 b

Since we are currently focusing on first-order Datalog, every set Si can only contain
individual values as its members. These values are atomic and cannot be higher-order
constructs such as sets, sets of sets, or other complex structures.

In Datalog, the underlying mathematical model is the relational model, where pred-
icate symbols represent relations. For each predicate symbol p in a program P , we
define a relation rel(p). The collection of those relations is called the database of the
program, denoted as DB(P). Tuples stored in these relations are exactly those that
make the predicate true. Each relation is represented as a set of ordered lists, with the
components of a tuple appearing in a fixed order. The scheme of the relation is deter-
mined by the type of the predicate, where columns correspond to the arguments of the
predicate and are referenced solely by their position. For example, if p is a predicate
symbol, then p(X,Y, Z) refers to a relation whereX , Y , and Z represent the first, sec-
ond, and third components, respectively, of some tuple in rel(p). Each column in these
relations is associated with values from the UP .

To facilitate workingwith these relations, we can assign generic or "dummy" names,
such asC1, C2, C3, . . ., to the columns. These names act as placeholders corresponding
to the position of the components in the tuple, making it easier to reference and interpret
the data.

Example 3.1. If we consider the following program P:
p(a,b).
p(b,c).
q(a,b,c).

8

CHAPTER 3. EVALUATION OF FIRST-ORDER DATALOG PROGRAMS

k(X) ← p(X,b), q(X,b,c).

then we would store three distinct relations, one for each predicate: p, q, and k.
Each relation is created with an arity that matches the number of arguments in the
corresponding type of the predicate. These relations will be used to represent the facts
defined by p and q, as well as the derived results for k based on the program's rules.
This is how the relations will look after the evaluation of P is completed:

C1 C2

a b
b c

Table 3.1: rel(p)

C1 C2 C3

a b c

Table 3.2: rel(q)

C1

a

Table 3.3: rel(k)

The details of the evaluation process will be discussed in the next section.

3.1.1 Operations on Relations

In this section, we define two fundamental operations on relations: the natural join and
the union. These operations are essential for manipulating relations in various compu-
tations and play a crucial role in the evaluation of logic programs.

Natural Join

The natural join, denoted as (▷◁), is an operation that combines two relations bymerging
tuples that agree on all shared attributes. Formally, the natural join of two relations
R1 ⊆ S1 × S2 × · · · × Sm andR2 ⊆ T1 × T2 × · · · × Tn is defined as:

R1 ▷◁ R2 =
{
(s1, s2, . . . , sm, t1, t2, . . . , tn)

∣∣∣ (s1, s2, . . . , sm) ∈ R1,

(t1, t2, . . . , tn) ∈ R2,

sk = tj for all k, j where ck = cj

}

Here, ck and cj represent the shared column names in scheme(R1) and scheme(R2),
respectively. The resulting relation contains tuples that agree on all shared attributes.

Union

The union of two relations, denoted as (∪), combines all tuples from both relations
without duplication. Formally, the union of two relations R1 ⊆ S1 × S2 × · · · × Sm

andR2 ⊆ S1 × S2 × · · · × Sm (with the same schema) is defined as:

R1 ∪R2 =
{
t
∣∣∣ t ∈ R1 or t ∈ R2

}
.

This operation requires that both relations share the same schema (i.e., the same
number and type of attributes). The resulting relation contains all distinct tuples from
R1 andR2.

9

3.2. EVALUATION FOR POSITIVE PROGRAMS

3.2 Evaluation for positive programs

In this section, we examine the evaluation process of Datalog programs, focusing on
the concept of the immediate consequence operator TP . This operator applies the rules
of a Datalog program to existing facts to derive new facts according to the heads of
those rules. Starting with an empty relation for each predicate, the operator iteratively
derives new information by repeatedly applying the program's rules.

Formally, let P be a Datalog program and I an interpretation (a set of facts for the
program predicates). The immediate consequence operator TP is defined as:

TP (I) =
⋃
r∈P

r:h←L1,...,Ln

{h | h is derived from r under I},

where r : h ← L1, . . . , Ln represents a rule in P , and I provides the facts that have
been derived in previous steps for evaluating the body literals L1, . . . , Ln.

For recursive Datalog programs, TP can be repeatedly applied on the facts derived
by its previous applications. This iterative process continues until no new facts can be
produced. It is straightforward to see that TP is a monotone operator, meaning that if
I1 ⊆ I2, then TP (I1) ⊆ TP (I2).

Through the systematic application of TP , we compute the result of a Datalog pro-
gram, capturing all derivable conclusions from the rules and facts. This section provides
a detailed exploration of this operator and its role in the bottom-up evaluation process.

3.2.1 Pattern Matching

Pattern matching is a crucial step in the evaluation process. For a rule to infer informa-
tion about the predicate in its head, each literal in the body must evaluate to true. The
corresponding relations contain tuples that satisfy the predicates of these literals. If the
argument tuple of a literal can be matched with a tuple in the relation of its predicate,
the literal is considered true and satisfied.

Given a literal p(t1, . . . tn) and a tuple (µ1, . . . , µn) ∈ rel(p), we are looking for
a way to match every ti with the corresponding µi. Since we know that (µ1, . . . , µn)
makes p true, a successful matchmeans the literal will also be evaluated as true. If every
ti is a constant, then it is sufficient to check if ∀i ti = µi. In the case where there are
variables among the literal's terms, the match is successful if there exists a substitution τ
for the variables that would make the argument tuple identical to the tuple (µ1, . . . , µn).

A substitution τ is formally defined as a partial mapping τ : V → C, where V is α
set of variables and C is set of constants. For a variable x ∈ V , if τ(x) = c for some
c ∈ C, then x is substituted by c.

The algorithm below finds and returns the substitution τ

10

CHAPTER 3. EVALUATION OF FIRST-ORDER DATALOG PROGRAMS

Algorithm 1: First Order Matching Algorithm
Input : p(t1, . . . , tn)
Input : (µ1, . . . , µn): tuple ∈ rel(p)
Output: τ containing substitution for variables

1 τ ← {Xi : ϵ | Xi ∈ vars(p(t1, . . . , tn))};
2 for i← 1 to n do
3 if ti is variable then
4 if τ(ti) = ϵ then
5 τ(ti)← µi;
6 end
7 else if τ(ti) ̸= µi then
8 return ∅;
9 end
10 end
11 else if ti is constant ∧ τ(ti) ̸= µi then
12 return ∅;
13 end
14 end
15 return τ ;

Example 3.2. Given a literal of the form p(X,Y, c) and a tuple (a, b, c) the algorithm
above would produce substitution τ such that τ(X) = a, τ(Y) = b. If the given tuple
was (a, b, b) then the algorithm would return ∅ as there would be a mismatch in the
constant for the third argument.

3.2.2 Generate Variable Substitutions in Literals

In the previous subsection, we explained that satisfying a literal p(t1, . . . , tn) requires
keeping track of potential substitutions for its variables. To structure this process, we
introduce the ATOV algorithm. This algorithm relies on the matching algorithm de-
scribed above to generate a relation where the attributes represent the variables in the
literal’s arguments. By applying the matching algorithm to the tuples in rel(p), each
substitution derived from a successful match is added as a tuple to this relation.

Algorithm 2: First Order ATOV
Input : p(t1, . . . , tn): literal with terms t1, . . . , tn
Input : rel(p): Relation for predicate p
Output:R: output relation

1 R← ∅;
2 scheme(R)← {Xi | Xi ∈ vars(p(t1, . . . , tn))};
3 foreach (µ1, . . . , µn) ∈ rel(p) do
4 τ ← match(p(t1, . . . , tn), (µ1, . . . , µn));
5 R← R∪ {τ(Xi) | Xi ∈ scheme(R)};
6 end
7 returnR;

Example 3.3. If for example we are examining the literal p(X,Y, Z, d) against rel(p)
as it is presented below

11

3.2. EVALUATION FOR POSITIVE PROGRAMS

N1 N2 N3 N4

a b c d
b c a d
b c d a
a a b c
c d d d

Table 3.4: rel(p)

we can see that only 1st, 2nd and 5th tuple are successfully matching with the lit-
eral's terms. The produced relationR will look like this:

X Y Z

a b c
b c a
c d d

Table 3.5: R

3.2.3 Combining Relations
Since the body of a rule generally consists of multiple conjunctive literals, we need a
method to ensure that the entire body is satisfied. This requires finding variable substi-
tutions under which all literals in the body are simultaneously satisfied.

To achieve this, we use the natural join operation, as defined in the previous chapter,
to combine relations corresponding to the literals in the body of the rule. By applying
the natural join iteratively to these relations, we obtain a new relation whose tuples
represent variable substitutions that satisfy the entire body of the rule.

This process ensures that the constraints imposed by each literal are respected si-
multaneously. The result is a relation that encapsulates all possible combinations of
variable substitutions that make the rule’s body true.

3.2.4 Propagating Variable Substitutions to Head Arguments
Up to this point, we have explained how to construct a relation that captures the con-
ditions under which the body of a rule is satisfied. When the body is satisfied, we
can infer that the argument tuple of the head satisfies the rule's predicate. To achieve
this, we apply the substitution tuples from the relation of body variables to the argu-
ment tuple of the head, generating the argument tuples that satisfy the head of the rule.
This process, referred to as the conversion from variables relation to head arguments
(VTOA), is detailed in the algorithm below.

12

CHAPTER 3. EVALUATION OF FIRST-ORDER DATALOG PROGRAMS

Algorithm 3: VTOA
Input : Head of rule h(t1, . . . , tn)
Input : RelationR
Output: Set of tuples that satisfy h

1 new_tuples← ∅;
2 foreach row r ∈ R do
3 t←

(
r[ti] if ti ∈ vars(h(t1, . . . , tn)) else ti for ti ∈ {t1, . . . , tn}

)
;

4 new_tuples← new_tuples ∪ t;
5 end
6 return new_tuples;

3.2.5 Evaluation
We have outlined three distinct steps for deriving correct inferences from a rule of the
form h : −L1, . . . , Ln:

First, for each literalLi in the rule's body, the ATOV algorithm is applied to generate
the corresponding literal variables relation, denoted asRi.

Next, the natural join of these relations is computed, resulting in:

R = R1 ▷◁ . . . ▷◁ Rn,

which captures the combined variable substitutions that satisfy all literals in the body.
Finally, the resulting relation R is used in the VTOA algorithm to produce a re-

lation of tuples satisfying the head's predicate. These tuples can then be added to the
corresponding relation for the predicate in the program.

Algorithm 4: Evaluate Rule
Input : Rule h : −L1, . . . , Ln

Input : rel: Set of relations
Output : Tuples that satisfy h

1 foreach Li ∈ {L1, . . . , Ln} do
2 Ri ← ATOV(Li, rel(Li));
3 end
4 R← R1 ▷◁ . . . ▷◁ Rn;
5 return VTOA(h,R)

13

3.3. EVALUATION FOR PROGRAMS WITH NEGATION

At the core of the Naive evaluation process lies the operation EVAL, which cor-
responds to the immediate consequence operator for first-order logic. This operation
computes the relations for every predicate symbol appearing in a program P based on
the current relations of the program's predicates. These relations represent the facts
derived so far. The EVAL operation is defined as:

Algorithm 5: EVAL
Input : Program P
Input : rel: Set of relations
Output : Relations for every predicate in P

/* rh is the set of rules ∈ P having h as head */
/* thi is the set of tuples produced by i-th rule of rh */
/* th is the set of tuples produced by every rule of rh */

1 foreach distinct h appearing in head of P 's rules do
2 i← 0;
3 foreach r ∈ rh do
4 thi ← evaluate_rule(r, rel);
5 i← i+ 1;
6 end

7 th ←
j=i⋃
j=0

thj ;

8 end
9 return

⋃
h∈P

th

The naive evaluation begins with an empty relation for every predicate in the pro-
gram. The EVAL operation is repeatedly applied to update these relations. This process
continues until a fixpoint is reached, meaning no new tuples are inserted into any rela-
tion during the last application of EVAL. When the evaluation is completed, the tuples
in the relation for each predicate are exactly those that make the predicate true. Under
the closed-world assumption, any tuple not present in the relation is considered to make
the predicate false.

3.3 Evaluation for programs with negation
When introducing negation into Datalog programs, we allow negative literals in the
body of a rule. Unlike positive programs, where every program can be assigned a two-
valued semantics (as discussed in the previous section), the presence of negation leads
to situations where a two-valued semantics may not exist. This challenge arises due
to the potential for logical cycles involving negation, which can create ambiguity in
determining whether a predicate is true or false.

Consider the following example:
p ← not p.

In this program, the truth value of p cannot be determined under two-valued seman-
tics because p depends negatively on itself. Assigning p the value true or false would

14

CHAPTER 3. EVALUATION OF FIRST-ORDER DATALOG PROGRAMS

lead to a contradiction.
To address such cases, the well-founded semantics provides a robust framework for

defining the meaning of programs with negation. Well-founded semantics is a three-
valued semantics in which, in addition to the traditional truth values of true and false,
atoms can also be assigned the truth value undefined. This three-valued approach helps
to resolve ambiguities by explicitly representing uncertainty when neither true nor false
can be conclusively assigned.

In the following section, we present a bottom-up evaluation method for computing
well-founded models of first-order programs with negation. This method is based on
the alternating fixpoint approach described in [6], which provides a constructive frame-
work for characterizing well-founded semantics. To effectively handle programs with
negation, we introduce a program transformation technique called the double program,
which serves as the foundation for applying the alternating fixpoint method.

3.3.1 Double Program
First, for every predicate symbol p appearing in the set of predicate symbols of the
program P , and for every literal of the form p(t1, . . . , tn) appearing in a negative con-
text not p(t1, . . . , tn), we introduce a new predicate p′(t1, . . . , tn), ensuring that p′
does not appear in P . All occurrences of not p(t1, . . . , tn) in P are replaced with
not p′(t1, . . . , tn). This gives the original half of the transformed program, denoted
Punprimed.

Next, we create a duplicate of P , where for every predicate symbol p ∈ P , every
occurrence of p(t1, . . . , tn) is replaced with p′(t1, . . . , tn), and every occurrence of
not p′(t1, . . . , tn) is replaced with not p(t1, . . . , tn). This forms the primed half of
the transformed program, denoted Pprimed.

The intuition behind this procedure is to compute the well-founded model of P by
utilizing the two subprograms of the doubled program. One subprogram computes the
true facts, while the other computes the complement of the false facts. Each subprogram
is positive if the negated predicates are treated as fixed, allowing the fixpoint of each
subprogram to be computed using standard bottom-up techniques for programs without
negation. The following example demonstrates this approach.

The intuition behind this procedure is to compute the well-founded model of P by
utilizing the two subprograms of the doubled program. One subprogram computes the
true facts, while the other computes the complement of the false facts. Each subprogram
is positive if the negated predicates are treated as fixed, allowing the fixpoint of each
subprogram to be computed using standard bottom-up techniques for programs without
negation. The following example demonstrates this approach.

Example 3.4. Consider the following program P
t(a,a,b).
t(a,b,a).
p(X) ← t(X,Y,Z), not p(Y), not p(Z).
p(b) ← not r(a).

The doubled program D(P) is given by:
t(a,a,b).
t(a,b,a).
p(X) ← t(X,Y,Z), not p'(Y), not p'(Z).
p(b) ← not r'(a).

t'(a,a,b).

15

3.3. EVALUATION FOR PROGRAMS WITH NEGATION

t'(a,b,a).
p'(X) ← t'(X,Y,Z), not p(Y), not p(Z).
p'(b) ← not r(a).

3.3.2 Evaluating Programs

Our goal in computing the well-founded model of a program is to determine two sets
of relations: T , representing the definitely true facts, andF , representing the definitely
false facts. Using the doubled program D(P) we compute negative information in a
complementary manner by deriving the complement of the definitely false facts (U).
The process incrementally computes the true facts and alternates with computing the
complement of false facts. This alternation follows a sequence T1,U2, T3, Intu-
itively, the tuples in the relations corresponding to unprimed predicates represent facts
that are considered definitely true. Conversely, the tuples in the relations correspond-
ing to primed predicates represent facts that are not definitely false, meaning they are
potentially true or undefined.

In order to achieve this, we need a slight modification to our ATOV algorithm, as
presented in the previous section. When dealingwith negative literals (not p(t1, . . . , tn)),
we aim to generate variable substitutions that make the literal false. Specifically, we
want every tuple (t′1, . . . , t′n) such that ti ∈ UP and (t′1, . . . , t′n) /∈ rel(p).

Algorithm 6: ATOV
Input : p(t1, . . . , tn): literal with terms t1, . . . , tn
Input : rel: Set of relations for both primed and unprimed predicates
Output:R: output relation

1 R← ∅;
2 scheme(R)← {Xi | Xi ∈ vars(p(t1, . . . , tn))};

3 Π←

{
rel(p), if p(t1, . . . , tn) is positive
Un
P \ rel(p), if p(t1, . . . , tn) is negative

if p is unprimed,

{
rel(p′), if p′(t1, . . . , tn) is positive
Un
P \ rel(p′), if p′(t1, . . . , tn) is negative

if p is primed.

4 foreach (µ1, . . . , µn) ∈ Π do
5 τ ← match(p(t1, . . . , tn), (µ1, . . . , µn));
6 R← R∪ {τ(Xi) | Xi ∈ scheme(R)};
7 end
8 returnR;

The EVAL process remains the same for each half-program, with the only differ-
ence being that we use this updated version of the ATOV algorithm to handle negation.
Additionally, we require relations for both the primed and unprimed predicates of the
program.

Before defining the Naive evaluation procedure, it is important to clarify an as-
sumption about primed literals. Primed literals are assumed to denote facts that are not
definitely false. Consequently, in the first iteration, every negated literal of a primed
predicate (¬p′(t1, . . . , tn)) will fail.

16

CHAPTER 3. EVALUATION OF FIRST-ORDER DATALOG PROGRAMS

This means that the initial computation of T (the set of definitely true facts) will
only consider rules that do not contain any negative literals involving primed predicates.

Algorithm 7: Naive Evaluation with Negation
Input : P: Program
Output: T : relations for definitely true facts
Output: U : relations for not definitely false facts

1 Punprimed , Pprimed ← D(P);
2 P− ← {r | rule in Punprimed that does not contain negative literals};
3 T ← {rel(p) = ∅ | ∀ predicate symbol p ∈ P};
4 U ← {rel(p′) = ∅ | ∀ predicate symbol p ∈ P};
5 T ← EVAL(P−, T ,U);
6 repeat
7 U ← EVAL(Pprimed, T ∪ U);
8 T ← EVAL(Punprimed, T ∪ U);
9 until T remains unchanged;
10 return T ,U

Example 3.5. We will now see in practice how the evaluation of the previous example
works. By applying the Naive evaluation procedure, we will demonstrate the computa-
tion of the well-founded model step by step, alternating between the original and primed
halves of the program.

For this example, we divide the program into the following three sub-programs:

• Punprimed
t(a, a, b).
t(a, b, a).
p(X) ← t(X, Y, Z), not p'(Y), not p'(Z).
p(b) ← not r'(a).

• Pprimed
t'(a, a, b).
t'(a, b, a).
p'(X) ← t'(X, Y, Z), not p(Y), not p(Z).
p'(b) ← not r(a).

• P−

t(a, a, b).
t(a, b, a).

Initially rel(p) = rel(t) = rel(r) = rel(p′) = rel(t′) = rel(r′) = ∅
After evaluating P−, the initial set of relations T is given by:

T = {rel(p), rel(r), rel(t)}.

Individual relations are as follows:

rel(p) = ∅, rel(r) = ∅, rel(t) = {(a, a, b), (a, b, a)}.

17

3.3. EVALUATION FOR PROGRAMS WITH NEGATION

Using the results of P− as the basis, we proceed with the evaluation of the primed
predicates (Pprimed) to compute their model. This results in:

U = {rel(t′) = {(a, a, b), (a, b, a)}, rel(p′) = {(a), (b)}}.

Next, using the updated primed relations, we recompute the model of the unprimed
predicates (Punprimed). This gives:

T = {rel(t) = {(a, a, b), (a, b, a)}, rel(p) = {(b)}, rel(r) = ∅}.

Finally, using the updated unprimed relations, we again compute the model of the
primed predicates. This produces:

U = {rel(t′) = {(a, a, b), (a, b, a)}, rel(p′) = {(b)}, rel(r′) = ∅}.

At this point, a fixpoint is reached, as no further changes occur in the relations.

The interpretation of the results after the stabilization of the two sets of relations, T
and U , is as follows:

Given a predicate p and a tuple (t1, . . . , tn):

1. If (t1, . . . , tn) ∈ rel(p), then p is true for (t1, . . . , tn).

2. If (t1, . . . , tn) /∈ rel(p) and (t1, . . . , tn) ∈ rel(p′), then p is undefined for
(t1, . . . , tn).

3. If (t1, . . . , tn) /∈ rel(p) and (t1, . . . , tn) /∈ rel(p′), then p is false for (t1, . . . , tn).

Here, (t1, . . . , tn) ∈ rel(p) is shorthand for the statement that the tuple (t1, . . . , tn)
matches (using the matching algorithm described earlier) with a tuple from rel(p).

This classification ensures a consistent interpretation of the well-founded seman-
tics, capturing the three possible truth values (true, false, undefined). Consistency here
means that for every predicate p in the program P , the relation rel(p′) is a superset of
rel(p), i.e., rel(p′) ⊇ rel(p).

18

CHAPTER4
EVALUATION OF SECOND-ORDER PROGRAMS

In the previous sections, we have explored the relational model in the context of first-
order logic, detailing how to define the model and compute it for both positive programs
and programs involving negation. In this chapter, we extend this framework to second-
order logic programs, adopting a similar structure to guide our exploration.

We begin by addressing the necessary changes to the relational model to accommo-
date higher-order constructs, such as relations that may contain. These changes form
the foundation for supporting the expressive power of second-order logic within the
relational model.

Next, we examine the evaluation of positive second-order programs. This involves
outlining the modifications required in the algorithms to handle the additional com-
plexity introduced by second-order constructs, while ensuring the evaluation remains
logically sound.

Finally, we turn our attention to programs with negation in the second-order set-
ting. Here, we adapt the techniques for handling negation in first-order programs to the
second-order case, accounting for the interactions between higher-order constructs and
negation. This section highlights the challenges and solutions involved in compuitng
well-founded semantics of second-order logic programs.

Through this progression, we aim to provide a comprehensive framework for un-
derstanding and evaluating second-order programs, building upon the principles es-
tablished for first-order logic while addressing the unique features and challenges of
second-order logic.

4.1 Relationalmodel for second-orderDatalog programs
To extend the relational model defined for first-order Datalog programs to second-
order Datalog programs, we need to accommodate the more complex types involved
in second-order predicates. These types introduce higher-order constructs that require
adjustments to the way relations are defined and represented.

Given a program P and a predicate p ∈ pred(P) with type (ρ1, . . . , ρn) → o, we
construct the corresponding relation rel(p) to align with the structure imposed by this
type. The key difference in the second-order setting lies in how we interpret and store
the arguments of predicates, based on their types:

19

4.1. RELATIONAL MODEL FOR SECOND-ORDER DATALOG PROGRAMS

• If ρi = ι : These arguments are handled in the same way as in the first-order case.
Their values are taken directly from UP , the domain of individuals. Each first-
order argument is represented as an atomic value, with no additional structure
required.

• If ρi = (ι1, . . . , ιn) → o, these arguments are handled as partial multi-valued
functions1:

f : UPn → {0, 1},

where f is a partial mapping from then-fold Cartesian productUPn to the Boolean
domain {0, 1}. In this representation, f(t1, . . . tn) = 1 indicates that the tuple
(t1, . . . tn) ∈ UPn is included in the set, while f(t1, . . . tn) = 0 indicates that
(t1, . . . tn) is excluded from the set. This representation is particularly useful be-
cause it can handle partial information, where some tuples may remain undefined
(not mapped to either 0 or 1). This method provides a structured and adaptable
way to interpret second-order arguments, ensuring that they are accurately rep-
resented as relations over individuals, consistent with the type of predicate.

Example 4.1. Consider a predicate p with the type (ι, (ι, ι)→ o)→ o. Here:

• The first argument of p, denoted as C1, is a first-order argument of type ι (indi-
vidual). Its values are taken directly from the domain UP .

• The second argument of p, denoted as C2, is a second-order argument of type
(ι, ι)→ o, which represents a binary relation over individuals. For example:

{(a, b)→ 1, (a, c)→ 0, (b, c)→ 1}.

This results in the following representation for rel(p):

C1 C2

a {(a, b)→ 1, (a, c)→ 0, (b, c)→ 1}
b {(a, c)→ 1, (b, a)→ 0}
c {(a, b)→ 0, (a, a)→ 0}

If we examine the first row of rel(p), we can interpret it as follows: the predicate p
is true for every (C1, C2) such that C1 = a, and C2 is a set of pairs that satisfies the
following conditions:

• (a, b) ∈ C2, (b, c) ∈ C2,

• (a, c) /∈ C2,

• Any other pair not explicitly mentioned can either be included or excluded in C2

without affecting the truth of p.

The same logic applies to every row of rel(p), where the values of C1 and the cor-
responding mappings in C2 determine the truth conditions for p.

1A multi-valued function f : A 7→ B is like a function from A to B except that there may by more than
one possible value f(x) for a given x ∈ A

20

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

4.2 Evaluation for positive programs

In this section, we demonstrate how to transition from first-order programs to second-
order programs by modifying existing algorithms and incorporating the extended re-
lational model. These adjustments enable the evaluation of positive programs while
inheriting the foundational principles of the first-order approach.

4.2.1 Pattern Matching

In the evaluation of first-order programs, matching is essential for determining the sub-
stitutions needed to satisfy literals. Although the process is relatively straightforward
when dealing with literals containing only first-order arguments, additional complexi-
ties arise when predicate constants are introduced into the argument tuples of literals.

To build on the foundational concepts discussed earlier, we now extend our analy-
sis to address cases where the argument tuples of literals may include predicates. This
includes both predicate constants and predicate variables, which require distinct ap-
proaches to ensure correct matching and correctness of the evaluation process.

When predicate constants appear as arguments in a literal, such as p(. . . , q, . . .),
modifications to the matching process are required. Specifically, we must define the
concept of "sets that match." This concept is based on the interpretation of sets stored
in the database, where the stored sets act as minimal representatives, including only the
necessary elements to describe the predicate.

Consider a literal p(. . . , q, . . .), where q occupies the i-th position in the argument
list. To match this literal with a tuple from rel(p), we examine the i-th component of
the tuple. In this case, the i-th position contains a set S of key-value pairs:

S = {(k1 → v1), (k2 → v2), . . . , (km → vm)},

where each kj represents a key and vj is the corresponding value. Since we examine
positive programs, the rules of the program can only deduce positive information and
thus vj = 1 for all j.

The set S represents the minimal mappings required for the predicate. For a match
to occur, the corresponding relation of the component in the argument tuple (rel(q) in
the example above) must be a superset of S in terms of sets of mappings. Formally, a
set S′ matches S if and only if:

S ⊆ S′,

where the subset relation is interpreted in terms of mappings. This means that for each
pair (kj → vj) ∈ S, the key kj must also exist in S′.

By enforcing this subset condition, the matching process ensures that the literal
respects the semantics of predicate constants and the information stored in the database.

21

4.2. EVALUATION FOR POSITIVE PROGRAMS

Algorithm 8: Second-Order Matching Algorithm
Input : p(t1, . . . , tn): predicate with arguments
Input : (µ1, . . . , µn): tuple ∈ rel(p)
Output: τ : substitution for variables, or ∅ if matching fails

1 τ ← {Xi : ϵ | Xi ∈ vars(p(t1, . . . , tn))};
2 for i← 1 to n do
3 if ti is a variable then
4 if τ [ti] = ϵ then
5 τ [ti]← µi;
6 else
7 if ti is a first-order variable and τ [ti] ̸= µi then
8 return ∅;
9 end
10 else if ti is a second-order variable then
11 τ [ti]← τ [ti] ∪ µi;
12 end
13 end
14 end
15 else if ti is a constant then
16 if ti is a data-object and ti ̸= µi then
17 return ∅;
18 else if ti is a predicate constant then
19 α← rel(ti);
20 µ1

i ← {k | k → 1 ∈ µi};
21 if µ1

i ̸⊆ α then
22 return ∅;
23 end
24 end
25 end
26 end
27 return τ ;

4.2.2 Generate Variable Substitutions in Literals
The ATOV (Argument-to-Variable) algorithm, first introduced in the previous chapter,
is a fundamental tool for constructing relations by associating argument tuples with
variable substitutions. While the original ATOV algorithm is sufficient for first-order
programs, it requires significant enhancements to handle the complexities of second-
order cases. Specifically, literals of the form R(t1, . . . , tn), where R is a predicate
variable, introduce challenges that cannot be addressed using the first-order approach
alone.

In the second-order case, the primary difference lies in how predicate variables are
processed. Predicate variables are no longer treated as fixed relations; instead, they
are interpreted as collections of mappings that define partial multi-valued functions.
These mappings allow the algorithm to systematically assign meanings to predicate
variables, capturing their role as dynamic higher-order constructs. This extension en-
ables the ATOV algorithm to handle the additional expressiveness of second-order logic
programs.

22

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

To enhance readability and understanding of the second-order ATOV process, we
explicitly distinguish between two scenarios:

• Constant predicates: For literals involving constant predicates, the ATOV algo-
rithm is largely identical to its first-order counterpart. The only difference is the
incorporation of the new pattern matching algorithm introduced in the previous
section. This updated matching mechanism ensures correctness while maintain-
ing the simplicity of the original approach.

• Predicate variables: For literals involving predicate variables, the ATOV al-
gorithm dynamically constructs relations by generating mappings based on the
possible values of the literal's terms. Each predicate variable is interpreted as a
collection of mappings representing partial multi-valued functions, enabling the
algorithm to handle second-order cases effectively.

Since the constant predicate case remains unchanged from the first-order ATOV
algorithm (apart from the updated pattern matching), we will focus on demonstrating
the predicate-variable case below.

Algorithm 9: Second-Order ATOV
Input : Literal L(t1, . . . , tn).
Output : RelationR
/* L can either be constant or variable predicate */

1 if L is a constant predicate then
2 return Constant-Predicate-ATOV(L(t1, . . . , tn), rel(L));
3 end
4 else if L is a predicate variable then
5 return Variable-Predicate-ATOV(L(t1, . . . , tn));
6 end

Algorithm 10: Variable-Predicate-ATOV
Input : Literal L(t1, . . . , tn).
Output : RelationR containing possible substitutions of L's variables

1 scheme(R)← {Xi | Xi ∈ vars(L(t1, . . . , tn))} ∪ {L};
2 foreach ti ∈ (t1, . . . , tn) do
3 Si ← {ti} if ti is constant else UP ;
4 end
5 CP ← S1 × · · · × Sn;
6 foreach (v1, . . . , vn) ∈ CP do
7 R← R∪ {v1, . . . , vn, (v1, . . . , vn)→ 1};
8 end
9 returnR;

Example 4.2. If we are examining the literal L(X,Y, a), where L is a predicate vari-
able, and the universe UP = {a, b, c}, the produced relationR will look like this:

23

4.2. EVALUATION FOR POSITIVE PROGRAMS

X Y L

a a {(a, a, a)→ 1}
a b {(a, b, a)→ 1}
a c {(a, c, a)→ 1}
b a {(b, a, a)→ 1}
b b {(b, b, a)→ 1}
b c {(b, c, a)→ 1}
c a {(c, a, a)→ 1}
c b {(c, b, a)→ 1}
c c {(c, c, a)→ 1}

Table 4.1: RelationR for the literal L(X,Y, a)

4.2.3 Combining Relations

As described earlier, in first-order programs, the body of a rule typically consists of
multiple conjunctive literals. Ensuring that the entire body is satisfied involves finding
variable substitutions under which all literals in the body are simultaneously satisfied.
This is achieved using the natural join operation, which combines the relations corre-
sponding to the literals in the body of the rule.

In the case of second-order programs, the logic for combining first-order variables
remains the same: the natural join operation is used to handle them. However, for
predicate variables (variables of type π), a different approach is necessary. These vari-
ables are treated not as simple placeholders for specific relations but as collections of
characteristics describing a predicate. Instead of applying the natural join operation,
we perform a union over the representative sets stored as values in the literal relation
attributes of these variables. This captures all possible collections of characteristics as-
sociated with the predicate variable in the context of the body of a rule, ensuring that
all combinations required to satisfy the literals in the rule's body are represented.

Given two relations R1 and R2, we describe a systematic method for computing
the combined relation CR, which integrates both first-order and second-order attributes.
We begin by examining the columns of R1 and R2. If a column C with second-order
attributes appears in both relations, it is renamed as CR1

in R1 and CR2
in R2 to

prevent name conflicts. This renaming ensures that second-order attributes from both
relations remain distinct in subsequent operations. Next, we perform a natural join on
R1 and R2, focusing exclusively on the first-order columns. This operation retains
only rows with matching values in the first-order columns of both relations. The re-
sulting relation includes all first-order columns used in the join as well as the renamed
second-order columns CR1

and CR2
, preserving their distinct attributes. Once the nat-

ural join is complete, we process the second-order columns as follows: For each row
in the resulting relation, consider the second-order columns CR1

and CR2
. Compute

the union of the representative sets stored in CR1
and CR2

for that row, formally de-
fined as C = CR1 ∪ CR2 . Replace CR1 and CR2 with the unified column C in the
combined relation. The resulting relation CR includes first-order attributes obtained
from the natural join and unified second-order attributes C, representing the union of
second-order attributes fromR1 andR2. This algorithm ensures that the combined re-
lation accurately reflects both the shared first-order relationships and the complete set
of second-order characteristics from the input relations.

24

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

Algorithm 11: Combine Relations
Input : RelationR1

Input : RelationR2

Output: Combined relation CR
/* Let F and S be the columns that have first and

second-order attributes respectively */
1 foreach C ∈ (S ∩ scheme(R1) ∩ scheme(R2)) do
2 Rename C into CR1 inR1;
3 Rename C into CR2 inR2;
4 end
5 CR ← R1 ▷◁ R2;

6 foreach row r ∈ CR do
7 r′ ← r;
8 foreach C ∈ (S ∩ scheme(R1) ∩ scheme(R2)) do
9 cs← r[CR1

] ∪ r[CR2
];

10 r′[C]← cs;
11 end
12 Replace r with r′ in CR;
13 end
14 foreach C ∈ (S ∩ scheme(R1) ∩ scheme(R2)) do
15 Drop from CR columns CR1

and CR2
;

16 end
17 return CR;

Example 4.3. Consider two relationsR and Q as they are defined here:

L X Y

{(a, b)→ 1} a b
{(b, c)→ 1} b c
{(a, c)→ 1} a c

Table 4.2: RelationR

L X Z

{(a, a)→ 1} a a
{(b, b)→ 1} a b
{(c, c)→ 1} a c

Table 4.3: Relation Q

Column L inR and Q will be renamed to LR and and LQ respectively.

X Y Z LR LQ

a b a {(a, b)→ 1} {(a, a)→ 1}
a c c {(a, c)→ 1} {(c, c)→ 1}

Table 4.4: Relation CR after performing natural join in first-order attributes

4.2.4 Adapting VTOA and EVAL Algorithms
TheVTOA (Variable-to-Argument) andEVAL operations remain fundamentally the same
as in the first-order case, serving their roles in applying substitutions and computing the

25

4.2. EVALUATION FOR POSITIVE PROGRAMS

X Y Z L

a b a {(a, b)→ 1, (a, a)→ 1}
a c c {(a, c)→ 1, (c, c)→ 1}

Table 4.5: Relation CR after performing union in second-order attributes

immediate consequence operator. In the second-order context, these operations rely on
the updated algorithms for ATOV, matching, and combining relations to ensure the cor-
rect handling of second-order programs.

We will now present an example to illustrate the evaluation process in the second-
order context.

Example 4.4. Consider the following program P and UP = {a, b, c}.

start(a).
reach(G,Y)← G(Y, Z), start(Y).
reach(G,Y) ← G(X, Y), reach(G, X).

For the first rule, we have the following:

G Y Z

{(a, a)→ 1} a a
{(a, b)→ 1} a b
{(a, c)→ 1} a c
.
{(c, b)→ 1} c b
{(c, c)→ 1} c c

Table 4.6: Relation for G(Y, Z)

Y

a

Table 4.7: Relation for start(Y)

Combining these two relations, we get the following tuples for rel(reach):

C1 C2

{(a, a)→ 1} a
{(a, b)→ 1} a
{(a, c)→ 1} a

Table 4.8: rel(reach)

When evaluating the second rule we will have the following:

26

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

G X

{(a, a)→ 1} a
{(a, b)→ 1} a
{(a, c)→ 1} a

Table 4.9: Relation for reach(G,X)

G X Y

{(a, a)→ 1} a a
{(a, b)→ 1} a b
{(a, c)→ 1} a c
.
{(c, b)→ 1} c b
{(c, c)→ 1} c c

Table 4.10: Relation for G(X,Y)

After combining the relations we get the following for the body of second rule:

C1 C2

{(a, a)→ 1} a
{(a, b)→ 1} a
{(a, c)→ 1} a
{(a, a)→ 1, (a, b)→ 1} b
{(a, a)→ 1, (a, c)→ 1} c
{(a, b)→ 1, (a, a)→ 1} a
{(a, b)→ 1, (a, c)→ 1} c
{(a, c)→ 1, (a, a)→ 1} a

Table 4.11: rel(reach)

The bottom-up evaluation aims to construct all possible binary relations that in-
clude at least one tuple where the first element is a. This example represents a variation
of the closure predicate, which defines reachability from point "a" in a graph, with the
graph being represented as a relation of its edges.

27

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

4.3 Evaluation for programs with negation
The evaluation of second-order programs with negation introduces additional complex-
ity due to the presence of negative literals such as not p(R) or not R(X,Y). These
constructs require extending the existing algorithms for positive programs to accommo-
date negated predicate variables and their interactions within the framework of second-
order logic.

To compute the well-founded model of second-order programs with negation, we
must extend two key areas:

• Adapting algorithms for well-founded semantics of first-order programs:
The existing algorithms must be adapted to handle second-order constructs. This
involves managing predicate variables within negated literals to ensure consis-
tency when extending the semantics to higher-order predicates.

• Generalizing algorithms for positive second-order programs: The evaluation
of positive programs typically involves operations such as unions and joins. In-
corporating negation requires additional steps to compute complementary sets
and address undefined values. These generalizations ensure an accurate repre-
sentation of the well-founded model, particularly when handling negated literals
and second-order predicate variables.

The following examples illustrate the expressiveness of second-order programswith
negation:

Example 4.5. This program states that P is a subset of Q if there does not exist an X
for which P (X) is true while Q(X) is false.

non_subset(P,Q) ← P(X), not Q(X).
subset(P,Q) ← not non_subset(P,Q).

Example 4.6. This program defines p as true for every R such that a ∈ R, b ∈ R, and
c /∈ R. Similarly, q is true for every R for which p is false.

p(R) ← R(a), R(b), not R(c).
q(R) ← not p(R).

These examples highlight the need for algorithms capable of handling negation
in second-order constructs. Building on the foundational algorithms for positive pro-
grams, we extend key processes such as ATOV, matching, and combining relations to
interpret negative literals consistently and compute the well-founded model. The fol-
lowing sections will describe these adaptations in detail.

4.3.1 Double Program
We will again adopt the double program transformation introduced earlier in order to
evaluate two different sets of relations (T and U) denoting the definitely true and the
non-definitely false facts, respectively. No changes are needed to the transformation
itself for its application to second-order programs.

Example 4.7. Consider the following program P
q(a).
p(R) ← R(b), not q(X), not R(c).
k(R) ← R(d), not p(R).
l(a) ← k(q).

28

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

The doubled program D(P) is given by:
q(a).
p(R) ← R(b), not q'(X), not R(c).
k(R) ← R(d), not p'(R).
l(a) ← k(q).

q'(a).
p'(R) ← R(b), not q(X), not R(c).
k'(R) ← R(d), not p(R).
l'(a) ← k'(q).

4.3.2 Pattern Matching in Second-Order Programs
Pattern matching in second-order programs with negation extends the principles used
in positive programs but introduces additional considerations for primed and unprimed
literals. Specifically, when dealing with literals of the form p(. . . , q, . . .), where q is a
predicate symbol in the argument list, the matching process must respect the semantics
of second-order constructs.

Given a literal p(. . . , q, . . .), where q appears at the i-th position, the corresponding
component in a tuple from rel(p) is represented as a set of key-value pairs:

S = {(k1 → v1), (k2 → v2), . . . , (km → vm)},

where kj represents a key, and vj is the associated value (0 or 1). The interpretation of
these key-value pairs depends on whether the literal p is primed or unprimed. For un-
primed literals, the relation rel(p) captures the definitely true facts for p. A successful
match occurs if the following conditions hold for the i-th component S:

1. If vi = 1, then ki ∈ rel(q), ensuring q is true for ki.
2. If vi = 0, then ki /∈ rel(q′), ensuring q is false for ki.

These conditions ensure consistency between the second-order argument q and the
logical interpretation of the literal p.

Example 4.8. Consider the literal p(q) and a tuple τ = ({(a) → 1, (b) → 1, (c) →
0}) from rel(p). Suppose the relations for q and q′ are:

rel(q) = {a, b, c}, rel(q′) = {a, b, c, d}.

We evaluate the conditions for each key-value pair in τ :

• For (a)→ 1: Since a ∈ rel(q), this condition is satisfied, as q is definitely true
for a.

• For (b)→ 1: Similarly, b ∈ rel(q), so this condition is also satisfied.

• For (c) → 0: Here, c must not be in rel(q′), as q must be definitely false for c.
However, c ∈ rel(q′), violating the condition.

Since c ∈ rel(q′) contradicts the requirement that q be definitely false for c, the
matching fails.

29

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

Primed literals relax the conditions used for unprimed literals, as they capture facts
that make the predicate either true or undefined. The matching rules for in this case are
as follows:

1. If vi = 1, then q must be at least undefined for ki.
This means ki must either belong to rel(q) (indicating q is true for ki)
or belong to rel(q′) \ rel(q) (indicating q is undefined for ki).

2. If vi = 0, then q must be at most undefined for ki.
This means ki must not belong to rel(q′) (ensuring q is false for ki)
or belong to rel(q′) \ rel(q) (indicating q is undefined for ki).

These conditions broaden the scope of matching to include undefined facts, reflect-
ing the semantics of primed relations in the well-founded model.

Example 4.9. Consider the primed literal p′(q) and a tuple τ = ({(a) → 1, (b) →
1, (c)→ 0}) from rel(p′). Suppose the relations for q and q′ are:

rel(q) = {a, b}, rel(q′) = {a, b, c}.

We evaluate the conditions for each key-value pair in τ :

• For (a)→ 1: Since a ∈ rel(q), this condition is satisfied, as q is definitely true
for a.

• For (b)→ 1: Similarly, b ∈ rel(q), so this condition is satisfied.

• For (c)→ 0: Here, c ∈ rel(q′) and c /∈ rel(q), satisfying the condition that q is
undefined for c.

Since all conditions are satisfied, τ successfully matches p′(q).

By distinguishing between primed and unprimed literals, the pattern-matching pro-
cess accommodates the nuances of second-order programs with negation, ensuring ac-
curate evaluation in the well-founded model.These conditions form the foundation for
matching literals in the second-order case, ensuring that the semantics of primed and
unprimed literals are respected. The complete algorithm for pattern matching, incorpo-
rating these rules, is presented below.

30

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

Algorithm 12: Second-Order Matching Algorithm
Input : p(t1, . . . , tn): predicate with arguments
Input : (µ1, . . . , µn): tuple ∈ rel(p)
Output: τ : substitution for variables, or ∅ if matching fails

1 τ ← {Xi : ϵ | Xi ∈ vars(p(t1, . . . , tn))};
2 for i← 1 to n do
3 if ti is a variable then
4 if τ [ti] = ϵ then
5 τ [ti]← µi;
6 else
7 if ti is a first-order variable and τ [ti] ̸= µi then
8 return ∅;
9 end
10 else if ti is a second-order variable then
11 τ [ti]← τ [ti] ∪ µi;
12 end
13 end
14 end
15 else if ti is a constant then
16 if ti is a data-object and ti ̸= µi then
17 return ∅;
18 else if ti is a predicate constant then
19 αT ← rel(ti);
20 αU ← rel(t′i);
21 µ1

i ← {k | k → 1 ∈ µi};
22 µ0

i ← {k | k → 0 ∈ µi};
23 if µ1

i ∩ µ0
i ̸= ∅ then

24 return ∅;
25 end
26 if p is unprimed then
27 if µ1

i ̸⊆ aT then
28 return ∅;
29 end
30 if µ0

i ∩ aU ̸= ∅ then
31 return ∅;
32 end
33 end
34 else if p is primed then
35 if µ1

i ̸⊆ aU then
36 return ∅;
37 end
38 if µ0

i ∩ aU ̸= ∅ ∧ µ0
i ∩ (aU \ aT) ̸= ∅ then

39 return ∅;
40 end
41 end
42 end
43 end
44 end
45 return τ ;

31

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

4.3.3 Propagating Variable Substitutions to Head Arguments
The process of generating a relation where the attributes correspond to the variables in a
literal's arguments must be modified to account for negation in second-order programs.
As before, we distinguish between cases involving constant predicates and predicate
variables in the ATOV operation.

For predicate variables, the handling of positive literals remains unchanged from
the positive program case. Specifically, for a positive literalR(t1, . . . , tn), the resulting
relation is constructed by considering all possible mappings that assign truth values to
the literal's terms based on the current database state.

For negative literals of the form not R(t1, . . . , tn), the interpretation differs. Here,
the relation represents every possible value of the literal's terms (µ1, . . . , µn) that are
not present in R. Formally, this is expressed as:

(µ1, . . . , µn)→ 0,

indicating that the tuple (µ1, . . . , µn) is explicitly excluded from R, thereby satisfying
the negation condition. More formally:

Algorithm 13: Variable-Predicate-ATOV
Input : Literal L(t1, . . . , tn).
Output : RelationR containing possible substitutions of L's variables

1 scheme(R)← {Xi | Xi ∈ vars(L(t1, . . . , tn))} ∪ {L};
2 foreach ti ∈ (t1, . . . tn) do
3 Si ← {ti} if ti is constant else UP ;
4 end
5 CP ← S1 × · · · × Sn;
6 foreach (v1, . . . , vn) ∈ CP do
7 if L is a positive literal then
8 R← R∪ {v1, . . . , vn, (v1, . . . , vn)→ 1};
9 end
10 else if L is a negative literal then
11 R← R∪ {v1, . . . , vn, (v1, . . . , vn)→ 0};
12 end
13 end
14 returnR;

Example 4.10. If we are examining the literal not L(X,Y, a), where L is a predicate
variable, and the universe UP = {a, b, c}, the produced relationR will look like this:

32

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

X Y L

a a {(a, a, a)→ 0}
a b {(a, b, a)→ 0}
a c {(a, c, a)→ 0}
b a {(b, a, a)→ 0}
b b {(b, b, a)→ 0}
b c {(b, c, a)→ 0}
c a {(c, a, a)→ 0}
c b {(c, b, a)→ 0}
c c {(c, c, a)→ 0}

Table 4.12: RelationR for the literal not L(X,Y, a)

4.3.4 Complement of a Relation in the Second-Order Case
Before introducing the final algorithm for handling constant-predicate ATOV, it is cru-
cial to formalize the computation of the complement of a relationR. This step is essen-
tial when determining substitutions for variables in negative literals (not p(t1, . . . , tn)).

In the first-order case, computing the complement was straightforward: given UPn,
the Cartesian product of the domain, we subtracted all possible substitutions for (t1, . . . , tn)
that appear in R. However, in the second-order case, this approach is insufficient be-
causeR includes sets of mappings, which must also be handled.

Let S = {k1 → v1, k2 → v2, . . . , kn → vn} be a set of mappings, where vi ∈
{0, 1} for all i. Define the complement of S as the set of all mappings where at least
one value vi is flipped.

For any subset I ⊆ {1, 2, . . . , n}, let SI be the set of mappings obtained by flipping
the values vi for all i ∈ I . Formally:

SI = {k1 → v′1, k2 → v′2, . . . , kn → v′n},

where

v′i =

{
1− vi if i ∈ I,

vi if i /∈ I.

The set of all possible mappings T such that at least one value vi is flipped is given
by:

S′ =
⋃

I⊆{1,2,...,n}
I ̸=∅

SI .

Here:

• I ⊆ {1, 2, . . . , n} is a subset of indices that determines which values vi are
flipped.

• The condition I ̸= ∅ ensures that at least one value is flipped.

• For any subset I , the flipping operation is defined element-wise, preserving the
values of vi for i /∈ I .

Thus, S′ represents the complement of S, capturing all configurations where at least
one value vi differs from the original set of mappings.

33

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

Example 4.11. If S = {a→ 1, b→ 0, c→ 1}, then F would include:

• Flipping one value:

{a→ 0, b→ 0, c→ 1}, {a→ 1, b→ 1, c→ 1}, {a→ 1, b→ 0, c→ 0}.

• Flipping two values:

{a→ 0, b→ 1, c→ 1}, {a→ 0, b→ 0, c→ 0}, {a→ 1, b→ 1, c→ 0}.

• Flipping all three values:

{a→ 0, b→ 1, c→ 0}.

This generalization ensures that we can handle second-order constructs where the
complement operation must accurately account for configurations that differ from the
original by flipping values. This framework is essential for processing substitutions in
negative literals in the context of second-order programs.

Now that we have defined how to compute the complement of a relation, we can
utilize this framework to process rows in a relation R. In the relation R, each row
represents a conjunction of conditions that must hold.

For instance, consider a predicate p(X1, X2, X3) with arity 3. A row inR, such as
(a, b, {a→ 1, b→ 1}), implies the condition:

X1 = a ∧X2 = b ∧X3 = {a→ 1, b→ 1}.

If R contains multiple rows, these rows indicate a disjunction of the conditions they
represent. For example, two rows:

(a, b, {a→ 1, b→ 1}) and (a, c, {a→ 1}),

collectively represent the condition:

(X1 = a∧X2 = b∧X3 = {a→ 1, b→ 1})∨ (X1 = a∧X2 = c∧X3 = {a→ 1}).

Satisfying either row is sufficient to satisfy the overall condition for p(X1, X2, X3).
To compute the complementary relation R′, we negate the disjunction represented

by the rows inR. This negation transforms the condition into a conjunction of negated
rows. Using the example above, the negation would be:

¬((X1 = a∧X2 = b∧X3 = {a→ 1, b→ 1})∨(X1 = a∧X2 = c∧X3 = {a→ 1})).

Applying De Morgan’s laws, this expands to:

(X1 ̸= a∨X2 ̸= b∨X3 ≠ {a→ 1, b→ 1})∧ (X1 ≠ a∨X2 ̸= c∨X3 ̸= {a→ 1}).

The resulting conjunction of negated rows represents the complementary relation
R′. To compute R′ in practice, we iterate through each row of R, negate the corre-
sponding conditions, and thenmerge the results using theCombine Relations algorithm.
This process ensures thatR′ correctly captures all configurations that do not satisfy the
original relationR.

34

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

Example 4.12. Given the relationR as it is described above:

X1 X2 X3

a b {a→ 1, b→ 1}
a c {a→ 1}

Table 4.13: R

To construct the complementary relation R′, we identify all configurations that do
not satisfy the original relation R. This involves negating the conditions in each row
ofR. The complement captures all possible assignments forX1,X2, andX3 where at
least one value or mapping does not match the original table. Specifically:

• ForX1 andX2, any value from the Herbrand universe UP = {a, b, c} that differs
from the given rows ofR will appear inR′.

• For X3, any modification to the set of key-value mappings {a → 1, b → 1} or
{a→ 1}, such as flipping one or more values between 0 and 1, will be included.

X1 X2 X3

b b {a→ 0, b→ 1}
b b {a→ 1, b→ 0}
b b {a→ 0, b→ 0}
b c {a→ 0, b→ 1}
b c {a→ 1, b→ 0}
b c {a→ 0, b→ 0}
c b {a→ 0, b→ 1}
c b {a→ 1, b→ 0}
c b {a→ 0, b→ 0}
c c {a→ 0, b→ 1}
c c {a→ 1, b→ 0}
c c {a→ 0, b→ 0}
b a {a→ 0}
c a {a→ 0}

Table 4.14: Complementary RelationR′

This complementary relation includes all possible configurations that are not cov-
ered by R. For example, the row (b, b, {a → 0, b → 1}) indicates a scenario where
X1 = b,X2 = b, andX3 includes a flipped mapping of a→ 0 compared to the original
row inR.

The complementR′ ensures that all tuples violating any condition ofR are explic-
itly represented. This comprehensive representation is essential for reasoning about
negative literals and identifying substitutions in second-order programs.

35

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

Algorithm 14: Compute Complementary Relation
Input : RelationR
Input : Herbrand universe UP
Output: Complementary relationR′

1 R′ ← ∅;
2 scheme(R′)← scheme(R);
3 foreach row r inR do
4 foreach Xi ∈ scheme(R) do
5 if Xi is a first-order column then
6 CVXi ← UP \ {r[Xi]};
7 end
8 else if Xi is a second-order column then
9 foreach S ⊆ r[Xi] ∧ S ̸= ∅ do
10 S′ ← {(key → 1− val) | (key → val) ∈ S};
11 CVXi ← CVXi ∪ S′;
12 end
13 end
14 end
15 IR ←Xi∈scheme(R) (CVXi

);
16 R′ ← Combine_Relations(R′, IR) ;
17 end
18 returnR′;

With all the necessary concepts clarified, including handling negation, computing
complementary relations, and managing sets of mappings, we are now ready to present
the complete and final version of the constant-predicate ATOV algorithm. This ver-
sion integrates these considerations to ensure accurate evaluation of literals involving
constant predicates in second-order programs.

Algorithm 15: Constant-Predicate ATOV
Input : p(t1, . . . , tn): literal with terms t1, . . . , tn
Input : rel: Set of relations for both primed and unprimed predicates
Input : Herbrand universe UP
Output:R: output relation

1 R← ∅;
2 scheme(R)← {Xi | Xi ∈ vars(p(t1, . . . , tn))};
3 foreach (µ1, . . . , µn) ∈ rel(p) do
4 τ ← match(p(t1, . . . , tn), (µ1, . . . , µn));
5 R← R∪ {τ(Xi) | Xi ∈ scheme(R)};
6 end
7 if p is positive literal then
8 returnR;
9 end
10 else if p is negative literal then
11 return compute_complementary_relation(R,UP);
12 end

36

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

4.3.5 Combining Relations
The Combine Relations method remains unchanged from its use in evaluating positive
programs. However, in the second-order case, a key distinction arises: a second-order
argument R can associate the same key (t1, . . . , tn) with both 0 and 1. While this may
initially appear contradictory, it is a deliberate mechanism to represent relations that
either cannot be matched against any other relation or can be matched against every
possible relation. This duality provides a flexible and expressive framework for cap-
turing various logical scenarios within the evaluation process.

For instance, the framework can represent relations that are inherently contradictory
and cannot exist in any concrete evaluation. Simultaneously, it can also express rela-
tions that match every other relation, providing a way to generalize evaluation across
all possible configurations.

Example 4.13. Consider the following program P:
p(R) ← R(a), not R(a).
q(R) ← not p(R).

In this example, the evaluation produces:

rel(p) = { {(a)→ 1, (a)→ 0} }.

This means that p is true for every relation R that simultaneously includes a and does
not include a. Such a relation R cannot exist, as the conditions are logically contra-
dictory.

On the other hand, for q, we have:

rel(q) = {{(a)→ 1}, {(a)→ 0}}.

This means that q is true for every relation R that either includes a or does not include
a. Clearly, every relation satisfies this condition, as any relation must either contain or
exclude a. This representation provides a formal way to express all possible relations.

4.3.6 Adapting VTOA and EVAL Algorithms
The VTOA (Variable-To-Arguments) and EVAL algorithms remain fundamentally un-
changed from their counterparts in the first-order case with negation. These algorithms
continue to serve their respective roles in generating new tuples for the head predicates
and iteratively updating the relations of the program.

The key distinction in the second-order case lies in the use of the modified versions
of thematching and ATOV algorithms. These adaptations, as discussed earlier, account
for the unique characteristics of second-order constructs, such as predicate variables,
key-value mappings, and their interactions in both primed and unprimed contexts.

By leveraging these modified components, the VTOA and EVAL algorithms inte-
grate seamlessly into the evaluation process, ensuring that the semantics of second-
order programs with negation are accurately captured while maintaining the structural
simplicity of the first-order framework.

37

4.3. EVALUATION FOR PROGRAMS WITH NEGATION

38

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

4.4 Example Evaluations
Let us consider the following program P , which defines the subset relation:
1 non_subset(P, Q) ← P(X), not Q(X).
2 subset(P, Q) ← not non_subset(P, Q).

This program specifies that P is a subset of Q if it is not the case that there exists
anX for which P (X) is true while Q(X) is false. In other words, P ⊆ Q holds when
all elements satisfying P (X) also satisfy Q(X).

To demonstrate the evaluation of this program, we assume that the domain UP of
P is {a, b, c}.

The double program for P , which separates unprimed and primed predicates, is as
follows:

1 non_subset(P, Q) ← P(X), not Q(X).
2 subset(P, Q) ← not non_subset'(P, Q).

1 non_subset'(P, Q) ← P(X), not Q(X).
2 subset'(P, Q) ← not non_subset(P, Q).

We start the evaluation with both T and U as empty for every predicate symbol.

non_subset subset
∅ ∅

T

non_subset' subset
∅ ∅

U

We begin the evaluation process by computing the model for Punprimed

39

4.4. EXAMPLE EVALUATIONS

For rule (1) of the program
non_subset(P,Q) ← P(X), not Q(X).

we will get the following

P X
{a→ 1} a
{b→ 1} b
{c→ 1} c

after evaluating P(X)

Q X
{a→ 0} a
{b→ 0} b
{c→ 0} c

after evaluating not Q(X)

By combining the information from both relations, we arrive at the combined rela-
tion presented here:

P Q X
{a→ 1} {a→ 0} a
{b→ 1} {b→ 0} b
{c→ 1} {c→ 0} c

after evaluating body of rule (1)

Regarding the second rule for the subset predicate, since rel(non_subset′) = ∅,
the get_false_combinations algorithm will also return an empty relation. Conse-
quently, no new tuples will be produced for the corresponding relation. As a result, T
is as follows:

So T is the following:

non_subset subset
({a→ 1} , {a→ 0}) ∅
({b→ 1} , {b→ 0})
({c→ 1} , {c→ 0})

T

As the next step, we are going to compute model U foPunprimed. The first rule
regarding non_subset predicate will be evaluated in the exact same way as in the
evaluation of Punprimed. Therefore, we will only examine how the second rule will be
evaluated.

subset'(P,Q) ← not non_subset(P,Q).

From previous computation of T we have the following for non_subset

P Q
{a→ 1} {a→ 0}
{b→ 1} {b→ 0}
{c→ 1} {c→ 0}

Intuitively, the relation rel(non_subset) contains every pair (P,Q) such that:

(P (a) = 1 ∧Q(a) = 0) ∨ (P (b) = 1 ∧Q(b) = 0) ∨ (P (c) = 1 ∧Q(c) = 0)

40

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

To compute the complement of this relation, we apply DeMorgan's law to the equa-
tion above. This gives us:

¬ ((P (a) = 1 ∧Q(a) = 0) ∨ (P (b) = 1 ∧Q(b) = 0) ∨ (P (c) = 1 ∧Q(c) = 0)) ,

which simplifies to:

(P (a) ̸= 1 ∨Q(a) ̸= 0) ∧ (P (b) ̸= 1 ∨Q(b) ̸= 0) ∧ (P (c) ̸= 1 ∨Q(c) ̸= 0).

This expression defines the conditions for pairs (P,Q) that are *not* in the corre-
sponding relation for non_subset, effectively giving us its complement.

We will evaluate each part of the conjunction individually and then combine them
using the previously definedCombine Relations algorithm. This process will yield the
final result for the complement by conjuncting each evaluated component.

P Q
{a→ 0} {a→ 1}
{a→ 0} {a→ 0}
{a→ 1} {a→ 1}

P (a) ̸= 1 ∨Q(a) ̸= 0

P Q
{b→ 0} {b→ 1}
{b→ 0} {b→ 0}
{b→ 1} {b→ 1}

P (b) ̸= 1 ∨Q(b) ̸= 0

P Q
{c→ 0} {c→ 1}
{c→ 0} {c→ 0}
{c→ 1} {c→ 1}

P (c) ̸= 1 ∨Q(c) ̸= 0

41

4.4. EXAMPLE EVALUATIONS

After combining the intermediate relations the result will be the following:

P Q
{a→ 0, b→ 0, c→ 0} {a→ 0, b→ 0, c→ 0}
{a→ 0, b→ 0, c→ 0} {a→ 1, b→ 0, c→ 0}
{a→ 0, b→ 0, c→ 0} {a→ 0, b→ 1, c→ 0}
{a→ 0, b→ 0, c→ 0} {a→ 0, b→ 0, c→ 1}
{a→ 0, b→ 0, c→ 0} {a→ 1, b→ 1, c→ 0}
{a→ 0, b→ 0, c→ 0} {a→ 1, b→ 0, c→ 1}
{a→ 0, b→ 0, c→ 0} {a→ 0, b→ 1, c→ 1}
{a→ 0, b→ 0, c→ 0} {a→ 1, b→ 1, c→ 1}
{a→ 1, b→ 0, c→ 0} {a→ 1, b→ 0, c→ 0}
{a→ 1, b→ 0, c→ 0} {a→ 1, b→ 1, c→ 0}
{a→ 1, b→ 0, c→ 0} {a→ 1, b→ 0, c→ 1}
{a→ 1, b→ 0, c→ 0} {a→ 1, b→ 1, c→ 1}
{a→ 0, b→ 1, c→ 0} {a→ 0, b→ 1, c→ 0}
{a→ 0, b→ 1, c→ 0} {a→ 1, b→ 1, c→ 0}
{a→ 0, b→ 1, c→ 0} {a→ 0, b→ 1, c→ 1}
{a→ 0, b→ 1, c→ 0} {a→ 1, b→ 1, c→ 1}
{a→ 0, b→ 0, c→ 1} {a→ 0, b→ 0, c→ 1}
{a→ 0, b→ 0, c→ 1} {a→ 1, b→ 0, c→ 1}
{a→ 0, b→ 0, c→ 1} {a→ 0, b→ 1, c→ 1}
{a→ 0, b→ 0, c→ 1} {a→ 1, b→ 1, c→ 1}
{a→ 1, b→ 1, c→ 0} {a→ 1, b→ 1, c→ 0}
{a→ 1, b→ 1, c→ 0} {a→ 1, b→ 1, c→ 1}
{a→ 1, b→ 0, c→ 1} {a→ 1, b→ 0, c→ 1}
{a→ 1, b→ 0, c→ 1} {a→ 1, b→ 1, c→ 1}
{a→ 0, b→ 1, c→ 1} {a→ 0, b→ 1, c→ 1}
{a→ 0, b→ 1, c→ 1} {a→ 1, b→ 1, c→ 1}
{a→ 1, b→ 1, c→ 1} {a→ 1, b→ 1, c→ 1}

This is how U will look like:

42

CHAPTER 4. EVALUATION OF SECOND-ORDER PROGRAMS

subset non_subset
({a→ 0, b→ 0, c→ 0} , {a→ 1, b→ 0, c→ 0}) ({a→ 1} , {a→ 0})
({a→ 0, b→ 0, c→ 0} , {a→ 0, b→ 1, c→ 0}) ({b→ 1} , {b→ 0})
({a→ 0, b→ 0, c→ 0} , {a→ 0, b→ 0, c→ 1}) ({c→ 1} , {c→ 0})
({a→ 0, b→ 0, c→ 0} , {a→ 1, b→ 1, c→ 0})
({a→ 0, b→ 0, c→ 0} , {a→ 1, b→ 0, c→ 1})
({a→ 0, b→ 0, c→ 0} , {a→ 0, b→ 1, c→ 1})
({a→ 0, b→ 0, c→ 0} , {a→ 0, b→ 0, c→ 0})
({a→ 1, b→ 0, c→ 0} , {a→ 1, b→ 0, c→ 0})
({a→ 1, b→ 0, c→ 0} , {a→ 1, b→ 1, c→ 0})
({a→ 1, b→ 0, c→ 0} , {a→ 1, b→ 0, c→ 1})
({a→ 1, b→ 0, c→ 0} , {a→ 1, b→ 1, c→ 1})
({a→ 0, b→ 1, c→ 0} , {a→ 0, b→ 1, c→ 0})
({a→ 0, b→ 1, c→ 0} , {a→ 1, b→ 1, c→ 0})
({a→ 0, b→ 1, c→ 0} , {a→ 0, b→ 1, c→ 1})
({a→ 0, b→ 1, c→ 0} , {a→ 1, b→ 1, c→ 1})
({a→ 0, b→ 0, c→ 1} , {a→ 0, b→ 0, c→ 1})
({a→ 0, b→ 0, c→ 1} , {a→ 1, b→ 0, c→ 1})
({a→ 0, b→ 0, c→ 1} , {a→ 0, b→ 1, c→ 1})
({a→ 0, b→ 0, c→ 1} , {a→ 1, b→ 1, c→ 1})
({a→ 1, b→ 1, c→ 0} , {a→ 1, b→ 1, c→ 0})
({a→ 1, b→ 1, c→ 0} , {a→ 1, b→ 1, c→ 1})
({a→ 1, b→ 0, c→ 1} , {a→ 1, b→ 0, c→ 1})
({a→ 1, b→ 0, c→ 1} , {a→ 1, b→ 1, c→ 1})
({a→ 0, b→ 1, c→ 1} , {a→ 0, b→ 1, c→ 1})
({a→ 0, b→ 1, c→ 1} , {a→ 1, b→ 1, c→ 1})
({a→ 1, b→ 1, c→ 1} , {a→ 1, b→ 1, c→ 1})

U

The subsequent computation for T produces the same results as the computation
for U that we have just detailed, and is therefore omitted here. From the table above,
we can observe that our evaluation process has successfully identified all pairs P,Q
such that P ⊆ Q. At the same time we can see that rel(non_subset) will captures the
fact that P can't be subset of Q if there exists an X such that X ∈ P ∧X /∈ Q

If we consider a predicate pwhich is true for {a, b, c} and submit the query subset
(R,p) then we will obtain every possible subset of the corresponding relation for the
predicate p. The way this works is that the predicate constant p will match only with
the rows from the subset relation that are supersets of {a, b, c}. Therefore, it will only
match with the rows that have {a→ 1, b→ 1, c→ 1}. This will result in the following
relation:

43

4.4. EXAMPLE EVALUATIONS

R
{a→ 0, b→ 0, c→ 0}
{a→ 1, b→ 0, c→ 0}
{a→ 0, b→ 1, c→ 0}
{a→ 0, b→ 0, c→ 1}
{a→ 1, b→ 1, c→ 0}
{a→ 1, b→ 0, c→ 1}
{a→ 0, b→ 1, c→ 1}
{a→ 1, b→ 1, c→ 1}

After evaluating subset(R,p)

As we can clearly see here, R represents the sets ∅, {a}, {b}, {c}, {a, b}, {a, c},
{b, c}, and {a, b, c}.

Now, let us consider two other predicates, p and q, with the following relations:

rel(p) = {a}, rel(p′) = {a}, rel(q) = ∅, rel(q′) = {a}.

This means that p is true for a, while q is undefined for a. We aim to verify whether
subset(p,q) holds.

If we attempt to match against any tuple in rel(subset), the match will fail. Al-
though p can match any set S such that S ⊇ {a → 1}, rel(q) = ∅. From the table
above, it is clear that no pair P,Q exists such that P ̸= ∅ and P ⊆ Q. Therefore,
subset(p,q) does not hold.

On the other hand, if we try to match against the same tuples in rel(subset′), we
encounter relaxed constraints that allow Q to match successfully against any relation
where a is at least undefined. As we can see, q satisfies this condition exactly. The fact
that we definitely know p is true for a, combined with the fact that q is undefined for a,
results in assigning the undefined value to subset(p,q).

44

CHAPTER5
CONCLUSION AND FUTURE WORK

In this thesis, we introduced a bottom-up evaluation method for second-order Data-
log programs with negation under well-founded semantics. Our approach provides a
structured way to handle negation and higher-order logic, addressing key challenges in
extending evaluation techniques beyond first-order logic. We also developed a Python
implementation of this method, which is available for reference and further exploration
at https://github.com/antonis96/sodn-evaluator.

While the current implementation meets its main goals, it faces challenges when
evaluating programs that produce large relations, particularly those involving second-
order constructs. Operations such as joins become computationally expensive as these
relations grow, requiring significant time and memory to process extensive sets of map-
pings.

Example 5.1. Consider the following program P withHU = {a1, . . . , ak}:
p(R) ← R(X1), R(X2), ..., R(Xn).
q(R) ← not p(R).

where k ≥ n. In this case, the relation rel(p) consists of all possible non-empty sets of
mappings where each element ofHU is assigned the value 1:

R
{(a1)→ 1}
{(a2)→ 1}

...
{(ak)→ 1}

{(a1)→ 1, (a2)→ 1}
...

{(a1)→ 1, (ak)→ 1}
...

{(a1)→ 1, (a2)→ 1, . . . , (ak)→ 1}

The number of elements in rel(p) is given by:

|rel(p)| = 2k − 1

45

https://github.com/antonis96/sodn-evaluator

since it contains every non-empty subset of mappings from HU where each element is
mapped to 1.

Now, consider the relation rel(q), which represents the complement of rel(p). This
means that rel(q) must contain all sets of mappings where at least one value in the
mapping is flipped (i.e., changed from 1 to 0). For every subset in rel(p), multiple
alternative versions appear in rel(q)— one for each way of flipping at least one value.

Consequently, the size of rel(q) is given by:

|rel(q)| =
k∑

i=1

(
k

i

)
(2i − 1) = 2k − 1 +

k−1∑
i=1

(
k

i

)
(2i − 1)≫ |rel(p)|

This formula accounts for every subset of HU where at least one element has been
flipped. The rapid growth of rel(q), significantly outpacing that of rel(p), illustrates
how second-order constructs can lead to an explosion in the number of generated facts.
This exponential increase in the number of mappings makes evaluation computationally
expensive, particularly as k increases.

One observation is that by restricting a program to safe rules—where every variable
in the head appears in at least one positive literal in the body—we can reduce computa-
tion time. Safe rules ensure that intermediate relations remain small, thereby avoiding
the generation of unnecessarily large complements.

Example 5.2. Consider a program P that includes the rule:
k(R) ← p(R), not q(R).

Suppose the following relations are derived during evaluation:

rel(p)
{(a)→ 1}
{(b)→ 1}
{(c)→ 1}

{(a)→ 1, (b)→ 1}
{(a)→ 1, (c)→ 1}
{(b)→ 1, (c)→ 1}

{(a)→ 1, (b)→ 1, (c)→ 1}

rel(q)
{(a)→ 1, (b)→ 1}
{(a)→ 1, (c)→ 1}
{(b)→ 1, (c)→ 1}

{(a)→ 1, (b)→ 1, (c)→ 1}

Rather than computing the full complement of rel(q) which can produce an exces-
sively large intermediate relation—we directly derive rel(k) by taking the difference:

rel(k) = rel(p) \ rel(q).

This produces:

rel(k)
{(a)→ 1}
{(b)→ 1}
{(c)→ 1}

Thus, rel(k) contains only those tuples in rel(p) that are not in rel(q). This example
demonstrates how safe rules help keep intermediate relation sizes manageable, thereby
reducing computational overhead.

46

CHAPTER 5. CONCLUSION AND FUTURE WORK

A further example highlights a limitation of bottom-up evaluation.

Example 5.3. Consider a slightly modified version of the previous program:
k(a).
p(R) ← R(X1), R(X2), ..., R(Xn).
q(a) ← not p(R), k(a).

Note that even though the variable R in not p(R) is irrelevant to the final out-
come (which depends solely on k(a)), bottom-up evaluation still processes not p(R)
over all possible values. This behavior highlights a known inefficiency in bottom-up
approaches.

Future work could also focus on integrating semi-naive evaluation and the Magic
Sets transformation, two established techniques for optimizing logic program evalua-
tion. Semi-naive evaluation reduces runtime by avoiding redundant computations in
iterative rule processing, considering only newly derived facts at each step. Incorpo-
rating this technique could significantly improve efficiency, particularly for programs
generating large relations.

The Magic Sets transformation [8] offers another complementary optimization by
rewriting rules to focus computations on query-relevant portions of the program. This
approach minimizes redundant work and irrelevant computations, making it especially
effective for programswith extensive relations. When combinedwith semi-naive evalu-
ation, Magic Sets could further enhance performance by dynamically refining the scope
of evaluation and preventing unnecessary recomputations. Together, these techniques
could make the framework more efficient and scalable.

In summary, this thesis provides a strong foundation for evaluating second-order
Datalog programs with negation. While challenges remain, particularly in handling
large and complex programs, the framework offers many useful features. With future
advancements like query-focused optimizations, it has the potential to become a robust
and efficient tool for both research and practical applications.

47

48

BIBLIOGRAPHY

[1] Angelos Charalambidis, Konstantinos Handjopoulos, Panos Rondogiannis, and
William W. Wadge. Extensional Higher-Order Logic Programming. CoRR,
abs/1106.3457, 2011. URL: http://arxiv.org/abs/1106.3457.

[2] Angelos Charalambidis and Panos Rondogiannis. Constructive Negation in Ex-
tensional Higher-Order Logic Programming. In Proceedings of the Fourteenth
International Conference on Principles of Knowledge Representation and Rea-
soning, pages 12–21. AAAI Press, 2014.

[3] Panos Rondogiannis and Ioanna Symeonidou. Extensional Semantics for Higher-
Order Logic Programswith Negation. CoRR, abs/1701.08622, 2017. URL: http:
//arxiv.org/abs/1701.08622.

[4] Angelos Charalambidis, Panos Rondogiannis, and Ioanna Symeonidou. Ap-
proximation Fixpoint Theory and the Well-Founded Semantics of Higher-Order
Logic Programs. CoRR, abs/1804.08335, 2018. URL: http://arxiv.org/abs/
1804.08335.

[5] David Kemp, Peter Stuckey, and Divesh Srivastava. Magic Sets and Bottom-up
Evaluation of Well-Founded Models. In Proceedings of the 1991 International
Symposium on Logic Programming, 1991.

[6] Allen Van Gelder. The alternating fixpoint of logic programs with negation.
Journal of Computer and System Sciences, 47(1):185-221, 1993. URL: https:
//doi.org/10.1016/0022-0000(93)90024-Q.

[7] E. F. Codd. A relational model of data for large shared data banks. Communi-
cations of the ACM, 13(6):377–387, June 1970. URL: https://doi.org/10.
1145/362384.362685.

[8] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume
II. Computer Science Press, 1989.

[9] D. Carral, M. Keeler, and B. C. Grau. Chasing existential rules with sets. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2019. Available at:
https://www.ijcai.org/proceedings/2019/0225.pdf.

49

http://arxiv.org/abs/1106.3457
http://arxiv.org/abs/1701.08622
http://arxiv.org/abs/1701.08622
http://arxiv.org/abs/1804.08335
http://arxiv.org/abs/1804.08335
https://doi.org/10.1016/0022-0000(93)90024-Q
https://doi.org/10.1016/0022-0000(93)90024-Q
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/362384.362685
https://www.ijcai.org/proceedings/2019/0225.pdf

BIBLIOGRAPHY

[10] S. Gaggl, T. Linsbichler, and S. Woltran. ASP with sets: Efficient grounding
and reasoning. Theory and Practice of Logic Programming, 2022. Available at:
https://www.ijcai.org/proceedings/2022/0365.pdf.

[11] A. Luppnow. Bottom-Up Evaluation of HiLog in the Context of De-
ductive Database Systems. Master's Thesis, University of Cape Town,
1998. URL: https://open.uct.ac.za/server/api/core/bitstreams/
80408735-3f7a-4524-9cad-ad51fcf6ba1c/content

50

https://www.ijcai.org/proceedings/2022/0365.pdf
https://open.uct.ac.za/server/api/core/bitstreams/80408735-3f7a-4524-9cad-ad51fcf6ba1c/content
https://open.uct.ac.za/server/api/core/bitstreams/80408735-3f7a-4524-9cad-ad51fcf6ba1c/content

	Introduction
	Related Work

	Second-Order Logic Programs
	Evaluation of First-Order Datalog Programs
	Relational model for first-order datalog programs
	Operations on Relations

	Evaluation for positive programs
	Pattern Matching
	Generate Variable Substitutions in Literals
	Combining Relations
	Propagating Variable Substitutions to Head Arguments
	Evaluation

	Evaluation for programs with negation
	Double Program
	Evaluating Programs

	Evaluation of Second-Order Programs
	Relational model for second-order Datalog programs
	Evaluation for positive programs
	Pattern Matching
	Generate Variable Substitutions in Literals
	Combining Relations
	Adapting VTOA and EVAL Algorithms

	Evaluation for programs with negation
	Double Program
	Pattern Matching in Second-Order Programs
	Propagating Variable Substitutions to Head Arguments
	Complement of a Relation in the Second-Order Case
	Combining Relations
	Adapting VTOA and EVAL Algorithms

	Example Evaluations

	Conclusion and Future work
	Bibliography

