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ABSTRACT

Algorithmic design has been one of the main subjects of interest for Computer science.
While very effective in some areas, this approach has been met with some practical dead
ends that have been very problematic in the progress of the field. Classical Computational
Complexity practices have also not been able to bypass these blocks. Understanding the
hardness of each problem is not trivial. Fine-Grained Complexity provides new perspec-
tives on classic problems, resulting to solid links between famous conjectures in Com-
plexity, and Algorithmic design. It serves as a tool to prove conditional lower bounds for
problems with polynomial time complexity, a field that had seen very little progress until
now. Popular conjectures such as SETH, k-OV, 3SUM, and APSP, imply many bounds
that have yet to be proven using classic techniques, and provide a new understanding of
the structure and entropy of problems in general. The aim of this thesis is to contribute
towards solidifying the framework for reductions from each conjecture, and to explore the
structural difference between the problems in each case.

SUBJECT AREA: Fine Grained Complexity

KEYWORDS: Reductions, Complexity, Hardness in P





ΠΕΡΙΛΗΨΗ

Η σχεδίαση αλγορίθμων αποτελεί ένα απο τα κύρια θέματα ενδιαφέροντος για τον τομέα
της Πληροφορικής. Παρά τα πολλά αποτελέσματα σε ορισμένους τομείς, η προσέγγιση
αυτή έχει πετύχει κάποια πρακτικά αδιέξοδα που έχουν αποδειχτεί προβληματικά στην
πρόοδο του τομέα. Επίσης, οι κλασικές πρακτικές Υπολογιστικής Πολυπλοκότητας δεν
ήταν σε θέση να παρακάμψουν αυτά τα εμπόδια. Η κατανόηση της δυσκολίας του κάθε
προβλήματος δεν είναι τετριμμένη. Η Ραφιναρισμένη Πολυπλοκότητα παρέχει νέες προ-
οπτικές για τα κλασικά προβλήματα, με αποτέλεσμα σταθερούς δεσμούς μεταξύ γνωστών
εικασιών στην πολυπλοκότητα και την σχεδίαση αλγορίθμων. Χρησιμεύει επίσης ως εργα-
λείο για να αποδείξει τα υπο όρους κατώτατα όρια για προβλήματα πολυωνυμικής χρονικής
πολυπλοκότητας, ένα πεδίο που έχει σημειώσει πολύ λίγη πρόοδο μέχρι τώρα. Οι δημοφι-
λείς υποθέσεις/παραδοχές όπως το SETH, το OVH, το 3SUM, και το APSP, δίνουν πολλά
φράγματα που δεν έχουν ακόμα αποδειχθεί με κλασικές τεχνικές και παρέχουν μια νέα
κατανόηση της δομής και της εντροπίας των προβλημάτων γενικά. Σκοπός αυτής της
εργασίας είναι να συμβάλει στην εδραίωση του πλαισίου για αναγωγές από κάθε εικασία
και να διερευνήσει την διαρθρωτική διαφορά μεταξύ τωνπροβλημάτων σε κάθε περίπτωση.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Ραφιναρισμένη Πολυπλοκότητα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Αναγωγές, Πολυπλοκότητα
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1. INTRODUCTION

Theoretical computer science involves the study of computation for its own sake, irrespec-
tive of particular implementations. This field includes as sub-fields the theory of algorithms,
i.e. the design and analysis of computational procedures, and complexity theory, which
involves classification of computational tasks as well as efforts to prove that no efficient
algorithms exist in certain cases. The three traditionally central areas of the theory of com-
putation are automata, computability, and complexity and they are linked by the question
of what are the fundamental capabilities and limitations of computers. This question goes
back to the 1930s when mathematical logicians first began to explore the meaning of
computation.

The history of algorithms can be traced back to the ancient Babylonians as, for exam-
ple, the standard algorithms for addition and multiplication taught in elementary schools
are included in their inventions. The term ”algorithm” itself derives from the 9th Century
Persian mathematician Muhammad ibn Musa al-Khwarizmi. In the present days the term
”algorithm” is central to the Theory of computation and ”algorithms form the basis of multi-
billion dollar industries. Of the different algorithms which may be applicable to the same
computational task, an important goal is to find the best one. Finding a faster algorithm
can make a much bigger difference than better technology.

Throughout the years, Algorithmic design has made many leaps of progress in solving
problems that were thought unsolvable. One of the main goals of such a field is to be con-
stantly improving on the thought process involved in producing algorithms, understanding
each problem’s inherent structural complexity and entropy, resulting in either faster algo-
rithms for these problems, or proofs that said problems cannot be solved in a better way
than it has already been solved. Specifically, when studying a problem P, we decide a
computational model on which to study it (such as a Turing Machine or a WordRAM ma-
chine) and try to create an algorithm that solves problem P for input n in time O(t(n)) for
a function t. We say that this problem is in complexity class TIME(t(n)).

The theories of computability and complexity are closely related. A central question in
Computability Theory is how to classify problems as being solvable or unsolvable whereas
in complexity theory, the objective is to classify problems as easy ones and hard ones.

Some basic concepts of Computational Complexity theory will be mentioned here.As
noted, the central question in Complexity Theory is to classify problems according to their
degree of ”difficulty” and secondly, to give a rigorous proof that problems that seem to
be ”hard” are really ”hard”. Computer problems come in different varieties; some are
easy, and some are hard. For example, the sorting problem is an easy one since even a
small computer can sort a million numbers in ascending order rather quickly. However, a
scheduling problem can be much harder than the sorting problem. For example, coming
up with a schedule of classes for a university, which must satisfy some reasonable con-
straints, such as that no two classes take place in the same room at the same time, can
be a very hard problem to solve, depending on the total number of classes.

17 S. Petsalakis
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As mentioned, Computational complexity theory focuses on classifying computational
problems according to their inherent difficulty, and relating those classes to each other.
The basic frame-work of computational complexity was developed in the late 60’s and
early 70’s, and the years that followed witnessed a fast spread of its ideas to various
branches of mathematics because this theory lead to an exact definition of the difficulty
of a problem. Complexity classes are related to the rate of growth of the requirement
in resources as the input n increases. For example, the class NP is the set of decision
problems whose solutions can be determined by a non-deterministic Turing machine in
polynomial time, while the class PSPACE is the set of decision problems that can be
solved by a deterministic Turing machine in polynomial space.

The simplest complexity classes are defined by the type of computational problem, the
model of computation, and the resource (or resources) that are being bounded and the
bounds. Parameters that are used to define complexity classes include the model of
Computation (Turing Machine, RAM, Circuits), the mode of Computation (Determinis-
tic, Nondeterministic, Probabilistic) the complexity Measures (Time, Space, Circuit Size-
Depth)and other Parameters (Randomization, Interaction). Automata Theory deals with
definitions and properties of different types of the so called computation models, i.e. the
definitions and properties of mathematical models of computation. Some examples of
computational models include (a) Finite Automata which are used in text processing,
compilers, and hardware design, (b) Context-Free Grammars which are used to define
programming languages and in Artificial Intelligence, (c) Turing Machines, which form a
simple abstract model of a computer.

A useful tool of complexity theory is the notion of reducibility. For a plethora of com-
putational problems that arise in real-world applications, we still know little about their
deterministic time or space complexity. And yet, even without such hard knowledge, it
has been useful in practice to take some new problem A whose complexity needs to be
analyzed, and announce that A has roughly the same complexity as a given problem B,
by exhibiting efficient ways of reducing each problem to the other. Thus we can say a lot
about problems being equivalent in complexity to each other, even if we cannot pinpoint
what that complexity is. One reason this has succeeded is that, when one partitions the
many thousands of real-world computational problems into equivalence classes accord-
ing to the reducibility relation, there is a relatively small number of classes of this partition.
Thus, the complexity of almost any problem arising in practice can be classified by show-
ing that it is equivalent to one of a short list of representative problems which correspond
to complexity classes. In other words, in Complexity Theory, we ”connect” problems in
a complexity class with partial ordering relations, called reductions, which formalize the
notion of ”a problem that is at least as hard as another.

A Turing reduction from a problem A to a problem B, is a reduction which solves A,
assuming the solution to B is already known. There are many different types of reductions,
based on the method of reduction, such as Cook reductions and Karp reductions.

Although there has been a lot of progress in these goals, there aremany cases of problems
in which, although studied thoroughly in many years of research, there has neither been
an improvement on the running time of the corresponding fastest algorithm, nor has there

S. Petsalakis 18
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been a proof that solidifies the current conjectured best algorithm to show that it is actually
optimal. This implies that we do not understand the precise hardness of these problems,
and we need to turn to new techniques to produce results.

In this manner, reducing problem A to problem B serves as an indicator that, since the
solution for problem B can provide a solution for problem A, problem B is in a way harder to
solve than problem A, so all structural difficulties of problem A are included in problem B. In
classic Complexity Theory, these reductions were most commonly used in the case of NP-
completeness and NP-hardness, to show that if there can exist a reduction of polynomial
complexity linking said problem to a problem that is in complexity class NP, that consists
of a proof that the problem is also in NP. Although this has proven to be very useful,
the fact that we allow the reduction to abstractly use any polynomial as actual running
time overhead limits these results to problems above polynomial complexity, because if
the actual complexity of the best-known algorithm for said problem is less than the time
used by the reduction, then the fact that the problem is in NP is a trivial and unimportant
result. This train of thought has given rise to the field called Fine-Grained Complexity,
which concerns itself with studying these problems by linking them with conjectures that
are widely believed to be true. There is one main difference distinguishing Fine-Grained
reductions from the classic ones used in NP-completeness. In the Fine-Grained case, we
need the reduction to actually constitute a feasible algorithm for the initial problem. This is
done by limiting the reduction to running times that are strictly lower than the conjectured
best running time for this specific problem, while also restricting the amount of calls that
can be made to problem B with respect to its own conjectured best running time, thus
resulting in an algorithm that can actually be used to solve problemAwithin the conjectured
best running time using problem B. This serves as a link between these two problems, as
solving problem B in time less than its conjectured best running time would result in an
improved algorithm for A, thus falsifying its conjectured lower running time bound. The
most common practice is to use a problem that is widely believed to have been solved
optimally in place of problem A, and reduce it to a specific problem of interest.

The conjectures that are mainly used for this purpose are the Exponential Time Hypoth-
esis (ETH) and its stronger variant, the Strong Exponential Time Hypothesis (SETH),
which state that the Boolean Satisfiability problem (SAT) requires exponential time (2n)
to be solved, the k-Orthogonal Vectors Conjecture, which states that the k-Orthogonal
Vectors problem requires nk time to be solved, the 3SUMConjecturewhich states that the
3SUM problem cannot be solved in less than n2 time, and the All Pairs Shortest Paths
(APSP) Conjecture, which states that the APSP problem cannot be solved in less than
n3 time.

In this thesis, we will discuss about the fine-grained reductions that have been developed
up to this point, while clarifying and mapping the landscape of the links they provide. We
will also briefly discuss some ideas on my current approach and future ideas on the field.

19 S. Petsalakis
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2. PRELIMINARIES

2.1 Algorithms and Interesting Problems

In this section we will discuss some interesting problems and the best currently known
algorithms to tackle said problems. We will also give some clarity as to the notation used
when talking about the asymptotic complexity of some algorithms.

2.1.1 Asymptotic Notation (O, O∗ and Õ )

Regarding the computational complexity of an algorithm, one is interested in the amount of
resources used by the algorithm, as a non-decreasing function on the corresponding input
size. That is, the time, space, amount of processors, communication, and randomness
used by the algorithm. According to the interests of the analyst, one can discuss about
worst, average, or best case complexity of an algorithm. In this thesis, we will discuss
mainly about the worst case time complexity of algorithms, as this is more representative
of the entropy contained in a problem.

When talking about the asymptotic estimation of the resources used by an algorithm, it is
common practice to ignore values that are below the order of magnitude of the main re-
source cost. This notation is collectively called Bachmann–Landau notation or asymptotic
notation. e.g. when talking about polynomial algorithms, an algorithm that runs in time
O(T (n)) is any algorithm that runs in time less or equal to cT (n) for some constant c.

Furthermore, to increase clarity, studies in the field generally use additional notation as
such:

• O(T (n)) is used to ignore constant factors

• Ô(T (n)) is used to ignore polyloglog factors

• Õ(T (n)) is used to ignore logarithmic factors

• O∗(T (n)) is used to ignore sub-exponential factors

The same notation is used to ignore the corresponding factors when talking about o,Ω, ω
and Θ.

2.1.2 Basic Problems

For the purposes of this study we will need the reader to be familiar with the following
basic problems.
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2.1.2.1 Boolean Satisfiability Problem(SAT) and 3-SAT

Definition 1 The Boolean Satisfiability Problem is the problem determining if, given a
boolean formula, there exists an interpretation that satisfies it. That is, if the variables of
the given formula can be evaluated to TRUE and FALSE in a way such that the whole
formula evaluates to TRUE. If the answer is Yes, that formula is called Satisfiable.

SAT is the first problem that was proven to be NP-COMPLETE (Cook-Levin). This means
that all problems in the complexity class NP, are at most as hard as the SAT problem.

A special case of SAT called the 3CNFSAT or 3-SAT problem is of interest, as it has also
been proven to be NP-complete, and is particularly useful as a starting point for proving
that other problems are NP-hard.

This problem constricts the formulas to be in Conjunctive Normal Form, i.e. to be a con-
junction of clauses, where each clause is a disjunction of literals. Additionally, each clause
has to be consisting of exactly 3 literals.

2.1.2.2 k-Orthogonal Vectors (k-OV)

The Orthogonal Vectors problem is defined as follows:

Definition 2 Given two sets of vectors A,B ⊆ {0, 1}d where d is the dimension of the
vectors and |A| = |B| = n, determine if there exist a ∈ A and b ∈ B such that a·b = 0.

The k-OV problem is the generalization of Orthogonal Vectors where given k sets of vec-
tors A1, . . . , Ak each of size n determine if there exist a1 ∈ A1, . . . , ak ∈ Ak such that
a1 · . . . · ak = Σd

i=1Π
k
j=1aj[i] = 0.

There is an obvious N2d algorithm for OVN,d and as we will see in following chapters and
in [87], it has been conditionally proved that there can be no algorithm for k-OV that runs
significantly faster 1 than N2d.

2.1.2.3 3-SUM

Definition 3 The k-SUM problem asks if a given set of numbers {C1, . . . , Cn} contains k
elements that sum to zero.

The specific case for k = 3 was widely conjectured to be unsolvable in Ω(n2) time.
However, this conjecture has been refuted in 2014 by Allan Grønlund and Seth Pettie
[65] who gave a deterministic algorithm that solves 3-SUM in O(n2/(logn/loglogn)2/3)
time. This has been further improved, and the current best algorithm for 3SUM runs in

1in this context ”significantly faster” is used to denote a factor greater than nϵ where ϵ = Ω(1)
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O(n2/(logn/loglogn)) time [47, 55]. However, it is still conjectured that 3SUM is unsolv-
able in time O(n2−Ω(1)), i.e. there can be no algorithm for 3SUM that runs significantly
faster than n2.

This conjecture was initially introduced by Gajentaan and Overmars [52, 53] who used this
conjecture to prove conditional lower bounds ofO(n2) for many problems in computational
geometry.

2.1.2.4 All Pairs Shortest Paths(APSP)

The APSP problem is, given a graph G(V,E) with integer edge weights, to determine which
are the shortest paths connecting each pair of vertices u and v in V. This problem is a
very important and central problem in graph theory. The most studied algorithm for this
problem is the Floyd-Warshall algorithm that solves this problem in O(n3) time (for a graph
with n nodes). Another way to compute the all pair shortest path is by invoking Dijkstra’s
algorithm for each vertex. Dijkstra’s algorithm finds the shortest path from a given vertex v
to all other vertices in the graph. Hence, invoking it n times by choosing a different starting
vertex v each time, will result in calculating the all pair shortest path. A single invocation of
Dijkstra’s algorithm takes O(n+mlogm). Hence, n iterations of this algorithm takes a time
of O(nm+ n2logm). In the worst case,m can be O(n2) and hence the worst case running
time using this approach is also O(n3).

There have been many improvements to the complexity of the problem, with the biggest
improvement made by Williams [88] who achieved an algorithm that has a running time of
n3/exp(Θ(

√
logn)). However, there has been no algorithm for APSP that runs significantly

faster than n3.

Some Related Measures that have been thoroughly studied are:

• the radius R of a graph: Radius of the graph is the smallest possible value for
α = maxv(αv) over all vertices in the graph, where αv is the maximum value of
the shortest distance from a vertex v to any other vertex.

• the center of graph: The vertex v which minimizes the value α is called the center of
the graph.

• the diameter of the graph: It is the maximum possible distance between any two
vertices in the graph.

• the median of the graph: It is the node vi that has the minimum value of the sum of
distances to all vertices v in the graph.

• the betweeness centrality: It is very closely related to the number of s-t shortest
paths, passing through a given vertex v.

• the positive betweeness centrality: It is an indicator function for a vertex v. If there
exits a s, t shortest path through v, then the value is 1, else it is 0.

23 S. Petsalakis



Fine-Grained Complexity: Exploring Reductions and their Properties

• the Negative Triangle: Given an undirected graph G with integer edge weights in
{−M, ...,M}, the problem is to check if there exists a triangle in the graph, such that
the sum of weights on this triangle is negative.

Radius, Diameter, Median, generally referred to as Centrality Measures, appear in a va-
riety of applications including social networks, transportation and allocation problems, bi-
ological networks, etc. with real life implications. In this manner the question on the
existence of subcubic algorithms is significant.

2.1.2.5 Edit Distance

Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one
another by counting the minimum number of operations required to transform one string
into the other. It is very useful in different fields such as linguistics and bioinformatics. For
example, in natural language processing involving the interactions between computers
and human (natural) languages, automatic spelling correction can determine candidate
corrections for a misspelled word by selecting words from a dictionary that have a low
distance to the word in question. In bioinformatics, it can be used to quantify the similarity
of DNA sequences, which can be viewed as strings of the letters A, C, G and T, as well as
protein analysis.

A more formal definition of the Edit Distance problem is, given two strings s and r, to
determine the minimum-weight series of operations that are required to transform string
s to string r. Most of the times in literature, the term ’edit distance’ is used to denote
Levenshtein distance, for which the operations include deletions, substitutions, and in-
sertions of characters. In Levenshtein’s initial definition, each of these operations have
unit cost, so the distance is equal to the minimum number of operations required to
transform s to r. Another definition associates these operations with non-negative costs
wins(x), wdel(x), wsub(x, y), x ∈ Σ.

2.1.2.6 Boolean Matrix Multiplication

The Boolean matrix multiplication (BMM) problem consists of multiplying two matrices that
have as entries either 0 or 1.

BMM is one of the most fundamental problems in computer science. It has applications
to triangle detection, transitive closure, context-free grammar parsing, etc. One way to
multiply two Boolean matrices is to treat them as integer matrices, and apply a fast ma-
trix multiplication algorithm over the integers. Matrix multiplication can be done in ”truly
subcubic time”, i.e., the product of two n × n matrices can be computed in O(n3 − c) ad-
ditions and multiplications. For example, the latest generation of such algorithms run in
O(n2.373) operations.These algorithms are ”algebraic”, as they rely on the structure of the
field, and in general the ring structure of matrices over the field. There is a different group
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of BMM algorithms, often called ”combinatorial” algorithms. They usually reduce the re-
dundancy in the computation by exploiting some combinatorial structure in the Boolean
matrices. Although these combinatorial algorithms have worse running times than the
algebraic ones, they generally have some nice properties. Combinatorial algorithms usu-
ally can be generalized in ways that the algebraic ones cannot be. Moreover, in practice,
these combinatorial algorithms are usually fast and easy to implement, while in contrast,
most theoretically fast matrix multiplication algorithms are impractical to implement.

2.2 Computational Complexity

2.2.1 Computational Models

A computational model is a model which describes how a set of outputs are computed
given a set of inputs. There are many computational models (RAM, Turing Machines etc).
We can restrict attention to a single abstract computational model for studying computa-
tional problems - the Turing machine. The reason is that the Turing Machine seems able
to simulate all physically realizable computational models with very little loss of efficiency.
The Church-Turing Thesis states that all models are computationally equivalent, that is,
every computation model can be simulated by a Turing Machine. These are regarding the
computability of problems, i.e. questioning if a computational model can solve a specific
problem or not, regardless of the running time.

However, when analyzing the complexity of a problem or class of problems, some com-
putational models are faster than others, so clarifications need to be made in each case
so as to not confuse the reader. In this thesis, for the most part, the word-RAM model is
used, which is a Random Access Model that can perform tasks on words of predefined
length l in O(1) time. In our case, for ease of computation we set the word length to be
l = O(logn).

2.2.2 Hierarchy Theorems

In computational complexity theory, the time hierarchy theorems are important statements
about time-bounded computation on Turing machines. Informally, these theorems say
that given more time, a Turing machine can solve more problems. For example, there are
problems that can be solved with n2 time but not n time.

The time hierarchy theorem for deterministic multi-tape Turing machines was first proven
by Richard E. Stearns and Juris Hartmanis in 1965.It was improved a year later when F. C.
Hennie and Richard E. Stearns improved the efficiency of the Universal Turing machine.
Consequent to the theorem, for every deterministic time-bounded complexity class, there
is a strictly larger time-bounded complexity class, and so the time-bounded hierarchy of
complexity classes does not completely collapse. More precisely, the time hierarchy the-
orem for deterministic Turing machines states that for all time-constructible functions f(n):
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DTIME (o( (f(n)
logf(n)

) ( DTIME(f(n))

The time hierarchy theorem for nondeterministic Turing machines was originally proven
by Stephen Cook in 1972. It was improved to its current form via a complex proof by
Joel Seiferas, Michael Fischer, and Albert Meyer in 1978.Finally in 1983, Stanislav Žák
achieved the same result with the simple proof taught today. The time hierarchy theorem
for nondeterministic Turing machines states that if g(n) is a time-constructible function,
and f(n+ 1) = o(g(n)), then

NTIME(f(n)) ( NTIME(g(n))

2.2.3 Complexity Classes

A complexity class is a set of problems of related resource-based complexity. A typical
complexity class has a definition of the form: the set of problems that can be solved by
an abstract machine M using O(f(n)) of resource R, where n is the size of the input. A
complexity class contains a set of problems that take a similar range of space and time to
solve. In order to classify a problem, it is usually proven to be in a particular complexity
class by running the problem on an abstract computational model, usually a Turing ma-
chine. The relations and the possible equivalence between different complexity classes
is an open question.

The following are fundamental time classes and fundamental space classes, given func-
tions t(n) and s(n):

• DTIME[t(n)] is the class of languages decided by deterministic Turing machines of
time complexity t(n).

• NTIME[t(n)] is the class of languages decided by nondeterministic Turing machines
of time complexity t(n).

• DSPACE[s(n)] is the class of languages decided by deterministic Turing machines
of space complexity s(n).

• NSPACE[s(n)] is the class of languages decided by nondeterministic Turing ma-
chines of space complexity s(n).

Canonical complexity classes:

• L=DSPACE[logn] (deterministic log space)

• NL=NSPACE[logn] (nondeterministic log space)

• P=DTIME[nO(1)] = ∪k ≥ 1DTIME[nk ] (polynomial time)

• NP=NTIME[nO(1)] = ∪k ≥ 1NTIME[nk ] (nondeterministic polynomial time)
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• PSPACE=DSPACE[nO(1)] = ∪k ≥ 1DSPACE[nk ] (polynomial space)

• E=DTIME[2O(n)] = ∪k ≥ 1DTIME[kn ]

• NE=NTIME[2O(n)] = ∪k ≥ 1NTIME[kn ]

• EXP=DTIME[2nO(1)
] = ∪k ≥ 1DTIME[2n

k ] (deterministic exponential time)

• NEXP=NTIME[2nO(1)
] = ∪k ≥ 1NTIME[2n

k ] (nondeterministic exponential time)

• EXPSPACE=DSPACE[2nO(1)
] = ∪k ≥ 1DSPCE[2n

k ] (exponential space)

The relations that are known until now are:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

2.2.4 ETH, SETH and more

The theory of NP-hardness gives us strong evidence that certain fundamental combina-
torial problems, such as 3-SAT, are unlikely to be polynomial-time solvable. However,
NP-hardness does not give us any information on what kind of super-polynomial running
time is possible for NP-hard problems. Impagliazzo, Paturi, and Zane [62] introduced the
Exponential Time Hypothesis (ETH) and the stronger variant, the Strong Exponential Time
Hypothesis (SETH), which state lower bounds on how fast satisfiability problems can be
solved. These assumptions can be used as a basis for qualitative lower bounds for other
concrete computational problems.

ETH states that the 3-SAT problem cannot be solved in subexponential time. That is, there
is an ϵ > 0 such that 3-SAT cannot be solved in time O(2ϵn).

The Strong Exponential Time Hypothesis states that the Boolean Satisfiability Problem
(SAT) requires exponential time. Formally, SETH states that for each δ < 1 there exists a
k ≥ 3 such that kSAT requires 2δn time.

This conjecture implies that P ̸= NP but is actually stronger than this historic argument.
Specifically, even if SETH is falsified the matter of P vs NP is still in question. While ETH
is generally considered a plausible complexity assumption, SETH is regarded by many as
a quite doubtful working hypothesis that can be refuted any time. For this reason, lower
bounds proven under the assumption of SETH should not be regarded as supported by
very strong arguments, but rather that existence of better algorithms would constitute a
major breakthrough in the complexity of satisfiability.

2.2.4.1 Sparsification Lemma

An important tool in this area is the Sparsification lemma defined in [62], which shows that,
for any ϵ > 0, any k-CNF formula can be replaced by O(2ϵn) simpler k-CNF formulas in
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which each variable appears only a constant number of times, and therefore in which the
number of clauses is linear. The Sparsification Lemma essentially says that an arbitrary
k-CNF can be expressed (in subexponential time) as the disjunction of a subexponential
number of linear size k-CNFs. More precisely, the Sparsification Lemma shows that for
all ϵ > 0 , k-CNF F can be written as the disjunction of at most 2ϵn k-CNF Fi such that
Fi contains each variable in at most c(k,e) clauses, for some function c. Moreover, this
representation can be computed in O(poly(n)2ϵn) time.

The sparsification lemma is proven by repeatedly finding large sets of clauses that have
a nonempty common intersection in a given formula, and replacing the formula by two
simpler formulas, one of which has each of these clauses replaced by their common in-
tersection and the other of which has the intersection removed from each clause.

Theorem 1 Sparsification Lemma [IPZ01]

∃ algorithm A ∀k ≥ 2, ϵ ∈ (0, 1] and k-CNF formula ϕ where Ak,ϵ(ϕ) outputs CNF formulas
ϕ1, . . . , ϕs in 2ϵn time, such that :

• s ≤ 2ϵn; SOL(ϕ) = ∪iSOL(ϕi) where Sol(α) denotes the set of solutions of formula
α

• ∀i ∈ [s] each literal occurs ≤ O(k
ϵ
)3k in ϕi

2.2.4.2 SETH → ETH

Showing that SETH implies ETH isn’t trivial. The idea is to show that k-SAT reduces to
sparse k-SAT, which is k-SAT restricted to instances with O(n) clauses.

By applying the sparsification lemma and then using new variables to split the clauses, one
may then obtain a set of O(2ϵn) 3-CNF formulas, each with a linear number of variables,
such that the original k-CNF formula is satisfiable if and only if at least one of these 3-CNF
formulas is satisfiable. Therefore, if 3-SAT could be solved in subexponential time, one
could use this reduction to solve k-SAT in subexponential time as well.

2.2.5 Reductions

Definition 4 A Cook reduction is a polynomial-time Turing reduction from a problem A
to a problem B is an algorithm that solves problem A using a polynomial number of calls
to a subroutine for problem B.

Definition 5 A Karp reduction is a polynomial-time many-one reduction from a problem
A to a problem B (both of which are usually required to be decision problems). It is a
polynomial-time algorithm for transforming inputs to problem A into inputs to problem B,
such that the transformed problem has the same output as the original problem.
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With many-one reductions, the solution for B can be invoked only once at the end, and
the answer cannot be modified. This means that if we want to show that problem A can
be reduced to problem B, we can use our solution for B only once in our solution for A,
unlike in Cook reduction, where we can use our solutions for B as many times as needed
while solving A.
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3. INTRODUCING FINE-GRAINED REDUCTIONS

The basic technique used in fine-grained complexity is to use conjectures about the lower
running time bounds of problems that are widely believed to be true, to produce running
time lower bounds for other less studied problems. A fine-grained reduction from a prob-
lem A associated with a widely believed conjecture to another problem B links the plausi-
bility of the bound for problem A actually being the correct, with the respective bound of
problemB. This results in a conditional proof of a lower bound i.e. as long as the conjecture
holds, problem B has the respective running time lower bound.

3.1 Basic Conjectures

In this section we will introduce four main conjectures that have been used in fine-grained
reductions to prove conditional running time lower bounds for various problems.

3.1.1 SETH, k-OV

The Strong Exponential Time Hypothesis (SETH) states that the Boolean Satisfiability
Problem (SAT) requires exponential time. Formally, SETH states:

Theorem 2 for each δ < 1 there exists a k ≥ 3 such that kSAT requires 2δn time.

This conjecture implies that P ̸= NP but is actually stronger than this historic argument.
Specifically, even if SETH is falsified the matter of P vs NP is still in question.

Theorem 3 The k-OV conjecture states that no algorithm gan solve the k-Orthogonal
Vectors problem on instances of size n in nk−ϵpoly(d) time for any constant ϵ > 0.

It has been shown by [87] that if the k-OV conjecture is falsified then SETH also falls,
resulting in many interesting implications that seem implausible to the bigger part of the
scientific community such as lower bounds for in circuit complexity, which have never been
shown via different methods.

These two conjectures have been the main focus of fine-grained reductions and have
been linked to most of the problems discussed in literature.

3.1.2 3-SUM

The 3-SUM Conjecture states that the 3SUM problem cannot be solved in time n2−ϵ for
any ϵ > 0. In fact, the 3SUM problem has been very much studied because of its sig-
nificance in Computation Geometry, and there have been many improvements in various
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specific cases using many structural, algebraic and number theoretic properties. Never-
theless, in the general case the conjecture has not been refuted despite the efforts.

3.1.3 APSP

The APSP Conjecture states that the All Pairs Shortest Paths problem on graphs with n
nodes with no negative cycles cannot be solved in time n3−ϵ for any ϵ > 0.

This problem has been key to developing many algorithms for graphs and the Floyd-
Warshall algorithm (which is the current best-known algorithm for the generic version of
the problem) is one of the more important examples of dynamic programming and its ap-
plications.

3.2 Fine-Grained Reductions

In this section we will discuss fine-grained reductions, as defined by V. Williams in [90]
and we will explore the more technical aspects of said reductions.

Definition 6 Assume that A and B are computational problems and a(n) and b(n) are their
conjectured running time lower bounds, respectively. Then we say A (a,b)-reduces to B,
A ≤a,b B, if for every ϵ > 0, there exists δ > 0, and an algorithm R for A that runs in time
a(n)1−δ on inputs of length n, making q calls to an oracle for B with query lengths n1, ..., nq

where
∑q

i=1(b(ni))
1−ϵ ≤ (a(n))1−δ

If A ≤a,b B and B ≤b,a A, we say that A and B are fine-grained equivalent, A ≡a,b B.

In other words, A ≤a,b B means that if B is solvable in b(n)1−ϵ then A is solvable in a(n)1−ϵ

3.2.1 Some Important Reductions

3.2.1.1 k-SAT ≤ k-OV [87]

Theorem 4 If k-OV on sets with N vectors from {0, 1}m can be solved in Nk−ϵpoly(m) for
any ϵ > 0 then CNF-SAT on n variables and m clauses can be solved in 2n−ϵ′poly(m) time
for some ϵ′ > 0 and SETH is false.

Proof We split the n variables of the CNF formula F into k sets V1, ...Vk, each with n/k
variables. We create sets A1, ..., Ak each having |Ai| = N = 2n/k vectors of length m,
corresponding to all possible boolean assignments ϕ to the variables in Vi. The vectors
ai(ϕ) have values determined as such:

ai(ϕ)[j] = 0 if ϕ satisfies the jth clause of the CNF formula F,
and 1 otherwise
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One can now see that, if for some a1(ϕ1) ∈ A1, ..., ak(ϕk) ∈ Ak we have a1(ϕ1) · . . . ·ak(ϕk) =
0 then for every clause c, there is some vector ai(ϕi) that is 0 on the cth dimension, and
hence the corresponding assignment ϕi satisfies clause c. Thus, if we concatenate the
assignments ϕ1, ..., ϕk we get an assignment that satisfies all clauses of formula F.

Note that this reduction respects the resources available only in the case that the formula
of the k-SAT instance has number of clauses m = O(n). However, this does not affect
the proof as we can always produce such instances from any formula, using the Sparsi-
fication Lemma. If k-OV with set size N = 2n/k and vectors in {0, 1}m can be solved in
Nk−ϵpoly(m) time, then CNF-SAT can be solved in (2n/k)k−ϵpoly(m) = 2n−ϵ′ for ϵ′ = ϵ/k > 0
contradicting SETH.

3.2.1.2 OV ≤ Graph Diameter [81, 35]

Definition 7 A graph’s diameter is the largest number of vertices which must be traversed
in order to travel from one vertex to another. In other words, the length of the Maximum
Shortest Path in a graph.

Theorem 5 If one can distinguish between Diameter 2 and 3 in an undirected unweighted
graph with O(N) nodes and edges in O(N2−ϵ) time for some ϵ > 0, then 2-OV on two sets
of n vectors in d dimensions can be solved in n2−ϵpoly(d) time and SETH is false.

Proof: Given an instance of 2-OV, |A| = |B| = n vectors in {0, 1}d. We create the following
Graph G: For every vector a ∈ A, create a node a of G. For every vector b ∈ B, create a
node b of G. For every i ∈ [d], create a node ci. We add two additional nodes x and y.

We add edges as follows. For every a ∈ A and i ∈ [d] if a[i] = 1, add an edge between a
and ci. Similarly for every b ∈ B.
Now we add edges (x,a) for every a ∈ A, (x,i) for every i ∈ [d] and (x,y).
We also add edges (y,b) for every b ∈ B, (y,i) for every i ∈ [d].

Now, for each a ∈ A, b ∈ B, if a and b are not orthogonal, there exists an i ∈ [d] such that
a[i] = b[i] = 1, and so the distance between a and b is 2 (via ci).
If there exist a ∈ A, b ∈ B so that a · b = 0, the distance of the respective vertices is ≥ 3 so
the diameter of the Graph is 3.
Let N = nd. The number of nodes and edges is at most O(N). If Diameter 2 vs 3 can be
solved in O(N2−ϵ) time for some ϵ > 0, then 2-OV is in O((nd)2−ϵpoly(d)) time for ϵ > 0.

3.2.1.3 3-SUM ≡ GeomBase [52, 53]

Definition 8 Problem: GeomBase Given a set of n points with integer coordinates on
three horizontal lines y = 0, y = 1, y = 2, determine whether there exists a non-horizontal
line containing three of the points.
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Theorem 6 If GeomBase can be computed in time O(n2−δ) for some δ > 0 on two se-
quences of length n, then the 3SUM problem can also be solved in time n2−δ

Proof: We start by showing the equivalence of 3SUM with the 3SUM’ problem 3SUM’
problem: Given three sets of integers A,B, and C of total size n, determine if there are
a ∈ A, b ∈ B and c ∈ C such that a+ b = c.

3SUM ≡ 3SUM’

≤ Set A = S,B = S,C = −S. Now obviously when for a ∈ A, b ∈ B, c ∈ C, a + b = c
then a, b, (−c) ∈ S and a+ b+ (−c) = 0.

≥ w.l.o.g. assume all elements in the sets are positive. Set m = 2max(A,B,C). Con-
struct S as follows: for each element a ∈ A put a′ = a +m in S. For each element
b ∈ B put b′ = b in S, and for each element c ∈ C put c′ = −c −m in S. Clearly, if
a+ b = c then a′ + b′ + c′ = 0.

3SUM’ ≡ GeomBase

≥ For each element a ∈ A create point (a,0). For each element b ∈ B create a point
(b,2), and for each element c ∈ C create a point (c/2,1). It follows that three points
(a,0),(b,2) and (c/2,1) are colinear iff a+ b = c.

≤ Similarly, for each point (a,0) create an element a ∈ A, for each point (b,2) create an
element b ∈ B, and for each point (c,1) create an element 2c ∈ C.

Note that all the reductions used require only linear overhead, which is negligible when
compared to the quadratic complexity of each (currently best known) algorithm. This proof
concludes that if an algorithm is created that can solve either of these problems in time n2−ϵ

then these reductions can be used to provide subquardatic algorithms for the remaining
problems.

3.2.1.4 OV ≤ Edit Distance [16]

Theorem 7 Edit distance cannot be computed in O(n2−ϵ) unless SETH is false

The intuition for this proof can be described as such: They use the gadgets provided
below, to force the solution into cases that compare specific parts of the strings with each
other. They align the patterns in a way that simplifies the problem into distinguishing two
cases from each other, producing a specific cost if there exist orthogonal vectors, in the
starting instance of OV, and another distinct one if there do not.

Proof:
Observation 1: For any two sequences x,y, EDIT(x,y) is equal to the minimum, over all
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sequences z, of the number of deletions and substitutions needed to transform x into z
and y into z. (no need for insertions)

Definition 1, Pattern Matching Distance:

Pattern(P1, P2) = minEDIT (P1, x) where x is a contiguous subsequence of P2

Simplifying assumption:Assume all vectors b ∈ B have b1 = 1. (w.l.o.g. add 1 to every b
and 0 to every a).

• l0 = 1000d,

• l1 = (1000d)2,

• l = d(4 + 2l0)

CG1(x) :=

{
2l001112l0 if x = 0
2l000012l0 if x = 1

}
CG2(x) :=

{
2l000112l0 if x = 0
2l011112l0 if x = 1

}

EDIT (CG1(x1), CG2(x2)) =

{
1 if x1 · x2 = 0
3 if x1 · x2 = 1

}
For vectors a, a′, b ∈ {0, 1}d we define Vector Gadgets:

V G1(a, a
′) = Z1L(a)V0R(a

′)Z2 and V G2(b) = V1D(b)V2

where

V1 = V2 = V0 = 3l1 , Z1 = Z2 = 4l1

L(a) = ⃝i∈[d]CG1(ai), R(a′) = ⃝i∈[d]CG1(a
′
i), D(b) = ⃝i∈[d]CG2(bi)

Note: ⃝ is used to denote concatenation

There are only two ways to achieve small edit distance cost between V G1 and V G2.

• Case 1: Delete Z1, L and substitute Z2 with V2. This will result in a cost C ′ := l1+l+l1
plus the cost of transforming R to D. By the construction of the coordinate gadgets,
the cost of transforming R to D is d + 2(a′ · b). Therefore, this case corresponds to
ED cost C ′ + d+ 2(a′ · b) = C + 2(a′ ·B).

• Case 2: Delete R,Z2 and substitute Z1 with V1. This will result in a total cost of
C ′ + d+ 2(a · b) = C + 2(a · b).
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Figure 1: Vector Gadgets as seen in [16]

This results to having ED(V G1(a, a
′), V G2(b)) = C + 2min(a · b, a′ · b)

We set a′ = 10d−1 so as to ensure a′ · b = 1 which results to having

ED(V G1(a), (V G2(b)) =

{
C0 if a · b = 0
C1 if otherwise

}
We will now show that OV ≤ PATTERN

• set t = max(|V G1|, |V G2|)

• set T = 1000dt = Θ(d3)

• set f = 1d

• set Es := 2l1 + l + d

• set Eu := 2l1 + l + d+ 2

We define V G′
k(a) = 5TV Gk(a)5

T for k ∈ {1, 2}.

Let A and B be the sets from the OV instance.

P1 = ⃝a∈AV G
′
1(a),

P2 = (⃝|A|−1
i=1 V G′

2(f))(⃝b∈BV G
′
2(b))(⃝

|A|−1
i=1 V G′

2(f)).

Theorem 8 Let X := |A|Eu. If there are two vectors a ∈ A,b ∈ B such that a · b = 0, then
PATTERN(P1, P2) ≤ X − 2; otherwise, PATTERN(P1, P2) = X.

Set P ′
2 = P2 and P ′

1 = 6|P
′
2|P16

|P ′
2|.
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Theorem 9 Let Y := 2|P ′
2| + X. If there are no two orthogonal vectors, ED(P ′

1, P
′
2) = Y

otherwise ED(P ′
1, P

′
2) ≤ Y − 2

Theorem 10 If EDIT can be computed in time O(n2−δ) for some δ > 0 on two sequences
of length n, then the OV problem with |A| = |B| = N and A,B ⊂ 0, 1d can be solved in
time dO(1)N2−δ

3.2.1.5 Distance/Similarity Problems [1, 26, 16, 23]

Distance Problems, are problems which measure the distance of two given strings of in-
put, according to some similarity or metric, such as amount of operations of a given type
needed to convert one string to another. These problems have been thoroughly studied
for their applications in many fields such as data mining, DNA and protein analysis, search
engines, and many more. In [23] Karl Bringmann showed that the Frechet Distance can-
not be computed by an algorithm of subquadratic complexity unless SETH falls. Following
that, Artur Backurs and Piotr Indyk showed in [16] that Edit Distance between two strings
also requires quadratic time to be computed. After that, [1] showed some tight hardness
results based on SETH for the Longest Common Subsequence problem, as well as many
problems that have similar definitions as the LCS problem. These reductions made use
of gadgets and algorithmic tricks tailored to each problem in order to strictly bind these
problems with the SETH and OV conjectures.

In [26] Bringmann and Kunnemann introduced a framework that utilizes ”alignment gad-
gets” as they call them, which encapsulates all of these problems, as well as the Dynamic
Time Warping problem, to easily produce reductions from the OV conjecture and a variant
called the unbalanced OV conjecture to any of them. This was a major breakthrough in
the field, and the fine-grained study on distance problems is now considered to be suc-
cessful. This is the only major group of problems that has been so successfully studied
by fine-grained complexity, and these results serve as a confirmation of the potential of
the field.

We will now discuss briefly on the framework they implemented:
Loosely put, an alignment gadget consists of two instances x and y, whose distance/similarity
δ(x, y) is closely related to Σ(i,j)∈Aδ(xi, yi) where A is the best possible ordered alignment
of the numbers in [m] and [n].

Definition 9 An alignment is defined as a set {(i1, j1), ..., (ik, jk)} that represents aligning
inputs s and r of size n and m respectively in the corresponding points i and j. Any i,j
that do not belong in A are called unaligned. An alignment that aligns all neighboring
m objects in s with the corresponding alignments in r is called a structured alignment
({(∆ + 1, 1), ..., (∆ +m,m)}, 0 ≤ ∆ ≤ n−m).

The set of all alignments is denoted by An,m, and the set of all structured alignments is
denoted by Sn,m There are two main properties that need to be satisfied by the distance(or
similarity) metric in order to use these gadgets:
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Figure 2: Alignments as seen in [26]

• δ admits an alignment gadget if given inputs {x1...xn} and {y1...ym}, we can construct
instances x and y, such that the amount δ(x, y)− C is bounded between the cost of
the best alignment, and the cost of the best structured alignment (for an appropriate
C).

minA∈An,mδ(A) ≤ δ(x, y)− C ≤ minS∈Sn,mδ(S)

The authors show that one cannot compute such a value in subquadratic time, unless
OV fails.

• δ admits coordinate values, if there exist gadgets for 0x, 1x, 0y, 1y satisfying δ(1x, 1y) >
δ(0x, 1y) = δ(1x, 0y) = δ(0x, 0y). Note that this property is exactly the one used in the
aforementioned reduction of OV to edit distance by Indyk and Backurs, to make sure
that if xiyi = 0 the cost is smaller than the case that xiyi = 1

All that is left is to show that computing this value is equivalent to the corresponding prob-
lem each time, and to produce specific coordinate gadgets for each problem that respect
the properties above.

We will not go into further depth regarding the type setting and more technical issues
of the proofs as their main advancement is to generalize the metrics and input types, in
a way that helps produce the same arguments as the proof of OV ≤ EditDistance or
OV ≤ FrechetDistance. It suffices to say that the padding gadgets used to force the
alignment to our problem are a function of the types of input and similarity/distance metric
each time. Nevertheless, we will discuss some of the specific gadgets and results so as
to give some intuition on the way the framework can be used.

LCS admits coordinate values by setting:

1x = 11100, 0x = 10011, 1y = 00111, 0y = 11001.

The alignment gadgets for LCS are realized as such:G(z) := 1γ20γ1z0γ11γ2

x := G(x1)0
γ3G(x2)0

γ3 . . . 0γ3G(xn)
y := 0nγ4G(y1)0

γ3G(y2)0
γ3 . . . 0γ3G(yn)0

nγ4
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where the padding gadgets γi are constants created as functions of the type of input in
each case.

Regarding Edit Distance
Rule out the easy case: Edit(cdel−x, cdel−y, cmatch, csubst) can be solved in constant time if
csubst = cmatch or cdel−x + cdel−y ≤ min(cmatch, csubst)

Now for cdel−x = 1, cdel−y = 1, cmatch = 0, 0 < csubst ≤ 2 Edit(csubst) admits coordinate values
by setting:

1x = 11100, 0x = 10011, 1y = 00111, 0y = 11001.

The alignment gadgets for Edit(csubst) are realized as such:G(z) := (1γ10γ1)ρz(0γ11γ1)ρ for
ρ = 2⌈1/csubst⌉

x := G(x1)0
γ2G(x2)0

γ2 . . . 0γ2G(xn)
y := 0nγ3G(y1)0

γ2G(y2)0
γ2 . . . 0γ2G(yn)0

nγ3

In the same publication, similar gadgets are produced for the Dynamic Time Warping,
Longest Palindromic subsequence, and Longest Tandem subsequence problems.

3.2.2 More Reductions from SETH and k-OV

Fine-grained reductions are transitive in nature. To elaborate, if problem A is reduced
to problem B, and problem B is in turn reduced to problem C, then A is also reduced to
problem C via the concatenation of the reductions. In this manner, most of the reductions
stemming from SETH go through the Orthogonal Vectors Hypothesis. Because of this, we
group problems associated with either of these conjectures together. Note also that even
if SETH fails at some point in the future, the OV hypothesis (OVH) could still hold true,
as there has only been a reduction showing K − SAT ≤ k − OV , and not the reverse.
Remember that SETH bounds the K-SAT problem to exponential time (2n), and the OVH
bounds the k-OV problem to quadratic time (n2).

3.2.2.1 Subset Sum, Bicriteria s,t-Path

Subset Sum is one of the most studied problems in complexity theory and cryptography.
The problem is to determine, given a set of numbers S and a target T, if there exists a
non-empty subset of S such that its elements sum to T.

Problem: Sඝඊඛඍග Sඝඕ

Input: a set of numbers S and a target T

Output: a non-empty S ′ ⊆ S s.t. sum(S ′) = T
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A related problem is the Bicriteria s,t-Path problem, which is, given a graph G = (V,E)
with positive integer weights wi and positive integer lengths li on its edges, and two dis-
tinguished nodes s, t, to determine if there exists a path from s to t with weight ≤ W and
length ≤ L for given W and L.

Problem: Bඑඋකඑගඍකඑඉ ඛ,ග-Pඉගඐ

Input: a graph G = (V,E), Positive integer weights wi and lengths li of the edges,
integer limits W and L, and two nodes s, t

Output: a path from s to t with weight ≤ W and length ≤ L.

In [9] they show that k−SAT ≤ SubsetSum by reducing k-SAT to an intermediate problem
called StructCSP and in turn reducing that to the Subset Sum problem. The two main
results of this publication were a) showing that Subset Sum cannot be solved in time
T 1−ϵ2o(n) for any ϵ > 0 unless SETH fails, and the statement separating the Subset Sum
problem from the Bicriteria s,t-Path problem which is thought to be linked with Subset
Sum, b) on graphs with m edges and edge lengths bound by L, the pseudo-polynomial
algorithm cannot be improved to Õ(L+m), in contrast to recent results on Subset Sum.

3.2.2.2 Subtree Isomorphism

The Subtree Isomorphism problem is to determine if a given tree is a subgraph of another
given tree. Some variants and specialized cases of the problem have near-linear time
algorithms that solve it, but in the general case a subquadratic algorithm has not been
found.

Problem: Sඝඊගකඍඍ Iඛඕකඐඑඛඕ

Input: Two tree graphs T and T’

Output: ”Yes” if T’ is a subgraph of T.

[10] reduces the OV problem to the Subtree Isomorphism problem, showing that truly
subquadratic algorithms for the latter would refute the k-OV conjecture, and in turn the
SETH conjecture. In the same publication, they go on to prove quadratic lower bounds for
some specified variants of the problem such as binary rooted trees, even limiting the depth
of the tree to loglogn, and finally they show that for every constant d, there is a constant
ϵd > 0 and a randomized, truly subquadratic algorithm for degree-d rooted trees of depth
at most (1 + ϵd)logdn.
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3.2.2.3 Regular Expression Matching

Regular Expressions are in the foundation of formal languages and have been very im-
pactful in the course of Computer Science and Logic.

The concept arose in the 1950s when the American mathematician Stephen Cole Kleene
formalized the description of a regular language. The concept came into common use
with Unix text-processing utilities. Since the 1980s, different syntaxes for writing regular
expressions exist, one being the POSIX standard and another, widely used, being the Perl
syntax.

Problem: Rඍඏඝඔඉක Eචකඍඛඛඑඖ Mඉගඋඐඑඖඏ

Input: a Regular Expression R and text T.

Output: A string from the input text T that matches R

In [17] Backurs and Indyk showed specifically for the case of expressions with depth 2 that
matching and membership testing can be solved in near-linear time, except for the case
”concatenations of stars”, which cannot be solved in strongly sub-quadratic time assuming
the Strong Exponential Time Hypothesis (SETH).

[24] was a followup study on the matter that finalized the dichotomy that was presented
previously with two results. (1) They present two almost-linear time algorithms that gen-
eralize all known almost-linear time algorithms for special cases of regular expression
membership testing and (2) classify all types, except for the Word Break problem, into
almost-linear time or quadratic time assuming the Strong Exponential Time Hypothesis.
The Word Break problem is considered to be the only intermediate problem in this case,
and they also give an improved algorithm for the problem.

3.2.2.4 Model Checking Problems

Model Checking Problems consist of checking a model in an automatic way to see if its
behavior is the one expected by the creator. These problems are mainly focused in check-
ing logic models, as these combine both the expressiveness to encapsulate problems and
the mathematical grasp to be able to check by an algorithm.

Problem: Mඌඍඔ Cඐඍඋඓඑඖඏ

Input: a Model and its expected behavior, most commonly a logic model.

Output: ”Yes” if the model has the expected behavior, or in the case of logic models,
if it can be satisfied with a solution (e.g. an assignment of variables).

One of the techniques utilized in checking logic models is to formulate them as games
in graphs with certain properties. Some of the more important ones were Büchi, Street,

41 S. Petsalakis



Fine-Grained Complexity: Exploring Reductions and their Properties

and Rabin automata. The authors of [33, 34] made advances on various model checking
algorithms, and proved with these techniques the conditional optimality of their algorithms
for these games based on SETH.

3.2.2.5 Succinct Stable Matching

The stable matching problem has been studied both for its use in graph theory, economics,
and mathematics. It consists of finding a stable matching between two sets of equal size,
given an ordering of preferences for the matching of each element. A variant of this prob-
lem is when the preference lists are given in a succinct form.

Problem: Sඝඋඋඑඖඋග Sගඉඊඔඍ Mඉගඋඐඑඖඏ

Input: Two sets A and B of equal size, and a compressed form of the ordering of
preferences to match each element of one set to an element of the other.

Output: A set of relations matching elements of A to elements of B

[78] considers the succinct stable matching problem, and provides a dichotomy of com-
plexity in the problem. Specifically, they give some subquadratic algorithms two special
cases of the problem, the d-attribute and d-list problem, and show that for d = ω(logn) both
finding and verifying a stable matching in the d-attribute model requires quadratic time as-
suming the Strong Exponential Time Hypothesis. The d-attribute model is therefore as
hard as the general case for large enough values of d.

3.2.2.6 Machine Learning Problems

Empirical riskminimization (ERM) is a principle in statistical learning theory which defines a
family of learning algorithms and is used to give theoretical bounds on their performance.In
general, the risk cannot be computed because the distribution is unknown to the learning
algorithm (this situation is referred to as agnostic learning). However, we can compute an
approximation, called empirical risk, by averaging the loss function on the training set: It
is one of the areas that are elusive as to their exact complexity. Some of the most popular
such problems are kernel SVMs, kernel ridge regression, and training the final layer of a
neural network.

Problem: Eඕඑකඑඋඉඔ කඑඛඓ ඕඑඖඑඕඑජඉගඑඖ

Input: A collection of data of which we don’t have any information about their distri-
bution.

Output: A prediction of the distribution of future data that minimizes the risk of faults.
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[18] addresses this issue for multiple ERM problems, and give conditional hardness results
for these cases. They show that there are no algorithms that solve the aforementioned
ERM problems to high accuracy in sub-quadratic time and give similar hardness results
for computing the gradient of the empirical loss, which is the main computational burden
in many non-convex learning tasks.

3.2.2.7 One-Dimensional Dynamic Problems

The Least-Weight Subsequence (LWS) problem on [a,b] is to determine, given a weight
function W (i, j) that is defined for all a ≤ i < j ≤ b, what is the sequence of pointers with
i0 < i1 < ... < it that has the minimum added pairwise weight.

Problem: Lඍඉඛග-Wඍඑඏඐග Sඝඊඛඍඝඍඖඋඍ

Input: an interval [a,b] and a weight function W (i, j) defined for a ≤ i < j ≤ b

Output: a sequence of pointers with i0 < i1 < ... < it that has the minimum added
pairwise weight Σj∈[t]W (ij−1, ij)

Most One-dimensional Dynamic problems can be written in a form that resembles the
Least-Weight Subsequence (LWS) problem. In [72], the authors show subquadratic equiv-
alences between some cases of the LWS problem, and various core problems that have
been previously studied. Specifically, they show equivalences between:

• a low rank version of LWS ≡ minimum inner product,

• finding the longest chain of nested boxes ≡ vector domination,

• a coin change problem (close to knapsack) ≡ (min,+)-convolution.

They use these equivalences, as well as some SETH-hardness results in literature, to
deduce tight conditional lower bounds for the corresponding LWS instantiations.

3.2.2.8 Furthest Pair in Rn

The Furthest Pair problem is to determine, given a set of points and their corresponding
space and distance metric, which two points are further away from each other.

Problem: Fඝකගඐඍඛග Pඉඑක එඖ Rn

Input: A set of points and their corresponding space and distance metric

Output: Points a, b such that d(a, b) > d(i, j) for all other points i, j
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Point location problems in Euclidean space are inherently dichotomized into problems
that have near-linear and barely subquadratic time complexities respectively. In [89] the
author gives a self-reduction of the Orthogonal Vectors problem on n vectors {0, 1}d to
n vectors in Zω(logd) that runs in 2o(d) time. This reduction suffices to show that barely
subquadratic problems such as the Euclidean Diameter, Bichromatic closest pair, and
incidence detection do not have truly subquadratic algorithms, unless the OV conjecture
fails.

3.2.2.9 Grammar Compression and SLP’s

In [8] the authors analyze string distance problems in the case where the data is com-
pressed, specifically in cases where the compression can be represented by the notion
of Grammar Compression, i.e. Straight Line Programs. The main problems they address
are: the Longest Common Subsequence (LCS),Pattern Matching with Wildcards, Context
Free Grammar parsing, RNA folding, and the Disjointness problem. The goal is to deter-
mine if there can be an algorithm that solves the classic string problems on compressed
strings with complexity faster than decompressing the string and solving it with the normal
algorithm.

They discuss a O(nN
√
(logN/n)) bound for LCS and a O(min{NlogN, nM}) bound for

Pattern Matching with Wildcards, and show the conditional optimality of these bounds for
these cases under SETH. They also show that for the case of Context Free Grammar
parsing and RNA folding, the decompress-and-solve technique is optimal under the k-
clique conjecture. Finally, they give an algorithm for the Disjointness problem, that runs
faster than the decompress-and-solve version.

3.2.2.10 All Pairs Max Flow

The All Pairs Max Flow problem is to compute, given a directed graph with n nodes, m
edges, and capacities in the range of [1..n], the maximum flow value between each pair
of nodes.

Problem: Aඔඔ Pඉඑකඛ Mඉච Fඔඟ

Input: A directed graph G = (V,E), edge capacities 1 ≤ ci ≤ n

Output: the maximum flow value between each pair of nodes in G

[71] provides evidence that the problem cannot be solved significantly faster than O(n2m)
unless SETH falls. Additionally, in [75] it is shown that a single maximum st−flow in such
graphs can be solved in time Õ(m

√
n).

These are conterintuitive since it was conjectured in [73] that All-Pairs-Max-Flow in general
graphs can be solved faster than O(n2) computations of maximum st− flow.
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3.2.2.11 Closest Pair in Hamming Space

Neighbor problems such as the Closest Pair have many applications. In [13] Alman and
Williams show (amongst major advancements on algorithms for the problem) that if there
exists an ϵ > 0 such that for all constants c, the Bichromatic HammingClosest Pair problem
can be solved in time 2o(d)n2−ϵ time on a set of points in {0, 1}clogn, then the OV hypothesis
would fail (and SETH in turn would be falsified)

3.2.3 More Reductions from 3-SUM

The 3SUMconjecture has proven to be a valuable tool for proving conditional lower bounds
on dynamic data structures and graph problems. We will discuss here some of the prob-
lems in Computational Geometry that have been linked to the 3SUM problem via fine-
grained reductions.

3.2.3.1 Problems in Computational Geometry

Computational geometry involves the study of algorithms which can be stated in terms
of geometry. The development of computational geometry as a discipline was stimu-
lated by progress in computer graphics and computer-aided design and manufacturing
(CAD/CAM).

Other important applications of computational geometry include robotics , geographic in-
formation systems (GIS), computer-aided engineering (CAE) , computer vision (3D recon-
struction).

In [52, 53] it is proven for a large class of problems that they are all at least as difficult as
the base problem 3SUM and are classified as 3SUM-hard problems. Because the base
problem can be reduced to all of these problems, none of them can be solved in time o(n2),
unless a subquadratic solution exists for the base problem. Note that this does not mean
that all problems are equivalent but it means that they are at least as hard as the base
problem. Moreover, almost any lower bound for the base problem will immediately carry
over to the 3SUM-hard problems.

Computational Geometry is a field that has proven to be invaluable in many areas in-
cluding robotics, bioinformatics, data science, and more. In [52, 53] it is shown that the
3SUM problem is computationally equivalent to many of the basic Computational Ge-
ometry problems, such as incidence problems, separator problems, covering problems,
visibility problems, and motion planning problems.

The list of problems includes among others:

• Given a set of lines in the plane, are there three that pass through the same point?

• Given a set of (non-intersecting, axis-parallel) line segments, is there a line that
separates them into two non-empty subsets?
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• Given a set of (infinite) strips in the plane, do they fully cover a given rectangle?

• Given a set of triangles in the plane, compute their measure.

• Given a set of horizontal triangles in space, can a particular triangle be seen from a
particular viewpoint?

• Given a set of (non-intersecting, axis-parallel) line segment obstacles in the plane,
and a rod, can the rod be moved, allowing translation and rotation, from a given
source to a given destination without colliding with the obstacles?

• Given a set of (horizontal) triangle obstacles in space, and a vertical rod, can the
rod be moved, allowing translation only, from a given source to a given destination
without colliding with the obstacles?

Note that these reductions were produced a long time before Fine-Grained complexity was
introduced, but still obey the definition. This serves as an indication that these types of
equivalences have interest even in areas not only concerned with analyzing the complexity
of problems, but to put them into practical use as well.

3.2.4 More Reductions from APSP

Here we consider some central problems in Graph Theory, and their relations with the very
important and well-known problem, the All-Pairs-Shortest-Path(APSP) problem. APSP is
believed to be truly cubic(i.e. there is no exact algorithm for this problem which runs in
time O(n3−ϵ) for a constant ϵ > 0).

3.2.4.1 Graph Problems

In [91] the authors analyze some Graph problems and show subcubic equivalences be-
tween the APSP problem and various problems that have been very important for their
applications in network and graph algorithms. Namely, they show equivalances between
APSP and the following problems:

• Detecting if a weighted graph has a triangle of negative total edge weight.

• Listing up to n2.99 negative triangles in an edge-weighted graph.

• Finding a minimum weight cycle in a graph of non-negative edge weights.

• The replacement paths problem in an edge-weighted digraph.

• Finding the second shortest simple path between two nodes in an edge-weighted
digraph.
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• Checking whether a given matrix defines a metric.

• Verifying the correctness of a matrix product over the (min, +)-semiring

[3] continued this work to show equivalences between APSP and some problems as-
sociated with graph centrality. To be specific, they give reductions linking APSP to the
computation of the center and the median of a graph, and computing the betweenness or
reach centrality of even a single node in the graph.

3.2.4.2 Matrix Problems

In [91] the authors show generic equivalences between matrix products over a large class
of algebraic structures used in optimization, verifying amatrix product over the same struc-
ture, and corresponding triangle detection problems over the structure. As a consequence
of their work, they come up with new combinatorial approaches to Boolean matrix multi-
plication over the (OR, AND)-semiring (abbreviated as BMM). Finaly they show that prac-
tical advances in triangle detection would imply practical BMM algorithms, among other
results. They also give two new BMM algorithms: a derandomization of the combinatorial
BMM algorithm of Bansal and Williams (FOCS’09), and an improved quantum algorithm
for BMM.

Specifically, given a tripartite graph G on n vertices, we can detect if there is a triangle in
G using a combinatorial algorithm in O(n3/log4n) time on a word RAM with word size ω ≥
Ω(logn). [91] proved that triangle detection and Boolean matrix multiplication are subcubic
equivalent. For any constant c, if we can solve triangle detection on n-node graphs in
Ô(n3/logcn) time, we can also solve Boolean matrix multiplication on n × n matrices in
the same running time. Combining the above, results in a fast combinatorial algorithm for
Boolean matrix multiplication, i.e. there is a combinatorial algorithm to multiply two n× n
Boolean matrices in Ô(n3/log4n) time.

In [15] the authors study the Maximum Weight Rectangles problem, and provide tight
conditional lower bounds based on the APSP conjecture, specifically in the case where
the points are aligned in a grid which is a well studied problem called the Max Subarray
Problem.

3.2.4.3 Tree Edit Distance

The Tree Edit Distance problem is a generalization of the edit distance problem, where in-
stead of strings, the objects that are measured are rooted Trees with n nodes and symbols
on each node

The fastest known algorithm for tree edit distance runs in O(n3) time and is based on a
dynamic programming solution similar to the one for string edit distance.

In [27] the authors show that a subcubic algorithm for this problem is unlikely to be de-
veloped. Specifically, they show that for |Σ| = Ω(n), a truly subcubic algorithm for tree
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edit distance implies a truly subcubic algorithm for the all pairs shortest paths problem.
Furthermore, for |Σ| = O(1), a truly subcubic algorithm for tree edit distance implies an
O(nk–ϵ) algorithm for finding a maximum weight k-clique.

3.2.5 Other Reductions

3.2.5.1 Local Alignment

The Local Alignment problem is, given two strings s and r and a scoring function on pairs of
letters, to determine which are the substrings of the s and r that are most similar under the
scoring function. It is a special case of the Edit Distance problem, and is very important for
its applications in biology and bioinformatics. The best known algorithm for this problem
is of quadratic time complexity. In [6] we see that if there exists an algorithm running in
O(n2−ϵ) for some ϵ > 0 then there exists a δ > 0 for which 3SUM numbers is in O(n2−δ),
CNF-SAT is in O((2 − δ)n), and Max Weight 4-Clique is in O(n4−δ) time for input size n
respectively.

3.2.5.2 Triangle Collection, Matching Triangles

One of the main questions regarding fine-grained reductions is to find links between the
three basic conjectures, namely SETH, 3SUM, and APSP. While a direct link remains
elusive, [7] shows that there exist problems that have reductions from all three conjectures
to them. Specifically, they show reductions from all these conjectures to the Triangle
Collection problem, and the Matching Triangles problem. This could potentially indicate
that these problems have all the structural properties that bound the complexity of the
three basic conjectures.

Among their results are tight n3−1 lower bounds for purely-combinatorial problems about
the triangles in unweighted graphs. Furthermore, [7] show new n1−o(1) lower bounds for
the amortized update and query times of dynamic algorithms for single-source reachability,
strongly connected components, and Max-Flow, as well as new n1.5−o(1) lower bound for
computing a set of n st-maximum-flow values in a directed graph.

3.2.6 Web of Reductions

Figure 3: Web of Reductions
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4. STRUCTURAL IMPLICATIONS

4.1 Properties and Implications of Fine-Grained Reductions

As with the classic polynomial reductions, fine grained reductions have many implications
on all of the problems connected through them.
Firstly, it is easy to see that these reductions have the transitive property, i.e. if problem
A can be reduced to problem B, and problem B can in turn be reduced to problem C,
then problem A can also be reduced to problem C by pipelining the two reductions. As
such, any problem connected via a chain of reductions to another problem share all the
implications provided by fine-grained reductions. Nevertheless, extracting these structural
properties from the fact that these problems have such a reduction is one of the biggest
questions in fine-grained complexity.
It is important to find properties of problems that are preserved via fine-grained reduc-
tions, meaning that if problem A has such a property, it can be reduced to problem B in
a fine-grained way, then problem B would also have this property. This would mean that
all problems that do not have this property, can never take part in a reduction from A to
them, which in turn implies that their hardness is possibly based on a different structural
property.

4.1.1 NSETH and non-reducibility

In [31] the authors introduce a Nondeterministic version of the Strong Exponential Time
Hypothesis. NSETH claims that a ”co-nondeterministic machine” solving the k-SAT prob-
lem also requires exponential time to be solved. The hypothesis can be equivalently be
seen as stating that the a nondeterministic machine cannot solve the Tautology or the
non-SAT problem in less than exponential time. They show that refuting this hypothesis
would give some interesting lower bounds for circuit complexity. They also introduce a
structural property of problems (we will refer to this as property X) that is preserved via
fine-grained reductions.
This property states that either the nondeterministic or the co-nondeterministic complexity
of a given problem is at least as hard as the deterministic case. This can alternatively be
seen through the lens of certificate length for non-determinism:

If the time required to verify the shortest certificate for either the problem or the comple-
ment of the problem (e.g. SAT and non-SAT) is at least the time required to solve the
problem in a deterministic way, then the property holds. In this context, NSETH is trans-
lated simply as such: ”The shortest certificate for the non-SAT problem is of exponential
length”. Since k-SAT can be solved exponentially by a deterministic machine, this conjec-
ture implies property X holds for k-SAT.
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The authors proceed to show that if property X does not hold for a problem B, then the fine-
grained reduction can be used to create a non-deterministic algorithm for both the problem
and its complement. As such, property X is preserved via fine-grained reductions in the
sense that, if problem A has this property (w.l.o.g. say the co-nondeterministic complexity
of the problem is asmuch as the deterministic one) and a fine-grained reduction to problem
B which in turn doesn’t have this property, then that reduction can be used to produce both
a nondeterministic and a co-nondeterministic algorithm for problem A, which would mean
that problem A doesn’t have this property. In other words, if A can be reduced to B, either
both of these problems have this property, or none of them do.
Since NSETH claims that the k-SAT has Property X, then all of the problems k-SAT can
be reduced to also have this property. It is important to note that the reverse is not shown:
if a problem B has property X, that does not necessarily mean that k-SAT can be reduced
to that problem.

4.1.2 Interesting Results and viewpoints

Combining the structure and transitivity of fine-grained reductions with the an analysis of
the non-deterministic and co-non-deterministic complexities of problems, one can show
that, under NSETH, there can never exist fine-grained reductions between many of the
problems studied in the field. To put it formally, the following hold:

Theorem 11 (NSETH implies no reduction fromSAT). If NSETH andC ∈ (N∩coN)TIME[TC ]
for some problem C, then (SAT, 2n) �FGR(C, T 1+γ

C ) for any γ > 0.

Corollary 1 (NSETH implies no reductions from SETH-hard problems). If NSETH and
C ∈ (N∩coN)TIME[TC ], then for any B that is SETH-hard under deterministic reductions
with time TB, and γ > 0, we have (B, TB) �FGR (C, T 1+γ

C )

Theorem 12 Under NSETH, there is no deterministic or zero-error fine-grained reduction
from SAT or any SETH-hard problem to the following problems with the following time
complexities for any γ > 0.

• ਬਠਥਫਮਸ਼ with T (m) = m1+γ

• ਧਨਲ਼ਲ਼ਨਭਦਲਤਲ਼ with T (m) = m1+γ

• 3-ਲਬ with T (n) = n1.5+γ

• Aਫਫ-Pਠਨਲ Sਧਮਲ਼ਤਲਲ਼ Pਠਲ਼ਧਲ with T (n) = n2+ 6+ω
9

+γ

4.1.3 Some Proof sketches for the above

The above results stems from combining the initial theorem with the fact that these prob-
lems belong to the class (N ∩ coN)TIME[TC ] for their respective TC time function. We
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will now see parts of the analysis of these problems’ non-deterministic complexities.
The technique used to succeed in this is simply to provide non-deterministic algorithms
for the specific problems and their respective complements, therefore showing that they
belong in both NTIME[TC ] and coNTIME[TC ]

4.1.3.1 3-SUM

As mentioned, to prove that 3-SUM cannot take part in a reduction from k-SAT to 3-SUM,
it suffices to show a non-deterministic algorithm for the problem it self, as well as a non-
deterministic algorithm for the complement of the problem, which is to prove that there are
no triplets in the list that sum to 0.
For the initial problem there is an easy algorithm of non-deterministically guessing a triplet
and checking if it sums to 0. For the case of showing that no triplet sums to 0, one can
do so with complexity O(n1.5) using number-theoretic properties to create a proof of such
length, that can be then non-deterministically guessed and verified within the specified
complexity.
The proof is of the form (p, t, S) such that

• p is a prime number such that p ≤ primen1.5, where primen1.5 is the n1.5’th prime
number.

• t is a nonnegative integer with t ≤ 3cn1.5logn such that t = |{(i, j, k) : ai + aj + ak =
0modp}| is the number of triplets that sum to 0 modulo p.

• S = {(i1, j1, k1), . . . , (it, jt, kt)} is a set of t triplets of indices, such that for all r =
1, . . . , t we have air + ajr + akr = 0modp and air + ajr + akr ̸= 0.

To show that a proof of this required length and property exists, a counting argument needs
to be made: Let R be the number of all pairs ((i, j, k), p) s.t. p is a prime ≤ primen1.5 and
ai+aj+ak = 0modp. Then |R| ≤ n3log(3nc) < 3cn3logn, as any integer z can have at most
log(z) prime divisors. Then by simple counting argument, there exists a prime≤ primen1.5,
such that the number of such pairs is at most 3cn1.5logn. The verification for such a proof
needs to firstly check that for all r ∈ [t] the following hold: air + ajr + akr = 0modp and
air + ajr + akr ̸= 0, and then compute the number of 3-sums modulo p and compare it with
t. In order to do the second step we expand the following expression using Fast Fourier
Transformation (FFT) in time Õ(t):

(Σix
(aimodp))

let bj be a coefficient before xj. We need to check that b0 + bp + b2p = t. If this is true, then
the proof is accepted, otherwise it is rejected.

Every check needed, as well as the FFT expansion, can be done in time Õ(t) = Õ(n1.5).
Therefore, the non-deterministic as well as the co-non-deterministic complexity of 3-SUM
is faster than its deterministic one (n2).
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4.1.3.2 Aඔඔ-Pඉඑකඛ Sඐකගඍඛග Pඉගඐඛ

This proof is an indicator of how powerful the transitivity of fine-grained reductions is in
producing results. The authors first show that the Zero Weight Triangle problem is in
(N ∩ coN)TIME[O(n2+ω/3)] using techniques closely related to the above proof for the
3-SUM problem.
Because in [85] it was shown that the Negative Triangle problem can be reduced to the
Zero Weight Triangle Problem, it also belongs in (N ∩ coN)TIME[Õ(n2+ω/3)] Additionally,
[91] give a deterministic fine-grained reduction from the APSP problem to the Negative
Triangle problem with time Õ(n2T (n1/3)), where T (n) is the time complexity of the negative
weight triangle problem. As such, APSP is in (N ∩ coN)TIME[Õ(n2+ 6+ω

9 )].

4.1.4 Quantifier structure of SETH-hard graph problems

In addition to the aforementioned results, the authors of [31] observed that there is a logic
coherence between graph problems that are SETH-hard. That is, graph problems that
are SETH-hard seem to have logical forms that are very similar in nature and structure.
They specialize in problems concerning first order properties in sparse graphs, meaning
that the amount of edges m is not immensely bigger than the amount of nodes n.
The logic representation of the graph is done by representing every relation in the graph
as a binary predicate. For instance, a predicate P (x1, x2) is true on nodes x1, x2 if there
is an edge between x1, x2 in the graph. To give some more context, we will give some
examples of graph properties expressed in this way:
The k-Clique problem can be expressed as:

ϕ = ∃x1 . . . ∃xk ∧i,j∈[k],i ̸=j E(xi, xj)

Similarly, the k-Dominating Set:

ϕ = ∃x1 . . . ∃xk∀xk+1(E(x1, xk+1) ∨ · · · ∨ E(xk, xk+1))

The maximum deterministic complexity of a k-quantifier formula for k ≥ 2 is O(mk−1).
For k = 2, this is just linear in the input size, so matching lower bounds follow. So the
interesting case is k ≥ 3. If SETH is true, some formulas require approximately this time.
But if NSETH holds, all such formulas that are SETH-hard are of the same logical form.
This is made precise as follows:

Theorem 13 If NSETH is true, then there is a k-quantifier formula whose model checking
problem is O(mk−1) SETH-hard, but all such formulas have the form ∀k−1∃ or ∃k−1∀.

This theorem comes directly from the following lemmas:

Lemma 1 If SETH or NSETH is true, then there are ∀k−1∃ problems that are SETH-hard
for time O(mk−1).
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By negating ϕ, the ∃k−1∀ are also SETH-hard. The following three lemmas show that if
a problem is not of the aforementioned quantifier structure, then these have smaller non-
deterministic complexity.

Lemma 2 If ϕ has exactly one existential quantifier, but it is not on the innermost position,
then it can be solved in O(mk−2) non-deterministic time

Lemma 3 If ϕ has more than one existential quantifier, then it can be solved in O(mk−2)
non-deterministic time

These problems can be solved by guessing the existentially quantified variables, and ex-
haustively searching on universally quantified variables. Because there are at most k − 2
universal quantifiers, the algorithm runs in time O(mk−2).

Lemma 4 If all quantifiers are universal, then it can be solved in time O(mk−1.5).

Thus, assuming NSETH, only these two types of first-order propertiesmight be SETH-hard
for the maximum difficulty of a k-quantifier formula.
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5. CURRENT APPROACH

5.1 Current Approach

In this section I will discuss my thoughts and approach on the field.

There are two main goals in my current approach on Fine-Grained Complexity. The first
is to continue the search for structural properties of problems that are preserved via fine-
grained reductions. The property I am currently studying in this manner is a variation of
self-reducibility.
The second goal is to analyze the amount of information that can be produced via a fine-
grained reduction that is inherently limited in computational time and possibly produce
bounds based on the entropy of each problem

5.1.1 Observations

We will begin this chapter with some observations made while studying the web of fine-
grained reductions.
Firstly, we can see that fine-grained reductions create a somehow clustered web. There
are some basic conjectures, and the reductions that stem from them create an tree-like di-
rected graph. While there are some intersections between the trees from each conjecture,
for the most part these trees form clusters of reducibility where some families of problems
seem to be very similar with each other. This implies that there are structural properties
of problems that are shared within these clusters, but not globally.
Secondly, these tree-like graphs that link these problems, all stem from some initial con-
jecture, but there are no known fine-grained relations between these conjectures. One
can view this as a sort of independence between these families of problems.
Another observation in the known and well-studied fine-grained reductions, is that hard-
ness is in a way ”transferred” through parameters. That is, the entropy and structure of
problem A that is reduced to problem B, is directly linked problem B via the reduction, not
only as an information-theoretic construct, but also preserving some of the relations of the
parameters. For example, in the kSAT ≤ OV reduction [87] the number of variables is
explicitly transferred to the number of vectors in the sets (N = 2n/k), and the number of
clauses m in the formula is transferred to the number of dimensions of the vectors in the
OV instance. The study done in [25] also gives some evidence in this direction, as they
show hardness for specific parameters in problems.
Another interesting observation regarding the structure of fine-grained reductions, is the
fact that these reductions go across complexity classes. In other words, a problem with
exponential complexity can be reduced to a problem with polynomial complexity, regard-
less of the fact that these two problems belong in different complexity classes. In both the
cases of classic complexity theory and fine grained complexity, a reduction from problem
A to problem B is an indicator that problem B is ”harder than” or ”at least as hard as”
problem A, as improvements on the running time of B immediately transfer to the com-
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plexity of A. Nevertheless, in the case of fine-grained complexity, the notion of ”hardness”
can be viewed via a different lens, as (to my knowledge) there have only been reductions
linking problems of higher complexity to problems of lower complexity. This implies that
the structural properties that cause a problem to be ”hard” in this manner, are not directly
linked to the computational complexity of the problem itself.

These facts, along with the publication of property X and NSETH in [31] motivated us to
find other structural properties that differ in the 3 basic conjectures (3SUM, SETH, APSP).
The hope in such a study is to extract a structural property that is preserved via fine-grained
reductions.

5.1.2 Self Reducibility

After discussing many properties related with locality of computation and the way the input
is processed, we decided to study the notion of downward self-reduciblity, which is one of
the most prolific and studied structural properties in problems, that is, the ability to solve
a problem by having access to an oracle solving instances of smaller input size.

The first problem in the direction of self reducibility (SR), is the fact that the classic definition
for downward SR allows the reduction to use poly(n) time, which in many cases results in
an algorithm with running time complexity greater than the current optimal algorithm for
the problem. We need to define a variant of Self Reducibility that respects the amount of
resources needed for the reduction

Definition 10 We say that a problem is Self-Reducible in a Fine-grained way, if for a
(natural) parameter p of the problem we have that A(p) ≤FGR A(p′), where p′ ≺ p, for a
partial-ordering ≺ defined for the parameter p.

An example of these notions is k-SAT, for which one can see that kSAT (n) ≤FGR kSAT (n−
1), so in this regard we say that the k-SAT problem has the Fine-Grained Self Reducibility
property.

Note that in this definition and example we used the Fine-Grained reduction from a prob-
lem with parameter p to a problem with parameter p’. This notation is not the one usually
used in Fine-Grained complexity, as normally fine-grained reductions are not concerned
with a certain instance of a problem that would define a parameter such as p, but are
abstractly defined on all inputs for both of the problems. In order to properly define self-
reducibility, we need a kind of parameterization of the input. This notation can be used
freely because in fine-grained reductions, there is always a translation of the inputs, and
as such a translation of all the parameters that can be extracted by each instance of the
problems.
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We can generalize this definition and notation by allowing a parameter to be tuples of
other parameters (P = (p1p2 · · · pk)). Then we write A(P ) ≤FGR B(R) for P = (p1p2 · · · pk),
R = (r1r2 · · · rk) This can be viewed as the existence of a mapping family fi(pi) = ri im-
plicit in the reduction process/algorithm.

It is only natural to see that this notation holds this property as an inherent structure of fine-
grained reductions: If A ≤ B, then ∃(N1, · · · , Nk) parameters of B, such that b1−ε

i (Ni) ⇒
a1−δ(n).

This framework could culminate in results such as the following speculation:

Conjecture: Self Reducibility is preserved through fine-grained reductions. That is, if a
problem is Self Reducible on some parameter p in a Fine-Grained way and is FG-reduced
(or reduces, TBD) to another problem, then this problem is also Self Reducible in a Fine-
Grained way on the parameters that are the translation of p.

While there is intuitive evidence for this conjecture, the proof for such a result remains
elusive at the moment.

5.1.3 Information Theory

One of the main questions in Fine-Grained complexity is to define which problems can be
linked via fine-grained reductions, as there have not been many non-reducibility results in
the years this field has been active. This idea began when noticing that all of the reductions
in literature start with a problem of high complexity, and reduce it to a problem of lower
or equal complexity. This is not a completely new idea as it has been discussed by Amir
Abboud in the Dagstuhl Seminar 16451 along with various other open problems regarding
structural hardness in P.
My approach is as follows: Given a reduction from problem A to problem B, as defined
previously, fine-grained reductions are bound to using less running time than the current
algorithm for the problemA. The amount and size of the calls that can bemade to instances
of the second problem are also bound by the complexity of the initial problem:∑q

i=1(b(ni))
1−ϵ ≤ (a(n))1−δ

The idea is that if the entropy of problem A is greater than the amount of information that
can be gathered by these calls combined with the running time of the reduction, then prob-
lem A can never be reduced to problem B, therefore producing massive non-reducibility
results, as this property would also carry the transitiveness of fine-grained reductions.
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6. OPEN PROBLEMS

Formulating the right question is of paramount importance in science but it is not an easy
matter as it requires deep knowledge and hands-on experience in the field. Meetings and
conferences may aid in the formulation of open problems in different aspects in a field
provided by different researchers.
Dagstuhl Seminar 16451 took place in November of 2016, having as its topic ”Structure
Hardness in P”. During the seminar, researchers introduced various interesting open prob-
lems in order to motivate research in the field of Fine-Grained Complexity. These problems
belong to a big range of research objectives, spanning from lower bounds for problems to
structural properties of Fine-Grained reductions (similar to those discussed in this thesis).
In [76] the authors gathered all these problems that were discussed there, and as such we
will also provide the list in this chapter, as presented by the authors of the aforementioned
publication.

6.1 Open Problems Discussed in Dagstuhl Seminar 16451

6.1.0.1 Open Problem 1: Parameterizing problems in P by treewidth

Let t be the treewidth of an input graph. Many NP-hard problems, particularly those
expressible in MSOL, are solvable in f(t)n time and there are lower bounds on
the (exponential) function f conditioned on the Strong Exponential Time Hypothe-
sis (SETH) [39]. For problems in P the picture is less clear. Consider your favorite
problem Π in P solvable in TΠ(n) time on a graph with n vertices. Some problems Π
admit algorithms running in poly(t)o(TΠ(n)) time whereas others do not. For exam-
ple, [5] proved that Diameter can be solved in 2O(tlogtn1+o(1) time, yet a 2o(t)n2−ϵ time
algorithm would refute SETH. On the other hand, maximum cardinality matching can
be solved in randomized O(t3nlogn)-time [45].

Question: Classify graph problems in P according to their dependence on treewidth.
Which problems admit f(t)nt+o(1)-time algorithms with polynomial function f, and
which require exponential f? A specific goal is to determine whether maximum
weight perfect matching has an Õ(poly(t)n) algorithm, for integer weights from a
polynomial range.

[Contributed by Fedor V. Fomin.]

6.1.0.2 Open Problem 2: Approximate all-pairs shortest paths

In unweighted, undirected graphs, we can compute All Pairs Shortest Paths (APSP)
in O(n3) time with a fast ”combinatorial” algorithm, or in O(nω) time, where ω < 2.373
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is the matrix multiplication exponent. It is conjectured that a truly subcubic combi-
natorial algorithm does not exist, which is equivalent to the combinatorial Boolean
matrix multiplication conjecture. What about approximation algorithms? The best
kind of approximation is an additive +2, so that for all pairs u,v we return a value
that is between d(u, v) and d(u, v)+2. [43] presented a combinatorial algorithm with
runtime Õ(n7/3). Note that this runtime is currently even better that O(nω), and has
the advantage of being practical.

Question: Is there a conditional lower bound for +2-APSP? Can we show that a
combinatorial algorithm must spend n7/3−o(1) time?

[Contributed by Amir Abboud.]

6.1.0.3 Open Problem 3: Approximate diameter

Computing the diameter of a sparse graph in truly subquadratic time refutes SETH:
[81] showed that a (3/2−ϵ)-approximation to the diameter requires n2−o(1) time, even
on a sparse unweighted undirected graph under SETH. On the other hand, there are
algorithms [81, 35] that give a (roughly) 3/2 approximation in Õ(m

√
n) time on un-

weighted graphs, or Õ(min{m3/2,mn2/3}) time on weighted graphs. Extending these
algorithms further, [29] showed that for all integers k ≥ 1, there is an Õ(mn1/k+1) time
algorithm that approximates the diameter of an undirected unweighted graph within
a factor of (roughly) 2− 1/2k.

Question: If we insist on near-linear runtime, what is the best approximation factor
we can get? It is easy to see that a 2-approximation can be achieved in linear time,
but what about an α-approximation, where 3/2 ≤ α < 2?

[Contributed by Amir Abboud.]

6.1.0.4 Open Problem 4: Finding cycles and approximating the girth

Consider an unweighted undirected graph G = (V,E). The girth of G is the length of
the shortest cycle. The problem of detecting 3-cycles (and odd cycles of any length)
is reducible to matrix multiplication and there are reductions in the reverse direction;
see [91]. Yuster and Zwick [92] showed that detecting 2k-cycles can be computed
in O(f(k)n2) time, where f is exponential.

Question: For any fixed constant k, give a conditional lower bound, showing that
there does not exist an algorithm deciding whether G contains a 2k-cycle in time
O(f(k)n2−ϵ) for any ϵ > 0, or one running in O(f(k)m2k/(k+1)−ϵ) time, where m is the
number of edges.
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Question: Prove or disprove the following conjecture: There exists a truly sub-
quadratic algorithm for finding a 4-cycle in a graph if and only if there exists a truly
subquadratic algorithm for finding a multiplicative (2− ϵ)-approximation of the girth.

Question: Prove or disprove the following conjecture from [82]: the problem of
detecting a 3-cycle in a graph G without 4- and 5-cycles requires n2−o(1) time. Note
that if there exists a subquadratic 2− ϵ)-approximation for the girth, it must be able
to detect 3-cycles in graphs without 4- and 5-cycles.

Main Paper Reference: [82]

[Contributed by Mathias Bæk Tejs Knudsen and Liam Roditty ]

6.1.0.5 Open Problem 5: Minimum cycle problem in directed graphs

Given an unweighted directed graph G = (V,E) on n vertices, the problem is to find
a shortest cycle in G. The potentially simpler Girth problem asks to compute just the
length of the shortest cycle.
The girth and theminimum cycle can be computed inO(nω) time exactly, as shown by
[63] , where ω < 2.373. It is easy to see that the minimum cycle problem is at least as
hard as finding a triangle in a graph. In fact, even obtaining a (2− δ)-approximation
for the girth for any constant δ > 0 is at least as hard as triangle detection. The
fastest algorithm for the Triangle problem in n node graphs runs in O(nω) time.

Question: Is there any O(1)-approximation algorithm for the girth that runs faster
than O(nω) time? In recent work, [79] showed that for any integer k, there is an
Õ(mn1/k) time O(klogn) approximation algorithm for the Minimum Cycle problem.
Thus, in nearly linear time, one can obtain an O(log2n)-approximation. Can one
improve the approximation factor further? Can one even obtain a constant factor
approximation in linear time?

[Contributed by Virginia Vassilevska Williams.]

6.1.0.6 Open Problem 6: Linear Programming

Consider a linear program of the following form: minimize cTx subject to Ax ≥ b,
where A is a d-by-n constraint matrix. Suppose that we could solve any such LP in
time

Õ((nnz(A) + d2)dδlogL),

where nnz(A) is the number of non-zero entries of A, L is the bound on the bit
complexity of the input entries, and δ is a positive constant.
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Question: Is there some value of δ for which the above (hypothetical) running time
bound would disprove any of the popular hardness conjectures?
In [74], it is shown that one can achieve the above running time bound for δ = 1/2.

[Contributed by Aleksander Madry.]

6.1.0.7 Open Problem 7: Fully dynamic APSP

In the fully dynamic all-pairs shortest paths (APSP) problem we are interested in
maintaining the distance matrix of a graph under insertions and deletions of nodes.
[41] showed that the distance matrix can be updated in amortized time Õ(n2) after
each node update. The current fastest worst case algorithms have update times of
O(n2+2/3) (randomized Monte Carlo [11]) and Õ(n2+3/4)(deterministic [84]).

Question: Can the worst case update time Õ(n2) be achieved? A barrier for current
algorithmic approaches is n2.5. Is there a conditional lower bound showing this to
be a true barrier?

[Contributed by Sebastian Krinninger.]

6.1.0.8 Open Problem 8: Dynamic reachability in planar graphs

Dynamic reachability in a planar graph G is the problem of maintaining a data struc-
ture supporting the following operations: (i) Insert a directed edge (u,v) into G, (ii)
delete an edge from G, and (iii) query whether v is reachable from u in G.
An algorithm with update and query time Õ(

√
n) is known ([42] for dynamic plane

graphs-that is, the graph is dynamic but the plane embedding is fixed.

Question: Does an n1/2−Ω(1) algorithm exist or is there a conditional n1/2−o(1) hard-
ness result? Any polynomial hardness result would be interesting. A good place to
start for the latter part would be [2] about hardness for dynamic problems in planar
graphs.

[Contributed by Søren Dahlgaard.]

6.1.0.9 Open Problem 9: Static hardness for planar graphs

An important direction is to show conditional hardness for important problems, even
on restricted (easier) classes of graphs, e.g., planar graphs. [2] showed hardness for
several dynamic problems in planar graphs, but nothing is known for static problems.
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Question: On planar graphs, many problems (such as shortest paths, multi-source
multi-sink max-flow, etc.) run in near-linear time. Can we show that some problem
does not? No hardness results are known for any static problem in P on planar
graphs. Two candidate problems to consider are diameter and sum of distances.
Both require subquadratic time ([28]), but it may still be possible to show a hardness
result, e.g., n3/2−o(1) hardness.

[Contributed by Søren Dahlgaard.]

6.1.0.10 Open Problem 10: Sparse reductions for graph problems

Many graph problems are known to be as hard as APSP on dense graphs [3, 83,
91], in the sense that a subcubic algorithm for any of them implies a subcubic algo-
rithm for all of them. When the graph sparsity is taken into account, these problems
currently are no longer in a single class: many have Õ(mn)-time algorithms whereas
finding minimumweight triangle and related problems have Õ(m3/2)-time algorithms.
Most known fine-grained reductions between graph problems do not preserve the
graph sparsity. Until recently, the only examples of sparseness-preserving truly
subcubic reductions appeared in [3].[12] presented several more such reductions,
strengthening the connections between problems with Õ(mn)-time algorithms. A
reduction from CNF-SAT to Diameter was presented in [81] to give SETH-hardness
results for Diameter and Eccentricities. The notion of a sub-mn time bound was for-
malized later, in [12], where is was observed that the reduction in [81] gives SETH-
hardness for any sub-mn time bound for these problems.

Question: Is there a sparseness-preserving, Õ(n2) time reduction from undirected
weighted All Nodes Shortest Cycles (ANSC) to APSP? Is there a sparseness-preserving,
Õ(m+n) time reduction from undirected Min-Wt-Cycle to either Radius or Eccentrici-
ties? Is it SETH-hard to find a sub-mn bound for Min-Wt-Cycle or anO(n2+sub−mn)
bound on APSP?

[Contributed by Vijaya Ramachandran.]

6.1.0.11 Open Problem 11: Hardness for partially dynamic graph problems

Many results show hardness for fully-dynamic problems in graphs, but the tech-
niques do not seem to extend well to amortized lower bounds in the incremen-
tal and decremental cases. [4, 60, 40, 70] give some initial results on incremen-
tal/decremental problems.

Question: Develop general techniques for showing amortized hardness of partially
dynamic problems in graphs. One candidate problem is decremental single-source
reachability. [36] shows that Õ(m

√
n) total time is sufficient. Is it necessary?

65 S. Petsalakis



Fine-Grained Complexity: Exploring Reductions and their Properties

[Contributed by Søren Dahlgaard.]

6.1.0.12 Open Problem 12: Hardness of vertex connectivity

A connected undirected graph is k-vertex (resp. edge) connected if it remains con-
nected after any set of at most k-1 vertices (edges) is removed from the graph. A
strongly connected directed graph is k-vertex (edge) connected if it remains strongly
connected after any set of at most k-1 vertices (edges) is removed from the graph.
The vertex (edge) connectivity of a graph is the maximum value of k such that the
graph is k-vertex (edge) connected.
The edge-connectivity λ of an undirected graph can be determined in timeO(mlog2nlog2logn)
[59, 68], and for the specific case of directed graphs in time O(λmlog(n2/m)) [49]. In
contrast, the vertex-connectivity κ can only be computed in timeO((n+min{κ5/2, κn3/4})m)
[50], where for undirected graphs m can be replaced by kn.

Question: To check k-vertex connectivity means to either confirm that κ ≥ k or to
find a set of k-1 vertices that disconnects the graph. Even when k is constant, no
o(n2) time (or o(nm) time for directed graphs) algorithms are known for checking
k-connectivity. Is there a conditional superlinear lower bound?

[Contributed by Veronika Loitzenbauer.]

6.1.0.13 Open Problem 13: Parity and mean-payoff games

Parity games, and their generalization mean-payoff games, are among the rare ”nat-
ural” problems inNP∩co−NP (and in UP∩co−UP [66]) for which no polynomial-time
algorithm is known. Both parity games and mean-payoff games are 2-player games
played by taking an infinite walk on a directed graph; one of the vertices is desig-
nated the start vertex. In parity games each vertex is labeled by an integer in [0, c];
in mean payoff games each edge is labeled by an integer in [−W,W ](in [69] you can
see a description of the game). The algorithmic question is to decide, for each start
vertex, which of the two players wins the game and to construct a corresponding
winning strategy. Parity games can be reduced to mean-payoff games withW = nc.
Quasipolynomial O(nlogc) time algorithms for parity games were discovered [30, 67].
The best known algorithms for mean-payoff games run in pseudo-polynomial time
O(mnW )[22] and randomized sub-exponential time O(2

√
nlognlogW )[21].

Question: Is there a polynomial-time algorithm for parity or mean-payoff games?
Are there conditional superlinear lower bounds on these problems?

[Contributed by Veronika Loitzenbauer.]
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6.1.0.14 Open Problem 14: Unknotting

A knot is a closed, non-self-intersecting polygonal chain in R3. Two knots are equiv-
alent if one can be continuously deformed into the other without self-intersection.
The unknot problem is to decide if a knot is equivalent to one that is embeddable in
the plane.
Knots can be represented combinatorially, by projecting the polygonal chain onto
R2, placing a vertex wherever two edges intersect. The result is a 4-regular planar
graph (possibly with loops and parallel edges) where each vertex carries a bit indi-
cating which pair of edges is ”over” and which pair is ”under”. Reidemeister moves
(a small set of transformations on the knot diagram) suffice to transform any knot
diagram to one of its equivalent representations.
The complexity of unknot and related problems (e.g., are two knots equivalent?, can
two knots simultaneously embedded in R3 be untangled?) are known to be in NP
[58] and solvable in 2O(n) time [58, 64].

Question: Given a plane knot diagram with n intersections, can unknot or knot-
equivalence be solved in time near-linear in n? If not, are there conditional lower
bounds that show even some polynomial hardness?

[Contributed by Seth Pettie.]

6.1.0.15 Open Problem 15: 3-Collinearity (general position testing)

A set S of n points in R2 is said to be in general position if there do not exist three
points in S that lie on a line. The 3-Collinearity problem is to test whether S is in
general position. The 3-Collinearity problem is known to be as hard as 3SUM, and
an algorithm that runs in O(n2) time is known.

Question: The question is whether the O(n2) algorithm is optimal or whether it can
be solved in o(n2). Recent subquadratic algorithms for 3SUM [[19, 44, 55, 65] in-
dicate that polylogarithmic improvements should be possible. A related question is
whether there is an O(n2−ϵ)-depth decision tree for 3-Collinearity; see [65, 20].

[Contributed by Omer Gold.]

6.1.0.16 Open Problem 16: Element uniqueness in X + Y

Given two sets X and Y , each of n real numbers, determine whether all the elements
of X + Y = {x + y|x ∈ X, y ∈ Y } are distinct. A somewhat stronger variant of this
problem is to sort X+Y
The decision tree complexity of sorting X+Y and Element Uniqueness in X + Y was
shown to be O(n2) by [46].
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Question: Can these problems can be solved in o(n2logn) time, even for the special
case X=Y?

[Contributed by Omer Gold.]

6.1.0.17 Open Problem 17: Histogram indexing

The histogram ψ(T ) of a string T ∈ Σ∗ is a |Σ|-length vector containing the number
of occurrences of each letter in T. The histogram indexing problem (aka jumbled
indexing) is to preprocess a string T to support the following query: given a histogram
vector ψ, decide whether there is a substring T ′ of T such that ψ(T ′) = ψ.
The state-of-the-art algorithm for histogram indexing [32] preprocesses a binary text
T in O(n1.859) time and answers queries in O(1) time. Over a d-letter alphabet the
preprocessing and query times are Õ(n2−δ) and Õ(n2/3+δ(d+13)/6), for any δ ≥ 0. On
the lower bound side [14, 56], the 3SUM conjecture implies that it is impossible to
simultaneously improve n2−δ preprocessing and nδ(d/2−1) query time by polynomial
factors, where δ ≤ 2/(d− 1) and d ≥ 3.

Question: Are there any non-trivial lower bounds on histogram indexing when d =
2? Is it possible to close the gap between the lower and upper bounds in general,
or to base the hardness off of a different conjecture than 3SUM?

[Contributed by Isaac Goldstein.]

6.1.0.18 Open Problem 18: Integer programming

The objective of Integer Programming (IP) is to decide, for a givenm×nmatrix A and
an m-vector b = (b1, . . . , bm), whether there is a non-negative integer n-vector x such
that Ax = b. In 1981, Papadimitriou [80] showed that (IP) is solvable in pseudo-
polynomial time on instances for which the number of constraints m is constant.
The rough estimation of the running time of Papadimitriou’s algorithm is nO(m)dO(m2),
where d bounds the magnitude of any entry in A and b. The best known lower bound
is no( m

logm
)do(m)[44], assuming the Exponential Time Hypothesis (ETH).

Question: Is it possible to narrow the gap between algorithms for IP and the ETH-
hardness of IP?

[Contributed by Fedor V. Fomin.]
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6.1.0.19 Open Problem 19: All-pairs min-cut and generalizations

The all-pairs min-cut problem is, given an edge-capacitated undirected graph G =
(V,E, c) to compute the minimum s-t cut over all pairs s, t ∈ V . Gomory and Hu
[86] showed the problem is reducible to n − 1 s-t min-cut instances, and moreover,
all

(
n
2

)
min-cuts can be represented by a capacitated tree T on the vertex set V. On

unweighted graphs, the construction of T takes time Õ(mn)[14, 60].
Generalizations of this problem include finding the min-cut separating every triple
r, s, t ∈ V 3, which is NP-hard, and
finding the min-cuts separating all pairs of k-sets {s1, . . . , sk} from {t1, . . . , tk}.[57,
37]

Question: Are there superlinear conditional lower bounds for all-pairsmin-cut/Gomory-
Hu tree construction? (Refer to [7] for conditional lower bounds for variants of the
problem on directed graphs.) Are there non-trivial conditional lower bounds for all-
triplets approximate min-cut, or all-k-sets min-cut?

[Contributed by Robert Krauthgamer.]

6.1.0.20 Open Problem 20: Parameterizing string algorithms by compressibility

The broad idea can be illustrated with a lower bound for string edit distance: Given
two strings of length N whose compressed length (say, using Lempel-Ziv compres-
sion) is n, it is known that their edit distance can be computed in O(nN) time. Is it
possible to prove an Ω(nN) conditional lower bound? The known conditional lower
bound [16, 1, 26] reduces CNF-SAT (with n variables) to string edit distance by creat-
ing two strings each consisting of O(2n/2) blocks. To make such a reduction suitable
for proving Ω(nN) lower bound, one needs to generate instead two strings whose
length is much more than 2n/2 but that compress to much less than 2n/2.

[Contributed by Oren Weimann.]

6.1.0.21 Open Problem 21: Reductions from low complexity to high complexity

We know that improving the runtime of our 10-Clique algorithms improves the run-
time of our 100-Clique algorithms. E.g., if 10-Clique can be solved in O(n5), then
100-Clique can be solved in O(n50). In general, we have many examples of reduc-
tions showing that a faster algorithm for a problem with best known runtime O(na),
implies a faster algorithm for a problem with runtime O(nb), where a ≤ b.
However, we have no interesting reductions in the other way, showing that improve-
ments over O(nb) imply improvements over O(na), where a < b. In particular, we do
not know how to use an algorithm that solved 100-Clique in O(n50) or even O(n11)
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time, to speed up the known algorithms for 10-Clique.
Could it be that such reductions, from low complexity to high complexity, do not exist?
It is not hard to construct artificial problems where this can be done, but what about
the natural problems we typically study: Clique, Orthogonal Vectors, k-SUM, APSP,
LCS, etc. Can we show that a fine-grained reduction from 10-Clique to 100-Clique
is unlikely due to some surprising consequences? Another candidate is 3SUM (for
which the complexity is n2) vs. APSP (for which the complexity is N1.5, where N is
the input size). We repeatedly ask if faster 3SUM implies faster APSP, but maybe
proving such a result (via fine-grained reductions) has unexpected consequences?
On the other hand, it would be of great interest to find examples of such reductions
between interesting and natural problems.

[Contributed by Amir Abboud.]

Note: This problem is one that interests me greatly, and as such I mention it in the respec-
tive chapter regarding Information Theoretic Bounds. In short, I believe these questions
can be answered via Kolmogorov Complexity

6.1.0.22 Open Problem 22: Stable matching in the two-list model

Gale and Shapley’s stable matching [54] algorithm runs inO(n2) time and it is known
that Ω(n2) is optimal if the preference lists are arbitrary. Moeller, Paturi, and Schnei-
der [78] studied the complexity of stable matching when the preference lists are
constrained, and encoded in some succinct manner. Many succinct input models
nonetheless require n2−o(1) time, conditioned on SETH.

Question: A problem left open by [78] is two-list stablematching. Amatchingmarket
in the two-list model consists of two sets M and W, both of size n, and permutations
π1, π2 on M and σ1, σ2 on W. The preference list of each agent m ∈M is either σ1 or
σ2 and the preference list of each agent w ∈ W is either π1 or π2. The input size is
O(n).The goal is to find a stable matching in the resulting matching market. Can this
problem be solved in linear time, or is there a superlinear conditional lower bound?

[Contributed by Stefan Schneider.]

6.1.0.23 Open Problem 23: Boolean vs. real maximum inner product

In the maximum inner product problem we are given two sets of d-dimensional vec-
tors U and V of size n as well as a threshold l. The problem is to decide if there
is a pair u ∈ U, v ∈ V such that their inner product u · v is at least l. If the vec-
tors are Boolean, then a randomized algorithm by Alman and Williams [13] solves
the problem in time n2−1/Θ(clog2c) where d = clogn. In contrast, if the vectors are
real or integer, then using ray-shooting techniques [77] we can solve the problem
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in time n2−1/Θ(d). This leaves a large gap between the two problems. In particular,
the Boolean case is strongly subquadratic if d = O(logn), while the real case is only
strongly subquadratic for constant d. The conditional lower bounds of [13] show that
any n2−ϵ algorithm when d = ω(logn) refutes SETH.

Question: Can the gap between the boolean and integer/real case be closed, with
a better maximum inner product algorithm? If the gap is natural, can it be explained
with a stronger conditional lower bound on (real or integer) maximum inner product?

[Contributed by Stefan Schneider.]

6.1.0.24 Open Problem 24: Hardness of Approximating NP-hard Problems

Many approximation algorithms for NP-hard problems run in polynomial time, but
not linear time. This is often due to the use of general LP or SDP solvers, but not
always. To take two examples, the chromatic index (edge coloring) and minimum
degree spanning tree problems are NP-hard, but can both be approximated to within
1 of optimal in Õ(m

√
n) time [51] and Õ(mn) time [48], respectively.

Question: Prove superlinear conditional lower bounds on the time complexity of
any approximation problem, whose exact version is NP-hard.

[Contributed by Seth Pettie.]

6.1.0.25 Open Problem 25: Chromatic index/edge coloring

The chromatic index of a graph is the least number of colors needed for a proper
edge-coloring. Vizing’s theorem implies that the chromatic index is either ∆ or∆+1
(where ∆ is the maximum degree), but determining which one is NP-hard. The
NP-hardness reduction of Holyer [61] reduces 3SAT to a 3-regular graph on O(n)
vertices, so the ETH implies a 2Ω(n) lower bound. There is an O∗(2m) algorithm for
chromatic index, by reduction to vertex coloring, so the hardness is well understood
when m = O(n).

Question: Does the ETH rule out a 2o(m) algorithm for chromatic index on dense
graphs? Is there, for example, an nO(n) or 2n2−ϵ-time algorithm?

[Contributed by Marek Cygan.]
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6.1.0.26 Open Problem 26: Communication Complexity of Approximate Hamming
Distance

Consider strings P of length n and T of length 2n. Alice has the whole of P and the
first half of T. That is she has P and T [0, . . . , n − 1]. Bob has the second half of T,
that is T [n, . . . , 2n − 1]. Alice sends one message to Bob and Bob has to output a
(1 + ϵ) multiplicative approximation of HD(P, T [i, . . . , i+ n]) for all i ∈ [n] where HD
is the Hamming Distance.
In [38] a O(

√
nlogn/ϵ2) bit communication protocol was given.

Question: Is there a matching lower bound for the randomized one-way communi-
cation complexity of this problem?

[Contributed by Raphaël Clifford]
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7. CONCLUSION

One of the main goals of complexity theory is to determine the worst case time complexity
of fundamental computational problems. When considering a computational problem, as a
first step we decide on a computational model, such as a Random Access Machine (RAM)
or a Turing machine (TM). Following that, the goal is to develop an efficient algorithm that
solves the problem and to prove that for a function f(n),the algorithm solves the problem
on instances of size n in O(f(n)) time in the selected computational model. To solve most
problems, one needs to at least read the input, which implies linear time. Over the years,
the theory of algorithms has developed a wide variety of techniques and near-linear time
algorithms for many diverse problems. Nevertheless, for most problems of interest, the
fastest known algorithms runmuch slower than linear time. Furthermore, lower bounds are
very challenging to derive and as a result the computer science community has resorted
to lower bounds that are conditioned on plausible, but so far unproven hypotheses. The
notion of reducibility is very important allowing inferences about problems being equivalent
in complexity to each other, even if we cannot pinpoint what that complexity is. It is well
known that in mathematics, as in everyday life, a typical way to solve a new problem is to
reduce it to a previously solved problem.
In this manner, on the basis of a widely believed hypothesis about the time complexity
of a key problem, fine-grained reductions are used to reduce this key problem to other
important problems, giving conditional lower bounds on how fast these problems can be
solved.

Despite the fact that its a relatively new field, Fine-Grained Complexity is already showing
its importance and potential for giving answers to problems unsolved by other techniques.
The general idea is by no means a new concept, as it mimics to a high extent the notion
of NP-completeness and the way reductions were used traditionally. However, the added
condition of respecting the resources used in the reduction, and being precise with the
computations, has given the field a new power that was unexpected. The initial goal of
the field was to show hardness within polynomial bounds, which has historically been one
of the less discovered areas of Computer Science. Many problems have become stuck
in undiscovered deadlocks, where algorithmic design cannot give a better algorithm for a
problem, but there is also no proof that they can’t be solved faster than the current best
algorithm. The main concept is to use these reductions to bind problems with each other
into families of problems, and in a way ”transfer” the confidence about the hardness of
each problem into the whole family of problems that are reduced to one another. Using
some problems that have been very widely studied as ”heads” of these families gives
even further confidence as to whether these problems will find improvements or not. Var-
ious studied and interesting implications of falsifying a conjecture associated with these
families are carried through the reductions into the whole family, magnifying the impact
of results in any of the problems involved. Having SETH, OVH,3SUMH and APSPH as
the cornerstone of these reductions, these reductions are continuously flourishing, to the
point that they produce a whole web of reductions clustering many important algorithmic
problems into such families.
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However, my viewpoint is that Fine-Grained complexity can also be used as a tool to unveil
structural properties of problems. The reductions have some properties inherent in their
definition that have been undiscovered. One can speculate about limitless properties and
links in the structure of the problems that are reduced to one another, as well as the struc-
ture of the web of reductions itself. It is evident to me that such a study would doubtlessly
resolve into unlocking even more structural properties of problems, and possibly even
create mathematical tools that will help solve even the greatest mysteries of Algorithms,
Complexity and Computer Science as a whole. Furthermore, it is not unreasonable to say
that concepts such as entropy and chaos theory will also see the effect of these results.

Finally, the main appeal of Fine-Grained Complexity is that in encapsulates all of the fields
of Algorithmic design and Mathematics, ranging from Computational Complexity to Graph
Theory, Logic, and Dynamic Programming. Usually the way in which a field can encapsu-
late such diversity is by magnifying the abstract features, which results into almost philo-
sophical statements that are incredibly hard to prove and/or put to practical use. Fine-
Grained Complexity does this in a way that involves the whole spectrum of practice to
theory, stating in this way the argument that there exist universal truths that affect every
specialization of Computer Science. I believe that this field will grow to encapsulate even
more aspects of Computer Science in the future, in a way that will change the viewpoint
of every sub-field involved.
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