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ABSTRACT

This thesis studies the problem of "fairly" dividing goods in several agents. The study
of the problem started in the late 40's for divisible goods with the "cake cutting" prob-
lem. There are multiple notions of fairness when referring to the field of Fair Division.
One notion is envy-free allocations, where nobody envies what is allocated to any other
agent. Envy-freeness has been extensively studied in settings with divisible resources.
This thesis focuses on settings with indivisible resources, where envy-freeness cannot
be guaranteed. Instead, our focus revolves around a fairness criterion approximating
envy-free allocations: that is envy-free up to any good (EFX) allocations, i.e., no agent
envies any proper subset of the goods given to any other agent. The existence or not of
EFX allocations is a major open problem in Fair Division, and there are only positive
results for special cases.
Christodoulou et al. 2023 introduced a settingwith a restriction on the agents' valuations
according to a graph structure: the vertices correspond to agents and the edges to goods,
and each vertex/agent has zero marginal value (or in other words, they are indifferent)
for the edges/goods that are not adjacent to them. The existence of EFX allocations
has been shown for simple graphs when agents have general monotone valuations by
Christodoulou et al. 2023, and for multigraphs for restricted additive valuations by Ka-
viani et al. 2024.
In this thesis, we push the state-of-the-art further, and show that the EFX allocations
always exists in multigraphs and for general monotone valuations if any of the follow-
ing three conditions hold: either (a) the multigraph is bipartite, or (b) each agent has at
most n

4 − 1 neighbors, where n is the total number of agents, or (c) the shortest cycle
with non-parallel edges has length at least 6.





ΣΎΝΟΨΗ

Η διπλωματική μελετά το πρόβλημα της «δίκαιης» κατανομής αγαθών σε πράκτορες.
Η μελέτη του προβλήματος ξεκίνησε στα τέλη της δεκαετίας του 1940 για αγαθά
που μπορούν να διαχωριστούν με το πρόβλημα «cake cutting». Υπάρχουν πολλές
έννοιες δίκαιου διαμοιρασμού αγαθών όταν αναφερόμαστε στον τομέα της Δίκαιης
Κατανομής (Fair Division). Μία έννοια είναι οι κατανομές χωρίς φθόνο (envy-free
allocations), όπου κανείς δεν ζηλεύει ό,τι έχει κατανεμηθεί σε οποιονδήποτε άλλο
πράκτορα. Η απουσία φθόνου έχει μελετηθεί εκτενώς σε περιβάλλοντα με πόρους
που μπορούν να διαχωριστούν. Η διπλωματική επικεντρώνεται σε διαμοιρασμούς
αγαθών που δεν μπορούν να διαχωριστούν, όπου η απουσία φθόνου δεν μπορεί να
εγγυηθεί. Αντίθετα, εστιάζουμε γύρω από ένα κριτήριο δικαιοσύνης που προσεγγίζει
τις κατανομές χωρίς φθόνο: τους διαμοιρασμούς envy-free up to any good (EFX),
δηλαδή, κανένας πράκτορας δεν ζηλεύει κανένα γνήσιο υποσύνολο των αγαθών που
δίνονται σε οποιονδήποτε άλλο πράκτορα. Η ύπαρξη ή μη των διαμοιρασμών EFX
αποτελεί ένα σημαντικό ανοικτό πρόβλημα στη Δίκαιη Κατανομή, και υπάρχουν μόνο
θετικά αποτελέσματα για ειδικές συνθήκες.

Οι Christodoulou et al. 2023 εισήγαγαν μία συνθήκη με περιορισμό στις
αποτιμήσεις των πρακτόρων σύμφωνα με μια δομή γραφήματος: οι κορυφές
αντιστοιχούν σε πράκτορες και οι ακμές σε αγαθά, και κάθε κορυφή/πράκτορας έχει
μηδενική αξία (ή αλλιώς είναι αδιάφορος) για τις ακμές/αγαθά που δεν είναι γειτονικές
με αυτήν. Η ύπαρξη των κατανομών EFX έχει αποδειχθεί για γραφήματα όταν οι
πράκτορες έχουν γενικές μονότονες αποτιμήσεις από τους Christodoulou et al. 2023
και για πολυγραφήματα για περιορισμένες προσθετικές αποτιμήσεις από τους Kaviani
et al. 2024.

Στην παρούσα διατριβή, δείχνουμε ότι οι κατανομές EFX υπάρχουν πάντα σε
πολυγραφήματα και για γενικές μονότονες αποτιμήσεις αν ισχύει τουλάχιστον μία
από τις παρακάτω τρεις συνθήκες: είτε (α) το πολυγράφημα είναι διμερές, είτε (β)
κάθε πράκτορας έχει το πολύ n

4  − 1 γείτονες, όπου n είναι ο συνολικός αριθμός
των πρακτόρων, είτε (γ) ο συντομότερος κύκλος με μη παράλληλες ακμές έχει μήκος
τουλάχιστον 6.
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CHAPTER1

INTRODUCTION

We study a problem of "fairly" dividing indivisible goods to many agents. The question
of how to divide resources to several agents in a fair way dates back to the ancient times,
e.g., dividing land, and it raised important research questions since the late 40's [37].
One prominent notion in fair division is envy-free allocations, where nobody envies
what is allocated to any other agent, which was formally introduced a bit later [24, 23,
39]. Initially, the problem was studied under the scope of divisible resources, where
envy-free allocations are known to always exist [7].
The focus of this thesis is on indivisible goods, with multiple applications, such

as dividing inheritance, and assigning courses to students [13]. The non-profit web-
site Spliddit (http://www.spliddit.org/) provides mechanisms for several such
applications. It is easy to see that envy-free allocations are not guaranteed to exist; for
instance consider two agents and one indivisible good, then whoever gets the good is
envied by the other agent. This example demonstrates how strong the requirement of
completely envy-freeness is for the scenario of indivisible goods.
This has led to the study of two basic relaxations of envy-freeness, namely envy-

freeness up to one good (EF1) [12] and envy-freeness up to any good (EFX) [15]. EF1
is a weaker notion than EFX, and it is guaranteed to always exist and can be found
in polynomial time [31]. One the other hand, it is not known if EFX allocations are
guaranteed to exist in general, and it has been characterized as "Fair Division's Most
Enigmatic Question" [36]. EFX allocations are known to exist for special cases: e.g.,
for 2 agents with general monotone valuations [35], for 3 agents with additive valuations
or a slightly more general class [17, 2], for agents with at most three types of additive
valuations [38], and for many agents with identical monotone valuations [35], or with
additive valuations where each agent is restricted to have one of the two fixed values
for each good [6].
Surprisingly, it was recently shown that EFX allocations need not exists in the case

with chores, i.e., negatively valued items [21]. This is the first result of non-existence
of EFX for monotone valuation functions, and the construction requires only 3 agents
and 6 goods. This is an interesting separation between goods and chores, as for the case
of goods it is known that EFX allocations are guaranteed to exist when the number of
goods are at most 3 more than the number of agents [32].
Unfortunately, little is known for the case with multiple agents and multiple goods;
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additionally to the works that have been already mentioned [6, 35], EFX allocations are
known to exist when agents' preference follow a lexicographic order defined by their
preference over singletons [27], and when the valuations have dichotomous marginals,
i.e., the marginal value when a good is added to a set is either 0 or 1 [8]. All those
works consider high restrictions and resemblance on the agents valuations. Towards
broadening our understanding for the case of multiple agents and goods, Christodoulou
et al. [20] introduced a setting that is related to our work, where the valuations are
defined based on a graph: given a graph, the agents correspond to the vertices of the
graph, and the goods to the edges. Then, each agent is indifferent for the goods/edges
that are not adjacent to them. In [20], they showed that EFX allocations always exist
on graphs.
The motivation in the multigraph setting is, similarly to [20], the division of territo-

ries between nations, areas of interest between neighboring countries and more gener-
ally division of geographic settings. Another application is to allocate available space
for research teams and collaborators, which is always a challenging task, and becomes
even more difficult when there are multiple conflicts for available areas. It was re-
cently showed that EFX allocation always exists in multigraphs when all agents have
restricted additive valuations [30], i.e., each good g has a fixed value vg , and each agent
may value the good by vg or not value it at all, in which case he has value 0. We gener-
alize this result with respect to the valuation functions, where we use general monotone
valuations, on the expense of having restrictions on the multigraph, where either the
multigraph is bipartite, or each agent has at most n

4  − 1 neighbors, where n is the
total number of agents, or the shortest cycle with no parallel edges has length at least 6.
Two other papers independently and in parallel showed EFX allocations involving

multigraphs [1, 11]. We next discuss their results and the comparison to ours. [1] inde-
pendently showed that EFX allocations exist for bipartite multigraphs, which coincides
with our first result. They further showed the existence of EFX allocations for mul-
ticycles with additive valuations. Our first and third results (for bipartite multigraphs
and graphs with cycles of non-parallel edges of length at least 6) include all multicy-
cles apart from the ones of length 3 and 5; we note however that we consider the more
general monotone valuations. [11] independently showed the existence of EFX alloca-
tions in bipartite multigraphs when agents have cancelable valuations and in multi-trees
for general monotone valuations. Our first result generalizes those two results. More-
over, they showed that multigraphs with chromatic number t admit EFX allocations
when the shortest cycle using non-parallel edges is of length at least 2t− 1; this result
holds when agents has cancelable valuations. Note that the multigraphs with chromatic
number 2 is just the bipartite multigraphs. When the chromatic number is at least 4,
we improve the requirement for shortest cycles using non-parallel edges, from length
at least 7 (and greater depending on the chromatic number of the multigraph) to 6 (no
matter the chromatic number), and furthermore our results is more general as it applies
to general monotone valuations. On the other hand, for multigraphs with chromatic
number 3, [11] showed the existence of EFX allocation (for cancelable valuations) for
an improved length of 5 (comparing to 6 in our result) for the shortest cycle using non-
parallel edges.
Thesis roadmap. The structure of the thesis from this point on is the following:

An Overview of the recent literature which discusses related work to EFX and the
different recent directions of the field. After that a Background chapter concerning
definitions, basic widespread algorithms in the literature, variant definitions of Envy-
Free allocation with important results related to the notion of EFX. The Background
chapter aims to provide useful tools and approaches that help digest the original re-
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CHAPTER 1. INTRODUCTION

sults of the thesis, described in the chapter Almost Envy-allocations in multigraphs.
Our contribution is a construction of EFX allocations if one of the three conditions
hold: either (a) the multigraph is bipartite, or (b) each agent has at most n

4 − 1 neigh-
bors, where n is the total number of agents, or (c) the shortest cycle with non-parallel
edges has length at least 6. We describe the results in such a way to showcase a 3 Step
framework for EFX allocations on multigraphs. Finally, Conclusion contains future
directions and a discussion of our original results.
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CHAPTER2

OVERVIEW OF THE RECENT LITERATURE

The scope of the thesis is the fairness criterion EFX, we present an overview of the
recent advancements in the field of EFX and approximate EFX allocation of indivisible
items for non strategic agents in an offline setting.
We need to note that it is not shown that EFX allocations do not exist in specific set-
tings. A counter-example to the existence of EFX allocations for non-negatively valued
items would be a breakthrough to the field.
Complete EFX allocations. There are positive results for restricted cases. It was
shown that EFX allocations always exist when all agents share a valuation function
[35]. The restriction on the valuation functions of agents are still pretty strict and re-
volve around additive valuation function. Some notable cases in which complete EFX
allocations exists is for dichotomous valuations i.e. each good adds 0 or 1 to their value,
when goods have one of two possible values, when agents have in total at most 3 dif-
ferent additive valuations, and when there is a common lexicographic preferences over
items [8], [6] [27], [38]. If the restriction are on the number of agents or goods, there are
some brighter results. For two agents with different valuations there is always an EFX
allocation [35], while for three agents only when one of them has a valuation slightly
more general than an additive one is shown that an EFX allocation exists [2]. Also for
at most n+ 3 goods, for n agents, there is always an EFX allocation [33].
Restriction of the relevant items per agent. These results refer to complete EFX al-
locations, but is an interesting approach in the restriction of agents' valuations. Closer
to the original results of the thesis, in [20] was introduced the (p, q)-bounded setting,
where an item is relevant to at most p agents, and has multiplicity q. In [30], they use a
bid altered notation where q represents the maximum number of items that are relevant
to a pair of agents. In both notations, the multigraph setting is equivalent to the (2,∞)-
bounded setting. The existence of EFX allocations in the (2, 1)-bounded setting, which
is equivalent to simple graphs, has been studied for goods [20], and for mixed manna
settings [41]. In the graph and multigraph setting the existence of EFX orientations,
i.e., allocations where edges may only be allocated to one of the endpoints, has also
been considered. In [20] they showed that EFX orientations need not exist by giving a
counterexample in aK4 graph, and they further showed that even deciding if there ex-
ists an EFX orientation is NP-complete; it was later shown that this result holds even if
the vertex cover of the graph has size of 8, or in multigraphs with only 10 vertices [22].
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CHAPTER 2. OVERVIEW OF THE RECENT LITERATURE

In [40], they showed that EFX orientations are not guaranteed to exist in graphs with
chromatic number greater than 3, and they always exist when the chromatic number is
at most 2. Regarding multigraphs, a very recent work [28] showed that finding an EFX
orientation is NP complete even for bipartite multigraphs.
Approximate EFX. Several relaxations of EFX have also been explored. One such
relaxation is the approximate EFX, α-EFX, where no agent envies any strict subset of
another agent's allocated set by more than an α ≤ 1 parameter. For subadditive valu-
ations a 1

2 -EFX allocation is known [35]. The approximation was improved to ϕ − 1,
but for the more restricted class of additive valuations [5]. The approximation has been
pushed further to 2

3 for additive valuations under several restrictions [3, 34]. Related
to our work, in [3] they showed 2

3 -EFX for additive valuations in the setting of multi-

graphs. For the (∞, 1) - bounded setting (according to [30]),
√
2
2 -EFX allocations are

guaranteed to exist even for subadditive valuations [30].
Partial EFX allocations. Another relaxation of EFX, introduced by Caragiannis et al.
[14], is to consider partial EFX allocations, also known as EFX with charity. Chaud-
hury et al. [18] showed that EFX allocations always exist, even with general monotone
valuations, if at most n − 1 goods are donated to charity, where n is the number of
agents, and moreover nobody envies the charity. The size of the charity was then im-
proved to n − 2, and to one for the case of 4 agents with additive valuations [10]. For
the (∞, 1) - bounded setting (according to [30]), the size of the charity was reduced
to n

2  − 1 for general monotone valuations [30]. Finally, the number of unallocated
goods was subsequently improved to sublinear by [19, 2, 9, 29], but for (1 − ε)-EFX,
for any ε ∈ (0, 1

2 ].
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CHAPTER3

BACKGROUND

3.1 Preliminaries

3.1.1 Basic definitions

We give formal definitions for some general concepts used throughout the thesis.
A graph G is an ordered pair (V,E) where V is a finite set and E ⊆

(
V
2

)
. The

set V is called the vertex set of the graph and the set E is called the set of edges of
the graph. Given a graph G we also denote its vertex set by V (G) and its edge set by
E(G). For x, y ∈ V (G). We say that the vertices x and y are adjacent or neighbors if
x, y ∈ E(G).
Neighborhood Let G be a graph and vertex u ∈ V (G). The neighborhood of u is the
size of the set of each neighbors denoted N(u).
The same definitions stand for multigraphs. The only difference between multigraphs
and graphs is that there can be multiple edges between two vertices.
For section 4 of this thesis, we will refer to edges of the multigraph as a set, because

we can enumerate each edge.
Matching Let G = (V,E) be a graph. A matching of G is a setM ⊆ E, such that

for a, b, c, d ∈ M then a ̸= c, d, b ̸= c, d.
Allocation. An allocation X = (X1, . . . , Xn) is a partition of a subset of E into n

(disjoint) bundles X1, . . . , Xn, where each agent i receives Xi. We call an allocation
complete if it's a partition of the set E. We call an allocation partial if it's a partition of
a strict subset of E. We define social welfare as :

∑n
i=1 = vi(Xi).

Definition 3.1 (Envy - EFX-satisfied.). We say that an agent i envies another agent j
given an allocation X = (X1, . . . , Xn), if vi(Xi) < vi(Xj).
We say that an agent i is EFX-satisfied against agent j given an allocation X =
(X1, . . . , Xn), if vi(Xi) ≥ vi(Xj \ g), for all g ∈ Xj .

Definition 3.2 (EFX allocation.). An allocation X = (X1, . . . , Xn) is EFX if for any
pair of agents i, j it holds that:

vi(Xi) ≥ vi(Xj \ g) ∀g ∈ Xj

6



CHAPTER 3. BACKGROUND

We consider settings where there is a setN of n agents and a setM ofm indivisible
goods, and each agent i has a valuation set function vi : 2M → R, over the sets of
goods, i.e., by vi(S) we denote the valuation of agent i for the set S of goods. The
valuation functions are considered to be monotone, i.e., for any S ⊆ T ⊆ M , it holds
that vi(S) ≤ vi(T ), and normalized, i.e., vi(∅) = 0.

3.1.2 Basic Algorithms

Wewill present two very basic and important algorithms that are used widely in modern
literature, in further sections we will show some characteristic results that use at their
core these algorithms. We will define the necessary definition of envy graph.

Definition 3.3. [Envy graph] Let X be an allocation, we define EX to be graph called
"envy graph" with vertices representing each agent and directed edges from a vertex
representing an agent i to a vertex that represents an agent j, if: vi(Xi) < vi(Xj).

Breaking cycles in Envy graph is a very useful and powerful tool, that changes an
allocation into an allocation with greater or equal social welfare with an non envied
agent.

Algorithm 1 Envy Cycle Elimination
Input: An EFX allocation X
Output: An EFX allocation with greater social welfare.

1: while ∃ a cycle in EX do
2: Let the cycle be C = (v1, v2, . . . , vk, v1)
3: Xt = X1 (We "save" the bundles)
4: for i ∈ [k − 1] do
5: Xvi

← Xvi+1

6: end for
7: Xvk

← Xv1

8: end while

Claim 3.4. The algorithm Envy Cycle Elimination terminates and increases the social
welfare.

Proof. The definition of the Envy graph states that there is a directed edge (i, j) be-
tween two agents if and only if agent i envies agent j. During the resolution of a cycle,
every agent got a bundle that they envied, so they valued it more than their previous
bundle. The algorithm terminates, since there are a finite number of cycles in a simple
graph.

Wewill proceedwith a very simple algorithm called "round robin", given an order of
the agents from 1 to n, we let each of them pick their most valued good. This algorithm
will only be considered for agents with additive valuations.

3.2 Envy-Free relaxations

3.2.1 EF1

The first relaxation of envy based fairness criteria was EF1. We define what is an EF1
allocation:

7



3.2. ENVY-FREE RELAXATIONS

Algorithm 2 Round Robin
Input: A set of players N and goodsM , an allocation X, a vector order with size n
that contains numbered agents from 1 to n, and a number of iterations T
Output: A new allocation.

1: Iterations← T
2: index← 1
3: while Iterations > 0 do
4: g = argmaxk∈P vorder[index](k)
5: Xorder[index] ← Xorder[index]  g
6: Iterations← Iterations - 1
7: index← (index + 1)mod n
8: end while

Definition 3.5 (EF1 allocation). An allocation X = (X1, . . . , Xn) is EF1, if for any
agents i, j:

∃g ∈ Xj : vi(Xi) ≤ vi(Xj \ g)

This notion of fairness was properly defined in [12], but there was already a poly-
nomial algorithm in [31] that constructed an EF1 allocation for agents with general
monotone valuations. We present the algorithm that Lipton et Al constructed. The al-
gorithm creates an initial allocation where each agent has exactly one item. After the
initial allocation, Envy Cycle Elimination is executed, this guarantees a non-envied ver-
tex exists. The rest of the algorithm is an iteration of allocating one non-envied agent
an additional item, running Envy Cycle Elimination, thus having a non-envied agent in
the partial allocation, and repeating until all goods are allocated.

Algorithm 3 Envy Cycle Elimination
Input: A set of players N and goodsM
Output: An EF1 allocation.

1: P ← M
2: Give each agent an arbitrary good. (for agent i, Xi = 1)
3: Construct envy graph EX .
4: Run Envy Cycle Elimination.
5: while P ̸= ∅ do
6: Let i be a non envied agent (a source in the envy graph) and g ∈ P
7: Xi ← Xi  g
8: P ← P \ g
9: Update envy graph EX .
10: Run Envy Cycle Elimination.
11: end while
12: return (X1, . . . , Xn)

Lemma 3.6. (shown in [31]) Algorithm 3 constructs an EF1 allocation.

Proof. We will prove this by induction. Before running the "while", each agent has
one good, so the allocation is EF1. Our inductive hypothesis will be that in every
iteration up to iteration k (k < m), we have a partial EF1 allocation. We will show
that after iteration k+1, we will have an EF1 allocation. Let i be the non envied agent

8



CHAPTER 3. BACKGROUND

before adding to their bundle good g, notice that after adding good g to Xi agent i
is EF1-satisfied against other agents, due to the inductive hypothesis and the fact that
vi(Xi  g) ≥ vi(Xi). Let j be an agent different than i, j did not envy i before
adding g, therefore we have that vj(Xj) ≥ vj(Xi), so by "ignoring" g, agent j will not
envy agent i. After running Envy Cycle Elimination, every agent has increased their
value, so their new bundles are EF1 satisfied against other agents. Notice that in each
iteration a good is removed from the pool, so this procedure will terminate at most after
m iterations.

Lemma 3.7. (again shown in [31]) Algorithm 3 runs in polynomial time.

Proof. Constructing the initial graph and updating the envy graph takes O(n2) and
O(n) respectively. Finding a cycle in a graph takes O(n2) time complexity (vertices
represent one agent each). After adding a good, at most n edges can be added in the
graph, so a cycle removal is going to be required at most O(mn) times. In total we
have O(mn3) time complexity.

Also Round Robin (Algorithm 2) executed for M  = m iterations provides an EF1
allocation for agents with additive valuations.

Claim 3.8. Algorithm 2 executed form iterations, constructs an EF1 allocation.

Proof. Consider 2 agents i, j, we will show that i's bundle is EF1 satisfied against j 's.
If i "picks" an item before j in the order of the algorithm, then i will not envy j. If it's
the other way around, ignore the first item j got in the algorithm, then we can consider
the rest of the allocation as i picking before j so i will not envy j, if we remove the first
item that j "picked" in the algorithm.

3.2.2 EFX

EFX for agents with general monotone identical valuations and the cut and choose
protocol

In [35], one key result is that agents that share valuation functions always admit EFX
allocations. This result used in a black box manner can provide us with a simple proce-
dure, called cut and choose, to prove the existence of EFX allocations for 2 agents with
general monotone valuations.
The Leximin++ comparison operator compares allocations. Since we are referring

to identical valuation function, we can assume a lexicographic order of the agents (each
agent is assigned a unique integer from 1 to n). The comparison is based on an increas-
ing ordering of the agents of the value of their allocated items, an allocationX is greater
that an other allocation X̃, if in the k-th position of each ordering of the allocations, the
k-th agents has greater value for their items in allocation X than in X̃, or if they have
the same value in allocation X, the k-th agent is allocated more items than in allocation
X̃.
We provide an algorithm for the comparison operator Leximin++.
We will take for granted that the Leximin++ operator provides a total ordering of

the possible complete allocations. We will prove that a greatest allocation based on the
leximin++ operator is EFX.

Claim 3.9. If there is no allocation greater, based on the leximin++ operator, than an
allocation X = (X1, . . . , Xn), then allocation X is EFX.

9
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Algorithm 4 Leximin++ Compare

Input: Two allocations X, X̃ that induce an ordering of bundles in increasing order
Output: The greater allocation based on the leximin++ total ordering.

1: We will denote v the identical valuation function for all agents.
2: i = 1
3: OX← order of agents from 1 to n
4: OX̃← order of agents from 1 to n
5: (OXj is agent j in the order, similarly for OX̃)
6: while i ≤ n do
7: y ← OXi

8: k ← OX̃i

9: if v(Xy) < v(X̃k) then
10: return X̃
11: else if v(Xy) > v(X̃k) then
12: return X
13: else
14: if Xy < X̃k then
15: return X̃
16: else if Xy > X̃k then
17: return X
18: end if
19: end if
20: i = i+ 1
21: end while

Proof. We will consider that allocation X is ordered, such that if t1 < t2 then
vt1(Xt1) ≤ vt2(Xt2). For the sake of contradiction, let's assume X is not EFX, we
will construct an allocation X̃, that is greater than X based on the leximin++ operator.
We assumed X is not EFX, thus there are agents i, j such that vi(Xi) < vi(Xj \ g),
for g ∈ Xj , let agent i to be the last agent in the ordered allocation for which EFX is
violated, which suggests that if there are agents with equal value to i, i has the biggest
size bundle. Let X̃ be X̃i = Xi  g, X̃j = Xj \ g, X̃k = Xk, ∀k ̸= i, j. Let B
be the agents in X that have a smaller index that i (agents with less valuable or smaller
bundles). Since Xi ⊂ X̃i, there are two cases:

1. vi(X̃i) > vi(Xi), then i is again after every vertex in B.

2. vi(X̃i) = vi(Xi), then i is again after every vertex in B, because i will have
greater size than each agent in B.

That means that B is the same in both allocations, so the comparison from leximin++
will compare at least up to agent B+1 in the order. Next, consider agents with greater
index than i in the ordering from X, this means that j ∈ A. Agent i has index B+ 1
in X's order, now there are two cases:

1. The agent with index B + 1 in X̃ is also i, then X̃ is greater than X since i has
greater size in X̃.

2. The agent with index B+1 in X̃ is agent k ̸= i, k ∈ A, so vi(Xi) < vi(X̃k) =
vi(Xk), so again allocation X̃ is greater than X.

10
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However, no allocation is greater than X, we arrived to a contradiction.

The cut-and-choose protocol is simple, let two agents i, j withm items:

1. Let i cut the items, i pretends that j has the same valuation function as i and find
an EFX allocation, we described that it exists through leximin++. Define those
two bundles.

2. Let j pick their most valued bundle out of the two, and allocate it to them.

3. Agent i is allocated the rest of the goods.

Lemma 3.10. The cut-and-choose protocol constructs an EFX allocation for two agents
with general monotone valuations.

Proof. Agent j does not envy the bundle of items that they did not pick, and both
bundles are EFX-feasible for agent i.

Given two agents i, j, there are two ways to "cut", one based on i's valuation function
and one based on j 's valuation function.

3.2.3 Approximate EFX
1
2 -EFX for subadditive valuations

In [35] showed an algorithm for 1/2-EFX allocations for agents with subadditive valu-
ations.
What the algorithm does is simple: In each iteration we give to an agent that is a

source in the envy graph an item, if that violates our desired guarantee, we can show
that giving the recently added item to the agent that violates that guarantee gives us a
1/2-EFX partial allocation. Using induction we can prove that this algorithm provides
us with an 1/2-EFX complete allocation. This algorithm will terminate, in [35] a po-
tential function was provided that essentially says that in each iteration either the social
welfare increases or an item is given. All the possible ways that this can happen are
exponential but finite, in [16] it was shown how we can modify this algorithm into a
simpler algorithm that runs in polynomial time. We will provide the proof by induction
for the correctness of the original algorithm in [35].

Lemma 3.11. For subadditive valuations, algorithm 5 outputs an 1/2-EFX allocation.

Proof. We will prove this by induction. In the base case, we have an allocation where
nobody gets a good, so we have an EFX allocation which is a 1/2-EFX allocation. The
inductive hypothesis is that in the k-th iteration of the while loop, we had an EFX
allocation, we will prove that in the next iteration the allocation will remain 1/2-EFX.
If the condition of "if" clause is not true then the k + 1 iteration outputs an 1/2-EFX
allocation. We proceed by assuming that the algorithm entered in the "if" clause. Any
agent other than s, i, have the same bundles, before the changes in the allocation no
agent envied s' bundle and i's bundle has size 1, so trivially is EFX. So we proceed
to show that agents s, i are 1/2-EFX satisfied. Again, s' bundle was 1/2-EFX feasible
compared to all other agents. We need to show that agent i's bundle is 1/2-EFX feasible.
We denote Xi the bundle that i had before giving them only g. We will make use of
two inequalities. Firstly none envied s, so vi(Xi) > vi(Xs). Secondly vi(Xi) <
1
2 (Xs  g \ a) < 1

2 (Xs  g) because the condition of the "if" clause is true,

11
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Algorithm 5 1/2-EFX for subadditive valuations
Input: A set of players N and goodsM
Output: An 1/2 EFX allocation.

1: i = 1
2: P = M
3: Create an Envy graph EX with no edges.
4: for i ∈ N do Xi ← ∅
5: end for
6: while P ̸= ∅ do
7: Let good g ∈ P
8: P ← P \ g
9: Let s be an non envied agent.
10: Xs ← Xs  g
11: if ∃i ∈ N, a ∈ Xs, such that vi(Xi) <

1
2vi(Xs \ a) then

12: P ← P Xi

13: Xs ← Xs \ g
14: Xi ← g
15: end if
16: Update Envy graph EX .
17: Run EnvyCycleElimination(X1, . . . , Xn) (Algorithm 1)
18: end while
19: return (X1, . . . , Xn)

and agents have monotone valuations. Due to subadditive valuations and the second
inequality, we get:

vi(Xi) <
1

2
vi(Xs) +

1

2
vi(g)

using the first inequality:

vi(Xi) <
1

2
vi(Xs) +

1

2
vi(g) <

1

2
vi(Xi) +

1

2
vi(g)

and since we vi(Xi) which leads to:

vi(g) > vi(Xi)

So agent i did not envy agent s and increased the value of their bundle. So we have that
the allocation is 1/2-EFX satisfied against all agents.
One small detail for the correctness of the algorithm is to show that we can always have
a non envied agent in line 8. The algorithm Envy Cycle Elimination makes the envy
graph of an allocation acyclic, so there is always a node that has no incoming edge in
the envy graph, therefore none envies them (by the definition of the envy graph).

ϕ− 1-EFX for additive valuations

In [4], it was shown that there is always a ϕ−1-EFX allocation for agents with additive
valuations, we provide the proof of the result based on the skeleton of the proof in [4].
In this subsection ϕ denotes the golden ratio (ϕ ≈ 1.618), one identity of the golden
ration that is used widely in this result is that ϕ− 1 = 1

ϕ .
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Let's give a description of the proof, first a partial EFX allocation is constructed
that allocates to agents either one or two items. The agents with two items are the less
favored agents in a run of the Round Robin algorithm. Agents that get initially one
item, value that item ϕ times from the other unallocated items in the Round Robin.
After constructing the initial allocation, Envy Cycle Elimination is run and one of the
remaining items is allocated to a non-envied agent. The last procedure is repeated until
no unallocated items remain.
The initial allocation is done by two runs of the Round Robin algorithm. However

the second run is performed in the less fortunate agents in the first run of Round Robin.
Algorithm 6 differentiate which agents get better items running an iteration of Round
Robin. We give those agents the higher value items (compared to each item), the not
so fortunate agents will be given two items. We will assume that we assigned to each
agent a unique number from 1 to n.

Algorithm 6 Association and assigning order
Input: A set of players N and goodsM
Output: A vector order that contains integers from 1 to n (referring to agents), a set
of agentsW .

1: W = ∅, A = N, k = 1
2: m ← M 
3: while A ̸= ∅ do
4: Let i be an agent in A.
5: hi = argmaxg∈M vi(g)
6: ti = m− M + 1
7: R ← (N \ (A W ))  i
8: j = argmaxl∈R vi(hl)
9: if ϕ · vi(hi) < vi(hj) then
10: hi ← hj

11: W ← W  i
12: order[k] ← i
13: k ← k + 1
14: A ← (A \ i)  j
15: else
16: A ← A \ i
17: M ← M \ hi

18: end if
19: end while
20: S ← N \W sorted in increasing order based on ti, for i ∈ N \W
21: for i ∈ S do
22: order[k] ← i
23: k ← k + 1
24: end for
25: return (order,W )

The Round Robin algorithm depletes items from setM , that was given as input.
After differentiating the two types of agents, a completed Algorithm that produces

a complete allocation can be run. Algorithm 7 runs two instances of Round Robin,
and, until no unallocated items remain, runs Envy Cycle Elimination then allocates to
a non-envied agent an item and again runs Envy Cycle Elimination.

13
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Algorithm 7 ϕ− 1-EFX allocation
Input: A set of players N and goodsM
Output: A ϕ− 1-EFX allocation X

1: (order, k) ← Association and assigning order
2: X← (X1, . . . , Xn), with Xi = ∅∀ agents i.
3: Run Round Robin(N,X,M, order, n)
4: reverse_order ← (order[n], . . . , order[1])
5: Run Round Robin(N,X,M, reverse_order, n− k).
6: Create Envy graph EX .
7: Run Envy Cycle Elimination.
8: while M ̸= ∅ do
9: Give an item to a non envied vertex.
10: Update Envy graph EX .
11: Run Envy Cycle Elimination.
12: end while

Lemma 3.12. Algorithm 6 associates agent i with an item hi depending on if they are
in setW or not, such that:

1. vi(hi) > ϕ · vi(g), ∀i ∈ W, g ∈ M \ (∪n
k=1 hk)

2. ϕ · vi(hi) ≥ vi(hj), ∀i, j ∈ N \W
Proof.

1. Algorithm 6 puts an agent i in setW , only in the last time they changed bundle,
so for items non associated with some agent, the condition of the "if" is satisfied
then agent i prefers every non associated item ϕ times more than theirs.

2. If ti > tj , then i picked first their item and so vi(hi) ≥ vi(hj) and trivially
ϕ · vi(hi) ≥ vi(hj). If ti < tj then ifϕ · vi(hi) < vi(hj), i in the last iteration
they were considered would be in setW , which leads us to a contradiction.

In the first run of Round Robin in algorithm 7, each agent i is given the hi with the
properties in lemma 3.12. In the second run of Round Robin we will denote the items
that agents inW got as shi. The analysis proceeds with considering the last item that
is allocated to each agent and the notation of h and sh items will be used.

Lemma 3.13. The allocation X = (X1, . . . , Xn) that algorithm 7 returns is (ϕ − 1)-
EFX.

Proof. Consider two agents i, j with i ̸= j, we show that i is (ϕ − 1)-EFX feasible
for j 's bundle. If j 's bundle has size one, then it is trivially EFX for i. Assume that
Xj  ≥ 2 and let l be the last item added to Xj . The last item is either added in the
second Round Robin or was added right before running Envy Cycle Elimination. In
case the item previously belonged to another agent (in case we switched bundles with
the Envy Cycle Elimination algorithm), we will refer that agent as p and their bundle
Xprev

p . There are 4 cases, depending on if i belongs toW and when l was added. When
l was added i's bundle might be different, we will denote i's bundle right before l was
added asXprev

i . Envy Cycle Elimination does not give to an agent a bundle they value
less, therefore Xi ≥ Xprev

i .
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1. i ∈ W , and l was added in Round Robin. We have that Xi ≥ hi, Xj =
hj , shj, vi(hi) ≥ vi(hj) and vi(hi) ≥ vi(shj), so vi(Xi) ≥ vi(hi) ≥
vi(maxhj , shj). This in turn means vi(Xi) ≥ maxg∈Xj

vi(Xj \ g) >
1
ϕ maxg∈Xj

vi(Xj \ g)

2. i ∈ W , and l was added right before Envy Cycle Elimination. When l was
added, p was non envied, so vi(X

prev
i ) ≥ vi(X

prev
p ). Since l was not added in

Round Robin then vi(X
prev
i ) > vi(hi) > ϕvi(l) due to lemma 3.12. With these

inequalities in mind:

vi(Xj) = vi(X
prev
p ) + vi(l) ≤ vi(X

prev
i ) +

1

ϕ
vi(X

prev
i )

(1 +
1

ϕ
)vi(X

prev
i ) = ϕ · vi(Xprev

i ) ≤ ϕ · vi(Xi)

3. i /∈ W , and l was added in Round Robin. Agents i, j ∈ N \ W . If i picked
before p in the first run of Round Robin, then the analysis of the first case suffices.
Otherwise, agent i picked after p in the first Round Robin, but i picked first in
the second Round Robin, so vi(shi) ≥ vi(shp). Since l was the last item added
to the bundle j got, then Xj = hj , shj. So:

vi(Xi) ≥ vi(X
prev
i ) ≥ vi(hi) + vi(shi)

Due to lemma 3.12 and the fact that i chose before p in the second Round Robin:

vi(hi)+vi(shi) ≥
1

ϕ
vi(hp)+vi(shp) ≥

1

ϕ
vi(hp)+

1

ϕ
vi(shp) = (ϕ−1)vi(Xj)

4. i /∈ W , and l was added right before Envy Cycle Elimination. Since p was non
envied then vi(X

prev
i ) ≥ vi(X

prev
p ). Since l was added right before Envy Cycle

Elimination and the two choices of Round Robin, then vi(hi) ≥ vi(shi) ≥ vi(l),
and we get that:

2 · vi(l) ≤ minhi, shi ⇒ vi(l) ≤
1

2
minhi, shi ≤ vi(X

prev
i )

Using these inequalities:

vi(Xj) = vi(X
prev
p ) + vi(l) ≤ vi(X

prev
i ) +

1

2
vi(X

prev
i ) ≤ ϕ · vi(Xi)

Remember that ϕ ≈ 1.618 and that:

vi(Xi) ≥
1

ϕ
vi(Xj) = (ϕ− 1)vi(Xj)

Claim 3.14. Algorithm 7 runs in polynomial time.

Proof. Algorithm 7 is just algorithm 3 with two runs of Round Robin.
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3.2.4 EFX allocations on graphs

In [20], for agents with valuations that can be represented as such: each good is repre-
sented as an edge and their endpoints as the only agents that are interested in the good,
it was shown that there is always an EFX allocation. We will explain in a high level the
proof roadmap and the challenges that arise in this setting and some core ideas that are
present in the results about multigraphs as well.
The way the construction of the EFX allocation in graphs shares elements with the way
we study the problem for multigraphs. One key concept they share, is the satisfaction of
certain properties that imply that an EFX allocation can be constructed. Furthermore,
they share two steps that guarantee some needed properties and then a final step for al-
locating any remaining, from the previous two steps, goods that have not been allocated
yet.
The first step is a greedy algorithm that works like Round Robin, but agents pick in a
chain like manner, e.g. if agent i chooses their most valued edge (i, j), then agent j
will pick their most valued edge and so on. This algorithm guarantees two important
properties:

1. We have an EFX orientation

2. Any agent prefers their allocated edge/good from their current relevant unallo-
cated goods.

Proof. Each agent gets one good, so the first property is immediately guaranteed. Every
agent gets their most or second most valued good, so any other goods have less value
for them, hence the second property holds.

After that a second algorithm proceeds, briefly described, any envied agent is of-
fered all their neighboring unallocated edges (the unallocated goods that they are in-
terested in), if they prefer those over their current single good, they release that good
and they get the bundle of relevant goods, then in a cascading manner as in the first
algorithm each agent is asked if they would prefer a new unallocated edge/good. This
makes any previously envied agent non envied, because they release the good that cre-
ated envy, and makes them non interested in what the other agents will do with any un-
allocated goods. If the envied agent prefers their one good over the others, no changes
are made but a third property holds: Any envied agent, does not value their unallo-
cated neighboring goods more that the one good they hold. The second algorithm also
creates something interesting, any envied vertex that turns into a non envied one (their
neighbors have relevant goods that they value more) and we can "park" to this agent
any unallocated neighboring edges of an envied vertex. This is called a "safe" vertex
in [20] and is a main obstacle in the multigraph setting. However, in the graph setting
is an obstacle as well, the second described algorithm is not guaranteed to change any
bundles. If no changes are made by the second algorithm, a case by case analysis shows
that changing the allocation a bit two envied vertices will share a "safe" vertex.
"Safe" vertices allow to give edges/goods that are relevant to two envied vertices,

the EFX criterion is satisfied only because the envied vertices have only one good,
breaking that, can break the construction of the allocation.
This is why, we impose restrictions on the multigraph setting, we want to make

sure that for any pair of envied vertices that share interest to an unallocated good, can
"safely park" goods to another agent. The final step in graphs and multigraph setting is
very similar: we do a final allocation of the remaining unallocated edges. In the graph
setting, an edge between two non envied vertices can be given to any one endpoint,
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an edge between an envied and a non-envied vertex is given to the non-envied vertex.
The problematic edges are those between envied vertices, it is needed to give these
edge to a "safe" vertex. This mindset transfers to the multigraph setting, but it's even
more difficult, now we have at least two unallocated edges between two vertices and
the "safe" vertices are not so easy to find.
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CHAPTER4

ALMOST ENVY-FREE ALLOCATIONS IN
MULTIGRAPHS

This chapter is exclusively about the contribution of the original results of the thesis.
We begin by describing in a high level what and how we achieve our results, while
providing some necessary definition to proceed. We lead with the simpler setting of
at most 2 parallel edges per two agents,that serves as a warm up that encapsulate the
central ideas of our results, and then we generalize the results for many parallel edges.

4.1 Our results

We show that an EFX allocation exists for multigraphs when agents have general mono-
tone valuations and:

• The graph is bipartite

• Each agent has at most n
4 − 1 neighbors, where n is the total number of agents

• The shortest cycle with non-parallel edges of the multigraph is at least 6

Our results are summarized in the following three theorems:

Theorem 1. In bipartite multigraphs, an EFX allocation always exists.

Theorem 2. In multigraphs with at most n
4  − 1 neighbors per agent, where n is the

total number of agents, an EFX allocation always exists.

Theorem 3. In multigraphs, where the shortest cycle with non-parallel edges has length
at least 6, an EFX allocation always exists.

The construction of EFX allocations follows the same skeleton for all our results,
and so they are presented together. In order to keep the presentation smooth, we begin
in Section 4.4 with a special case of multigraphs for which each pair of vertices is con-
nected with at most two edges. As we discuss in Section 4.2, in the general case, we
consider different ways to partition the common edges between two vertices. For sim-
plicity of the presentation, we postpone this crucial technicality for later and consider
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at most two parallel edges, for which there is a single way to be partitioned. This way
we focus on highlighting first all the important ideas for constructing EFX allcations.
In Section 4.5 we consider the general case where each pair of vertices is connected
with multiple edges.

4.2 Our Techniques

Here we discuss our techniques in order to construct EFX allocations in multigraphs.
Wemake use of the cut-and-choose-based protocol of [35] for two agents: one agent

cuts the set of goods into two bundles where he is EFX-satisfied with each of them (i.e.,
no matter which of the two bundles he receives, he does not envy the other bundle up
to any good), and the other agent chooses his favorite bundle among those two. This
simple protocol results in an EFX allocation for two agents, even if they have general
monotone valuations. Note that there may be two different EFX allocations derived by
the cut-and-choose protocol, depending on who "cuts", and moreover, only the agent
who "cuts" might be envious of the other agent (i.e., the agent who chooses).

Remark 1. We remark that according to the original definition of EFX in [15], where
each agent i is not envious against any other agent j after the hypothetical removal of
a positive valued good for i from the j's bundle, the cut-and-choose protocol provides
a simple EFX allocation for multigraphs: for every pair of vertices i, j with common
adjacent edges Eij , use the cut-and-choose protocol to decide the allocation of Eij .
This allocation is in fact an orientation, i.e., each edge is given to one of its endpoints,
and satisfies EFX. The reason is that i is indifferent about any other good that j receives
apart fromEij , andEij is allocated between i and j in such a way that i is envy free up
to any positively valued good against j. However, following the traditional definition
of EFX, the good that is hypothetical removed from j's bundle may be indifferent for i,
and the local allocation of the cut-and-choose protocol is insufficient. Instead, we need
to consider the whole multigraph more globally.

Following the above remark, we make use of the cut-and-choose protocol in order
to partition the set Eij into two bundles, but we may consider two different partitions
depending on which endpoint "cuts". The reason for that is so that we control the di-
rection of envy, and manage to generalize the ideas of [20]. However, we also put the
cut-and-choose protocol in use in a different way: if two agents do not agree on having
the same cut, we use the EFX-cut of one of them in order to create a partition of three
bundles where the two agents have different most preferred set. This tool was proven
to be very useful for constructing the EFX allocation for Theorem 2, where we want to
minimize the number of envied agents. In both approaches, one crucial condition that
we always upkeep is that we never allocate more than one bundles of the partition of
Eij to the same vertex.
Our approach can be seen as a three-step procedure: i) We define an initial alloca-

tion where each agent receives exactly one bundle (derived from carefully constructed
partitions) from the common edges with exactly one of his neighbors. In this step we
guarantee some ground properties on the allocation. ii) We perform Algorithm 11 (a
generalization of Algorithm 2 of [20]) in order to satisfy extra properties by preserv-
ing an EFX orientation, while ensuring that any non-envied agent has received exactly
one adjacent bundle associated with each of their neighbors. At this step we are done
with any orientation of the edges, whose allocation will not change in the next step. iii)
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We appropriately allocate all the unallocated edges to non-envied vertices that are not
endpoints of the edges, while preserving the allocation of Step 2 and the EFX guarantee.

Initial Allocation. One important novelty of our work is about the construction of
the initial allocation in Step 1. In all our three results, we carefully define for each pair
of vertices a partition of their common edges into 2 or 3 bundles, such that in the initial
allocation the following two properties are satisfied:

1. it is an EFX orientation;

2. nobody prefers an unallocated bundle of edges (based on a defined partition) to
what they have.

For showing Theorem 1, where the multigraph is bipartite, we use the cut-and-choose
protocol for partitioning the edges, where the vertices on the one side EFX-cut and the
vertices from the other side choose. Then, the vertices from the former side choose their
favorite available bundle, resulting in a initial allocation with the following Property:

No two envied vertices are adjacent.

For Theorem 2, we construct an initial allocation with bounded envy as follows: we
properly partition the parallel edges between any pair of vertices into 2 or 3 bundles;
if there is a partition into two bundles that is a "cut" for both endpoints we keep this
partition, otherwise we construct a partition into 3 bundles where the top preference for
each endpoint is different (Lemma 4.22). Given those partitions, we create a special
weighted bipartite graph between all vertices and the created bundles of edges, where
each vertex is only connected with its most preferred and second most preferred bundle
with appropriately weights. Then, the maximum matching in that graph induces an
initial allocation that satisfies the following Property:

At most half of the agents are envied.

For Theorem 3, starting by any partial allocation that satisfies the above properties
1 and 2, we alter the allocation in order to ensure the following Property:

For each envied vertex there exists a non-envied vertex in short distance (at most 2).

Reducing envy from the initial allocation. In step 2, we run algorithm 11, by
focusing on reducing the number of envied vertices and giving as many bundles as
possible to non-envied vertices, by possibly changing the initial allocation, laying the
groundwork for the allocation of the remaining edges.
Final allocation. In step 3, we have the necessary conditions to give the rest of the

unallocated bundles. We assign each such bundle to a non-envied vertex that is not an
endpoint to that bundle.

4.3 Further Preliminaries

Before we jump into the details of the results, we properly define the setting and how
we express unallocated goods as unallocated edges.
Multigraph setting. Let G = (V,E) be a multigraph with V  = n vertices and

E = m edges. In the multigraph setting, the agents correspond to the vertices of G,
and the goods correspond to the edges ofG. From now on we will refer to the agents as
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vertices and to goods as edges. In this setting, the edges that are not adjacent to some
vertex i are irrelevant to it, i.e., for any S ⊆ E and any g ∈ E that is not adjacent to i,
vi(Sg) = vi(S). We call an good relevant to i, if it is adjacent to it. We further call
any two edges with the same endpoints parallel. We slightly abuse notation, so that if S
is a set of bundles of edges, v(S) = v(B∈SB). W.l.o.g., we assume that each vertex
has degree at least 2, otherwise, if some vertex i has degree 1, meaning that agent i is
interested only in one good g, we may allocate only g to i, resulting in i not envying
anybody else, and the condition of EFX is satisfied for any other agent against i, since
i is allocated a single good.
Unallocated edges. Given a partial allocationX, an edge e is unallocated if for any

Xi, e /∈ Xi. We denote with U(X) the set of unallocated edges in X. For each agent
i, we define Ui(X) to be the set of all the unallocated edges that have i as one of the
endpoints.
EFX-cut. We heavily rely on the cut-and-choose protocol [35] when considering

the parallel edges Eij between two vertices i and j: i "cuts" Eij by partitioning it into
two bundles such that whichever bundle of the two i receives, it is EFX-satisfied against
the remaining bundle. We call such a partition an EFX-cut for i with respect to vertex
j (we may omit referring to j if it is clear from the context). In the the cut-and-choose
protocol [35], then j receives its most valued bundle and i the remaining bundle.
Orientation. An orientation is an allocation where each allocated edge is given to

one of its endpoints.
At least degree 2 in G. W.l.o.g., we assume that each vertex has degree at least 2,

otherwise, if some vertex i has degree 1, meaning that vertex i is interested only in one
good g, we may allocate only g to i, resulting in i not envying anybody else, and the
condition of EFX is satisfied for any other vertex against i, since i is allocated a single
good.

Observation 4.1. Given an EFX orientation X, if some vertex i is envied, then there
exists a single vertex j that envies i, andXi contains only edges relevant to j (j is one
of the endpoints for all edges in Xi).

Proof. On the contrary, suppose that vertex j envies vertex i, and there exists edge
g ∈ Xi such that g is irrelevant to j. Then vj(Xi \ g) = vj(Xi) > vj(Xj), where
the equality is by definition of irrelevant edges, and the inequality is because j envies
i. This is a contradiction to the fact that X satisfies EFX. Therefore, all edges in Xi

are relevant to j, and to i since X is an orientation. This in turns means that for any
other vertex all edges inXi are irrelevant, and therefore there is no other vertex envying
i.

4.4 At most 2 parallel edges

In this section we prove Theorems 1, 2 and 3 for the case where each pair of vertices
are connected with at most two edges. Regarding Theorem 2, in this special case of at
most 2 parallel edges, we manage to relax a bit the restriction to at most n

4  neighbors
(instead of at most n

4  − 1).
Edges e1ij , e

2
ij . For any pair of adjacent vertices i, j, we call e

1
ij , e

2
ij , the i's most

and second most valued edge between vertices i, j, respectively. If there is only one
edge between i and j, w.l.o.g., we may add a dummy edge as their least preferred edge.
Moreover, we give the following two useful definitions.
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Definition 4.2. Given an EFX allocation X, for any envied vertex i, we denote the
vertex that envies them as pi(X).

Definition 4.3. Given an EFX allocation X = (X1, . . . , Xn), and an envied vertex i,
let Ûi(X) = Ui(X)e2ipi(X)

. We define the most valued set of potentially unallocated
non-parallel edges as

UNPi(X) ∈ arg max
S⊆Ûi(X)

vi(S) any e1, e2 ∈ S are not parallel ,

where UNPi(X) is chosen to have the maximum possible cardinality. This is the best
bundle of non-parallel edges that i could get ifXi would be given to pi(X) (who envies
i), and Xpi(X) becomes available.

Definition 4.4. Given an EFX allocation X = (X1, . . . , Xn), and a non-envied vertex
i, let Ûi(X) = Ui(X)  Xi. We define the most valued set of potentially unallocated
non-parallel edges as

UNPi(X) ∈ arg max
S⊆Ûi(X)

vi(S) any e1, e2 ∈ S are not parallel .

where UNPi(X) is chosen to have the maximum possible cardinality. This is the best
bundles of non-parallel edges that i could get without changing the allocation to other
vertices.

Remark 2. Given an EFX allocation X, suppose that some vertex i is assigned
UNPi(X), and the allocation of the other vertices remain unchanged, apart maybe from
vertex pi(X) in the case that i is envied; if pi(X) received e2ipi(X)

in X, and that edge
belongs toUNPi(X), then it is removed from pi(X)'s bundle and is given to i along with
the UNPi(X). In the new allocation, there are no parallel edges adjacent to i that are
both unallocated. The reason is that UNPi(X) has maximum value and cardinality, so
one of the two parallel edges should belong to UNPi(X).

We prove Theorems 1, 2 and 3 by constructions of an EFX allocation in three steps.
The first two steps are dedicated to satisfy specific properties for the allocation, and the
final step is just an assignment of the remaining unallocated edges. We discuss each
step separately, and we first give the required properties for the first two steps.

Properties of the allocation X after the 1st step.

(1) A partial EFX orientation.

(2) For any vertex i and e ∈ U(X), vi(Xi) ≥ vi(e).

(3.1) No two envied vertices are adjacent. (For Theorem 1)

(3.2) The number of the envied vertices is at most n
2 . (For Theorem 2)

(3.3) For any envied vertex i, pi(X) or at least one neighbor of pi(X) is non-
envied. (For Theorem 3)

Additional Property of the allocation X after the 2nd step.

(4) For any envied vertex i, vi(Xi) ≥ vi (UNPi(X)) , and any non-envied
vertex j, vj(Xj) ≥ vj(Uj(X)).
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4.4.1 Step 1 - Initial Allocation

This step is the initial allocation towards the EFX construction. For each of our results,
in this warm up case, i.e., at most 2 parallel edges between any pair of vertices, we
show an initial allocation that satisfies properties (1),(2) and respectively one of the
properties (3.1),(3.2) and (3.3) for each of our main theorems.

Initial allocation for bipartite multigraphs

Here we describe the initial allocation for the case of bipartite multigraphs: starting
from the empty allocation, each vertex in side A is allocated their most valued edge.
Then each vertex in side B is allocated their most valued edge from the remaining
unallocated edges. This procedure is formally described in Algorithm 8.

Algorithm 8 Initial partial allocation for Bipartite

Input: A bipartite multigraph G = (V = A B,E).
Output: X satisfying Properties (1), (2), and (3.1).

1: for every vertex i do
2: Xi ← ∅
3: end for
4: for every i ∈ A do
5: Xi ← ei ∈ argmaxe∈Ui(X)vi(e)
6: end for
7: for every j ∈ B do
8: Xj ← ej ∈ argmaxe∈Uj(X)vj(e)
9: end for

Lemma 4.5. Algorithm 8 outputs allocationX that satisfies properties (1), (2) and (3.1).

Proof. Property (1) is trivially satisfied since in X every vertex receives a single edge
adjacent to them. Property (2) is also satisfied since when Algorithm 8 updates the
bundle allocated to any vertex i, they receive their most valued edge, so they preferXi

to any unallocated edge.
For Property (3.1) note that all vertices in side A are assigned their most valued

edge before assigning any edge to side B. Since the graph is bipartite, only vertices
from side B may envy vertices from side A. Therefore, all envy vertices are on side A,
and in turn, no two envied vertices are adjacent.

Initial allocation for at most n
4  neighbors per vertex

The purpose in this case is to find an initial allocation with bounded number of envied
vertices. For this, we carefully define a bipartite (simple) weighted graph H(G) =
(A  B,EH) based on the given multigraph G, between the vertices and the edges of
G. A maximum weighted matching of H(G) gives an allocation where at least half
of the vertices receive their most valued edge, and the rest receive their second most
valued edge (so each of them envies at most one other vertex), limiting that way the
number of envied vertices.

Definition 4.6. (Bipartite graph H(G)). Given a multigraph G, we define a simple
weighted bipartite graph H(G) = (A  B,EH) as follows. The set A represents the
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vertices of G, so for each vertex of G there exists exactly one vertex in A. The set B
represents the edges of G; there exists exactly one vertex in B for each edge in G. We
create the edge set EH as follows: we connect each vertex i of A (i.e., each vertex of
G) with the two vertices of B that represents i's most and second most valued edge in
G (adjacent to i) 1; we set the weights of those two edges we add in H(G) to 1 and 0,
respectively.

We prove in Lemma 4.8 that the allocation, let it be XM , denoted by the maximum
A-perfect matching2 in H(G) satisfies properties (1),(2), and (3.2). We first show in
Observation 4.7 that there is always an A-perfect matching.

Observation 4.7. There is always an A-perfect matching in H(G).

Proof. In order to prove the existence of an A-perfect matching, we show that Hall's
theorem [26] holds for any S ⊆ A. Let NS be the set of neighbors of S. For the sake
of contradiction, assume that NS  < S for some S ⊆ A. Each node in S has degree
exactly 2, by construction, so there are exactly 2S edges in H(G) with endpoints in
S. Since we assumed NS  < S, by the pigeonhole principle there is a vertex j ∈ NS

with degree at least 3. However, each vertex in B, and therefore in NS , has degree at
most two, as it represents an edge in G and it may only be connected with its endpoint
vertices in A. This is a contradiction to our assumption, so for any S ⊆ A, it holds that
NS  ≥ S; by Hall's theorem, there is always an A-perfect matching in H(G).

Lemma 4.8. XM satisfies properties (1),(2), and (3.2).

Proof. Let M be the maximum weighted A-perfect matching from which XM is de-
rived. Every vertex is assigned exactly one edge that is adjacent to it, so Property (1)
trivially holds. Regarding Property (2), note that every vertex gets either their first or
second most preferred edge in the graph. If a vertex gets their most preferred edge, then
Property (2) trivially holds for that vertex. If a vertex gets their second most preferred
edge, then sinceXM is denoted by amaximumA-perfect matching, their most preferred
edge is allocated to another vertex, so Property (2) holds for that vertex as well.
Let K be a maximal alternating path or an alternating cycle of M . Then if we

replace K M with K \M (so we alter the matching on K), we end up with another
A-perfect matching. IfK \M had greater weight thanK M then we would create a
matching with higher weight which is a contradiction. So in every alternating cycle or

pathK, the weight ofK M is at least
⌈
|K|
2

⌉
.

Claim 4.9. Any vertex in side A belongs to exactly one maximal alternating path or
cycle ofM .

Proof. This is due to the degree of each vertex in A side, which is exactly 2. Let i be
a vertex in A, if i is part of an alternating cycle, then since i has degree exactly 2, i
cannot be a part of any other cycle or path. If i is part of a maximal alternating path, i
cannot be one of the end vertices, since it has degree exactly 2, and for the same reason
cannot be a part of any other cycle or path.

Adding up over all alternating paths and cycles, we get thatM has weight at least
n
2 , meaning that at least n

2  vertices receive their most preferred edge in XM . This
in turn means that there are at most n

2  vertices receiving in XM their second most

1Note that in Section 4.3 we argued that w.l.o.g., each vertex in G is assumed to have degree at least 2.
2An A-perfect matching is a matching where all vertices of side A are matched.

24



CHAPTER 4. ALMOST ENVY-FREE ALLOCATIONS IN MULTIGRAPHS

preferred edge. Those vertices are the only vertices that envy some other vertex, and
theymay envy at most one other vertex (the one that receives their most preferred edge).
Therefore, there are at most n

2  envied vertices, and hence Property (3) is satisfied.

Initial allocation for length of the shortest cycle with non-parallel edges at least 6

This initial allocation requires an allocation that satisfies properties (1) and (2) and then
we change that allocation such that it additionally satisfies Property (3.3). We may use
the initial allocation XM , however there is a very simple greedy algorithm that satisfies
properties (1) and (2): iteratively let each vertex pick their most valued edge from its
adjacent unallocated edges. We present this procedure in Algorithm 9

Algorithm 9 Initial Greedy allocation

Input: A multigraph G = (V,E).
Output: X satisfying Properties (1) and (2).

1: for every vertex i do
2: Xi ← ∅
3: end for
4: for every vertex i do
5: Xi ← ei ∈ argmaxe∈Ui(X)vi(e)
6: end for

Lemma 4.10. Algorithm 9 satisfies properties (1) and (2).

Proof. Every vertex is allocated exactly one adjacent edge, therefore we have an EFX
orientation, and Property (1) is satisfied. Each vertex gets (in its turn) their most valued
adjacent unallocated edge. Since they are indifferent for non-adjacent edges, overall,
after running Algorithm 9, they do not prefer any unallocated edge to their allocated
edge, resulting in satisfaction of Property (2).

Satisfying also Property (3.3). Let X be an allocation satisfying properties (1) and
(2), e.g., the allocation derived after running Algorithm 9. We use Algorithm 10 to
transform X so that it additionally satisfies Property (3.3).
The idea of this algorithm is that when for an envied vertex i, the vertex j = pi(X)

is also envied, and so do all its neighbors, j releases its allocated edge which is given
to the vertex that envies j. Then, j receives its most valued available edge, if any,
and properties (1) and (2) still hold. Note that j becomes non-envied and all its neigh-
bors were envied before, and they may or may not be envied after the reallocation; so,
overall, the envy only reduces, and Property (3.3) is now satisfied for i.

Lemma 4.11. Algorithm 10 terminates and the allocation returned satisfies properties
(1),(2) and (3.3).

Proof. We will show that if before each round of Algorithm 10 properties (1) and (2)
were satisfied, those properties hold after the completion of that round (outer while
loop), and moreover, that the number of envied vertices is reduced by at least one.
This would mean that Algorithm 10 terminates and Properties (1),(2),(3.3) are satisfied;
Property (3.3) should be trivially satisfied after the termination of Algorithm 10 due to
the condition of the outer while loop.
It is easy to see that properties (1) and (2) are satisfied after any round of the outer

while loop: Property (1) is satisfied since each vertex receives at most one of its adjacent
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Algorithm 10 Initial Allocation for Theorem 3
Input: An allocation X satisfying Properties (1)-(2).
Output: An allocation satisfying Properties (1),(2),(3.3).

1: while ∃ envied vertex i for which Prop. (3.3) is not satisfied do
2: Let j = pi(X) and k = pj(X), then
3: U(X) ← U(X) Xk

4: Xk ← Xj

5: Xj ← ∅
6: while ∃ vertex l and e ∈ Ul(X) s.t. vl(e) > vl(Xl) do
7: U(X) ← U(X) Xl

8: Xl ← e
9: end while
10: end while

edges, and Property (2) is guaranteed by the inner while loop. Next we show that in
each outer while loop, no non-envied vertex becomes envied, and at least one envied
vertex, namely j, becomes unenvied; this means that Algorithm 10 terminates.
Suppose that at the beginning of the outer while loop that some vertex i is consid-

ered, properties (1) and (2) are satisfied, and vertex j = pi(X) and all its neighbors are
envied, otherwise Property (3.3) would be satisfied for i. In lines 4, 5 j 's bundle/edge is
given to k, so k is still envied but the envy now comes from j. j is not envied anymore
and it may only envy its neighbors, however those were envied before. Regarding the
inner while loop, a vertex l may only change its assignment, after its neighbor releases
an edge that l prefers, however, its neighbor released that edge because it received a
better one; so, no new envy may appear. Overall, an extra envy may only come from
vertex j to its neighbors (e.g., j envies k), who were envied before, and j becomes
unenvied. Hence, the lemma follows.

4.4.2 Step 2 - Satisfying Property (4)

This step starts with the initial allocation constructed in Step 1 satisfying properties
(1),(2), and one of (3.1),(3.2), and (3.3). In Step 2, the initial allocation changes ac-
cording to Algorithm 11 in order to additionally satisfy Property (4). We remark that
all our results run the same algorithm in Step 2, no matter which of the three cases is
considered.
The necessity of the first part of Property (4) is so that for each envied vertex iwe can

allocate its adjacent unallocated edges Ui(X). We cannot allocate any of those edges to
i as long as it is envied. So, the high level idea for Step 2 is that either Ui(X), or more
accurately UNPi(X) (see Definition 4.3), is valued for i more thanXi, in which case i
receives this bundle and releasesXi (which in turn is given to pi(X)), or i doesn't value
UNPi(X) that much, and we can find ways to allocate it to other non-envied vertices
(in Step 3) without causing envy to i. The idea is similar to Algorithm 2 of [20] but
adjusted in the multigraph setting where there are parallel edges.
The necessity of the second part of Property (4) is so that for each non-envied vertex

i we can allocate its adjacent unallocated edges Ui(X). Vertex i "chooses" its most
valued available set of non-parallel edges, so that the remaining unallocated set may be
assigned to other non-envied vertices (in Step 3) without causing envy to i.
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Algorithm 11 Reducing Envy Algorithm
Input: An allocation X satisfying properties (1) and (2).
Output: An allocation satisfying Properties (1), (2) and (4). The allocation also
preserves any of the Properties (3.1),(3.2),(3.3) if they were initially satisfied.

1: while ∃ non-envied vertex k s.t. vk(UNPk(X)) > vk(Xk) or
2: (vk(UNPk(X)) = vk(Xk) and UNPk(X) > Xk) do
3: Xk ← UNPk(X)
4: end while
5: while ∃ envied vertex i s.t. vi(UNPi(X)) > vi(Xi) do
6: if e2ipi(X)

∈ UNPi(X) then
7: Xpi(X) ← Xpi(X) \ e2ipi(X)


8: end if
9: Xi ← UNPi(X)
10: while ∃ vertex j and e ∈ U(X) s.t. vj(e) > vj(Xj) do
11: Xj ← e
12: end while
13: while ∃ non-envied vertex k s.t. vk(UNPk(X)) > vk(Xk) or
14: (vk(UNPk(X)) = vk(Xk) and UNPk(X) > Xk) do
15: Xk ← UNPk(X)
16: end while
17: end while

Lemma 4.12. Algorithm 11 terminates and outputs an allocation X that satisfies Prop-
erties (1), (2) and (4). It further preserves any of the properties (3.1),(3.2) and (3.3), if
they were satisfied before applying Algorithm 11.

Proof. We first argue that properties (1) and (2) are satisfied after any outer "while",
i.e., the ones at lines 1-4 and 5-17, if they were satisfied before. Meanwhile, we show
that any non-envied vertex cannot be envied after Algorithm 11.
For the first "while" (lines 1-4), a non-envied vertex k gets a new bundle that it

values at least as much as its previous bundle, which is composed of non-parallel edges
among the unallocated edges and his own bundle (see Definition 4.4). For each vertex
ℓ adjacent to k, the new bundle of k contains a single edge relevant to ℓ, that ℓ doesn't
value more than its own bundle, due to Property (2) and to the fact that k was not envied.
So, k remains non-envied. Moreover, by the definition of the UNPk(X) set, Property
(1) is satisfied, and Property (2) is satisfied for vertex k. Property (2) is also satisfied
for the rest of the vertices since it was satisfied before and due to the fact that k was not
envied (so, any edges released by k are not more valued to what the other vertices get).
The same arguments hold for the "while" of lines 13-16, which is identical to the one
in lines 1-4, if properties (1) and (2) are satisfied before it is executed, as we will show
next.
Regarding the "while" in lines 5-17, we will show that if properties (1) and (2)

were satisfied before each round of that "while", they are satisfied when the inner while
at lines 10-12 terminates. In lines 5-9, an envied vertex i receives a set that may be
only envied by pi(X), due to Property (2) and the definition of the set UNPi(X) (see
Definition 4.3). Moreover, Property (2) is satisfied for any other vertex apart from
pi(X), since the only edge that was released was an edge between i and pi(X) (see
Observation 4.1). Therefore, the inner "while" in lines 10-12 will first run for j =
pi(X), where pi(X) will receive the edge that i released and caused the envy towards i
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in the first place. Overall, in lines 5-12 the number of envied vertices reduces by at least
1 (namely vertex i becomes non-envied), and moreover in the "while" in lines 10-12
only an envied vertex may become non-envied and not vice versa, since a vertex may
only change its assignment, after its neighbor releases an edge while receiving a better
one. Additionally, after the "while" in lines 10-12, Property (1) is satisfied since only
relevant edges are given to the vertices, their values may only increase and no more
envy is introduced, and Property (2) is satisfied by the condition of the inner "while"
(line 10).
Hence, we have showed that properties (1) and (2) are satisfied at the end of Algo-

rithm 11, and any initially non-envied vertex remains non-envied after Algorithm 11.
The latter automatically means that if any of the properties (3.1),(3.2) and (3.3) were
satisfied before Algorithm 11, they are preserved after its termination.
Regarding Property (4), consider first an envied vertex i after the termination of

Algorithm 11. It is trivial to see that Property (4) is satisfied for i, because i does not
satisfy the condition of line 5, otherwise Algorithm 11 would not have terminate. We
turn our attention to some non-envied vertex k after the termination of Algorithm 11.
Obviously k does not satisfy the condition of line 13 (or the same condition of line
1, if the "while" in lines 5-17 has not been executed). This would mean that either i)
vk(UNPk(X)) < vk(Xk), or ii) vk(UNPk(X)) = vk(Xk) and UNPk(X) ≤ Xk.
The former case is not possible due to the definition of UNPk(X) that considers Xk as
a possible bundle. So, focusing on the latter case, due to the maximality of UNPk(X),
the set allocated to k should include at least one edge related to each neighbor (since the
allocation is an orientation and it is not possible to have allocated both edges to other
vertices); we add this as an observation next to be used later. Therefore, Uk(X) is a
bundle with no parallel edges, and so vk(Xk) ≥ vk(Uk(X)) = vk(U(X)).

Observation 4.13. Let X be the allocation after Algorithm 11. For any non-envied
vertex k, Xk contains one edge that is relevant to each of its neighbors. This in turn
means that there is no unallocated edge in X where both endpoints are non-envied.

Finally, we argue that Algorithm 11 terminates. Note that the "while" at lines 1-
4 and 13-16 either strictly increases the social welfare (i.e., the aggregate value of all
vertices) or the cardinality of some allocated bundle strictly increases, so they terminate
(in pseudopolynomial time). The "while" in lines 10-12 strictly increases the social
welfare, so for the same reason it terminates. The "while" in lines 5-17, runs at most
n times since at each round at least one vertex becomes non-envied and no non-envied
vertex becomes envied.

4.4.3 Step 3 - Allocating the rest of the edges.

At this final step, we start by an allocation satisfying Properties (1)-(4) (derived by Step
2) where Property (3) corresponds to one of the properties (3.1),(3.2),(3.3) related to one
of the three different cases, and we properly allocate the unallocated edges, such that
the complete allocation is EFX. We remark that the edges allocated at Step 2, remain as
they are, and we only allocate once and for all the unallocated edges, to vertices other
than the endpoints (so we only extend the bundles allocated in Step 2, in order to derive
a full EFX allocation).
Algorithm 12 does only two things: allocates any edge between an envied vertex

i and a non-envied vertex j to a different non-envied vertex k, and allocates any edge
between envied agents to a non adjacent and non-envied endpoint.
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The difficultly of this final allocation, is to allocate edges with envied endpoints,
since we cannot allocate to envied vertices any additional edge, as this would break
EFX. This is why we posed the graphical restrictions in Theorems 2 and 3, so that
there is always a way to allocate those edges without breaking EFX. Therefore, the
remaining unallocated edges that are adjacent to some non-envied vertex i are assigned
to vertices that are not i's neighbors and therefore i has no value for their allocated
bundle and any unallocated edges are not envied (Property (4)). At the same time, the
unallocated edges that are adjacent to an envied vertex i are assigned to vertices that
i doesn't envy, even if they receive all the unallocated edges adjacent to i additionally
to their bundle, under always the restriction of not containing parallel edges (Property
(4)).

Algorithm 12 Final Allocation
Input: An allocation X satisfying Properties (1)-(4).
Output: A complete EFX allocation.

1: while ∃ e = (i, j) ∈ U(X) do
2: Let k be a non-envied vertex such that Xk  e contains no parallel edges,
and

for any ℓ ∈ i, j, vℓ(Xℓ) ≥ vℓ (Xk  e)
3: Xk ← Xk  e
4: end while

In the following lemma we show that Algorithm 12 provides a complete EFX allo-
cation for bipartite multigraphs and for multigraphs under the restrictions in the state-
ments of Theorems 2 and 3, which completes the proofs of the theorems for the case of
at most two parallel edges per pair of vertices.

Lemma 4.14. For bipartite multigraphs, or for multigraphs where either there are at
most n

4  neighbors per vertex, or the shortest cycle with non-parallel edges has length
at least 6, Algorithm 12 returns a complete EFX allocation.

Proof. Let X be the allocation from Step 2. First note that by Observation 4.13 all un-
allocated edges have at least one envied endpoint. Moreover, by the same observation,
for each adjacent vertices where exactly one of them is envied, there may be at most
one unallocated edge with those vertices as endpoints. We next show in the following
claim that there are always the vertex k of line 2, and moreover, that there are two dis-
tinct such vertices for each pair i, j of both envied vertices, if there are two unallocated
edges with those envied endpoints. Then, we argue that all edges will be allocated after
running Algorithm 12 by preserving the EFX condition.

Claim 4.15. For bipartite multigraphs, or for multigraphs where either the shortest
cycle with non-parallel edges has length at least 6, or there are at most n

4  neighbors
per vertex, there always exists the vertex k of line 2 in Algorithm 12. Moreover, if there
are two unallocated edges with the same envied endpoints, then there are two distinct
such vertices of line 2.

Proof. We first give the following observation to be heavily used in the proof.

Observation 4.16. If i is an envied vertex and k is not i's neighbor, then by Property
(4), vi(Xi) ≥ vi(S) = vi (S Xk), for all S ⊆ U(X) s.t. S Xk contains no parallel
edges.
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Bipartite multigraphs. We start with the case of bipartite graphs. Note that in this
case the only unallocated edges are between an envied and a non-envied vertex (by using
also Observation 4.13). Consider any edge e = (i, j) ∈ U(X), such that i is envied
and j is not envied. We will argue that pi(X) is the required k vertex: By Property
(3.1) it holds that pi(X) is non-envied, and by Property (4), no envy can be created by
giving any unallocated edges to pi(X). Regarding vertex j, as an observation note that
j ̸= pi(X), because one edge between i and pi(X) has been allocated to i and causing
the envy of pi(X), and the other has been allocated to pi(X) due to Observation 4.13.
Since j is adjacent to i and the graph is bipartite, j is not adjacent to pi(X), and by
Observation 4.16, no envy can be created by giving any unallocated edges to pi(X).
At most n

4  neighbors. We proceed with the case that each vertex has at most
n
4  neighbors. We argue that for any pair of adjacent vertices i, j, there are at least
two (or one) non-envied vertices that are not adjacent to neither i nor j, when i, j are
both envied (or exactly one of them is envied). Or in short, if q expresses the number
of envied vertices in i, j, we will show that there are at least q non-envied vertices
that are not adjacent to either i or j.
The total number of i's and j 's neighbors (including i and j) is at most 2n

4  ≤ n
2 ,

so the number of vertices that are not adjacent to either i or j is at least n−n
2  ≥ n

2 .
Among them there are at most n

2  − q envied vertices, so the number of non-envied
vertices that are not adjacent to either i or j is at least: n

2  − n
2 + q ≥ q.

Length of shortest cycle with non-parallel edges at least 6. We now turn our
attention to the case that the shortest cycle with non-parallel edges has length at least
6. Consider any edge e = (i, j) ∈ U(X), such that i is envied.
If j = pi(X) then j must be envied: the reason is that i is envied by j, so i has

received an edge relevant to i, j, and by Observation 4.13, j has received the other
bundle relevant to i, j, contradicting the fact that e ∈ U(X). Therefore, j = pi(X) is
envied, and there exists at most one unallocated edge between i and j; the other has
been allocated to i. In that case, the role of k in line 2 is given to either pj(X) if it
is non-envied, or to the neighbor of pj(X) that is non-envied, which is guaranteed to
exist by property (3.3). In both cases, k is not i's neighbor (since the shortest cycle
with non-parallel edges has length at least 6). The same holds for j, when k ̸= pj(X).
Then, by Observation 4.37, and by also using property (4) if k = pj(X), k satisfies the
conditions of line 2.
If j ̸= pi(X), by Property (3.3), either pi(X) is non-envied or a neighbor of pi(X)

is non-envied. In the latter case, that neighbor is defined as k which is not a neighbor of
either i or j, otherwise a cycle of length less than 6 would exist, which is a contradiction.
By Observation 4.16, k is a vertex satisfying the conditions of line 2. In the former case,
we define pi(X) as k, which is not a neighbor of j for the same reason as above, and
it holds vi(UNPi(X)  Xk) = vi(UNPi(X)) ≥ vi(S  Xk), for all S ∈ U(X) s.t.
S Xk contains no parallel edges. By Property (4) and Observation 4.16, k is a vertex
satisfying the conditions of line 2, if no other edge parallel to e has been given to k
before; if j is non-envied, then the statement of the claim holds. We proceed the analysis
with the case that j is also envied and there may be two unallocated edges between i
and j. Let ki be the k defined above, i.e., the non-envied vertex guaranteed by Property
(3.3), by considering the envied vertex i. Also let kj be similarly the non-envied vertex
corresponding to vertex j; for the same reason as above, kj satisfies the conditions of
line 2. Then, ki and kj , that have distance at most 2 from i and j, respectively, should be
different, otherwise there would be a cycle of length at most 5. Then, one edge between
i and j may be allocated to ki and the other one to kj , so the claim follows for that case,
as well.
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In Claim 4.15 we showed that for any unallocated edge of X (the allocation of Step
2) there is always a non-envied vertex satisfying the conditions of line 2, and so Algo-
rithm 12 terminates in a complete allocation. The condition in line 2 guarantees that
whenever an unallocated edge is assigned to a vertex k, no envy is caused towards k,
and since k is non-envied, EFX is preserved.

4.5 Many parallel edges

We provide a proof roadmap that describes how we tweak our techniques to work on
bundles.

Definition 4.17. (Bundles) Let i, j be two adjacent vertices and Eij be the set of their
common edges. Based on the cut-and-choose protocol [35], we define:

• Bi
ij is the bundle that i gets when i cuts Eij ,

• Bj
ij = Eij \Bi

ij , i.e., this is what j gets when i EFX-cuts Eij and j chooses.

• Bi
ji and B

j
ji are defined accordingly by swapping i, j.

We present the properties we satisfy in the general case, where the sets Bi and
UBi(X) will be defined in the related paragraph, and UNPBi(X) is in the same spirit
with UNPi(X) of Definition 4.3:

Properties of the allocation X after the 1st step.

(1) A partial EFX orientation, , where for any vertex i, Xi is a union of
bundles from Bi.

(2) For any vertex i and B ∈ UBi(X), vi(Xi) ≥ vi(B).

(3.1) No two envied vertices are adjacent. (For Theorem 1)

(3.2) The number of the envied vertices is at most n
2 . (For Theorem 2)

(3.3) For any envied vertex i, pi(X) or at least one neighbor of pi(X) (Defini-
tion 4.2) is non-envied. (For Theorem 3)

Additional Property of the allocation X after the 2nd step.

(4) For any vertex i, vi(Xi) ≥ vi (UNPBi(X)).

Step 1 for Bipartite multigraphs
The initial allocation is very similar with the case of at most 2 parallel edges cases.

However we allocate to each vertex in side A their most valued bundle from the parti-
tions formed by the EFX-cuts of the vertices in side B.
Step 1 for bounded number of neighbors The initial allocation now allocates

bundles to vertices and not just edges. The construction of the bipartite graph H(G)
is different regarding the B vertices, which correspond now to bundles. There are two
important cases while considering the bundles of side B, and those are whether two
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vertices i and j in G have a common EFX-cut for their common relevant edges or not.
For any pair i, j that share a common EFX-cut, we add on side B of H(G) those two
bundles of this cut, otherwise we make a three partition of their common edges (and
we add those bundles on side B ofH(G)) such that i and j have a distinct most valued
bundle among them (in Lemma 4.22 we show that such a partition always exists). In
similar fashion as in Section 4.4, we connect each vertex in side A with their most and
second most valued bundle of edges with weights 1 and 0. The same arguments as
in Section 4.4 stand in order to show that the allocation corresponding to a maximum
A-perfect matching satisfies Properties (1),(2),(3.2).
We remark that in the case of at most two parallel edges each pair of neighbors had

a common EFX-cut. In this more general case of many parallel edges, we also require
the partition of some parallel edges into three bundles instead of two. This distinction is
responsible for requiring n

4 −1 neighbors (instead of n
4  as in the case of two parallel

edges) because we now need more "safe" vertices to "park" those extra bundles.
Step 1 for multigraphs where the shortest cycle using non-parallel edges is of

length at least 6
The initial allocation now allocates bundles to vertices and not just edges. We utilize

a greedy approach close to Section 4.4 unified with a similar algorithm to Algorithm 10.
The problem of neighbors not having the same EFX-cut appears here as well, but we
deal with it in a different way (as we cannot guarantee the existence of that many "safe"
vertices): we stick to only partition the parallel edges with an EFX-cut, but we may
consider both EFX-cuts of both neighbors. Properties (1) and (2) are guaranteed by
offering all those possible bundles by prioritizing the endpoints. In order to guarantee
property (3.3) we follow the idea of Algorithm 10 and for every new non-envied vertex
we create we "lock" their relevant bundles to the ones they EFX-cut, preserving that
way that they will remain non-envied.

Remark 3. We remark that using the approach of case 2, i.e. the three partitions
between some pair of vertices, in case 3 would mean that we may require three non-
envied vertices to "park" those bundles in case they remain unallocated in the initial
allocation. However, property (3.3) and the restriction of this case (i.e., all cycles of
non-parallel edges have length at least 6), guarantee the existence of only two such
vertices, and therefore we have to restrict ourselves to two partitions only.
On the other hand, using the approach of case 3 in case 2 may be also problematic.

Suppose that in the bipartite graphH(G) we use all bundles formed by EFX-cuts (i.e.,
for vertices i, j we consider Bi

ij , B
j
ij , B

i
ji, B

j
ji on the B side). The question is if we

would considering assigning e.g., Bi
ji to j in the maximum matching (i.e., if edges

(j, Bi
ji) could be added in H(G). If we allow such an edge, j could be assigned Bi

ji

and i could possibly not be EFX-satisfied against j. If we do not allow such an edge, it
may be that i is assigned Bi

ji, and j would be EFX-satisfied (as required for property
(1)). Nevertheless, j may envy i, which is an envy not expressed inH(G), and therefore,
the maximummatching inH(G) cannot guarantee limited envy (as in the case of at most
two parallel edges).
So, overall, it seems necessary to use different approaches for the initial allocations

for those two cases.

Step 2 - Satisfying Property (4). This step is essentially the same with
Algorithm 11. The algorithm works in the exact same way, but now it considers non-
parallel bundles instead of single edges. There is only a little caution with respect to the
priority of agents while offering them bundles, similarly to Step 1 regarding Theorem 3.
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Step 3 - Final Allocation. Algorithm 12 now considers bundles instead of single
edges. The arguments in Claim 4.15 are exactly the same with the general case. In the
case where the shortest cycle with non-parallel edges has length at least 6 or in bipartite
graphs, the final allocation proceeds by just considering at most two bundles between
two vertices, instead of at most two edges, but the arguments remain the same.
In the case with bounded number of neighbors, in the general case there may

be one more unallocated bundle between two vertices compared to the case of two
parallel edges, i.e., three bundles when both endpoints are envied, two bundles
when only one endpoint is envied, and one bundle when both endpoints are non-
envied. This is dealt by restricting the number of possible neighbors by one more, or
more specifically, in the case of two parallel edges, the requirement was to have at
most n

4  neighbors, whereas, in the general case we assume at most n
4 −1 neighbors.

4.5.1 Step 1 - Initial Allocation

In this step we construct the initial allocation with specific properties that are crucial
towards the final EFX construction. We construct an initial allocation that satisfies
properties (1),(2) and respectively one of the properties (3.1),(3.2) and (3.3) for each of
our main theorems.

Properties of the allocation X after the 1st step.

(1) A partial EFX orientation, where for any vertex i,Xi is a union of bundles
from Bi.

(2) For any vertex i and B ∈ UBi(X), vi(Xi) ≥ vi(B).

(3.1) No two envied vertices are adjacent. (For Theorem 1)

(3.2) The number of the envied vertices is at most n
2 . (For Theorem 2)

(3.3) For any envied vertex i, pi(X) or at least one neighbor of pi(X) is non-
envied. (For Theorem 3)

The sets Bi and UBi(X). In each of the three cases we define for each agent i a
set of bundles Bi that are adjacent to i, and could be allocated as a whole to them. We
require that

1. the set S∈Bi
S is the set of all edges relevant to i, and

2. for any adjacent vertices i, j, we specify a single partition of their common rele-
vant edges, and only the bundles of this partition belong to Bi and Bj w.r.t. this
pair of vertices.

Then, UBi(X) is the subset of unallocated bundles of Bi under some allocation X.

Initial allocation for Bipartite Multigraphs

We first define the sets Bi for the case of bipartite multigraphs.

Definition 4.18. (Bi set for Theorem 1) For any vertex i, we define Bi as follows:
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• If i ∈ A, then Bi = Bi
ji, ∀j adjacent to i

• If i ∈ B, then Bi = Bi
ij , B

j
ij , ∀j adjacent to i

Note that all edges between two endpoints are partitioned in a single way, i.e., the
vertex in side B EFX-cuts.

Then, the initial allocation for the case of bipartite multigraphs is constructed as
follows: Starting from the empty allocation, each vertex i ∈ A is allocated their most
valued bundle from Bi, i.e., their most valued bundle when their neighbors EFX-cut
their common edges. Then, each vertex in side B is allocated their most valued bun-
dle from the remaining unallocated bundles. This procedure is formally described in
Algorithm 13.

Algorithm 13 Initial partial allocation for Bipartite

Input: A bipartite multigraph G = (V = A B,E).
Output: X satisfying Properties (1),(2) and (3.1).

1: for every vertex i do
2: Xi ← ∅
3: end for
4: for every i ∈ A do
5: Xi ← Si ∈ argmaxS∈UBi(X)vi(S)
6: end for
7: for every j ∈ B do
8: Xj ← Sj ∈ argmaxS∈UBj(X)vj(S)
9: end for

In the next lemma we show that the allocation derived by Algorithm 13 indeed
satisfies properties (1),(2) and (3.1).

Lemma 4.19. Algorithm 13 outputs an allocation X that satisfies properties (1), (2)
and (3.1).

Proof. Property (1) is satisfied for all vertices in sideA, since they get their most valued
adjacent bundle. Vertices in side B may envy some vertices from side A, however, the
allocation is EFX since they partition the edges with all their neighbors according to the
cut-and-choose protocol and they receive their most valued available bundle. Property
(2) is also trivially satisfied since when Algorithm 13 updates the bundle allocated to
any vertex i, they receive their most valued bundle from UBi(X), so they preferXi to
any unallocated bundle.
For Property (3.1) note that all vertices in side A are assigned their most valued

bundle before assigning any bundle to sideB. Since the graph is bipartite, only vertices
from side B may envy vertices from side A. Therefore, all envied vertices are on side
A, and in turn, no two envied vertices are adjacent.

Observation 4.20. After Algorithm 13, between any two adjacent vertices there are at
most two unallocated bundles.

Initial allocation for multigraphs with vertices with at most n/4 - 1 neighbors
One useful Property in the case of multigraphs with at most two parallel edges is that
every pair of vertices, in some way "agree" on how to EFX-cut their common edges
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(separate the two parallel edges is a EFX-cut for both vertices). However, when there
are three or more parallel edges between two vertices creates, it may be the case that
no EFX-cut for one vertex is an EFX-cut for the other. This would cause an issue
to our matching allocation if we follow the approach of Section 4.4; Specifically, in
the general case for adjacent vertices i, j, the allocated bundle when j EFX-cuts and
i chooses is the most valued one for i. That bundle is not offered to j and based on
the matching allocation, they can be allocated their most valued bundle (from specific
bundles constructed from the cut-and-choose protocol) and envy vertex i, therefore not
guaranteeing that vertices that were allocated their most valued bundle do not envy oth-
ers vertices, which is how we guarantee Property (3.2). To accommodate the different
EFX-cuts between vertices we prove a 3-partition of the edges between vertices without
common EFX-cuts.

Definition 4.21. (PVSP,B1
i(j), B

2
i(j)) Let i, j be two adjacent vertices andEij be the set

of their common edges. If there exists a partition (P1, P2) ofEij that either corresponds
to an envy-free allocation to i and j or i and j are EFX-satisfied against each other no
matter how the sets are allocated to them, (i.e, (P1, P2) is an EFX-cut for both i and j),
then we denote by B1

i(j), B
2
i(j), i's most and second most valued bundles, respectively,

between P1 and P2. Similarly, we define B1
j(i), B

2
j(i), to be j 's most and second most

valued bundles, respectively, between P1 and P2. We further define PVSP to be the
set of Pair of Vertices whose common edges admit such Single Partition as described
above.

Next we handle the rest of the edges, and we show that for each pair of vertices
(i, j) /∈ PVSP there exists a partition (P1, P2, P3) of their common edges Eij into
three bundles, such that i, j have different top preference among them.

Lemma 4.22. For any pair of vertices (i, j) /∈ PVSP there exists a partition
(P 1

ij , P
2
ij , P

3
ij) of their common edges Eij into three bundles, such that i, j have differ-

ent top preference among them.

Proof. Since (i, j) /∈ PVSP, for every partition of Eij into two bundles, i, j have the
same top preference. Suppose that (P1, P2) is an EFX-cut for i, and let P2 be the top
preference between P1 and P2 for both i and j. Moreover, i is EFX-satisfied with P1

as well, whereas j is not (because (i, j) /∈ PVSP). This means that there exists a good
g ∈ P2, such that vj(P2 \ g) > vj(P1), and vi(P2 \ g) ≤ vi(P1). Additionally,
vi(g) ≤ vi(P1), because if P2 contains more than one goods, i should prefer P1 to P2

after the removal of any other good but g from P2. It cannot be that P2 = 1, because
then j would be EFX-satisfied with P1, as well. So, in the partition (P1, P2 \g, g),
i's top preference is P1 and j 's top preference is not P1. Therefore, for (P 1

ij , P
2
ij , P

3
ij) =

(P1, P2 \ g, g), the lemma follows.

The above partitions of the edges are next used in order to defineBi(X), and there-
fore UBi(X), for any vertex i, that is needed for Property (2).

Definition 4.23. We define Bi to be the set of bundles adjacent to i such that

• for each pair (i, j) ∈ PVSP, B1
i(j), B

2
i(j) ∈ Bi (see Definition 4.21),

• for each pair (i, j) /∈ PVSP, (P 1
ij , P

2
ij , P

3
ij) ∈ Bi (see Lemma 4.22).

We show that a similar matching from Section 4.4 gives us the three properties to
proceed to Step 2.
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Satisfying Properties (1), (2) and (3.2). The initial allocation is constructed simi-
larly to the one in Section 4.4; we construct a similar bipartite graph, however the main
difference is that on theB-side we consider bundles instead of single edges. The tricky
part is to recognize the right bundles to consider. This the reason why we distinguish
between pairs of neighbors with common EFX-cut (the PVSP) and the rest that do not
have any common EFX-cut. In the former case we consider the two bundles of the
endpoints' common partition (see Definition 4.21), and in the latter case we consider
the 3-partition as defined in Lemma 4.22. Next we formally define the bipartite graph.

Definition 4.24. (Bipartite graph H(G)). Given a multigraph G, we define a simple
weighted bipartite graph H(G) = (A  B,EH) as follows. The set A represents the
vertices of G, so for each vertex of G there exists exactly one vertex in A. We create
the set B by adding for each pair of agents (i, j) ∈ PVSP two vertices to represent the
two sets of their common partition, and for each pair of agents (i, j) /∈ PVSP we add
three vertices to represent the three sets of the partition as defined in Lemma 4.22. We
create the edge set EH as follows: we connect each vertex i of A (i.e., each vertex of
G) with the two vertices of B that are associated with i's most valued and second most
valued bundle from theB-side. We set the weights of those two edges we add inH(G)
to 1 and 0, respectively.

We prove in Lemma 4.25 that the allocation, let it beXM , denoted by the maximum
weighted matching in H(G), satisfies properties (1), (2), and (3.2).

Lemma 4.25. XM satisfies properties (1), (2) and (3.2).

Proof. Regarding Property (1), suppose that i envies j in XM , then (i, j) ∈ PVSP and
j must receive B1

i(j). So, it holds that i receives a bundle in XM at least as valued as

B2
i(j). Since i would be EFX-satisfied against j if it received B

2
i(j), i is EFX-satisfied

against j in XM .
Regarding Property (2), note that for every vertex i, all bundles of Bi are included

on the B side ofH(G) (i.e., Bi ⊆ B). Then, i receives its most or second most valued
bundle from Bi. If i receives its most valued bundle, then property (2) is trivially
satisfied. It i receives its second most valued bundle, this means that its most valued
bundle is allocated to another vertex due to the maximality of XM . Therefore, property
(2) follows.
Regarding Property (3.2), with similar arguments as in the proof of Lemma 4.8,

each agent gets their most or second most valued bundle from side B. Again each
vertex representing an agent has degree exactly 2, thus they participate in exactly one
alternating cycle or path. Since the matching is a maximum weighted matching, at least
half of the vertices are matched with their top preference from side B. So, at most half
of them envy another vertex.

Observation 4.26. In XM , between any two adjacent vertices there are at most three
unallocated bundles.

Initial allocation for multigraphs where the shortest cycle using non-parallel edges
is of length at least 6

In contrast to the previous case, we need to make sure that between any two envied
vertices there are at most two unallocated bundles, and therefore, we cannot use the
three partition of Lemma 4.22. Insteadwe stick to the EFX-cuts so that only two bundles
are formed. However, it may be the case that vertices do not share a common EFX-cut,
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and it is quite tricky to decide which to use without violating properties (1) and (2).
Therefore, at the beginning we cannot define the setBi for every vertex i, as opposed to
the previous cases. Instead, for any pair of vertices, we initially consider both partitions
where each of the endpoints EFX-cuts their relevant edges. We finalize the setsBi along
with finalizing the initial allocation for this case. The final Bi are going to be a set of
partitions either cut by i or a neighbor of i, the final Bi will not contain bundles that
share edges.
Hence, we define some auxiliary Bi's that will be finalized later.

Definition 4.27. For multigraphs where the shortest cycle using non-parallel edges is
of length at least 6, for a vertex i, we define:

Baux
i = Bi

ij , B
i
ji, B

j
ij , B

j
ji, ∀j adjacent to i.

For simplicity, until we finalize the setsBi, we useUBi(X) as the set of the bundles
of Baux

i that are unallocated (as a whole) in X.
Satisfying properties (1) and (2) and (3.3).
Similarly to the case with only 2 parallel edges, we first consider some initial allo-

cation that satisfies properties (1) and (2), by ignoring how many envied vertices there
may be. Then, we transform it by creating non-envied vertices to satisfy property (3.3).
In order to preserve that those vertices remain non-envied, we should consider only the
bundles formed when they EFX-cut the relevant edges with each of their neighbors.
Therefore, the sets Bi are finalized at the end of the algorithm that satisfies all required
properties.
Algorithm 14 starts by constructing an EFX orientation that satisfies properties (1)

and (2), where for property (2) we consider the sets Baux
i that are changing during the

algorithm. Note that if for some pair of vertices i, j, vertex j is free to get Bi
ji at any

point, i may not be EFX-satisfied against j and property (1) would be violated. On the
other hand, if j did not have the chance to get Bi

ji, property (2) may be violated for j.
To address this issue, we just "offer" Bi

ji first to i and then to j, and this prioritization
of the endpoints for offering them specific bundles is sufficient in order to satisfy both
properties (1) and (2). We follow the same tactic any time we convert some envied
vertex into non-envied to satisfy Property (3.3). As we mentioned above we make sure
that these vertices will remain non-envied throughout the execution of the algorithm
by changing (or more accurately shrinking) the sets Baux

i . At the end of the algorithm
those sets become the finalized sets Bi.
Next we show that Algorithm 14 terminates in an allocation satisfying properties

(1), (2) and (3,3).

Lemma 4.28. The allocation returned by Algorithm 14 satisfies properties (1), (2) and
(3,3).

Proof. We first give a useful observation:

Observation 4.29. For each pair of vertices i, j, if j receives Bi
ji, then j is not envied.

Proof. The reason is that j may receive Bi
ji only in lines 6 and 18, in which cases

vi(Xi) ≥ vi(B
i
ji). Further note that the only case that a value of an agent may decrease

is in line 11. We argue that i cannot be the vertex b (line 10), if Xj = Bi
ji. The reason

is that i may be vertex b, only when all of its neighbors are envied. However, i has a
neighbor, namely j, that is not envied.
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Algorithm 14 Initial Greedy allocation

Input: A multigraph G = (V,E) and Baux
i for each i ∈ V .

Output: X satisfying Properties (1), (2) and (3.3) and Bi for each i ∈ V .

1: for every vertex i do
2: Xi ← ∅
3: end for
4: while ∃i, j and S ∈ Bi

ji, B
j
ji where S ∈ UBi(X), such that vi(S) > vi(Xi) or

vj(S) > vj(Xj) do
5: if Bi

ji ∈ UBi(X) and vi(Bi
ji) > vi(Xi) then Xi ← Bi

ji

6: else Xj ← S
7: end if
8: end while
9: while ∃ envied vertex a for which Prop. (3.3) is not satisfied do
10: Let b = pa(X) and c = pb(X)
11: Xb ← ∅
12: Baux

b ← Bb
br, B

r
br  ∀r adjacent to b

13: for Every vertex r adjacent to b do
14: Baux

r ← Baux
r \ Bb

rb, B
r
rb

15: end for
16: while ∃i, j and S ∈ Bi

ji, B
j
ji where S ∈ UBi(X), such that

vi(S) > vi(Xi) or vj(S) > vj(Xj) do
17: if Bi

ji ∈ UBi(X) and vi(Bi
ji) > vi(Xi) then Xi ← Bi

ji

18: else Xj ← S
19: end if
20: end while
21: end while
22: for every vertex i do
23: for every vertex j adjacent to i do
24: if Br

ij ∈ Xi Xj , for some r ∈ i, j, or it holds that
Bi

ij , B
j
ij , B

i
ji, B

j
ji ⊆ UBi(X) then

25: Baux
i ← Baux

i \ Bi
ji, B

j
ji

26: Baux
j ← Baux

j \ Bi
ji, B

j
ji

27: end if
28: end for
29: end for
30: for every vertex i do
31: Bi ← Baux

i

32: end for
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We start by showing that after the termination of the first while (lines 4-8) properties
(1) and (2) are satisfied. Consider any vertex j envied by vertex i, after the termination
of the first while. By Observation 4.29, vertex j is not assigned Bi

ji, therefore it is

assigned Bj
ij . Then i gets a bundle of value at least of B

i
ij : either B

i
ij is assigned to

i, or Bi
ij is available and since the while condition (line 4) is not satisfied, i receives

a bundle at least as good. So, i is EFX-satisfied against j. Property (2) is trivially
satisfied at the end of the first while since the condition of line 4 is not true. Note that
this while will terminate since the social welfare strictly increases at each iteration.
Similarly, properties (1) and (2) hold at the end of the second while (lines 9-21),

since the first while run as its last subroutine; only for property (1) we need to further
justify that Xi ∈ Baux

i , since Baux
i may change inside this while, which we will show

at the end. Regarding property (3.3), this is trivially satisfied at the end of the second
while since since the condition in line 9 is not satisfied. However, we need to show that
the second while will terminate, and for each vertex i, we always have Xi ∈ Baux

i .
Regarding the termination of the algorithm, it is sufficient to show that whenever

a vertex b becomes non-envied, it remains that way. This would in turn mean that no
vertex a can satisfy the while condition (line 9) more than once. When a vertex b is
considered, we shrink the setBaux

b to contain only the two bundles that b EFX-cuts, and
we keep the same bundles in theBaux

r set of each neighbor r of b. By Observation 4.29,
b cannot be envied as long as Baux

b does not change any further. This cannot happen,
because theBaux

i sets may only alter with respect to bundles where both endpoints were
envied before the while (this was the case with b and all its neighbors r), and clearly b
is not envied anymore. Therefore, since vertex b will remain non-envied until the end
of the while, vertex a cannot be considered again.
Finally, we need to show that for any neighbor r of b, Xr cannot be Bb

rb or B
r
rb, so

Xr belongs to the updated Baux
r . If Xr = Bb

rb, by Observation 4.29, r was non-envied
before the while, and the same holds if Xr = Br

rb, because b values Xb at least as
much as Bb

rb, which in turn values at least as much as B
r
rb. In any case r cannot be

non-envied, because then a would not satisfy the while condition (line 9).
The last for-loops (lines 22-29) guarantee the properties for the Bi sets. Overall,

the algorithm terminates by satisfying properties (1), (2) and (3.3).

Observation 4.30. After Algorithm 14, between any two adjacent vertices there are at
most two unallocated bundles.

The rest of the steps are the same for all cases. The initial allocations between cases
are different.

4.5.2 Step 2 - Satisfying Property (4).

This step starts with the initial allocation constructed in Step 1. In Step 2, the initial
allocation changes according to Algorithm 15 in order to additionally satisfy Property
(4), which needs the following definition:

Definition 4.31. For any envied vertex i, let T = Xpi(X)  Bi be the edges that
pi(X) receives in X that are adjacent to i, if any (if X is an initial allocation from Step
1, then T is either a bundle from Bi that pi(X) gets, or the empty set, if pi(X) gets
edges irrelevant to i). Let ÛBi(X) = UBi(X)  T. We define the most valued set
of potentially unallocated non-parallel bundles as

UNPBi(X) ∈ argmax
S⊆ÛBi(X)

vi(S) any B1, B2 ∈ S are not parallel 3.
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4.5. MANY PARALLEL EDGES

where UNPBi(X) is chosen to have the maximum possible cardinality with respect to
the number of bundles from ÛBi(X). This is the best set of non-parallel bundles that i
could get ifXi would be given to pi(X) (who envies i), andXpi(X) becomes available.

Definition 4.32. For any non-envied vertex i, let ÛBi(X) = UBi(X)  Xi. We
define the most valued set of potentially unallocated non-parallel bundles as

UNPBi(X) ∈ argmax
S⊆ÛBi(X)

vi(S) any B1, B2 ∈ S are not parallel .

where UNPBi(X) is chosen to have the maximum possible cardinality (considering the
number of bundles from ÛBi(X)). This is the best set of non-parallel bundles that i
could get without changing the allocation of the other vertices.

Additional Property of the allocation X after the 2nd step.

(4) For any vertex i, vi(Xi) ≥ vi (UNPBi(X)).

The necessity of Property (4) is so that we can allocate the remaining unallocated
bundles at Step 3 in non-adjacent vertices. Note that for any envied vertex i we cannot
allocate any of its adjacent unallocated bundles to i additionally to what it has. So, the
high level idea of Step 2 is that eitherUBi(X), or more accuratelyUNPBi(X), is valued
for i, so we allocate it to i, and i releases the bundle he had which caused the envy, or i
doesn't value it that much so we can giveUNPBi(X), or subsets of it, to other agents. In
the same spirit, the non-envied vertices receive the best set of their adjacent available
non-parallel bundles, so that allocating the rest adjacent bundles to other vertices would
preserve EFX. The idea is similar to Algorithm 2 of [20], but adjusted in the multigraph
setting.

Lemma 4.33. Algorithm 15 terminates and outputs an allocation X that satisfies Prop-
erties (1), (2) and (4). It further preserves any of the Properties (3.1),(3.2) and (3.3), if
they were satisfied before applying Algorithm 15.

Proof. We first argue that properties (1) and (2) are satisfied after any outer "while",
i.e., the ones at lines 1-4 and 5-17, if they were satisfied before. Meanwhile, we show
that any non-envied vertex cannot be envied after Algorithm 15.
For the first "while" (lines 1-4), a non-envied vertex k gets a new bundle that it

values at least as much as its previous bundle, which is composed of non-parallel bun-
dles among the unallocated bundles and his own bundle (see Definition 4.32). For each
vertex ℓ adjacent to k, the new bundle of k contains a single bundle relevant to ℓ, that
ℓ doesn't value more than its own bundle, due to Property (2) and to the fact that k was
not envied. So, k remains non-envied. Moreover, by the definition of the UNPBk(X)
set, Property (1) is satisfied, and Property (2) is satisfied for vertex k. Property (2) is
also satisfied for the rest of the vertices since it was satisfied before entering the while
loop and due to the fact that k was not envied (so, any bundles released by k are not
more valued to what the other vertices get). The same arguments hold for the "while"
of lines 13-16, which is identical to the one in lines 1-4, if Properties (1) and (2) are
satisfied before it is executed, as we will show next.
Regarding the "while" in lines 5-17, we will show that if properties (1) and (2)

were satisfied before each round of that "while", they are satisfied when the inner while

3Recall that vi(S) = vi(∪B∈SB)
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Algorithm 15 Reducing Envy Algorithm
Input: An allocation X satisfying properties (1) and (2).
Output: An allocation satisfying Properties (1), (2) and (4). The allocation also
preserves any of the Properties (3.1),(3.2),(3.3) if they were initially satisfied.

1: while ∃ non-envied vertex k s.t. vk(UNPBk(X)) > vk(Xk) or
2: (vk(UNPBk(X)) = vk(Xk) and UNPBk(X) > Xk) do
3: Xk ← UNPBk(X)
4: end while
5: while ∃ envied vertex i s.t. vi(UNPBi(X)) > vi(Xi) do
6: if B2

ipi(X)
∈ UNPBi(X) then

7: Xpi(X) ← Xpi(X) \ B2
ipi(X)


8: end if
9: Xi ← UNPBi(X)
10: while ∃ envied vertex j and S ∈ UBi(X) s.t. vj(S) > vj(Xj) do
11: Xj ← S
12: end while
13: while ∃ non-envied vertex k s.t. vk(UNPBk(X)) > vk(Xk) or
14: (vk(UNPBk(X)) = vk(Xk) and UNPBk(X) > Xk) do
15: Xk ← UNPBk(X)
16: end while
17: end while

at lines 10-12 terminates. In lines 5-9, an envied vertex i receives a bundle that may
be only envied by pi(X), due to Property (2) and the definition of the set UNPBi(X)
(see Definition 4.31). Moreover, Property (2) is satisfied for any other vertex apart
from pi(X), since the only bundle that was released was a bundle between i and pi(X)
(see Observation 4.1). Therefore, the inner "while" in lines 10-12 will first run for
j = pi(X), where pi(X) will receive the bundle that i released and caused the envy
towards i in the first place. Overall, in lines 5-12 the number of envied vertices reduces
by at least 1 (namely vertex i becomes non-envied), andmoreover in the "while" in lines
10-12 only an envied vertex may become non-envied and not vice versa, since a vertex
may only change its assignment, after its neighbor releases a bundle while receiving
a better one. Additionally, after the "while" in lines 10-12, Property (1) is satisfied
since only relevant bundles are given to the vertices, their values may only increase and
no more envy is introduced, and Property (2) is satisfied by the condition of the inner
"while" (line 10).

Hence, we have showed that properties (1) and (2) are satisfied at the end of Algo-
rithm 15, and any initially non-envied vertex remains non-envied after Algorithm 15.
The latter automatically means that if any of the properties (3.1),(3.2) and (3.3) were
satisfied before Algorithm 15, they are preserved after its termination.

Regarding Property (4), consider first an envied vertex i after the termination of
Algorithm 15. It is trivial to see that Property (4) is satisfied for i, because i does not
satisfy the condition of line 5, otherwise Algorithm 15 would not have terminated. We
turn our attention to some non-envied vertex k after the termination of Algorithm 15.
Obviously k does not satisfy the condition of line 13 (or the same condition of line
1, if the "while" in lines 5-17 has not been executed). This would mean that either i)
vk(UNPBk(X)) < vk(Xk), or ii) vk(UNPBk(X)) = vk(Xk) and UNPBk(X) ≤ Xk.
The former case is not possible due to the definition ofUNPBk(X) that considersXk as
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a possible bundle. So, focusing on the latter case, due to the maximality ofUNPBk(X),
the set allocated to k should include at least one bundle related to each neighbor (since
the allocation is an orientation and it is not possible to have allocated both bundles to
other vertices); we add this as an observation next to be used later.

Observation 4.34. Let X be the allocation after Algorithm 15. For any non-envied
vertex k, Xk contains one bundle that is relevant to each of its neighbors.

Finally, we argue that Algorithm 15 terminates. Note that the "while" at lines 1-4
and 13-16 either strictly increases the social welfare (i.e., the aggregate value of all ver-
tices) or the cardinality of some agents bundle, so they terminate (in pseudopolynomial
time). The "while" in lines 10-12 strictly increases the social welfare, so for the same
reason it terminates. The "while" in lines 5-17, runs at most n times since at each round
at least one vertex becomes non-envied and no non-envied vertex becomes envied.

4.5.3 Step 3 - Final Allocation

At this final step, we start by an allocation (derived by Step 2) satisfying Properties
(1),(2),(4) and one of the properties (3.1),(3.2) or (3.3) and we properly allocate the
unallocated bundles, such that the complete allocation is EFX. We define the set of
unallocated bundles as UB(X) =

∪
i∈N UBi(X), given an allocation X.

At this final step, we start by an allocation satisfying Properties (1)-(4) (derived by
Step 2) where Property (3) corresponds to one of the properties (3.1),(3.2),(3.3) related
to one of the three different cases, and we properly allocate the unallocated bundles,
such that the complete allocation is EFX. We remark that the bundles allocated at Step
2, remain as they are, and we only allocate once and for all the unallocated bundles, to
vertices other than the endpoints (so we only extend the bundles allocated in Step 2, in
order to derive a full EFX allocation). The reason of allocating those remaining bundles
to vertices that are not the endpoints is because if we would allocate them to one of the
endpoints, this could possibly violate the EFX condition: e.g., if an envied vertex is
allocated more edges, the envious vertex would not be EFX-satisfied anymore, and if
a non-envied vertex receives more edges, those would be parallel to a bundle that he
already has and may cause envy to one of his neighbors who even may not be EFX-
satisfied anymore.
Algorithm 16 does a simple thing: it allocates any unallocated bundle to a non-

envied vertex that remains non-envied after this allocation. The existence of such non-
envied vertices that are used for "parking" the unallocated bundles is guaranteed for
each case separately by using the restriction of that case and properties (3) and (4). This
is why we posed the graphical restrictions in the three cases, so that there is always a
way to allocate those bundles without breaking EFX. Therefore, the unallocated bundles
that are adjacent to an envied vertex i are assigned to vertices that i doesn't envy, even
if they receive all the unallocated bundles adjacent to i additionally to their bundle,
under always the restriction of not containing parallel bundles (Property (4)). Similarly,
the remaining unallocated bundles that are adjacent to some non-envied vertex i are
assigned to vertices that are not i's neighbors and therefore i has no value for their
allocated bundle and any unallocated edges (Property (4)).
In the following lemmawe show that Algorithm 16 provides a complete EFX alloca-

tion for bipartite multigraphs and for multigraphs under the restrictions in the statements
of Theorems 1, 2 and 3.
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Algorithm 16 Final Allocation
Input: An allocation X satisfying Properties (1)-(4).
Output: A complete EFX allocation.

1: for ∃ S ∈ UB(X) with endpoints i, j do
2: Let k be a non-envied vertex such that Xk  S contains no parallel bundles,
and

for any ℓ ∈ i, j, vℓ(Xℓ) ≥ vℓ (Xk  S)
3: Xk ← Xk  S
4: end for

Lemma 4.35. For bipartite multigraphs, or for multigraphs where either there are at
most n

4  − 1 neighbors per vertex, or the shortest cycle with non-parallel edges has
length at least 6, Algorithm 16 returns a complete EFX allocation.

Proof. Let X be the allocation from Step 2. This algorithm allocates each bundle to
a vertex that is not an endpoint of the bundle (vertex k in line 2). We show in the
following claim that there are always the vertex k of line 2, therefore Algorithm 16 will
terminate after allocating all unallocated bundles of X. Then, we argue the allocation
returned by Algorithm 16preserves the EFX condition.

Claim 4.36. For bipartite multigraphs, or for multigraphs where either the shortest
cycle with non-parallel edges has length at least 6, or there are at most n

4 −1 neighbors
per vertex, there always exists the vertex k of line 2 in Algorithm 16.

Proof. Note that if r is the maximum number of bundles of any partition of parallel
edges considered in the sets Bi, then the maximum number of unallocated bundles
between two adjacent vertices i, j is at most

r + q − 2, where r = 2 for Theorems 1 and 3, and r = 3 for Theorem 2 , (4.1)

where q expresses the number of envied vertices in i, j. This can be seen by
Observation 4.34. We give the following observation to be heavily used in the proof,
and then we consider each of the three cases separately.

Observation 4.37. For any vertex i, if vertex k is not i's neighbor, then by property (4),
vi(Xi) ≥ vi(S) = vi (S Xk), for all S ⊆ UB(X) s.t. S  Xk contains no parallel
bundles.

Bipartite multigraphs. Note that in this case by property (3.1) there is no un-
allocated bundle between envied vertices and by (4.1) there is no unallocated bundle
between non-envied vertices. So, the only unallocated bundles are between an envied
and a non-envied vertex. Consider any bundle S ∈ U(X) with endpoints i, j, such
that i is envied and j is not envied. We will argue that pi(X) is the required k vertex:
By property (3.1) it holds that pi(X) is non-envied, and by property (4), no envy can
be created to i by giving any unallocated bundles to pi(X). Regarding vertex j, as an
observation note that j ̸= pi(X), because one bundle between i and pi(X) has been
allocated to i and causing the envy of pi(X), and the other has been allocated to pi(X)
due to Observation 4.34. Since j is adjacent to i and the graph is bipartite, j is not
adjacent to pi(X), and by Observation 4.37, no envy can be created to £j by giving any
unallocated edges to pi(X).
At most n

4  − 1 neighbors.
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We argue that for any pair of adjacent vertices i, j, there are q + 1 (as defined in
(4.1)) non-envied vertices that are not adjacent to either i or j. The total number of i's
and j 's neighbors (including i and j) is at most 2(n

4  − 1), so the number of vertices
that are not adjacent to either i or j is at least n − (2(n

4  − 1) ≥ 2n
4  + 2. Among

them there are at most n
2  − q envied vertices, so the number of non-envied vertices

that are not adjacent to either i or j is at least: 2n
4 + 2− (n

2  − q) ≥ q + 1.
Length of shortest cycle with non-parallel edges at least 6. This case is proven

similarly to the setting with at most two parallel edges, with the only difference that
instead of single edges we consider bundles. For the sake of completion we give the
full proof here. Consider any bundle S ∈ UB(X) with endpoints i, j. By (4.1), at least
one of the endpoints should be envied; so, w.l.o.g., let i be envied.
If j = pi(X) then j must be envied: the reason is that i is envied by j, so i has

received a bundle relevant to both i, j, and by Observation 4.34, j has received the other
bundle relevant to i, j, contradicting the fact that S ∈ UB(X). Therefore, j = pi(X)
is envied, and there exists at most one unallocated bundle between i and j; the other
has been allocated to i. In that case, the role of k in line 2 is given to either pj(X) if
it is non-envied, or to the neighbor of pj(X) that is non-envied, which is guaranteed
to exist by property (3.3). In both cases, k is not i's neighbor (since the shortest cycle
with non-parallel edges has length at least 6). The same holds for j, when k ̸= pj(X).
Then, by Observation 4.37, and by also using property (4) if k = pj(X), k satisfies the
conditions of line 2.
If j ̸= pi(X), by Property (3.3), either pi(X) is non-envied or a neighbor of pi(X)

is non-envied. In the latter case, that neighbor is defined as k which is not a neighbor of
either i or j, otherwise a cycle of length less than 6 would exist, which is a contradiction.
By Observation 4.37, k is a vertex satisfying the conditions of line 2. In the former case,
we define pi(X) as k, which is not a neighbor of j for the same reason as above, and
it holds vi(UNPBi(X)  Xk) = vi(UNPBi(X)) ≥ vi(S  Xk), for all S ∈ UB(X)
s.t. S Xk contains no parallel bundles. By Property (4) and Observation 4.37, k is a
vertex satisfying the conditions of line 2 if no other bundle parallel to S has been given
to k before; if j is non-envied, there is only one unallocated bundle between i, j (due
to (4.1)), so this is true, and the statement of the claim holds. We proceed the analysis
with the case that j is also envied and there may be two unallocated bundles between i
and j. Let ki be the k defined above, i.e., the non-envied vertex guaranteed by Property
(3.3), by considering the envied vertex i. Let also kj be similarly the non-envied vertex
corresponding to vertex j; for the same reason as above, kj satisfies the conditions of
line 2. Then, ki and kj , that have distance at most 2 from i and j, respectively, should
be different, otherwise there would be a cycle of length at most 5. Then, since there are
at most two unallocated bundles between i, j (due to (4.1)), one may be allocated to ki
and the other to kj , so the claim follows for that case, as well.

In Claim 4.36 we showed that for any unallocated bundle of X (the allocation of
Step 2) there is always a non-envied vertex satisfying the conditions of line 2, and so
Algorithm 16 terminates in a full allocation. The condition in line 2 guarantees that
whenever an unallocated bundle is assigned to a vertex k, no envy is caused towards k,
and since k is non-envied, EFX is preserved.
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CHAPTER5

CONCLUSION

We presented important results in the Fair Division literature, and basic algorithms.
In this thesis, we pushed the state-of-the-art regarding one of the most important and
academically interesting problems in Fair Division: the existence of EFX allocations.
Following the work of Christodoulou et al. [20], we consider a graph structure that
poses a restriction to valuation functions. Based on the notation of [20], we consider the
(2,∞)-bounded setting, which represents the case where each good is important for at
most two agents. This can be seen as a multigraph setting where the vertices correspond
to agents and the edges to goods, and each agent is interested only in goods/edges that
are adjacent to him. Even if Christodoulou et al. [20] showed the existence of EFX
allocations in simple graphs, i.e., the (2, 1)-bounded setting, even for general monotone
valuation functions, the generalization to multigraphs poses extra challenges: It is well
known [20, 40] that allocating edges to vertices other than their endpoints is inevitable,
unless there are high restrictions on the graph structure. However, how to allocate those
edges without violating EFX was the most challenging aspect in simple graphs settings
[20], and becomes much harder in the setting of multigraphs.
As a result, we pose some restrictions on the structure of the multigraphs in order to

address the above challenges. We handle each restriction differently only with respect
to some initial partial orientation where each agent receives a bundle that is relevant to
only one of its neighbors. This initial allocation is carefully constructed so that it pro-
vides crucial properties that are essential in order to manage to assign edges to vertices
that are different from their endpoints by preserving the EFX property, and as a result
derive a complete EFX allocation. We remark that after the construction of the initial
allocation, we follow a unified approach, which is a generalization of the approach in
[20] to multigraphs. This further indicates that hopefully our approach and ideas will
be useful to push the state-of-the-art even further.
One important future direction is to drop the structure restrictions on the multi-

graphs and show the existence of EFX allocations in multigraphs with general valua-
tions. Moreover, extending the existence of EFX allocations to hypergraphs, or other
more general or incomparable (p, q)-bounded settings, could be a stepping stone to-
wards the ultimate goal of showing EFX existence without any restriction on the setting;
note that the setting of hyper-multigraphs corresponds to the unrestricted setting.
At last, we remark that our approach heavily relies on the cut-and-choose protocol
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for general monotone valuation functions. It is known that finding such an allocation
is hard (see [35, 25]), so our algorithms are not efficient. Therefore, another aspect
to consider is the complexity of finding such allocations, and it may be reasonable to
consider approximate EFX allocations that can be computed efficiently.
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