Data-types as Objects Revisited

Insights and Proofs

Vaios-Rafail Michalakis
Reg. Num.: 7115142200013

Examination committee:
William Wadge, Emeritus Professor of Computer
Science, University of Victoria, Canada.

Angelos Charalambidis (co-supervisor), Assistant
Professor at the Department of Informatics and

Supervisor:
Panos Rondogiannis, Professor,
Department of Informatics &

Telematics, Harokopio University, Greece. Telecommunications,
)) University of Athens.
Dr. Nikolaos Rigas, ALMA Graduate Program and vof
Associate lecturer, Department of Information
Technology, The American College of Greece.
Aovikh kot Avakprtd
3 =
3 Q
< g
= E
>—-
< OCA p
3 v .
3 i
3 %
3 2
3 5N
007 0u01Xa21una3 N

Contents

1 Introduction
1.1 AboutthisThesis e e e e
1.2 Generally about Semantics
1.3 PCF:Amodel language
1.4 Denotational Semantics of First-order Languages: A Brief Study
1.5 About the suggested approach L L

2 Domains & Fixed Points
2.1 Posetsand Fixedpoints

3 Formal Construction of Domain Extension
3.1 Domainsand Data Types
3.2 Axiomatic Characterisation of the extension
33 Examples e e e

4 Function Domains
4.1 Tight Functions and Tight Extensions

5 Arrow Functions
5.1 Arrow Operator oo e e e e e e e e e e
52 CaseAnalysis e e

6 Recursion over Extended Domain

7 Type Checking

8 Case Analysis of Recursive Programs
9 A Take on Negation Types

Bibliography

O 3 O L L

13

15
15
16
17

18
18

23
23
24

26

30

32

36

39

Abstract

English version

This thesis is concerned with an approach to giving the semantics of data-types in simple functional
programming languages. The material is a thoroughly rewritten version of [SW77] completed with proofs
and insights, which were largely absent in the original paper. The approach of [SW77] has been influential
in several subsequent works and has been the basis for the development of the so-called ideal-model for
recursive polymorphic types. The main idea of the aforementioned paper is to treat data-types as objects
of the programming language; to do this, the authors developed a formal system in which substantial
computation with data-types can be performed, including the recursive definition of data-types or their
application to functions: in view of the Curry-Howard Isomorphism, this is to say that one can actually use
computation with data-types to prove properties of programs. The resulting model allows the existence
of subtypes and supertypes, as well as of logically qualified types and a limited form of dependent type
families, notions which are much harder to define in traditional type systems. In the thesis we explore
the formal definitions of the notions involved and present (with complete proofs) their basic properties,
both at an abstract level, as well as at that of applications in type-checking real-world programs. To
supplement the reader’s understanding of the latter, scattered among the collection of theorems and the
described techniques are a few illuminating examples, showing the flexibility and power of the theory
under consideration.

Greek version

H mapovoa dotpipf] acyoreitol pe po Tpoceyyion yuo TV orddocn ¢ oNHacloloyiog Tov tHnwmv
dedoEVOV GE AL YAMOGES GLVOPTNOLOKOV TPOYPOUUATIoHOY. H mepieydpevn OAN elvar pio Aentopepdg
EMOVAOIOTLTTOWEVT Ekd0cT) TOV [SWT77] Tov cupmAnpdveTal pe amodei&elg Kot 10EEG, o1 omoieg amovsioloy

o€ peydro Pabpd amd v apykn epyacio. H mpocéyyion tov [SW77] €xel ennpedost apkeTég LETAYEVESTEPES
gpyaoies Kot omoTéLesE T PAOT Y10 TNV OVATTLEY TOV AEYOUEVOV UOUTEAOD 10EWAMV Y10, AVAIPOUIKODS
TOALHOPPIKOVS TOTTOVG. H Kipta 1déa g mpoavapepbeicag dnpocicvong eival va avipeTonilovtot ot
TOTOL BEG0UEVOV MG OVTIKEILEVA TNG YADOGOG TPOYPOUUUATIGHOD — Y10l VO YIVEL ALTO, Ol GUYYPAPELS
avETTLERY £VOL TUTIKO GUGTI IO GTO OTTO10 UTOPOVV VAL YIVOLV OVGLUGTIKOL VTTOAOYIGLOL LLE TUTTOVG OEOOUEVDV,
GUUTEPIAUUPOVOLEVOL TOV AVASPOLLKOD OPIGUOD TV TOT®V OES0UEVAOV) TNE EPUPLOYNE TOVE GE GLVOPTHOELS:
V7O T0 MPicHe Tov 1oopop@eiopoy Curry-Howard, avtd onuaivel 0t pmopel kaveic va ypnolonooet

GTNV TPUYUOTIKOTITO TOV DVTOAOYIGHO e TOTOVE SES0UEVOV Y10 VO OTTOJEIEEL IOIOTNTEG TV TPOYPUUUATOV.

To povTELO TOL TPOKVATEL EXTPENEL TNV VTLAPEN VITOTOA®Y KO VIEPTOAWYV, KOODG Kol AOYIKMG TPOGIOPIGUEVDV
TOTOV KoL LLLOG TEPLOPLOUEVIG LOPPTG OIKOYEVELDY EEAPTNUEVOV TOTWV, EVVOLEC TOV EVOL TOAD SVGKOAOTEPO
V0. 0pIGTOVV OTO TOPASOCIOKG GUGTHLOTH TOT®V. 211 STPIPn S1EPELVODIE TOVG TUTIKOVG OPIGHOVGS

TOV GYETIKOV EVVOIMV Kot Topovsidlovue (pe minpelg omodei&elg) Tig facikég 1010 TéG TOVG, TOGO G
aPNPNUEVO ETITEDD, OGO KOL GE QLTO TOV EPUPLOYADV GTOV EAEYYO TOTOV TPOAYUOTIKOV TPOYPOUUATOV.
[Ipog kaAdTepn KATOVONGT TOV TEAELTOIOV GO TOV AVAYVAOGCT, OVALESO GTN] GLAAOYN TOV BE@PMUATOV
KOLTOV TEPLYPOUPOUEVOV TEYVIKMV VITAPYOVV S1AGTOPTO, LEPIKE SLOPMTICTIKA TapadeiyLaTaL, TOV SeiyvouV

v gveMéia kou tn dvvaun g Bewpiag mov eEetdletar.

1 Introduction

1.1 About this Thesis

The material found here is a thoroughly rewritten version of [SW77], which will be our main reference.
That paper is about a novel approach to give satisfactory denotational semantics to data-types such as
found in several functional programming languages; it develops a short, new theory about what data-
types do, or at least should, represent in a programming language’s intended semantic domain. In fact,
it goes further than that and actually constructs a formal system that allows one to perform meaningful
computation with data-types, as though they were values (hence its name “Data Types as Objects™): in
view of the Curry-Howard Isomorphism, this is to say that one can actually use computation with data-
types to prove properties of programs. These insights come with a small but relatively comprehensive
selection of theorems that can be used in several interesting examples, of which some we explore in the
text.

Unfortunately, the original version, [SW77], was incomplete as it lacked the proofs to the theorems and
the demonstrations of several different examples it mentioned. Thus, our main ambition here is to fill that
gap and provide a more complete version of this theory by streamlining the presentation, by proving the
theorems, correcting a few along the way and inserting a couple of our own, by filling the demonstrations
of the important examples mentioned in the text, and by finding a few illuminating examples of our own.
That is not to say that the (necessarily introductory) version of the theory we present here is anywhere
near complete: to the contrary, we have reasons to believe that it can be developed much further, and that
in fact when that is done, the resulting theory can find recognition as an efficient and ingenious alternative
to the semantics of data-types, although our humble overview here will not be sufficient for that.

1.2 Generally about Semantics

Semantics is the study of meaning; in Computer Science, meaning of programs. There are different direc-
tions such a study can take: the one we are interested in in the context of this thesis is called denotational
semantics; other possibilities include axiomatic semantics and operational semantics. To be brief, deno-
tational semantics is to Programming Language Theory what Model Theory is to First Order Logic in that
it tries to give the meaning of a program in the form of a model. Similarly (and using the same analogy
between programming languages and First Order Logic) axiomatic semantics seems to be the equivalent
of Proof Theory.

As an example, suppose we are given the following recursive program in a simple functional program-
ming language:

Fny=if(n=0)thenlelsen x F(n—1).

It shouldn’t be difficult to see that its intended meaning is the factorial function; however, to give a
complete, formal description of the meaning of such recursive programs we must specify two things: (a)
what kind of objects the program needs to manipulate in order to make sense, and (b) what is the meaning
of the program when it lives in the world of objects prescribed in (a). In our example, the “world” of
the recursive program above is the set of natural numbers augmented with the two truth-values tt (true)
and ££ (false) —this is because we need to be able to make the comparison n = 0— and when interpreted
in it, the recursive program does indeed model the factorial function. Actually, in order to be able to
model non-termination, it is traditional to add a symbol L to this semantic domain ordered below all
other elements; this is understood to represent a state of non-knowledge. (Try to understand it thus: after
a computation has terminated we know its exact value; however, before it finishes, we don’t know what

1 Introduction

is the value of the result, and moreover, we generally don’t even know if the computation will terminate
at all! We use L to model ongoing computations; an inequality like 1 < 0 is the way to say that if a
computation finishes with value 0, one may “update” one’s state of knowledge, and “lift” the value L
formerly used to represent that computation to the actual value 0.)

The study of semantics is of course too deep a subject to be treated here to any satisfactory degree; two
excellent books on the subject are [Win93] and [Ten91]. Another very good account is given in [PWF12]
(this is an online resource, and no guarantee can be given that it will continue to be accessible in the
future.)

1.3 PCF: A model language

PCF stands for “Programming Computable Functions”; it is an ideal programming language developed
as a framework for conducting research into typed functional programming languages. It is relatively
minimalistic, and can be considered as an extended, Turing-complete version of typed A-calulus, or as a
simplified version of real-world typed functional programming languages.

In this thesis, we will work with a version of PCF allowing only first-order functions. Letus explain the
term. A functional programming language usually has a few useful types built-in: these usually include
integers, Booleans, and sometimes structures (which are called “products” in academic parlance). A
function that only operates on those primitive, built-in types is said to be of the first order, otherwise
it is of higher order; for example, higher-order functions may accept other functions as arguments, or
return functions as values. A programming language that allows the definition of functions of higher-
order is called a higher-order language, otherwise it is a first-order language; examples of higher-order
languages include almost all known functional programming languages, including Lisp, Haskell, ML.
(This terminology is not universally accepted.)

It appears that there is a profound reason why we restrict our attention to first-order languages: whereas
in higher-order languages functions are no different from any other value, with types assuming the task of
distinguishing between values of different nature, in this thesis our aim is to bring types to the same level
as values, do computation with them &c., and thus it seems to us that functions must be a different kind
of object. It would be a very interesting question to examine whether there is a way to treat data-types as
objects in a higher-order language.

The discrepancy between the two kinds of languages is very evident in the case of denotational se-
mantics. While programs in first-order languages have relatively simple models, to give a model of a
program in a higher-order language, genuinely advanced mathematical tools and techniques are required.
Although we will not discuss such languages here, we mention that the model of such a higher-order
program is best understood in the language of Category Theory. The mathematical background necessary
for venturing into that direction receives a fairly good treatment in [Ten91], and a presentation with most
of the advanced mathematics streamlined into the text can be found in [Win93, Chapter 11].

To describe the programming language we will write the examples in (inspired by the language REC
in [Win93, Chapter 9]), we will give the Backus Naur Form (BNF) of its syntax; in doing so, we will
avoid going into details as the point is to develop a generally applicable method, not one tailored to a
single language. Another point we shall leave intentionally vague is the evaluation strategy: we do not
constrain ourselves to the exclusive study of a call-by-value or a call-by-name language.

Nothing is lost by thinking of our programming language as the functional fragment of Python or C
(that is, a language with the same syntax as Python/C, but disallowing all imperative constructs such
as: goto, for/while loops, (re-)assignments of variables, &c., and the higher-order function features in
the case of Python), and therefore the confident reader may omit the rest of this section without loss of
understanding.

Let Types be the set of types the programming language supports; for our purposes, it is generally
sufficient that Types = {B, Z, List}, where B is the type of Booleans, Z the type of integers, and List
the type of lists (which can be nested). The vocabulary of the language contains the constants tt, ff,
0, 1, and nil, the function-symbols +, —, %X, &, Vv, =, Cons, toghether with a countably infinite family

1.4 Denotational Semantics of First-order Languages: A Brief Study

(Xo,n)neN of variables of type o for o € Types, and, for every k € N and « € Typesk , a countably
infinite family (f,;"'°),en of 0-valued function variables with arguments of types o.
The Backus Naur Form of the language is as follows:

t::= B|N|L

B::= tt|ff|B&B|BvVB|-B|
B=B|L=L|N=N|N<N|N>N|
if B then Belse B | xB , | F“’B(tal,taz,...,talal)

N::= O|1|N+N|N—-N|NxN |if BthenN else N |
XN | FON (o oty
L::= nil|Cons(t, L) | if B then Lelse L | F*"5%(ty, , t,, . . S lag)
F%i= [(tay tays - - -+ layg)) | Moy Alay. ... Aty to (0 € Types),

where t5 is B, N, L according to whether o is B, N, or List, respectively, and 7y, is B, N, L according
to whether ¢; is B, N, or List, respectively. Informally, this says that a term ¢ is either a Boolean (B), or
a Number (N), or a List (L), and that Booleans, Numbers, and Lists are expressions that give the correct
type. Note that F% is a generic expression for an |« |-ary o-valued function with arguments of types «.

At times, we may choose to work with subsets of the language we just described, ignoring, for example,
lists and working only with Booleans and numbers.

1.4 Denotational Semantics of First-order Languages: A Brief Study

In this section we discuss the traditional approach to the semantics of first-order languages by way of
example. The reader may benefit from a broad familiarity with fixed-point theorems (the relevant back-
ground material we need later in this thesis can be found in Chapter 2).

Suppose we are given the following simple program for the factorial function:

F(n)=if(n =0)thenlelsen x F(n —1).

The construction of a model for a program bears some analogies to that of a theory in first-order logic.
We begin by choosing the semantic domain D; this is the ground set of values that the programming
language (and consequently the program) are supposed to manipulate. The semantic domain must be one
of a special kind of posets called domains; the precise definition of domains varies among authors, but
in general it is sufficient to work with w-cpos: posets with a least element such that every increasing
w-sequence has a supremum. (In subsequent chapters of this thesis we will work with a different notion,
Definition 3.1, which is stronger.)

Next we must interpret function-symbols and constants: an interpretation of the function-symbols
is, like in first-order logic, an assignment of an increasing (partial) function f: D" — D to every n-
ary function-symbol f in the vocabulary; and similarly for constants. These two steps together are the
analogues of choosing a structure in logic; however, in denotational semantics it is important that we
interpret function-symbols as increasing functions. The poset of increasing functions from D to itself,
pointwise ordered, is denoted by [D — D].

Finally, we construct an increasing function D" — D that models the given program.

In our paticular example, we want the domain D to contain the truth-values and the integers. Its Hasse
diagram is depicted in Figure 1.1. Notice that it is a flat domain: x C y iff x = y orx = L.

Then interpret the function-symbols as the functions they usually stand for: e.g. V is logical “or”, and
+ is addition of natural numbers; the former only applies to Booleans, and the latter only to numbers.
Hence the function-symbols are generally interpreted as partial-functions. This is actually a technicality,
as we can lift the interpretations to total functions by declaring their undefined values to be L. These
partial functions must still be increasing (if £ has arity n, dom(f) € D" is ordered pointwise). This
means that, e.g. since L C f£f, we must have L Vv tt C £f V tt = tt; hence the value of L Vv tt must

1 Introduction

Figure 1.1: The semantic domain for the factorial function.

be either L or tt. [And under different circumstances, it may make sense to define it as either value. It
could be tt in a lazy language (which only evaluates its arguments if it needs them) or it could be L in
an eager language (note that in C, “or” is a short-circuiting operator — not a function: it doesn’t evaluate
the second argument if the first one is tt).]

The reason we are interested in increasing functions is because the ordering of D is supposed to be an
information ordering, i.e., x = y is intended to mean that y is a more defined object than x. This should
be obvious for flat domains, as the only non-trivial order relation is between _L (standing for an undefined,
or as yet unknown, value) and other objects.

After deciding on the semantic domain and the interpretation of language symbols, we identify the
thing whose least fixed point we are looking for: a functional. A functional is a function-taking, function-
returning function: formally, a functional is a function

7:[D - D] — [D — D].

One is naturally interested in increasing functionals. Furthermore, practically all functionals arising from
recursive programs are continuous (Chapter 2), as can be proven by structural induction on t, which
means we can compute their fixed points using Lemma 2.5. We are interested in the least fixed point of
functionals, i.e. the least solutions to recursive programs, as they are the ones with the least arbitrary
information. As an example, for the recursive program under consideration, the two functions

ifn >

0, ! ifn >0,
- and f>(n) = e =

n!
n) =
S =, itn <0: 0 ifn<0

are solutions, but the latter makes arbitrary choises about the value of the solution at n < 0 (it cannot be
“proved” that the function takes these values at n < 0).
The functional used in the recursive definition of the factorial is

t[F]:=Anif(n =0)thenlelsen x F(n — 1) .

We want to show that the least fixed point of t is a partial function Z — Z defined at all non-negative
integers. Beginning with 2, the nowhere defined function (constantly 1) which is in [D — D], we
successively evaluate the iterated applications of T on 2: one computes

1 ifx=0
1 ’
T [Q](x) =
[£2](x) {J_ otherwise;
1 ifx =0,

?[Qlx)={1 ifx=1,
1 otherwise;

x! if0<x<n,

1 otherwise;

1.5 About the suggested approach

with least fixed point the limit 7®[€2], which is a function with the desired property. All in all, we have
shown that there is a function from the non-negative integers to the non-negative integers that is a fixed
point of 7. Furthermore, it is the least fixed point of t.

1.5 About the suggested approach

In type systems that follow the tradition of typed A-calculus there is a number of ground types from
which composite ones can be built using type formation operators: function-types can be built using the
— operator, product-types (pairs) using x, and union-types using +. Furthermore, every object in such
types systems is assigned a unique type. Thus, for example, integers are not generally instances of real
(floating point) numbers, and lists tend to be homogenous types (all their elements must be of the same
type; in particular, they cannot be nested). Although this characteristic makes the theory mathematically
robust, it is apparently also recognized as a limitation, or at least constraint, as ways to make such systems
more flexible have been devised.

Some of these languages that stick closely to typed A-calculus (e.g. Haskell) use instead Algebraic Data
Types (ADT) and type inference to achieve the effects of polymorphism and creation of “heterogenous”
data types (e.g. while tree-like structures can be simply represented as nested lists, in Haskell they have
to be defined by custom-made data types; similarly the identity function id or the addition function +
have type inferred from the context). Furthermore, for data types for which there is a conceivable notion
of type “inheritance” (such as integers and floating-point numbers or lists and trees), specific type-casting
functions are provided by the language or must be written by the programmer.

Other languages (e.g. Lisp) allow subtypes and supertypes (see fig. 1.2), and cast values of one type
into values of supertypes using type coercion. This allows seemingly inhomogenous data-types such as
nested lists, and type polymorphism. Technically, however, they are not inhomogenous, as all lists are
considered lists of type t (t being the universal type in Common Lisp) and all function have type t — t.

Figure 1.2: Types supported by Common Lisp. Source: https://sellout.github.io/media/
CL-type-hierarchy.png, retrieved 30 Nov. 2024.

https://sellout.github.io/media/CL-type-hierarchy.png
https://sellout.github.io/media/CL-type-hierarchy.png

1 Introduction

But even in languages that support super- and subtype relations, types themselves cannot be combined
using the language’s operations, and thus many intuitively natural and desirable computations such as

EvEN 4+ Opp = ODD

cannot be expressed, or inferred, in a traditional type system.
Our approach is to incorporate the data-types into the domain of values/objects. An element in the
resulting domain will serve two roles:

(i) itis a data-type on which functions can be defined, including of course functions that are the least
fixed points of recursive programs;

(i1) it is the type of all object approximating it: in our system, the assertions x T y, “x is of type y”,
and “any object of type x is also of type y” are equivalent.

Thus the ordering relation C in the extended domain will at the same time be a subtype inclusion
relation, and an object-type instance relation.

For example, if the semantic domain of a programming language is as in Figure 1.1 and we want to
add types for Booleans, Natural numbers, and Even and Odd integers, then we obtain the domain in
Figure 1.3. Note that there is a universal type U.

In our system the types-as-objects perspective has its dual objects-as-types. Thus, not only is a data-
type an object, but every object is a data-type. For example, if one defines a data-type PRIME for prime
numbers, one then has

EvVEN M PRIME = Q,

which says that the greatest lower bound (intersection) of even and prime numbers is the data-type 2 in
the objects-as-types interpretation; here, the data-type 2 is the type whose only elements are 2 and L.

Monotonic functions in the original domain D can be extended to monotonic functions in the extended
domain D. We are very interested in the least extension, which we call the tight extension. The properties
of tight extensions and related notions can be found in Chapter 4; they are going to be of constant use in
the sequel.

U

B EVEN ObD

Figure 1.3: Domain D with extension D. Solid lines show the ordering of elements of D, and dotted
ones the object-type relations and type inclusions in the extension D.

The simplest useful domain extension D is that depicted in Figure 1.3. In it many useful equations

hold:
EVEN 4+ 2 = EVEN

OpD + ODD = EVEN,

10

1.5 About the suggested approach

when the functions +, = are interpreted tightly.

Things are a bit more complicated if list objects and a type for lists are allowed. If we have a type List
and a corresponding constructor cons (usually abbreviated by : :, or by simply writing the list constructed
by cons), then we may choose to add to the domain extension D also all values that can arise from
applying cons to types such as B or N. Thus, we may opt to also add types cons(B, cons(B,nil)) =
[B,B] and cons(B, cons(N, cons(3,nil))) = [B, N, 3].(D) As all the built-in functions of our language
are interpreted as increasing functions in D, we have

[tt, L] C [B,B], and [ff,4,3] C [ff, EvEN, 3] C [B, N, 3].

Perhaps the most important function in a programming language is the conditional if-then-else; we
have a special definition for it in our system:

Definition 1.1. For » C B and elements x, y of the domain extension of D, we define:

L ifb =1
if b = tt;
ifbthen x else y = * 1 ’
V, if b = ff;

xUy ifb=B

where x LI y stands for the lowest upper bound (supremurn) of x, y. When we formalise the notion of
extensions later, we will have to write 1, tt, £f instead of L, tt, £f. This definition of if-then-else is
practically the tight extension to D of the if-then-else on the original domain D.

As an example,
if B then 3 else EvVEN = N.

It turns out that even function-types can be encoded by certain functions defined on the extended do-
main D. If (x — y) is the function defined on D by

Az.if (z C x) then y else U,

then (x — y) maps objects below type x to type y, and other objects to type U . As discussed in Chapter 5,
a monotonic function f is below (x — y) in the domain [15 — 15] of monotonic functions from D to
itself if it maps objects of type x to objects of type y; i.e. if it is a function of “type” x — .

We will use this arrow function to perform case analysis in Chapter 5, which we will apply later in
Chapter 8 to deduce properties of the least fixed points of recursive programs.

Finally, although we will not examine these topics in this thesis, we discuss two more properties of the
types-as-objects approach that we think deserve some attention.

The first is that in a types-as-objects system there is a uniform way to handle recursive definitions of
types and objects. This works even for functions that use both (standard) values and types: for example
the recursive definition

S(x,n)=1if (n <0)thennilelse x::S(x,n —1) (1.2)

(where :: is list construction), defines the function S such that S(x, n) is a list of n x’s (if n < 0 it is the
empty listnil). Then, over an appropriate domain and with the tight extensions of the functions involved,
S (B, 3) is the type of lists of Booleans of length 3, S(U, 3) is the type of lists of any elements of length
3, and S(0, EVEN) is the type of strings of 0’s of any even length. In particular, this example shows that
it is possible to define at least some dependent type families.

() We don’t have to, but if we don’t then the tight extension of certain functions would return non-meaningful information; e.g.
if we don’t add type [B, B] then the computation cons(B, cons(B,nil)) would evaluate to the universal type U .

11

1 Introduction

The second interesting possibility is that error messages can be added to the domain D, and they may
be organized so as to give meaningful information about the error that occurred. For example, the new
objects DomainError, DivisionByZero can be introduced for situations like 3 + tt or 4/0 respec-
tively. More error messages can be introduced: candidates include the general error, as well as the
more specialised OutOfRange, NotInteger, IndexError; furthermore, they may be given an elaborate
structure to reflect the logical connections between the errors they represent: e.g. IndexError can be
above OutOfRange and NotInteger, and NotInteger could also be below DomainError.

These error messages do not represent data-types, but rather objects of the domain D; however, since
we intencAl to use a non-flat domain D, their presence will not be at odds with the rest of the semantic
domain D.

12

2 Domains & Fixed Points

2.1 Posets and Fixed points

In this thesis, we shall use the mathematically familiar terms supremum and infimum for the least upper
bound (“lub”) and greatest lower bound (“glb”) respectively.

Definition 2.1. Given a poset (D, C), and a subset .S, we say that

» S is a directed subset of D if every pair of elements of S has an upper bound in S: that is, for
every pair of elements a,b € S, thereisc € S suchthata C c and b C c.

* D is a directed-complete poset if every directed subset of D has a supremum in D: that is, for
every directed S C D, there is e € D such thate = sup S;

* D is a chain-complete poset if every chain (totally ordered subset) has a supremum in D;
* D is a complete lattice if every subset of D has a supremum in D;

Note that every directed-complete poset is chain-complete as well, and that every complete lattice has
a greatest and a least element, given by the supremum of the whole set and the empty set respectively.
Another very important fact about complete lattices is that every subset of a complete lattice has an
infimum; this is seen by taking the supremum of all lower bounds of the given set.

Of particular interest for semantics are fixed points of functions on posets. An element x € D, is called
a prefixed point of f: D — D if f(x) C x, and a fixed point of f if f(x) = x.

In the following we will confine ourselves to the study of increasing (also called order-preserving)
functions f: D — D and partial functions f: D — D: those that satisfy x T y = f(x) C f(y) for
all x, y € D. Itis easy to show that if x is the least prefixed point of an increasing function £, then it is
a fixed point. By far, the most important theorem about fixed points is:

Theorem 2.2 (Knaster-Tarski). Given a complete lattice (D, C) and an increasing function f: D — D,
the fixed points of f form a complete lattice; moreover, for every a € D, the least fixed point b of f
above a is

b=min{x € D |aC xand f(x) C x};

that is, b is the least prefixed point of f above a. This least fixed point is denoted by /fp,(f). If D has a
least element, we write Ifp(f) for the least fixed point of f.

Interestingly, there is a constructive and equally useful version of this theorem under weaker hypotheses:

Theorem 2.3 (Constructive Knaster-Tarski). If D is a chain-complete poset with a least element L and
f: D — D isincreasing, then f has a least fixed point, and in fact /fp(/) = supgeord So» Where sg = L
and for o > 0,

S (sy), if @ =y 41 isasuccessor;
Sa=SUPf(Sﬂ)=
B<a SUpy<q Sy, if o isa limit.
Here Ord stands for the class of ordinal numbers. Note that the ordinal-sequence s: Ord — D is well-
defined, and is easily seen to be increasing. Since there are more ordinals than any set has elements, it
follows that the sequence (Sq)acora is eventually constant, and hence the supremum exists.
Under more assumptions on f, we may even know how far in the world of ordinals we need to go to
find that supremum.

13

2 Domains & Fixed Points

Definition 2.4. A function f: D — D is called continuous if it preserves suprema of directed sets: for
any directed S C D,

flsup ST = sup{f(x) | x € §}.

Note that a continuous function is also increasing. Continuous functions are of particular importance
for order theory because of the following (trivial) observation.

Lemma 2.5. With the notation of Theorem 2.3, where f: D — D is now continuous, we have that
Ifp(f) = sup sy.
neN

Proof. By Theorem 2.3, it suffices to show that sup,cn S5 is a fixed point. Put A = sup{s, | n € N}
and 0 = sup A. Then by the definitions and the continuity of f we have:

Sf(0) = f(sup A) = sup f[A]
= sup{ f(x) | x € 4}
= sup{ f(sn) | n € N}
= sup{sp+1 | n € N}
=o.]

The least o for which s, = [fp(f) is called the closure ordinal of f. So the results above show
that every increasing function in a chain-complete poset with | has a closure ordinal, and continuous
functions have closure ordinal < w.

The proofs of the theorems in this section can be found in any classical book on order theory; a good
introduction to the field is [DP02].

14

3 Formal Construction of Domain Extension

3.1 Domains and Data Types

Domains are special posets; they play a very important role in denotational semantics, as we usually
require all models of programs to be domains. There are several slightly different notions of domains,
useful in different circumstances. Here by a domain we shall mean:

Definition 3.1. A domain is a poset (D, <) with a least element (usually denoted L) such that every
directed subset of D has a supremum (in D).

Note that this does not say that the supremum of directed set X is in X (which would mean that every
directed subset has a greatest element).

Definition 3.2. For a domain D, a data-type (or simply a type) over D is a non-empty subset X of D
which is closed downwards, and closed under suprema of D-directed subsets: thatis,ifx E yandy € X
then also x € X, and if S C X is directed in D, then sup S € X. Such sets are also called ideals.(V)

Standard types found in most programming languages include the integers, the truth-values (Booleans),
characters and strings, lists and arrays, among others. In our system, as we will see later, it is very easy
to incorporate new data-types, which allows us to consider and work with such unique types as the type
of even or odd integers, or of positive integers, or of strings without 0’s; this is a great help for the
type-checking and analysis of programs.

To every d € D we associate the set d defined by

d={aeD:aCcd} (3.3)

which is evidently a data-type. As mentioned, we shall work with an extension D of D. Formally, this
means that D will contain an isomorphic copy of D; the d’s will play the role of this copy.

Definition 3.4. A type structure over D is a collection T" of data-types over D such that:
(1) deT forevery d € D;
(i1) the universal type U, the set of all elements of D, is in T (so technically U = D); and
(iii)) T contains the intersection of any non-empty family of types in 7.

Our extended domain then will be D = (T, ©) for some type structure 7', which we can choose as
convenient. In practice, we describe the data types we are interested in, and then define T to be the least
type structure containing those data types (which usually means completing 7" with all intersections, as
prescribed by (iii) in Definition 3.4).

Theorem 3.5. For any type structure 7' over a domain D, the extension D= (T,) satisfies:
@) Disa complete lattice;
(i) L = {L} is the least element of D;

(iii) forany x,y € D,x Cp y iff X E 4 ¥;

M See, for example, [DP02].

15

3 Formal Construction of Domain Extension

(iv) if S is a directed subset of D with supremum e, then S’ = {c? :d €S } is a directed subset of D
with supremum é.

Proof. We begin by showing (i), that Disa complete lattice. Let S be any non-empty subset of D.
Let U be the set of all upper bounds of S; it is not empty because the universal type U € U. By (iii)
in Definition 3.4 (of type structures), the intersection () U is a type in D. We claim this is the desired
supremum of S. This is actually obvious: it is an upper bound because for every s € S and u € U we
have s C u, implying that s C (") U. Hence the intersection () U is in U, which means that it is the least
element of U, and hence the least upper bound.

For (ii), note that every element of D is non-empty, and, being closed downwards, it therefore contains
1. So I = {1} is less than all other elements of D.

If x ©p y then obviously x T 5 y. Conversely, if x T 5 y then x € y, and thus x £ y, which proves
(iif).

Finally we prove (iv). Suppose S is directed in D. Then S’ is directed in D, for if %, y € S’ then S
contains an upper bound b for x, y, which implies X, y C b withb € §’.

Furthermore, if e is the supremum of S, then for any s € S we have s C e; thus § C ¢, giving that é
is an upper bound for S’. Finally, if 4 is an upper bound for S’, for all s € S we have that § C A, hence
s € A, implying that S € A. Because S is directed and A is closed under suprema of directed subsets
(cf. Definition 3.2 of data types), we conclude e = sup S € A, giving the required result e C A. O

The significance of this theorem is that D is indeed an extension of D that is adequate for our purposes,
in the sense that we can apply fixed point theorems to it. Property (iv) is particularly important when
we consider least fixed points, because it ensures that the structure of suprema of directed subsets is
preserved. (Note, however, that this may not be true of general supremum-possessing subsets of D.)

Usually, there are many different ways to extend a domain; for example, we may take the set of all
ideals of D. However, experience suggests that smaller extensions are easier to work with than larger
ones (and also more intuitive), and thus we usually restrict the added types to those actually needed.

On closing this section, we ask the reader to be henceforth mindful of the following

CONVENTION: Although D is not a subset of D, in statements of theorems we will usually identify D
with its isomorphic copy in D, in proofs and definitions, however, we will normally make the distinction.

3.2 Axiomatic Characterisation of the extension

On reading the introduction the reader may have formed the impression that any extension will serve our
purposes, and consequently may have been baffled by the preceding discussion. Why do we need such
a complicated construction? It is natural to think of data types as sets, but why do we need to think of
elements of our original domain as subsets of itself, as in the theorem and proof above? Furthermore,
even the first point may cause some confusion, since in the introduction (and in the examples we have
given thus far) we have treated types as abstract objects of our system, thereby stripping them of their
set-theoretic content.

The answer is that we want data types to respect the important property of extensionality: that is, types
are determined by their elements. This is generally expected of types, as we tend to think of them as sets,
but in general it may not hold in some other systems, and especially in type theory, where types are the
primary object of study.?)

In a domain extension D, we want two types with exactly the same elements of D to coincide. More-
over, we want to introduce a natural inclusion ordering on types, so that if all instances of type s are also
instances of type ¢ then s T ¢. The construction given above is particularly convenient as it addresses
both issues.

@) In fact, in type theory every object is usually assigned a unique type, which makes it impossible even to formulate extension-
ality, as the only type sharing even a single element with a given type is itself.

16

3.3 Examples

3.3 Examples

Example 3.6. Let D = {tt,£f,0,1,2,3,...}, be a flat domain with values tt (true), £f (false), and
the natural numbers. Suppose we want to extend D to D by adding data types for the Booleans, the
Naturals, and the Even and Odd integers. First, we find the isomorphic copy of D in D: this is given
by the elements of the form /i = {n, L} for natural n, together with €t = {tt, L}, ff = {£f, 1}, and
1= {L}. Next we define the new data-types:

N =1{0,1,2,3,...} U{L},
EveNn = {0,2,4,6,...} U{l},
Obp ={1,3,5,7,...} U {L},
B = {tt,ff, 1},
U = {tt,££,0,1,2,3,4,...) U{L}.

The result appears in the form of a Hasse diagram in Figure 1.3.

Example 3.7. Suppose now that D is that of Example 3.6 together with all rational numbers, and that
we want to have types for the Booleans, the Even and Odd integers, a type Q for rationals, and another
PriMaRY for primary objects, namely Booleans and natural numbers. The data-types Even, Opp, B and

the 71, tt, £f are defined as before. The new entrants are 1% = {p/q, L} for naturals p,q (¢ # 0), and

PriMARY = {tt,ff,0,1,2,3,4,...} U {L},
Q=1{0,1,2,3,...,1/2,1/3,...,5/324,... y U {l}.

But then D is not a valid extension, as it is not closed under intersections; indeed, the system lacks

PrRiMARY N Q, which happens to be the set N = {0,1,2,3,4,...} U {L}. If, however, we incorporate
the data-type N to the ones mentioned above, then D becomes a valid extension.

17

4 Function Domains

4.1 Tight Functions and Tight Extensions

Despite the fact that our system makes no distinction between objects and (primary) data types, functions
are treated as a different kind of object.(!) For the sake of simplicity, we shall only consider functions of
a single argument, as the extension to multivariate arguments is straightforward, either by generalizing
the results, or by techniques such as currying.

If D, E are domains, we write [D — E] for the set of all increasing functions from D to E. It is well
known that with the induced pointwise ordering, [D — E] is a domain.

Now we focus on the setting we study in this thesis. Let D be a domain, and let D be an extension, as
defined in Chapter 3.

Definition 4.1. A function f in [13 — ﬁ] is an extension of a function f in [D — D] if they agree on
D: more formally, foralla,b € D,

if f(a) = b then f(a) = b.
Functions in [5 — 13] that are extensions of functions in [D — D] are called conservative.

Of course, not every function in [15 — 15] is conservative. Conservative functions play an important
role in our system, as we are usually interested in extending functions in [D — D] to functions in
[D — D]. In fact, often we will be interested in the least such extensions, and accordingly we give them
a name:

Definition 4.2. A function g in [15 — 15] is called tight if:

¢ = sup g (7) = sup ¢ (7) - € x)

dex
forall x € D. (The supremum exists because Disa complete lattice.)

In other words, a tight function is the least extension of its restriction on D; in particular this means
that it is determined by its values on D. A word of caution is due here: although the notion of tightness
may sound reminiscent of that of continuity, as we will see towards the end of this chapter the two are
not equivalent.

Example. Let’s suppose our programming language can manipulate Booleans and natural numbers, and
that it has an operand + for the addition of natural numbers. Suppose further that we want to extend this
domain of values (which happens to be flat) with the types shown in in Figure 1.3. Now write Add,, (n)
for m + n (generally known as “Currying” of addition); for this example, we let m = 3. As usual, we
assume that Add3(tt) = Add3(ff) = Add3(L) = L. Now let Add} be an extension of Add3 to all of D
by setting Add (EVEN) = ODD, Add}(OpD) = EvVEN, Add5(N) = N, and Add5(U) = U. Then Add} is
a tight function: for example, indeed

Add5(EveN) = Opp = sup Add;(7),

n€EVEN

which says 3 + EvEN = OpD. The remaining checks are similar. o

() Unlike some other type systems (e.g. Haskell) where functions too are primary objects of their own types (in exactly the
same way that 3 is an object of type N, or true of type Bool), and can be passed as arguments to, or returned as values
from, other functions like any other object. For more on this, the reader is steered towards studying models of A-calculus.

18

4.1 Tight Functions and Tight Extensions
In order to understand better the claim made above that a tight function is the least extension of its
restriction on D, we make the following two definitions, which are useful in their own right:

Definition 4.3. Given a function / in [D — D], its tightening h is the function in [D — D] with

ﬁu)zamh@)zamwcﬂzdeﬂ

dex
forall x € D. (The supremum exists because Disa complete lattice.)
Theorem 4.4. For any / in [D — D],
(i) is the least function in [D — D] which agrees with 42 on D: h_(c?)= h(c?) foralld € D;
(ii) & is a tight function; and
(iii) % is tight iff A = h.

Proof. We begin with (i). First note that EN indeed agrees with 4 on D. Letd € D. Since h is increasing,
e C d implies ¢ C d and thus h(e) C h(d). Hence

sup h(@) = h (d),
sup (@) = 1 (d)
ash (d) itself contributes to the supremum; this in turn shows that h(d)= h(d) by the definition of h(d)

It is also obvious that / is the least such function in [D — D] if g is another function in [D — D]
which agrees with 4 on D, then (since g is increasing) d € x = d<x= g(d) C g(x), whence

ﬂﬂQ;gg@)=;£h@)=Mﬂ,

which concludes the proof of (i).

For (ii), / is a tight function by definition (while reading the definition, recall that h agrees with A on
D). Finally for (iii), if & is tight then & = & as h, h agree on D and the values of a tight function are
determined by its values on D. Conversely, if & = h then / is tight (being equal to a tight function). [

Definition 4.5. Given a function f in [D — D], the tight extension f of f to D is the least extension
of f; in other words, it is the function defined by

7) = sup @) = sup | 7@ e <).

ecx
forall x € D. (The supremum exists because Disa complete lattice.)

Example. This is a follow-up to the previous example. We have

Add3(EvEN) = sup Adds(n)

n€EVEN

= sup 3+ n
ne€EvVEN

=sup{1,3,5,...} = Opp.o

As the notations for the tightening and the tight-extension are the same, care must be paid to understand
what is meant: f means the tightening of f if f is a function D — D, and the tight extension of f if
f is a function D — D.

Theorem 4.6. For f in [D — D],

(i) f is a tight function;

19

4 Function Domains

(i) f is the least extension of f;
(iii) for any other extension g of f, f = g (where g is the tightening of g).

Proof. To show that f is tight, we have to show that for every x in D, F(x) = supgex f (c?). But for
every x in D we have:

f(x) = sup £(d) (by definition)

dex

= sup sup f(e) (because supecy f(e) = f(d))

dex eCd

= sup sup ﬁg)

dex eeg

= supf_(cf),

dex

as wanted.
That f is an extension of f follows from the following:

f@ = sup fle) = sup f(e) = sup {17(7):6 C a} = f(),

because f(a) is the greatest element of that set (as f is increasing). This shows, as wanted, that f (i) =

f(a).

That £ is the least extension is obvious from the definition, as f (x) must be at least as big as f (¢) for
all ¢ C x, which (as we just showed) is equivalent to fzg) C f(x) forall e € x; now take the supremum
of this over all e € x.

Finally, for any extension g of f we have:

g() = sup g (d) = sup f(d) = f (),

dex dex

by the definitions of tightening and extension. O

The theorems in this chapter are so fundamental for the sequel, that the reader is advised to memorise
them and think of them as tools of first resort: we will be using them constantly without reference.

We conclude this chapter with a remark about tight functions. A tight function is practically the least
extension to all of D of an incresing function in D; and as we saw in the introduction, section 1.5, we
are usually interested in the least extension as they are often the most intuitive extensions. Despite the
usefulness of tight extensions, however, non-tight functions play an important role, and we have to take
them into account, because eliminating them would leave us incapable of performing basic tasks:

Example. The composition of tight functions may not be tight.

Demonstration. We will give two functions on the domain D with extension D shown in Figure 1.3.
Define g, h: D — D by

1, ifn=_1, tt, ff
g(n) = 12n, ifn =0,2,4,... (ie. an even integer)
4n, ifn =1,3,5,... (i.e. an odd integer)
and
1, ifn=_1,tt, ff
h(n) = {tt, ifn=0 (mod4)
ff, ifn#0 (mod 4).

20

4.1 Tight Functions and Tight Extensions

Now consider the tight extensions of g, 4 on D; recall that

g(x) =supg(d) and h(x)= suph(d).

dex dex

We claim that (ﬁ o g) is not tight; in particular, we show that (}; o g) (N) # suppeN (l; o g) (n). Indeed,

~ o~ o~ o~ o~

and
h(EVEN) = sup h(n) = sup{i(0),1(2), h(3),...} = sup{tt, ff,t%,...} = B.

n€EVEN

Thus, (4 o §) (N) = h (g (N)) = i (Evex) = B. On the other hand, g(7) = g(n) (as g is an extension
of g; similarly for /) and thus:

sup (ﬁ o g) (i) = sup h (g (7)) = sup h(g(n)) = sup £t = tt. O
neN neN neN neN

This example also shows that there is a functional T whose least fixed point is not tight: one can take
t[Fl=hog.
Example. It is also not difficult to prove that there is a domain D and an extension D such that a con-

tinuous function f: D — D does not have any tight continuous extension in [15 — ﬁ].

U .

53 13
52 : :)]

s1 : : : : f tt

\ &
1

Figure 4.1: Domain D with extension D in the example.

xo 2y Yo £f

Demonstration. Consider the domain D and its extension D depicted in Figure 4.1. Solid lines connect
elements of D, while dotted ones represent the ordering of the extension D. [A realistic construction
of such a domain extension would be to take x; = 2i + 1, y; = 2i, and add types s; = ODD<2; 1,
tj = EVEN<pj and p = N (i > 0, j > 1); note that £f T tt and there is no Boolean type B.]

Now let the function f: D — D be defined by mapping x; — £f and y; — tt (and L, tt,ff to L).
It is easy to see that S = {s1,52,...} and T = {¢1,12,...} are both directed sets in D with the same
supremum p. Therefore, f cannot have a tight, continuous extension, as the tight extension would send
s; = f£f and t; — tt, and this would make it discontinous at S.

Given that f has both a tight extension (namely f_) and a continuous one (e.g. extend it by mapping
si ti, p, U — U), this example shows that the notions of tightness and continuity are not equivalent. [

21

4 Function Domains

Following the idea in the last sentence of the example, it is not difficult to find conditions on D forcing
every continuous f: D — D to have a continuous extension in [15 — 15] Such a condition is, for
example, that D is a down-set of D, in the terminology of [DP02], i.e. if s C© d for some s € D and
d € D,thens € D (formally: ifs C d forsome d € D, then s = & for some e € D, but we identify the
embedding of D into D as the inclusion map).

Indeed, we can then map all s € D \ D to U; this extension is obviously increasing and continuous.
(To see this, note that an element s &€ D cannot be the supremum of a directed subset of D, as that would
be directed also in D, and thus D, being a domain, would contain the supremum s.)

Note that all flat domains satisfy this condition; how this extends to functions of higher arities, however,
remains unclear.

Open Question. In [SW77], the authors claim that there are examples of domains D with extension D
and a continuous function f: D — D such that f has no continuous extension in [D — D], but the
author of the current thesis has not been able to find such an example.

Example. One may try to give a more general definition of tight extensions for functions of many argu-
ments without using Currying. For increasing f: D" — D write f for the increasing function D" — D
defined by

f(Ar Ag. . An) = sup{f(b1.ba.... by) 1 bi € Ai}. (4.7)
With this definition, the if-then-else from Definition 1.1 is the tight extension of the if-then-else on D.
When we write £ for a multiargument function £ we will usually have definition (4.7) in mind, unless

something else is stated. However, (4.7) and the tight extension of the corresponding Curried function
(i.e. the one tightly extended argument-by-argument) coincide in most cases.

Example. Let D be a domain with values tt, £f, natural numbers, and lists. Suppose that we work in
a lazy (call-by-name) language, so that terms like cons(L,nil) are not equal to L; thus D is not a flat
domain. Let D be the domain extension obtained by adjoining to D types Even, OpD, N, B, List, with
the obvious meaning. Then for the tight extension cons of cons we have:

cons(B,nil) = supm
beB
= sup {m :be IB}
{L,L::1,1::nil},
= sup {L,L::1, L::nil,tt:: L, tt::nil},
{L,L::1,L::nil, ff:: L, £f::nil}
= List.

The point here is that the only ideal in D that contains the set
={Ll, L1, L:inil, tt:: L, tt::nil, £f:: L, ff::nil}

is List. This is not the end of the matter, however: since A is an ideal itself, if one adds it to D then then
cons(B,nil) = A. In other words, cons(B,nil) is the type of all lists of Booleans of length 1. The
reasoning can be extended lists of higher lengths.

22

5 Arrow Functions

The aim of this chapter is to define a method for performing case-analysis. (Conceptually, case analysis
is a method for deriving properties about functions by distinguishing cases about their arguments. For
example, one may refine one’s knowledge that the function n + 3n + 1 is of type N — N by further
analysing cases to obtain that is also of type (EVvEN — ODD) M (ODD — EVEN); i.e. it maps even natural
numbers to odd, and odd to even.)

Before attempting this, it will be beneficial if we study the properties of the arrow operator (- — -) we
introduced informally earlier.

5.1 Arrow Operator

Definition 5.1. Given x,y € D, we define the function (x—>y): D — D to be:
(x—y) d=ef/\z.(ifz C x then y else U).

Obviously, (x — y) is increasing, so it is in [13 —]5]. As argued previously, (x — y) represents the
“function-type” of functions of type x — y, that is functions that given an argument of type x return an
argument of type y (and given an argument not of type x, return an argument of the universal type U).
We now make this precise:

Theorem 5.2. For any x, y in D and any A in [15 — 15] the following are equivalent:
D) hEpp X = »);

(ii) h(x) E y;

(i) h(z) C y whenever z C x.

Care must be given to the fact that in (i), C refers to the pointwise function ordering induced by C
on D — D. We usually follow the common mathematical practice and suppress such indices on the
understanding that no confusion will be caused to the attentive reader.

Proof. Obviously (iii) implies (ii), and conversely, (ii) implies (iii) because / is monotonic. By definition,
if h C (x — y) then for any z C x we have h(z) C (x — y)(z) = y; so (i) implies (iii). Finally, if
(iii) holds then for any z in D, ifz € x then h(z) © (x - y)(z),andifnot h(z) C (x — y)(z) = U,
showing that 7 C (x — y). So (iii) implies (i). 0

We can intuitively understand the arrow operator as a knowledge ordering. Under this interpretation,
— is increasing in its second argument, but decreasing in the first.
Theorem 5.3. For x,x’, y,y" in D,
ifx’C xand y C y/, then (x - y) C (x' — y').

Proof. For z in D, if z Z x then (x — y)(z) = U and (x’ — y')(z) = U, asalso z Z x'. If
x"Z z C x then (x — y)(z) = y and (x’ — y’)(z) = U. Finally, if z C x’ then (x — y)(z) = y and
(x" = y)(z) = y’. Inall cases, (x — y)(z) = (x’ = y’)(z), as wanted. O

Remark 5.4. In most type systems, types are domains in their own right, and thus for any two types
X, Y, the function-type [X — Y] is itself a domain, which is increasing in both X and Y. In our system,
however, the arrow operator is decreasing in x. This behavioural difference is due to the fact in our
system, a type can be a subtype of another type.

23

5 Arrow Functions

5.2 Case Analysis

Using the arrow operator, it is relatively easy to construct compound function-types. To be precise, this
is achieved by taking the (pointwise) infimum of functions (which we shall abbreviate with the symbol
“m” for finitely many functions), as the following theorem shows.

Theorem 5.5. For x,x’, y,y’,z in D, we have:
(i) Ifeitherx C yory C z,then (x —> y) N (y — z) C (x — z); and
(i) (x >)N = y)Exnx) - (yny).
Proof. For (i), we procceed by case analysis. Let f = (x — y) M (y — z). Then for any w,
e ifwC xandw C y, then f(w) = yMNzand (x — z)(w) = z;
cifwCxandw Z y, then f(w) =y nNU = yand (x - z)(w) = z;
e ifwZxandw C y,then f(w)=UNz=zand (x > z)(w) = U,;
cifwZxandw Z y,then f(w)=UNU =U and (x - z)(w) = U.

Then, the only case that f(w) C (x — z)(w) may fail is the second case, that there is some w with
w C x but w IZ y, and further y Z z. But by the assumption, if y Z z then x C y, and so no such w
exists.

For (ii), by a similar case analysis, we note that if w Z x or w Z x’ then w Z x M x" and so
((xnx") = (y N y"))(w) = U so the inequality holds. Now if w T x, x’ then w C x M x’ and

(x >)N = y)NHw) =yny =((xnx) - (ny)Hw). O

Thus M acts like intersection of functions in a types-as-sets system. On the other hand, U is very
different from set union, and in fact redundant: for any x, x’, y, y’,

(x> yu@E' —=y)=@xnx)—uy).

Indeed, if / = sup{(x —). (x’ = y)}, then f(z) = sup{(x — y)(2),(x’ = y)(2)} for z € D.
Thus, if z Z x M x’ then either z Z x or z IZ x’, so either (x — y)(z) = U or (x’ — y')(z) = U, and
f(z)=U.IfzC xMx'then f(z) =y Uy’

Special cases of compound types can be used to perform case-analysis. The idea is that we want to
perform a finer analysis of the functions of type x — y (i.e. elements “below” x — y in the pointwisely-
ordered poset of functions).

Definition 5.6. We define a case-analysis of x — y to be a function of the form
(x1=>y)N(x2 = y)N---N(xp =),
such that the type x is the set union of types x1, ..., xn.

Informally, when we treat D as a subset of 13, this means that forall y € D,
YyEx &)y CE x;;

formally, we constructed D as a subset of the powerset (D) (and identified D with the family of sets
of the form d), so the condition is to be interpreted literally. As D will in general not be a flat domain,
we leave open the possibility that some of the x; may actually represent elements of D. (Note, however,
that the case that x represents an element of D is uninteresting, as then some x; equals x.)

As an example, (EvEN — R) 1M (Opp — R) is a case analysis of N — R. This example shows that
a function and its case analysis may not be equal on D: applied to N the first one gives U, whereas the
second one R. However:

24

5.2 Case Analysis

Lemma 5.7. For a case analysis f &ef (x1 > y)n---M(xp, > y)ofx - yandany z in D,

f(@) =& —y).

Proof. Thatz isin D is an abuse of notation to say that z = d for some d € D; fix that (unique) d. There
are two cases: z C x or not. If not, then also z &€ x; for all i, and hence f(z) = U = (x — y)(z). If
z C x,thend € z C x and thus for some i, d € x;, meaning (because types are downwards-closed) that
z =d C xj, and thus (x = y)(z) = y = f(2). (The last equality is true because every (x; — y)(z) is
either U or y.) O

The relation between f in the notation of the preceding lemma and (x — y) is also more profound:
Theorem 5.8. If f is a case analysis of x — y then f = (x — y).

Proof. Recall that the tightening f of f satisfies

f(z) = supf(ci).

dez

As f(d~) =(x— y)(ci) by Lemma 5.7, we have to show that

(x > y)(z) =sup (x = y) (cZ) .

dez

Ifz C xthenforalld € z,d C x50 (x — y)(c?) = ¥, and the two sides are equal indeed. If z Z x
then there is some d € z \ x,and d € x so (x — y)(d) = U and again the two sides are equal. O

At this point, we remind that while we constructed types as sets of objects (objects being a word for
“elements of D), this is only a formal distinction, to convince ourselves that the approach we propose is
consistent, and that in fact one should think that types are (some kind of) generalized objects themselves.
From this point of view, we have the ability to add types dynamically to a (PCF-like) programming
language. In fact it is precisely this ability together with the distinction between a function and its case
analysis that allows us to use case analysis to prove properties about recursive programs (as we will see in
Chapter 7), and the inability to perform such analysis in a traditional set-based type system that inhibits
this method of proof in such systems.

25

6 Recursion over Extended Domain

Before we procceed to study proofs by case analysis, we will explore the relation between the meaning
(semantics/model) of recursive programs over D and over D. Assume t is a term (also called functional)
in our PCF-like language, and consider the recursive program

F = [F]. (6.1)

The semantics of this has already been discussed in Chapter 1. Given an interpretation!) b in the target

domain D of the function-symbols, put Yz & Ifp(tp), the least fixed point of 7. As an example, let
u[F] = An.ifn < 1thenlelsen x F(n—1).

In this example, the primitive language symbols used are the “A”, “if-then-else”, “<”, “+”, “—" and “x”,
of which all except “A” are function-symbols. If we take as our target domain (N U {tt,ff}), (i.e. N
together with truth-values flatly ordered) and interpret the function-symbols as the operations in N they
usually stand for (with the usual definition that a — b = 0 if a < b), then the least fixed point of this
recursive program is the factorial function.

Our aim in this chapter is to establish a compatibility result for the solution of recursive programs over
D and D. We fix some notation which is used in this and the following chapters: let

* D be a domain with a type extension D;
* 7 be a term (functional) of our programming language;
* b be an interpretation in D of function-symbols appearing in t;

« hbean interpretation in D extending b (i.e. for every function-symbol £, £; extends £);

* b be the interpretation in D consisting of the tight extensions of the functions interpreted by b.

Lemma 6.2. With the notational convention made above, for any g in [D — D] with extension ¢ in
[D — D],
T; [¢] is an extension of 7 [g]. (6.3)

Proof. We want to show that for any d € D,

—

5181 (d) = Bl @). (6.4)

[The outline of the proof is as follows: The term 7 [£] depends only on functional constants which are

interpreted by » and l;, and on the function g. Of these two interpretations, one is an extension of the
other, and g also extends g. Thus in the process of evaluating® T [£](d), we will only deal with subterms

of the form £ (e) and g(e), where £ ; stands for the interpretation of functional symbol £ by b. Since
f IS(é) = fﬁ) and g(é) = g:(\e/) for e € D and all functions involved (g, & and those interpreted by B)
are increasing, we conclude that the computations of 75 [g](d) and [£] (d~) are parallel in the sense that

() Recall that this means that, like in first-order logic, we assign a function f in [D" — D] to every n-ary function-symbol £
in the programming language.

26

in every step where the first computes a the second computes a, and also the second one always computes
terms of this form (i.e. elements of the embedding of D into 13).]

For the formal proof, note that was assumed to be a functional of our programming language; this
means that it is expressible in our programming language, and therefore we can use structural induction
on subterms of t[g](d) to prove the result.

To be precise, fix d € D, and incorporate to our programming language a new function-symbol g and
a new constant d, and expand interpretations b, b to interpret g as g, & and d as d, d respectively. Now
set T = 7[g](d), which is a closed term of our programming language. We prove by structural induction
on 7 that for every subterm ¢ of T,

[= (2).
where (¢), [[¢] are the meaning (interpreted under b,Z;) oftinD, D respectively.
Every subterm of t[g](d) is of the form:

* ¢, for constant ¢ — evidently the result holds for constants;

» f(t1,...,1) for n-ary function symbol f and terms ¢4, .. ., f; — as the interpretation of £ by bisan
extension of its interpretation by b, and the result holds for subterms #; (by induction), we conclude
that the result holds for this case as well;

* g(t) — by assumption, the meaning of g in D, namely g, is an extension of its meaning in D, namely
g; thus the result holds for this case as well. O

Corollary 6.5. With the notation of Lemma 6.2, if bisa tight interpretation of functions in b, we have:

—_—) ——)G (v
1;[8] = wlgl E 73l8] E 7;(8] & ;8]
Proof. (iii) and (iv) are similar to the preceding proof. We prove (i). First note that the bars mean different
things in the two sides of the equation: in the left, it means the tightening; in the right, the tight extension.
Let x be in D. Then by definition

1) = sup 73(1 (d).

Similarly, by definition,
7p[8](x) = sup 1[g](d).

dex
But by Lemma 6.2 (i.e. eq. (6.4)), the right sides of the two equations are equal, so (i) is proven. Finally,

apply (i) to the special case b = b and g = g to get 75[g] = 75[g]. Since 73[g] T 7;[g], we get (ii). [

Theorem 6.6. With the notation of Lemma 6.2, the least fixed point le; 1s an extension of the least fixed
point Yt of 1p:
Yr; (c?) = Yrp(d) forevery d € D. (6.7)

Proof. To avoid notational clashes, we will write | |;; A; to denote the least upper bound (supremum)
of ideals A; in D —recall that D is a complete lattice by Theorem 3.5, and hence this supremum exists;
we will reserve “sup” for the supremum of directed sets in A.

Since D is chain-complete (being a domain) and D is a complete lattice, [D — D] and [D — D]
are also chain-complete, and hence the least fixed points of ;, t; are given by the construction in Theo-

rem 2.3. Define the ordinal-sequences f,, f:x by recursion: fo = Ad.L, on = Ax.L, and for o > 0,

fa=wlfgl and fu=7lfp] ifa=p+1,
fo = sup fg and f; = |_| f}; if o is a limit,

B<a B<a

) We haven’t specified an evaluation strategy for our language, but this does not affect the result as long as we choose one
consistently for both D and D.

27

6 Recursion over Extended Domain

where the operation of supremum is defined pointwise. Recall that each of the sequences (fy), (f;) is
pointwise increasing (Theorem 2.3). We will prove by induction on « that

f:x is an extension of f,.

There are three cases to examine.
s Zero: fo(a?) =1= W),) fo is an extension of fy.

* Successor: Suppose that @ = 8 + 1 and that fﬁ is an extension of fg. Then

J;ﬂ+1 = rl;[f;g] is an extension of 73 [fg] = fp+1

by Lemma 6.2. Thus fa is an extension of fy.

* Limit: Finally suppose that « is a limit ordinal, and that for every § < «, fﬂ is an extension of fg.
This means that for every 8 < o and every d € D, f;g (J)= fﬂ?l’) Recall that

fald) = sup [(@) and o (d) = || 5 ().
<a B<a

and note that the inductive hypothesis yields

fo(@) = L 72 (2) = L Soc@. 68)

B<a B<a

Now fg(d) E fo(d) = f,g?l) C de) for 8 < a,ie. fm) is anupperboundof{fm):ﬂ < a},

and hence it is greater (D) than the least upper bound, which is f:x (J) by (6.8). This establishes
that

fa (@) < fuld).

Conversely, we show that f?(d) C f:,(cz); this is equivalent to showing

fald) € fu (4) 22 || f5(@).

B<a

But for every 8 < «, fg(d) € fﬂ\(c?) - fa(az) which is an ideal (being an element of D); thus
{/p(d): B < a} is a directed subset (in fact a chain) of f:,,(c?), so its supremum fo(d) is also in
f:x (cf) by Definition 3.2. This concludes the induction.

Finally, for any d € D,

(0)= L (@

a€0rd

= || fa@

o €0rd

= sup fol(d) because the increasing se-
@<Ord quence fy(d) stabilises to
a greatest element

= Yo (d).

This concludes the proof of the theorem. O

28

Remark 6.9. Generally, all functionals one encounetrs in practice are continuous (cf. Chapter 2), and
hence have closure ordinal w. In the proof we used Lemma 6.2 which assumed t to be a programming
functional, so the theorem needs to make this assumption as well. Thus, if the proof causes confusion,
it may be read to terminate at w; however we still need the limit case. However, we chose to write
the prooff this theorem holds more generally even for non-continuous functionals. (Of course, if for a
non-continuous functional the result of Lemma 6.2 holds, the conclusion of the theorem also holds.)

Corollary 6.10. With the notation of Theorem 6.6, and for types x, y in D, and 2 f are the least fixed
points of 7, 77, if f C (x — y) orf C (x — y)then f(d) € y foralld € x.

Proof. Recall that for f in [D — D]and h € [D — D], h is an extension of f iff £ C h. Since f is
an extension of £, it suffices to consider only the case for f. Letd € x. Then d € x and f (d) C y,s0

f(d) = f(d) C y. Consequently, f(d) € y. O

Corollary 6.11. With the notation of Theorem 6.6,
Yr; = Yo © Yo C Y.

Proof. This is similar to Corollary 6.5. For x € D,

Vo) = | | ¥ (d) = || Y% @) = V().

dex dex

The inequality Yz, C Yzj is proved as in Corollary 6.5, by considering the special case b = b. For the
final inequality, let f be in [ﬁ — 13] and observe that 7;[f] £ ;[f]. The result is obtained by iterating
over the ordinals the application of 73, 7; on f = Ax. L. O

29

7 Type Checking

In this chapter, our aim is to show how we can use the theory developed so far to perform basic type-
checking, and also property proving. For our purposes, to type check a program F = t[F] is to prove
an inequality of the form

Yop © (x1 — y1) M (x2 = y2) M-+ T (Xp = Yn).
The results in Chapter 6, especially Corollary 6.11, may be useful.
Example. Suppose our program is
F(n) =t[F](n) =if(n =0)thenOelse 3x F(n—1) + 1), (7.1)

and we want to show that the least fixed point (with the standard interpretations of operations on N and
the tight if-then-else defined in Chapter 1) maps even integers to even integers, and odd to odd. By
Corollary 6.11 it suffices to show that

Yt; C (EveN — Even) M (Opp — Obb),

for some suitable interpretation b (which we define below).

Now proving a property of the program is reduced to proving an assertion about least fixed points,
which is a well-studied problem.

In our particular problem, we go for brute-force direct computation. Fist we will rewrite(!) the program:

F(n) = if EQuaLs(n, 0) then 0 else AbD1(MULTBY3[F (PRED(1))]) , (7.2)
where EQuaLs(a, b) = (a = b), Apbpl(n) = (n + 1), MuLtBY3(b) = (3 x b), PRED(1) = (n — 1) (the

latter is 0 if n = 0). We rewrote the equation in this form to avoid misunderstandings.
Now consider the interpretations b and b defined by
b = ((if - then - else -); EQUALSN; ADD 1N ; MULTBY3; PREDY)

and

b= ((if - then - else -)tight; EQUALSN; ADD1N; MULTBY3 N PREDN),

where EQUALSN (&c.) stands for the standard equality (&c.) in N, EQuaLsy (&c.) stands for its tight
extension to D, and (as we defined it in the introduction)

ifttthenaelse b = a;
ifffthenaelseb = b;
if B thena elseb = a U b = sup{a, b}.

In the following we will use the more familiar =, 4, x, —, understanding them to be shorthands for
EquaLs &ec. interpreted by b. For any function F in [D — D],

t[F](EveN) = if (EvEN = 0) then O else (3 x F(EVEN—1) + 1) .

() This step is not essential and the reader may omit it without loss of understanding.

30

But EqQuALs is tight, so EQUALS(EVEN, 0) = sup,cgyen EQUALS(7,0) =
EqQuaLs(n, 0) evaluates to tt forn = 0 C Even, and ff for 0 # n C
PreD is tight, PRED(EVEN) = sup,cgvex PRED(72) = ODD, and thus

B, because the expression
EveN. Similarly, because

[F](EveN) = [if B then O else (3 x F(Opp) + 1)] =0U (3 x F(OpD) + 1). (7.3)

By similar but simpler arguments we can show that
7[F](OpD) = 3 x F(EVEN) + 1. (7.4)
In particular, (7.3), (7.4) hold when F is Yr;, which is given by

F = sup t®[constantly],
a€0rd

where constantly | is the constantly L (“constantly undefined”) function; this equation is an instance of
Theorem 2.3 for the functional .®) Thus we may compute the values of F(EVEN), F(Opp) for F = Yr;
by successive approximations, i.e. by successively applying the map

A OU[3-B +1]
(B)'_)([3-4+1])

beginning with (L, L). We get:

(L, L)y Ou@EL+1); 3L+1)) = (0; 1)
HOU@BL+1); B3x0+4+1)) =(0;1)
HOU@Bx14+1); 3x04+1)) =(0u4; 1) = (Even; 1)
> OU@Bx14+1); 3xEvEN+1) = (0 U 4; Opp) = (EvEN, ODD),

and we are done (the process stabilises at this point: (EvVEN, OpD) — (EVEN, ODD)).

Another approach to obtain the result would be to show that (EvEN — EveN) M (Opp — ODD) is a
prefixed point of 7;; as Yr; = Ifp(t;) is the least prefixed point, this implies the result.

Let g is the function (EvEN — EVEN) M (Opbbp — OpD). We want to show the inequality 7;(8) E g.
The calculations now are even more straightforward:

7;,(g)(EveN) = if (Even = 0) then O else 3 x g(Even — 1) + 1
= if B then 0 else 3 x g(OpD) + 1
=0U (3 xg(ODD) + 1)
=0U (B3 x(UnNObp) + 1)
=0U (B3 xO0pD+ 1)
=0U (Opp + 1)
= 0 U EvVEN

= EVEN,

and similarly for 7;(¢)(ODD).

@) As aside comment, we remark that almost all functionals arising in practice are continuous as they are defined using monotonic
functions, so we need only consider the ordinals o < w.

31

8 Case Analysis of Recursive Programs

The methods described in the previous chapter fail to produce results when some sort of analysis by cases
is required. As a very simple example, consider the functional

t[F] = An.if (n = 0) thenn else 0 .

Then the solution f to the program F = t[F] over D is the constantly zero function; but we cannot prove
for its fixed point f in D that f © (N — 0)()); indeed, while (N — 0)(N) = 0, with the interpretation
of “=""as EQuALs from the previous chapter one has

F(N) =7[f](N) = [if (N = 0) then N else 0] = [if B then N else 0] = [N LI 0] =

In this chapter we show how we can exploit the fact that types can be added at will to perform a
satisfactory case analysis of such programs. Suppose that we add a new type N for positive integers to
our domain D. Then (with the strict interpretation of equality), (N4 = 0) is ££, and hence

20— 0)n(Ny — 0).

Since the right side is a case analysis of (N — 0), by Theorem 5.8 we obtain

f=7C®N-o0.

and from this we conclude that f applied to every integer is 0.

Let us recapitulate: we wanted to show that a certain recursive program F = t[F] satisfies a simple
property (IT) which is equivalent to showing that (for a suitable interpretation b in our target domain D
with extension b in D) the least fixed point f of 7; satisfies f C (a — b) for some types a, b; and it
may sometimes happen that this is not the case, although the program does indeed satisfy property (IT).
This is a general problem, whose true extent does not appear in this simplistic example (although, as in
the example above, it is genenrally the value of f'(a) that breaks the proof; one might try to circumvent
this by adding more types to the system: sometimes this solves the problem, and sometimes not).

The solution suggested above is simple: split the proof into cases, i.e. prove instead that f C g for
a suitable case-analysis g of (a — b); that way we avoid difficulties about f(a). Now there are in
principle many ways to prove this inequality; one that was hinted in the last chapter (chapter 7) is to
prove that g is a prefixed point of 7;. The advantage of this method is that one does not need to compute

Yrp,, or in fact know anything about it.
Theorem 8.1. With the notation of Lemma 6.2, if g is any element of [ﬁ — 13],
7;[g] E ¢ implies Yz C g.

Proof. Define the sequence fq as in the proof of Theorem 6.6. For every ordinal o we shall show for the
tight extension fy of f, that f, = g. The base of the induction (¢« = 0) is trivial. Now assume that it
holds for . Then:

fuCg= fu=fuC
= 15[fa] C 7;[3]
= tlfal T g by assumption
= 5lfd] Cg by Corollary 6.5
= far1C g by definition of fy 4.

() For convenience, we shall write 0 instead of the —technically correct— 0, and shall do likewise for other elements of D, keeping
only distinct notations for functions on D and their extensions on D: the latter’s names will usually have “hats” (*).

32

The limit case is immediate. Thus we’ve proven that f, = g for all ordinals «.
Using this, we will show that Yz, C g (remember that Yt;, = supy fu, the supremum being taken over
all ordinals). Indeed, for every x in D we have:

Yo (x) = sup Yep(d)

dex

= supm

dex

= Sup sup fa (d) because supy fy(d) stabilises

dex

= sup sup fa(d)

dex
= sup fo(x)

C sup g(x) by induction above
o

= g(x). O

Example. We shall now illustrate the importance of this theorem. Suppose that our programming lan-
guage supports both primitive (truth-values, natural numbers, the empty list, and the empty tree) and also
two kinds of composite objects: binary trees and strings.?)

Suppose, further, that it has six specialised operators to work with these composite objects: left (),
right(r), atom?(¢), grow(p,t,t’), list(a), and s1*s,. These stand (in order) for the left subtree of ¢,
the right subtree of 7, a check if ¢ is an atom (i.e. single-node tree or, equivalently, single-object string),
the construction of a new tree with primitive object p as root and ¢ [resp. '] as left [resp. right] subtree,
the construction of a list consisting of object a, and the concatenation of strings s1, 52.

Now consider the recursive program

F(t) = ifatom?(¢) then ¢ else [F(left(z))* F(right(?))]

It should be easy to verify that F flattens a tree into a string. Let D be obtained by adjoining to D the
types TREE and STRING and let the operations mentioned above be extended tightly.®) The property we
would like to prove is that the least fixed point of this program, call it f', lies below (TREE — STRING).
But this is not true:

f (TREE) = if B then TREE else [/ (TReE)* f (TREE)] = TREE U [f (TREE)* f (TREE)] 2 TREE, @

and certainly TREE [Z STRING. .
Even if we add two more types, AToM and NONATOM, below TREE, we still fail to prove that f° T
= (AtoM — STRING) M (NONATOM — STRING), for this would imply that f (AToM) T STRING
and f (NoNATOM) T STRING; but simple calculations give f (Atom) = ArtoMm and f (NoNATOM) =
f (TREE)* f (TREE), and as we saw above, f (TREE) [Z STRING.
If, however, we use Theorem 8.1, then g = (TREE — STRING) and we have to show that
7;[TREE — STRING] £ (ATOM — STRING) M (NONATOM —> STRING).

This is true, since

Tj[Tree — StrinG] (1) = if atom?(u) then U else (TRe: — STRING) (Left(14))*(TreE — STRING) (right(u4))

@ Strings are plain lists of primitive objects. Although every string can be represented by a binary tree every node of which has
empty left subtree, we only identify single-object strings with single-node trees, which we call atoms. (The Lisp program-
ming language is relevant, in that it represents both strings and trees as /ists. In Lisp, lists can be nested: we leave open the
possibility that our language may be Lisp-like, and strings and trees are special instances of lists as well.)

®) Of the statements below, those that do not hold for the tight extension will not hold for any other extension as well.

@1t is interesting to examine what is the least solution to @ = TREE Ul (a*a). The answer seems to be TREE.

33

8 Case Analysis of Recursive Programs

and thus

7 [TREE — STRING|(ATOM) = ATOM C STRING
7 [TREE — STRING](NONATOM) = (TREE — STRING)(left(NONATOM))*(TREE — STRING)(right(NONATOM))

= (TREE — STRING)(TREE)*(TREE — STRING)(TREE)
= STRING*STRING

= STRING.
Example (McCarthy’s 91-function). We will now study McCarthy’s famous 91-function:
F(n) = t[F](n) = if (n < 100) then F(F(n + 11)) else (n — 10) . (8.2)
Let D be the the domain in Figure 8.1, b be the standard interpretation of the function-symbols in 7 and b

the associated interpretation of tight extensions. Put f° = ¥z;. It is not difficult (but takes some thought)
to prove that f(n) = 91 for n < 100. Here we prove the more modest result that f & (N — Nxg¢1).

B N<i00 N>100 N>o1

'100'

=N

Figure 8.1: Domain D with extension D. Solid lines show the ordering of elements of D, and dotted
ones the object-type relations and type inclusions in the extension D.

We use the case analysis g def (N<100 = Nx>91) M (N>100 = Nx9;1) of (N — Nxg;). By Theo-
rem 8.1, it suffices to show that 7;[g] € g.

To prove this, it suffices to show that 75[g] T (N<jo0 — N>91) and 73[g] T (N>190 — N>o91).
Both are easy. By Theorem 5.2, we have:

75[8]1(N>100) = if (N>100 < 100) then g(g(Nx100 + 11)) else (N>190 — 10)
= if £f then --- else (N>190 — 10)
= Nx1090 — 10
— {91,92,93,...} = Naoy.

7;[8]1(N<100) = if (N<100 =< 100) then g(g(N<100 + 11)) else (N<190 — 10)
= if tt then g(g(NSl()o 4+ 11)) else ---
= g(g(N<100 + 11))
= g(g(N))
= §(N>91)
= Nzgl.

34

Note that N<1go + 11 = suppeN_ oo 7 + 11 = sup{m | m < 111} = N; this is because we don’t have
a type N<j11 in our system; even if we did, however, the result would still be the same, as N<;j1; C N
and thus g(NSlll) = Nzgl.

There seems to be no (practical) way to prove that f C N<100 = N<o; (for a suitably defined type
N<o;). Part of the problem with trying to prove this statement is that to compute with N<j9o we also
need N 100, and there the statement is false. A possible workaround is to add, for every pair m < n of

non-negative integers, a data-type [m,n] = {m,m + 1,...,n} U {L}. Then one can actually prove this
statement by directly translating the normal mathematical proof into our type system (and in fact, one
only needs to add data-types [0, 1], [2, 12], ..., [68, 78], [79, 89], [90, 100]; for every x in the k-th interval

from the right, k is the least number such that x + 11k > 100). However this is highly inefficient, as it
requires us to compute the values of all tight extensions used on these new data-types.

Another recursive equation that cannot be typed in our system is Collatz’s Conjecture.

35

9 A Take on Negation Types

In this chapter we make an attempt to define a notion of negation for data-types. We will then demonstrate
a few properties of our definition.

Definition 9.1. Let D be a domain and x be an ideal of D; we define the core of the negation of x to be

the set

(—x)° ¥ ep:dnx=1) 9.2)

For simplicity, we will use the notation —x for (—x)°.

This definition says that d is in the core of the negation of x if and only if the only member of x below
d is L. Conceptually, when we interpret the domain’s ordering C as an information ordering, the core of
the negation of x is the set of elements that are information-independent from x.

As we will see, the core of the negation satisfies some intuitive properties one may expect of negation.
Before we venture into that direction, however, we must first prove that it is an ideal if this concept is
going to be of any value to us, as we have defined data-types to be ideals. As it happens, this is not always
the case:

Example. The core of the negation of an ideal x may not be an ideal.

T .

"
|

a by
AN K
Figure 9.1: A domain with an ideal whose core of the negation is not an ideal. (The dotted line represents
an infinite chain b; C b C b3 C --- with supremum T)
Demonstration. Let the domain D be as shown in Figure 9.1, and let x be the ideal {_L,a} in D. Then
—x ={L}U{b1, by, b3,...}
is not an ideal (the supremum of the directed set {b; | i € N} is not in —x). O

The core of the negation, however, is an ideal under some conditions:

Definition 9.3. A chain-complete poset D is said to have determinate infinite chains if for every infinite
chain C of D and every a € D it holds that

aCsupC & (AceC)(@Cc),
that is, every element below (and not equal to) sup C is below (or equal to) some element of C.

Lemma 9.4. Let D be a domain and x an ideal of D; then —x is downward-closed. Furthermore, if —x
1s countable and D has determinate infinite chains, then —x is an ideal.

36

Proof. 1f di C dp and dp € —x, then 0,72 Nx=1; consequently also a71 Nx=1,as cil C a72.

Now assume that D has determinate infinite chains. We prove that —x is an ideal; by the previous part,
it remains to show that —x contains the suprema of its D-directed subsets. Suppose that 4 is a D-directed
subset of —x, and put s = sup A.

If A has a greatest element, that element is s, hence s € —x.

Thus suppose that A does not have a greatest element. As —x is countable, so is 4, and thus one may
enumerate its elements as a1, az, as, Now we construct an increasing sequence () of elements of
A with the same supremum as A. We do this recursively. Put b; = a;, and forn > 1, let b, be an
element of A greater than by, a,; to avoid arbitrary choises, we define

bn+1 = ay, for the least k such that b,,, a, T a; — at least one such k exists as A is directed.

It is plain to see that the set of values of (b;) is infinite (because A doesn’t have a greatest element).

Claim. sup; b; = sup; a;.
Thatsup; b; C sup; a; istrivial. Conversely, since a, C b, 41 forevery n, we deduce sup; a; C sup; b;.

Now we conclude the proof that s € —x. Pick d € § N x; in other words, d C s and d € x. Note
that d # s as s ¢ x (as then all b, would be in x as well). Thus d C s. Because D has determinate
infinite chains and (b)) is one with supremum s, we deduce that d T b, for some n, and consequently
d e 15,1 Nx.Buth, € A C —x,s0d € 15,, Nx implies d = L. As d was arbitrary, this means s N x = 1,
and s € —x. O]

Remark 9.5. Note that all we needed is that D has determinate infinite chains, and that for every directed
subset A of D without a greatest element there is a chain with supremum sup A.
The most important application of this lemma is the following special case:

Theorem 9.6. If D is a countable domain with determinate infinite chains, then for every ideal x its core
of the negation (—x)° is also an ideal.

The next question one has to ask is whether this notion satisfies any of the familiar properties of nega-
tion. It turns out that it does not satisfy the double negation law — but it shouldn’t be supposed to, by
the Curry-Howard Isomorphism.

Example. The core of the negation does not satisfy the double negation law.

b

c a

\/

1

Figure 9.2: A domain and an ideal whose double negation is not itself.

Demonstration. Let D be the domain shown in Figure 9.2, and x be the ideal { L, a}. Then —x = {L, ¢},
——x = {L1,a,b}. Obviously x # ——x; note however that x C ——x. O

Lemma 9.7. For every ideal x of D, x € ——x.

Proof. Letd € x. We show that dn (—=x) = L; equivalently, we show that ifa C d and a € (—x)
thena = L. Indeed, leta = d be suchthata N x = L. As x isan ideal and d € x, alsoa € x, or
equivalently, @ C x. This means thata = L. O

However, as predicted again by the Curry-Howard isomorphism, the core of the negation does satisfy
the triple negation law.

37

9 A Take on Negation Types

Theorem 9.8. For any ideal x of D,

—mm)Y =).,

Proof. We already have that —x C ———x. We show the reverse inclusion. Let d be in ———ux; this
means that d N (——x) = L. Asx € ——x (Lemma 9.7), a fortiori we getd Nx = L. Thusd € —x. [

Example. In terms of the domain in Figure 1.3, EvEN = N N (=Obb)°. Similarly, if one allows data-
types for lists of even and odd length, one has EVENLIST = LisT N (—ODDLIST)®. Sometimes, the core of
the negation fails to give any meaningful information: e.g. the core of the negation of the data-type L is
again L, but one shouldn’t expect to be able to define a “defined elements” data-type, as that is generally
uncomputable.

38

Bibliography

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2nd edition, 2002.

[PWF12] A. Pitts, G. Winskel, and M. Fiore. Lecture Notes on Denotational Semantics for the Computer
Science Tripos, Part II, 2012. https://www.cl.cam.ac.uk/teaching/1112/DenotSem/
dens-notes-bw.pdf, Accessed: 2024, November 2.

[SW77] Adi Shamir and William W. Wadge. Data types as objects. In Arto Salomaa and Magnus
Steinby, editors, Automata, Languages and Programming, pages 465-479, Berlin, Heidel-
berg, 1977. Springer Berlin Heidelberg.

[Ten91] Robert Tennent. Semantics of programming languages. Prentice Hall International Series in
Computer Science. Prentice Hall, 1991.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages, An Introduction. MIT
Press, January 1993.

39

https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf
https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf

	Introduction
	About this Thesis
	Generally about Semantics
	PCF: A model language
	Denotational Semantics of First-order Languages: A Brief Study
	About the suggested approach

	Domains & Fixed Points
	Posets and Fixed points

	Formal Construction of Domain Extension
	Domains and Data Types
	Axiomatic Characterisation of the extension
	Examples

	Function Domains
	Tight Functions and Tight Extensions

	Arrow Functions
	Arrow Operator
	Case Analysis

	Recursion over Extended Domain
	Type Checking
	Case Analysis of Recursive Programs
	A Take on Negation Types
	Bibliography

