
Data-types as Objects Revisited

Insights and Proofs

Vaios-Rafail Michalakis

Reg. Num.: 7115142200013

Examination committee:

William Wadge, Emeritus Professor of Computer

Science, University of Victoria, Canada.

Angelos Charalambidis (co-supervisor), Assistant

Professor at the Department of Informatics and

Telematics, Harokopio University, Greece.

Dr. Nikolaos Rigas, ALMA Graduate Program and

Associate lecturer, Department of Information

Technology, The American College of Greece.

Supervisor:

Panos Rondogiannis, Professor,

Department of Informatics &

Telecommunications,

University of Athens.

Contents

1 Introduction 5

1.1 About this Thesis . 5

1.2 Generally about Semantics . 5

1.3 PCF: Amodel language . 6

1.4 Denotational Semantics of First-order Languages: A Brief Study 7

1.5 About the suggested approach . 9

2 Domains & Fixed Points 13

2.1 Posets and Fixed points . 13

3 Formal Construction of Domain Extension 15

3.1 Domains and Data Types . 15

3.2 Axiomatic Characterisation of the extension . 16

3.3 Examples . 17

4 Function Domains 18

4.1 Tight Functions and Tight Extensions . 18

5 Arrow Functions 23

5.1 Arrow Operator . 23

5.2 Case Analysis . 24

6 Recursion over Extended Domain 26

7 Type Checking 30

8 Case Analysis of Recursive Programs 32

9 ATake on Negation Types 36

Bibliography 39

3

Abstract

English version

This thesis is concerned with an approach to giving the semantics of data-types in simple functional

programming languages. Thematerial is a thoroughly rewritten version of [SW77] completed with proofs

and insights, which were largely absent in the original paper. The approach of [SW77] has been influential

in several subsequent works and has been the basis for the development of the so-called ideal-model for

recursive polymorphic types. The main idea of the aforementioned paper is to treat data-types as objects

of the programming language; to do this, the authors developed a formal system in which substantial

computation with data-types can be performed, including the recursive definition of data-types or their

application to functions: in view of the Curry-Howard Isomorphism, this is to say that one can actually use

computation with data-types to prove properties of programs. The resulting model allows the existence

of subtypes and supertypes, as well as of logically qualified types and a limited form of dependent type

families, notions which are much harder to define in traditional type systems. In the thesis we explore

the formal definitions of the notions involved and present (with complete proofs) their basic properties,

both at an abstract level, as well as at that of applications in type-checking real-world programs. To

supplement the reader’s understanding of the latter, scattered among the collection of theorems and the

described techniques are a few illuminating examples, showing the flexibility and power of the theory

under consideration.

Greek version

Η παρούσα διατριβή ασχολείται με μια προσέγγιση για την απόδοση της σημασιολογίας των τύπων

δεδομένων σε απλές γλώσσες συναρτησιακού προγραμματισμού. Η περιεχόμενη ύλη είναι μια λεπτομερώς

επαναδιατυπωμένη έκδοση του [SW77] που συμπληρώνεται με αποδείξεις και ιδέες, οι οποίες απουσίαζαν

σε μεγάλο βαθμό από την αρχική εργασία. Η προσέγγιση του [SW77] έχει επηρεάσει αρκετές μεταγενέστερες

εργασίες και αποτέλεσε τη βάση για την ανάπτυξη του λεγόμενου μοντέλου ιδεωδών για αναδρομικούς

πολυμορφικούς τύπους. Η κύρια ιδέα της προαναφερθείσας δημοσίευσης είναι να αντιμετωπίζονται οι

τύποι δεδομένων ως αντικείμενα της γλώσσας προγραμματισμού — για να γίνει αυτό, οι συγγραφείς

ανέπτυξαν ένα τυπικό σύστημα στο οποίο μπορούν να γίνουν ουσιαστικοί υπολογισμοί με τύπους δεδομένων,

συμπεριλαμβανομένου του αναδρομικού ορισμού των τύπων δεδομένων ή της εφαρμογής τους σε συναρτήσεις:

υπό το πρίσμα του ισομορφισμού Curry-Howard, αυτό σημαίνει ότι μπορεί κανείς να χρησιμοποιήσει

στην πραγματικότητα τον υπολογισμό με τύπους δεδομένων για να αποδείξει ιδιότητες των προγραμμάτων.

Το μοντέλο που προκύπτει επιτρέπει την ύπαρξη υποτύπων και υπερτύπων, καθώς και λογικώς προσδιορισμένων

τύπων και μιας περιορισμένης μορφής οικογενειών εξαρτημένων τύπων, έννοιες που είναι πολύ δυσκολότερο

να οριστούν στα παραδοσιακά συστήματα τύπων. Στη διατριβή διερευνούμε τους τυπικούς ορισμούς

των σχετικών εννοιών και παρουσιάζουμε (με πλήρεις αποδείξεις) τις βασικές ιδιότητές τους, τόσο σε

αφηρημένο επίπεδο, όσο και σε αυτό των εφαρμογών στον έλεγχο τύπου πραγματικών προγραμμάτων.

Προς καλύτερη κατανόηση του τελευταίου από τον αναγνώστη, ανάμεσα στη συλλογή των θεωρημάτων

και των περιγραφόμενων τεχνικών υπάρχουν διάσπαρτα μερικά διαφωτιστικά παραδείγματα, που δείχνουν

την ευελιξία και τη δύναμη της θεωρίας που εξετάζεται.

4

1 Introduction

1.1 About this Thesis

The material found here is a thoroughly rewritten version of [SW77], which will be our main reference.

That paper is about a novel approach to give satisfactory denotational semantics to data-types such as

found in several functional programming languages; it develops a short, new theory about what data-

types do, or at least should, represent in a programming language’s intended semantic domain. In fact,

it goes further than that and actually constructs a formal system that allows one to perform meaningful

computation with data-types, as though they were values (hence its name “Data Types as Objects”): in

view of the Curry-Howard Isomorphism, this is to say that one can actually use computation with data-

types to prove properties of programs. These insights come with a small but relatively comprehensive

selection of theorems that can be used in several interesting examples, of which some we explore in the

text.

Unfortunately, the original version, [SW77], was incomplete as it lacked the proofs to the theorems and

the demonstrations of several different examples it mentioned. Thus, our main ambition here is to fill that

gap and provide a more complete version of this theory by streamlining the presentation, by proving the

theorems, correcting a few along the way and inserting a couple of our own, by filling the demonstrations

of the important examples mentioned in the text, and by finding a few illuminating examples of our own.

That is not to say that the (necessarily introductory) version of the theory we present here is anywhere

near complete: to the contrary, we have reasons to believe that it can be developed much further, and that

in fact when that is done, the resulting theory can find recognition as an efficient and ingenious alternative

to the semantics of data-types, although our humble overview here will not be sufficient for that.

1.2 Generally about Semantics

Semantics is the study ofmeaning; in Computer Science, meaning of programs. There are different direc-

tions such a study can take: the one we are interested in in the context of this thesis is called denotational

semantics; other possibilities include axiomatic semantics and operational semantics. To be brief, deno-

tational semantics is to Programming LanguageTheory what ModelTheory is to First Order Logic in that

it tries to give the meaning of a program in the form of a model. Similarly (and using the same analogy

between programming languages and First Order Logic) axiomatic semantics seems to be the equivalent

of Proof Theory.

As an example, suppose we are given the following recursive program in a simple functional program-

ming language:

F.n/ � if .n D 0/ then 1 else n � F.n � 1/ :

It shouldn’t be difficult to see that its intended meaning is the factorial function; however, to give a

complete, formal description of the meaning of such recursive programs we must specify two things: (a)

what kind of objects the program needs to manipulate in order to make sense, and (b) what is the meaning

of the program when it lives in the world of objects prescribed in (a). In our example, the “world” of

the recursive program above is the set of natural numbers augmented with the two truth-values tt (true)
and ff (false) –this is because we need to be able to make the comparison n D 0– and when interpreted

in it, the recursive program does indeed model the factorial function. Actually, in order to be able to

model non-termination, it is traditional to add a symbol ? to this semantic domain ordered below all

other elements; this is understood to represent a state of non-knowledge. (Try to understand it thus: after

a computation has terminated we know its exact value; however, before it finishes, we don’t know what

5

1 Introduction

is the value of the result, and moreover, we generally don’t even know if the computation will terminate

at all! We use ? to model ongoing computations; an inequality like ? < 0 is the way to say that if a

computation finishes with value 0, one may “update” one’s state of knowledge, and “lift” the value ?

formerly used to represent that computation to the actual value 0.)

The study of semantics is of course too deep a subject to be treated here to any satisfactory degree; two

excellent books on the subject are [Win93] and [Ten91]. Another very good account is given in [PWF12]

(this is an online resource, and no guarantee can be given that it will continue to be accessible in the

future.)

1.3 PCF: Amodel language

PCF stands for “Programming Computable Functions”; it is an ideal programming language developed

as a framework for conducting research into typed functional programming languages. It is relatively

minimalistic, and can be considered as an extended, Turing-complete version of typed �-calulus, or as a

simplified version of real-world typed functional programming languages.

In this thesis, wewill workwith a version of PCF allowing only first-order functions. Let us explain the

term. A functional programming language usually has a few useful types built-in: these usually include

integers, Booleans, and sometimes structures (which are called “products” in academic parlance). A

function that only operates on those primitive, built-in types is said to be of the first order, otherwise

it is of higher order; for example, higher-order functions may accept other functions as arguments, or

return functions as values. A programming language that allows the definition of functions of higher-

order is called a higher-order language, otherwise it is a first-order language; examples of higher-order

languages include almost all known functional programming languages, including Lisp, Haskell, ML.

(This terminology is not universally accepted.)

It appears that there is a profound reason why we restrict our attention to first-order languages: whereas

in higher-order languages functions are no different from any other value, with types assuming the task of

distinguishing between values of different nature, in this thesis our aim is to bring types to the same level

as values, do computation with them &c., and thus it seems to us that functions must be a different kind

of object. It would be a very interesting question to examine whether there is a way to treat data-types as

objects in a higher-order language.

The discrepancy between the two kinds of languages is very evident in the case of denotational se-

mantics. While programs in first-order languages have relatively simple models, to give a model of a

program in a higher-order language, genuinely advanced mathematical tools and techniques are required.

Although we will not discuss such languages here, we mention that the model of such a higher-order

program is best understood in the language of CategoryTheory. The mathematical background necessary

for venturing into that direction receives a fairly good treatment in [Ten91], and a presentation with most

of the advanced mathematics streamlined into the text can be found in [Win93, Chapter 11].

To describe the programming language we will write the examples in (inspired by the language REC

in [Win93, Chapter 9]), we will give the Backus Naur Form (BNF) of its syntax; in doing so, we will

avoid going into details as the point is to develop a generally applicable method, not one tailored to a

single language. Another point we shall leave intentionally vague is the evaluation strategy: we do not

constrain ourselves to the exclusive study of a call-by-value or a call-by-name language.

Nothing is lost by thinking of our programming language as the functional fragment of Python or C

(that is, a language with the same syntax as Python/C, but disallowing all imperative constructs such

as: goto, for/while loops, (re-)assignments of variables, &c., and the higher-order function features in

the case of Python), and therefore the confident reader may omit the rest of this section without loss of

understanding.

Let Types be the set of types the programming language supports; for our purposes, it is generally

sufficient that Types D fB; Z; Listg, where B is the type of Booleans, Z the type of integers, and List
the type of lists (which can be nested). The vocabulary of the language contains the constants tt, ff,
0, 1, and nil, the function-symbols C, �, �, &, _, D, Cons, toghether with a countably infinite family

6

1.4 Denotational Semantics of First-order Languages: A Brief Study

.x�;n/n2N of variables of type � for � 2 Types, and, for every k 2 N and ˛ 2 Typesk , a countably

infinite family .f
˛;�

n /n2N of � -valued function variables with arguments of types ˛.

The Backus Naur Form of the language is as follows:

t : :� B j N j L

B : :� tt j ff j B&B j B _ B j :B j

B D B j L D L j N D N j N < N j N > N j

if B then B else B j xB;n j F ˛;B.t˛1
; t˛2

; : : : ; t˛j˛j
/

N : :� 0 j 1 j N C N j N � N j N � N j if B then N else N j

xN;n j F ˛;N.t˛1
; t˛2

; : : : ; t˛j˛j
/

L : :� nil j Cons.t; L/ j if B then L else L j F ˛;List.t˛1
; t˛2

; : : : ; t˛j˛j
/

F ˛;� : :� f ˛;�
n .t˛1

; t˛2
; : : : ; t˛j˛j

/ j �t˛1
:�t˛2

: : : : :�t˛j˛j
:t� .� 2 Types/;

where t� is B; N; L according to whether � is B, N, or List, respectively, and t˛i
is B; N; L according

to whether ˛i is B, N, or List, respectively. Informally, this says that a term t is either a Boolean (B), or

a Number (N), or a List (L), and that Booleans, Numbers, and Lists are expressions that give the correct

type. Note that F ˛;� is a generic expression for an j˛j-ary � -valued function with arguments of types ˛.

At times, wemay choose to work with subsets of the language we just described, ignoring, for example,

lists and working only with Booleans and numbers.

1.4 Denotational Semantics of First-order Languages: A Brief Study

In this section we discuss the traditional approach to the semantics of first-order languages by way of

example. The reader may benefit from a broad familiarity with fixed-point theorems (the relevant back-

ground material we need later in this thesis can be found in Chapter 2).

Suppose we are given the following simple program for the factorial function:

F.n/ � if .n D 0/ then 1 else n � F.n � 1/ :

The construction of a model for a program bears some analogies to that of a theory in first-order logic.

We begin by choosing the semantic domain D; this is the ground set of values that the programming

language (and consequently the program) are supposed to manipulate. The semantic domain must be one

of a special kind of posets called domains; the precise definition of domains varies among authors, but

in general it is sufficient to work with !-cpos: posets with a least element such that every increasing

!-sequence has a supremum. (In subsequent chapters of this thesis we will work with a different notion,

Definition 3.1, which is stronger.)

Next we must interpret function-symbols and constants: an interpretation of the function-symbols

is, like in first-order logic, an assignment of an increasing (partial) function f W Dn * D to every n-

ary function-symbol f in the vocabulary; and similarly for constants. These two steps together are the

analogues of choosing a structure in logic; however, in denotational semantics it is important that we

interpret function-symbols as increasing functions. The poset of increasing functions from D to itself,

pointwise ordered, is denoted by ŒD ! D�.

Finally, we construct an increasing function Dn * D that models the given program.

In our paticular example, we want the domain D to contain the truth-values and the integers. Its Hasse

diagram is depicted in Figure 1.1. Notice that it is a flat domain: x v y iff x D y or x D ?.

Then interpret the function-symbols as the functions they usually stand for: e.g. _ is logical “or”, and

C is addition of natural numbers; the former only applies to Booleans, and the latter only to numbers.

Hence the function-symbols are generally interpreted as partial-functions. This is actually a technicality,

as we can lift the interpretations to total functions by declaring their undefined values to be ?. These

partial functions must still be increasing (if f has arity n, dom.f/ � Dn is ordered pointwise). This

means that, e.g. since ? v ff, we must have ? _ tt v ff _ tt D tt; hence the value of ? _ tt must

7

1 Introduction

?

tt ff � � � �1 0 1 2 3 4 5 � � �

Figure 1.1: The semantic domain for the factorial function.

be either ? or tt. [And under different circumstances, it may make sense to define it as either value. It

could be tt in a lazy language (which only evaluates its arguments if it needs them) or it could be ? in

an eager language (note that in C, “or” is a short-circuiting operator – not a function: it doesn’t evaluate

the second argument if the first one is tt).]
The reason we are interested in increasing functions is because the ordering of D is supposed to be an

information ordering, i.e., x v y is intended to mean that y is a more defined object than x. This should

be obvious for flat domains, as the only non-trivial order relation is between? (standing for an undefined,

or as yet unknown, value) and other objects.

After deciding on the semantic domain and the interpretation of language symbols, we identify the

thing whose least fixed point we are looking for: a functional. A functional is a function-taking, function-

returning function: formally, a functional is a function

� W ŒD ! D� ! ŒD ! D�:

One is naturally interested in increasing functionals. Furthermore, practically all functionals arising from

recursive programs are continuous (Chapter 2), as can be proven by structural induction on � , which

means we can compute their fixed points using Lemma 2.5. We are interested in the least fixed point of

functionals, i.e. the least solutions to recursive programs, as they are the ones with the least arbitrary

information. As an example, for the recursive program under consideration, the two functions

f1.n/ D

(
nŠ if n � 0;

? if n < 0I
and f2.n/ D

(
nŠ if n � 0;

0 if n < 0

are solutions, but the latter makes arbitrary choises about the value of the solution at n < 0 (it cannot be

“proved” that the function takes these values at n < 0).

The functional used in the recursive definition of the factorial is

�ŒF � ´ �n:if .n D 0/ then 1 else n � F.n � 1/ :

We want to show that the least fixed point of � is a partial function Z * Z defined at all non-negative

integers. Beginning with �, the nowhere defined function (constantly ?) which is in ŒD ! D�, we

successively evaluate the iterated applications of � on �: one computes

�1Œ��.x/ D

(
1 if x D 0;

? otherwise;

�2Œ��.x/ D

8̂<̂
:

1 if x D 0;

1 if x D 1;

? otherwise;

:::

�nŒ��.x/ D

(
xŠ if 0 � x < n;

? otherwise;

:::

8

1.5 About the suggested approach

with least fixed point the limit �! Œ��, which is a function with the desired property. All in all, we have

shown that there is a function from the non-negative integers to the non-negative integers that is a fixed

point of � . Furthermore, it is the least fixed point of � .

1.5 About the suggested approach

In type systems that follow the tradition of typed �-calculus there is a number of ground types from

which composite ones can be built using type formation operators: function-types can be built using the

! operator, product-types (pairs) using �, and union-types using C. Furthermore, every object in such

types systems is assigned a unique type. Thus, for example, integers are not generally instances of real

(floating point) numbers, and lists tend to be homogenous types (all their elements must be of the same

type; in particular, they cannot be nested). Although this characteristic makes the theory mathematically

robust, it is apparently also recognized as a limitation, or at least constraint, as ways to make such systems

more flexible have been devised.

Some of these languages that stick closely to typed �-calculus (e.g. Haskell) use insteadAlgebraic Data

Types (ADT) and type inference to achieve the effects of polymorphism and creation of “heterogenous”

data types (e.g. while tree-like structures can be simply represented as nested lists, in Haskell they have

to be defined by custom-made data types; similarly the identity function id or the addition function +
have type inferred from the context). Furthermore, for data types for which there is a conceivable notion

of type “inheritance” (such as integers and floating-point numbers or lists and trees), specific type-casting

functions are provided by the language or must be written by the programmer.

Other languages (e.g. Lisp) allow subtypes and supertypes (see fig. 1.2), and cast values of one type

into values of supertypes using type coercion. This allows seemingly inhomogenous data-types such as

nested lists, and type polymorphism. Technically, however, they are not inhomogenous, as all lists are

considered lists of type t (t being the universal type in Common Lisp) and all function have type t ! t.

Figure 1.2: Types supported by Common Lisp. Source: https://sellout.github.io/media/
CL-type-hierarchy.png, retrieved 30 Nov. 2024.

9

https://sellout.github.io/media/CL-type-hierarchy.png
https://sellout.github.io/media/CL-type-hierarchy.png

1 Introduction

But even in languages that support super- and subtype relations, types themselves cannot be combined

using the language’s operations, and thus many intuitively natural and desirable computations such as

EVEN C ODD D ODD

cannot be expressed, or inferred, in a traditional type system.

Our approach is to incorporate the data-types into the domain of values/objects. An element in the

resulting domain will serve two roles:

(i) it is a data-type on which functions can be defined, including of course functions that are the least

fixed points of recursive programs;

(ii) it is the type of all object approximating it: in our system, the assertions x v y, “x is of type y”,

and “any object of type x is also of type y” are equivalent.

Thus the ordering relation v in the extended domain will at the same time be a subtype inclusion

relation, and an object-type instance relation.

For example, if the semantic domain of a programming language is as in Figure 1.1 and we want to

add types for Booleans, Natural numbers, and Even and Odd integers, then we obtain the domain in

Figure 1.3. Note that there is a universal type U .

In our system the types-as-objects perspective has its dual objects-as-types. Thus, not only is a data-

type an object, but every object is a data-type. For example, if one defines a data-type PRIME for prime

numbers, one then has

EVEN u PRIME D Q2;

which says that the greatest lower bound (intersection) of even and prime numbers is the data-type Q2 in

the objects-as-types interpretation; here, the data-type Q2 is the type whose only elements are 2 and ?.

Monotonic functions in the original domain D can be extended to monotonic functions in the extended

domain OD. We are very interested in the least extension, which we call the tight extension. The properties

of tight extensions and related notions can be found in Chapter 4; they are going to be of constant use in

the sequel.

?

tt ff 0 1 2 3 4 5 � � �

B EVEN ODD

N

U

Figure 1.3: Domain D with extension OD. Solid lines show the ordering of elements of D, and dotted

ones the object-type relations and type inclusions in the extension OD.

The simplest useful domain extension OD is that depicted in Figure 1.3. In it many useful equations

hold:
EVEN C 2 D EVEN

ODD C ODD D EVEN;

10

1.5 About the suggested approach

when the functions C, D are interpreted tightly.

Things are a bit more complicated if list objects and a type for lists are allowed. If we have a type List
and a corresponding constructor cons (usually abbreviated by W W, or by simply writing the list constructed

by cons), then we may choose to add to the domain extension OD also all values that can arise from

applying cons to types such as B or N. Thus, we may opt to also add types cons.B; cons.B; nil// �

ŒB; B� and cons.B; cons.N; cons.3; nil/// � ŒB; N; 3�.(1) As all the built-in functions of our language

are interpreted as increasing functions in OD, we have

Œtt; ?� v ŒB; B�; and Œff; 4; 3� v Œff;EVEN; 3� v ŒB; N; 3�:

Perhaps the most important function in a programming language is the conditional if-then-else; we

have a special definition for it in our system:

Definition 1.1. For b v B and elements x; y of the domain extension of D, we define:

if b then x else y D

8̂̂̂̂
<̂
ˆ̂̂:

? if b D ?I

x; if b D ttI

y; if b D ffI

x t y if b D B;

where x t y stands for the lowest upper bound (supremum) of x; y. When we formalise the notion of

extensions later, we will have to write Q?; ett; eff instead of ?; tt; ff. This definition of if-then-else is

practically the tight extension to OD of the if-then-else on the original domain D.

As an example,

if B then 3 else EVEN D N:

It turns out that even function-types can be encoded by certain functions defined on the extended do-

main OD. If .x ! y/ is the function defined on OD by

�z:if .z v x/ then y else U;

then .x ! y/maps objects below type x to type y, and other objects to typeU . As discussed in Chapter 5,

a monotonic function f is below .x ! y/ in the domain Œ OD ! OD� of monotonic functions from OD to

itself if it maps objects of type x to objects of type y; i.e. if it is a function of “type” x ! y.

We will use this arrow function to perform case analysis in Chapter 5, which we will apply later in

Chapter 8 to deduce properties of the least fixed points of recursive programs.

Finally, although we will not examine these topics in this thesis, we discuss two more properties of the

types-as-objects approach that we think deserve some attention.

The first is that in a types-as-objects system there is a uniform way to handle recursive definitions of

types and objects. This works even for functions that use both (standard) values and types: for example

the recursive definition

S.x; n/ � if .n � 0/ then nil else x W W S.x; n � 1/ (1.2)

(where W W is list construction), defines the function S such that S.x; n/ is a list of n x’s (if n � 0 it is the

empty list nil). Then, over an appropriate domain and with the tight extensions of the functions involved,

S.B; 3/ is the type of lists of Booleans of length 3, S.U; 3/ is the type of lists of any elements of length

3, and S.0;EVEN/ is the type of strings of 0’s of any even length. In particular, this example shows that

it is possible to define at least some dependent type families.

(1) We don’t have to, but if we don’t then the tight extension of certain functions would return non-meaningful information; e.g.

if we don’t add type ŒB; B� then the computation cons.B; cons.B; fnil// would evaluate to the universal type U .

11

1 Introduction

The second interesting possibility is that error messages can be added to the domain D, and they may

be organized so as to give meaningful information about the error that occurred. For example, the new

objects DomainError, DivisionByZero can be introduced for situations like 3 C tt or 4=0 respec-

tively. More error messages can be introduced: candidates include the general error, as well as the
more specialised OutOfRange, NotInteger, IndexError; furthermore, they may be given an elaborate

structure to reflect the logical connections between the errors they represent: e.g. IndexError can be

above OutOfRange and NotInteger, and NotInteger could also be below DomainError.
These error messages do not represent data-types, but rather objects of the domain D; however, since

we intend to use a non-flat domain OD, their presence will not be at odds with the rest of the semantic

domain OD.

12

2 Domains & Fixed Points

2.1 Posets and Fixed points

In this thesis, we shall use the mathematically familiar terms supremum and infimum for the least upper

bound (“lub”) and greatest lower bound (“glb”) respectively.

Definition 2.1. Given a poset .D; v/, and a subset S , we say that

• S is a directed subset of D if every pair of elements of S has an upper bound in S : that is, for

every pair of elements a; b 2 S , there is c 2 S such that a v c and b v c.

• D is a directed-complete poset if every directed subset of D has a supremum in D: that is, for

every directed S � D, there is e 2 D such that e D supS ;

• D is a chain-complete poset if every chain (totally ordered subset) has a supremum in D;

• D is a complete lattice if every subset of D has a supremum in D;

Note that every directed-complete poset is chain-complete as well, and that every complete lattice has

a greatest and a least element, given by the supremum of the whole set and the empty set respectively.

Another very important fact about complete lattices is that every subset of a complete lattice has an

infimum; this is seen by taking the supremum of all lower bounds of the given set.

Of particular interest for semantics are fixed points of functions on posets. An element x 2 D; is called

a prefixed point of f W D ! D if f .x/ v x, and a fixed point of f if f .x/ D x.

In the following we will confine ourselves to the study of increasing (also called order-preserving)

functions f W D ! D and partial functions f W D * D: those that satisfy x v y) f .x/ v f .y/ for

all x; y 2 D. It is easy to show that if x is the least prefixed point of an increasing function f , then it is

a fixed point. By far, the most important theorem about fixed points is:

Theorem 2.2 (Knaster-Tarski). Given a complete lattice .D; v/ and an increasing function f W D ! D,

the fixed points of f form a complete lattice; moreover, for every a 2 D, the least fixed point b of f

above a is

b D minfx 2 D j a v x and f .x/ v xgI

that is, b is the least prefixed point of f above a. This least fixed point is denoted by lfpa.f /. If D has a

least element, we write lfp.f / for the least fixed point of f .

Interestingly, there is a constructive and equally useful version of this theorem under weaker hypotheses:

Theorem 2.3 (Constructive Knaster-Tarski). If D is a chain-complete poset with a least element ? and

f W D ! D is increasing, then f has a least fixed point, and in fact lfp.f / D sup˛2Ord s˛, where s0 D ?

and for ˛ > 0,

s˛ D sup
ˇ<˛

f .sˇ / D

(
f .s
 /; if ˛ D
 C 1 is a successorI

sup
<˛ s
 ; if ˛ is a limit.

Here Ord stands for the class of ordinal numbers. Note that the ordinal-sequence sWOrd ! D is well-

defined, and is easily seen to be increasing. Since there are more ordinals than any set has elements, it

follows that the sequence .s˛/˛2Ord is eventually constant, and hence the supremum exists.

Under more assumptions on f , we may even know how far in the world of ordinals we need to go to

find that supremum.

13

2 Domains & Fixed Points

Definition 2.4. A function f W D ! D is called continuous if it preserves suprema of directed sets: for

any directed S � D,

f ŒsupS� D supff .x/ j x 2 Sg:

Note that a continuous function is also increasing. Continuous functions are of particular importance

for order theory because of the following (trivial) observation.

Lemma 2.5. With the notation of Theorem 2.3, where f W D ! D is now continuous, we have that

lfp.f / D sup
n2N

sn:

Proof. By Theorem 2.3, it suffices to show that supn2N sn is a fixed point. Put A D supfsn j n 2 Ng

and � D supA. Then by the definitions and the continuity of f we have:

f .�/ D f .supA/ D supf ŒA�

D supff .x/ j x 2 Ag

D supff .sn/ j n 2 Ng

D supfsnC1 j n 2 Ng

D �:

The least ˛ for which s˛ D lfp.f / is called the closure ordinal of f . So the results above show

that every increasing function in a chain-complete poset with ? has a closure ordinal, and continuous

functions have closure ordinal � !.

The proofs of the theorems in this section can be found in any classical book on order theory; a good

introduction to the field is [DP02].

14

3 Formal Construction of Domain Extension

3.1 Domains and Data Types

Domains are special posets; they play a very important role in denotational semantics, as we usually

require all models of programs to be domains. There are several slightly different notions of domains,

useful in different circumstances. Here by a domain we shall mean:

Definition 3.1. A domain is a poset .D; �/ with a least element (usually denoted ?) such that every

directed subset of D has a supremum (in D).

Note that this does not say that the supremum of directed set X is in X (which would mean that every

directed subset has a greatest element).

Definition 3.2. For a domain D, a data-type (or simply a type) over D is a non-empty subset X of D

which is closed downwards, and closed under suprema ofD-directed subsets: that is, if x v y and y 2 X

then also x 2 X , and if S � X is directed in D, then supS 2 X . Such sets are also called ideals.(1)

Standard types found inmost programming languages include the integers, the truth-values (Booleans),

characters and strings, lists and arrays, among others. In our system, as we will see later, it is very easy

to incorporate new data-types, which allows us to consider and work with such unique types as the type

of even or odd integers, or of positive integers, or of strings without 0’s; this is a great help for the

type-checking and analysis of programs.

To every d 2 D we associate the set Qd defined by

Qd D fa 2 DW a v dg; (3.3)

which is evidently a data-type. As mentioned, we shall work with an extension OD of D. Formally, this

means that OD will contain an isomorphic copy of D; the Qd ’s will play the role of this copy.

Definition 3.4. A type structure over D is a collection T of data-types over D such that:

(i) Qd 2 T for every d 2 D;

(ii) the universal type U , the set of all elements of D, is in T (so technically U D D); and

(iii) T contains the intersection of any non-empty family of types in T .

Our extended domain then will be OD D .T; �/ for some type structure T , which we can choose as

convenient. In practice, we describe the data types we are interested in, and then define T to be the least

type structure containing those data types (which usually means completing T with all intersections, as

prescribed by (iii) in Definition 3.4).

Theorem 3.5. For any type structure T over a domain D, the extension OD D .T; �/ satisfies:

(i) OD is a complete lattice;

(ii) Q? D f?g is the least element of OD;

(iii) for any x; y 2 D, x vD y iff Qx v OD
Qy;

(1) See, for example, [DP02].

15

3 Formal Construction of Domain Extension

(iv) if S is a directed subset of D with supremum e, then S 0 D

n
Qd W d 2 S

o
is a directed subset of OD

with supremum Qe.

Proof. We begin by showing (i), that OD is a complete lattice. Let S be any non-empty subset of OD.

Let U be the set of all upper bounds of S ; it is not empty because the universal type U 2 U. By (iii)

in Definition 3.4 (of type structures), the intersection
T

U is a type in OD. We claim this is the desired

supremum of S . This is actually obvious: it is an upper bound because for every s 2 S and u 2 U we

have s � u, implying that s �
T

U. Hence the intersection
T

U is in U, which means that it is the least

element of U, and hence the least upper bound.

For (ii), note that every element of OD is non-empty, and, being closed downwards, it therefore contains

?. So Q? D f?g is less than all other elements of OD.

If x vD y then obviously Qx v OD
Qy. Conversely, if Qx v OD

Qy then x 2 Qy, and thus x v y, which proves

(iii).

Finally we prove (iv). Suppose S is directed in D. Then S 0 is directed in OD, for if Qx; Qy 2 S 0 then S

contains an upper bound b for x; y, which implies Qx; Qy � Qb with Qb 2 S 0.

Furthermore, if e is the supremum of S , then for any s 2 S we have s v e; thus Qs � Qe, giving that Qe

is an upper bound for S 0. Finally, if A is an upper bound for S 0, for all s 2 S we have that Qs � A, hence

s 2 A, implying that S � A. Because S is directed and A is closed under suprema of directed subsets

(cf. Definition 3.2 of data types), we conclude e D supS 2 A, giving the required result Qe � A.

The significance of this theorem is that OD is indeed an extension of D that is adequate for our purposes,

in the sense that we can apply fixed point theorems to it. Property (iv) is particularly important when

we consider least fixed points, because it ensures that the structure of suprema of directed subsets is

preserved. (Note, however, that this may not be true of general supremum-possessing subsets of D.)

Usually, there are many different ways to extend a domain; for example, we may take the set of all

ideals of D. However, experience suggests that smaller extensions are easier to work with than larger

ones (and also more intuitive), and thus we usually restrict the added types to those actually needed.

On closing this section, we ask the reader to be henceforth mindful of the following

CONVENTION: Although D is not a subset of OD, in statements of theorems we will usually identify D

with its isomorphic copy in OD; in proofs and definitions, however, we will normally make the distinction.

3.2 Axiomatic Characterisation of the extension

On reading the introduction the reader may have formed the impression that any extension will serve our

purposes, and consequently may have been baffled by the preceding discussion. Why do we need such

a complicated construction? It is natural to think of data types as sets, but why do we need to think of

elements of our original domain as subsets of itself, as in the theorem and proof above? Furthermore,

even the first point may cause some confusion, since in the introduction (and in the examples we have

given thus far) we have treated types as abstract objects of our system, thereby stripping them of their

set-theoretic content.

The answer is that we want data types to respect the important property of extensionality: that is, types

are determined by their elements. This is generally expected of types, as we tend to think of them as sets,

but in general it may not hold in some other systems, and especially in type theory, where types are the

primary object of study.(2)

In a domain extension OD, we want two types with exactly the same elements of D to coincide. More-

over, we want to introduce a natural inclusion ordering on types, so that if all instances of type s are also

instances of type t then s v t . The construction given above is particularly convenient as it addresses

both issues.

(2) In fact, in type theory every object is usually assigned a unique type, which makes it impossible even to formulate extension-

ality, as the only type sharing even a single element with a given type is itself.

16

3.3 Examples

3.3 Examples

Example 3.6. Let D D ftt; ff; 0; 1; 2; 3; : : : g? be a flat domain with values tt (true), ff (false), and

the natural numbers. Suppose we want to extend D to OD by adding data types for the Booleans, the

Naturals, and the Even and Odd integers. First, we find the isomorphic copy of D in OD: this is given

by the elements of the form Qn D fn; ?g for natural n, together with ett D ftt; ?g, eff D fff; ?g, ande? D f?g. Next we define the new data-types:

N D f0; 1; 2; 3; : : : g [f?g;

EVEN D f0; 2; 4; 6; : : : g [f?g;

ODD D f1; 3; 5; 7; : : : g [f?g;

B D ftt; ff; ?g;

U D ftt; ff; 0; 1; 2; 3; 4; : : : g [f?g:

The result appears in the form of a Hasse diagram in Figure 1.3.

Example 3.7. Suppose now that D is that of Example 3.6 together with all rational numbers, and that

we want to have types for the Booleans, the Even and Odd integers, a type Q for rationals, and another

PRIMARY for primary objects, namely Booleans and natural numbers. The data-types EVEN;ODD; B and

the Qn, ett, eff are defined as before. The new entrants are ep=q D fp=q; ?g for naturals p; q (q ¤ 0), and

PRIMARY D ftt; ff; 0; 1; 2; 3; 4; : : : g [f?g;

Q D f0; 1; 2; 3; : : : ; 1=2; 1=3; : : : ; 5=324; : : : g [f?g:

But then OD is not a valid extension, as it is not closed under intersections; indeed, the system lacks

PRIMARY \ Q, which happens to be the set N D f0; 1; 2; 3; 4; : : : g [f?g. If, however, we incorporate

the data-type N to the ones mentioned above, then OD becomes a valid extension.

17

4 Function Domains

4.1 Tight Functions and Tight Extensions

Despite the fact that our system makes no distinction between objects and (primary) data types, functions

are treated as a different kind of object.(1) For the sake of simplicity, we shall only consider functions of

a single argument, as the extension to multivariate arguments is straightforward, either by generalizing

the results, or by techniques such as currying.

If D; E are domains, we write ŒD ! E� for the set of all increasing functions from D to E. It is well

known that with the induced pointwise ordering, ŒD ! E� is a domain.

Now we focus on the setting we study in this thesis. Let D be a domain, and let OD be an extension, as

defined in Chapter 3.

Definition 4.1. A function Of in Œ OD ! OD� is an extension of a function f in ŒD ! D� if they agree on

D: more formally, for all a; b 2 D,

if f .a/ D b then Of . Qa/ D Qb:

Functions in Œ OD ! OD� that are extensions of functions in ŒD ! D� are called conservative.

Of course, not every function in Œ OD ! OD� is conservative. Conservative functions play an important

role in our system, as we are usually interested in extending functions in ŒD ! D� to functions in

Œ OD ! OD�. In fact, often we will be interested in the least such extensions, and accordingly we give them

a name:

Definition 4.2. A function g in Œ OD ! OD� is called tight if:

g.x/ D sup
d2x

g
�

Qd
�

D sup
n
g

�
Qd
�

W d 2 x
o

for all x 2 OD. (The supremum exists because OD is a complete lattice.)

In other words, a tight function is the least extension of its restriction on D; in particular this means

that it is determined by its values on D. A word of caution is due here: although the notion of tightness

may sound reminiscent of that of continuity, as we will see towards the end of this chapter the two are

not equivalent.

Example. Let’s suppose our programming language can manipulate Booleans and natural numbers, and

that it has an operand + for the addition of natural numbers. Suppose further that we want to extend this

domain of values (which happens to be flat) with the types shown in in Figure 1.3. Now write Addm.n/

for m C n (generally known as “Currying” of addition); for this example, we let m D 3. As usual, we

assume that Add3.tt/ D Add3.ff/ D Add3.?/ D ?. Now let Add0
3 be an extension of Add3 to all of OD

by setting Add0
3.EVEN/ D ODD, Add0

3.ODD/ D EVEN, Add0
3.N/ D N, and Add0

3.U / D U . Then Add0
3 is

a tight function: for example, indeed

Add0
3.EVEN/ D ODD D sup

n2EVEN

Add0
3. Qn/;

which says 3 C EVEN D ODD. The remaining checks are similar. ˘

(1) Unlike some other type systems (e.g. Haskell) where functions too are primary objects of their own types (in exactly the

same way that 3 is an object of type N, or true of type Bool), and can be passed as arguments to, or returned as values

from, other functions like any other object. For more on this, the reader is steered towards studying models of �-calculus.

18

4.1 Tight Functions and Tight Extensions

In order to understand better the claim made above that a tight function is the least extension of its

restriction on D, we make the following two definitions, which are useful in their own right:

Definition 4.3. Given a function h in Œ OD ! OD�, its tightening Nh is the function in Œ OD ! OD� with

Nh.x/ D sup
d2x

h
�

Qd
�

D sup
n
h

�
Qd
�

W d 2 x
o

for all x 2 OD. (The supremum exists because OD is a complete lattice.)

Theorem 4.4. For any h in Œ OD ! OD�,

(i) Nh is the least function in Œ OD ! OD� which agrees with h on D: Nh. Qd/ D h. Qd/ for all d 2 D;

(ii) Nh is a tight function; and

(iii) h is tight iff Nh D h.

Proof. We begin with (i). First note that Nh indeed agrees with h on D. Let d 2 D. Since h is increasing,

e v d implies Qe � Qd and thus h. Qe/ � h. Qd/. Hence

sup
evd

h. Qe/ D h
�

Qd
�

;

as h. Qd/ itself contributes to the supremum; this in turn shows that h. Qd/ D Nh. Qd/ by the definition of Nh. Qd/.

It is also obvious that Nh is the least such function in Œ OD ! OD�: if g is another function in Œ OD ! OD�

which agrees with h on D, then (since g is increasing) d 2 x) Qd � x) g. Qd/ � g.x/, whence

g.x/ � sup
d2x

g
�

Qd
�

D sup
d2x

h
�

Qd
�

D Nh.x/;

which concludes the proof of (i).

For (ii), Nh is a tight function by definition (while reading the definition, recall that Nh agrees with h on

D). Finally for (iii), if h is tight then h D Nh as h; Nh agree on D and the values of a tight function are

determined by its values on D. Conversely, if Nh D h then h is tight (being equal to a tight function).

Definition 4.5. Given a function f in ŒD ! D�, the tight extension Nf of f to OD is the least extension

of f ; in other words, it is the function defined by

Nf .x/ D sup
e2x

ef .e/ D sup
n ef .e/ W e 2 x

o
:

for all x 2 OD. (The supremum exists because OD is a complete lattice.)

Example. This is a follow-up to the previous example. We have

Add3.EVEN/ D sup
n2EVEN

BAdd3.n/

D sup
n2EVEN

B3 C n

D sup
˚
Q1; Q3; Q5; : : :

	
D ODD:˘

As the notations for the tightening and the tight-extension are the same, care must be paid to understand

what is meant: Nf means the tightening of f if f is a function OD ! OD, and the tight extension of f if

f is a function D ! D.

Theorem 4.6. For f in ŒD ! D�,

(i) Nf is a tight function;

19

4 Function Domains

(ii) Nf is the least extension of f ;

(iii) for any other extension g of f , Nf D Ng (where Ng is the tightening of g).

Proof. To show that Nf is tight, we have to show that for every x in OD, Nf .x/ D supd2x
Nf . Qd/. But for

every x in OD we have:

Nf .x/ D sup
d2x

Af .d/ (by definition)

D sup
d2x

sup
evd

ef .e/ (because supevd
ef .e/ D Af .d/)

D sup
d2x

sup

e2 Qd

ef .e/

D sup
d2x

Nf
�

Qd
�

;

as wanted.

That Nf is an extension of f follows from the following:

Nf . Qa/ D sup
e2Qa

ef .e/ D sup
eva

ef .e/ D sup
n ef .e/W e v a

o
D ef .a/;

because f .a/ is the greatest element of that set (as f is increasing). This shows, as wanted, that Nf . Qa/ D

ef .a/.

That f is the least extension is obvious from the definition, as Nf .x/ must be at least as big as Nf . Qe/ for

all Qe � x, which (as we just showed) is equivalent to ef .e/ v Nf .x/ for all e 2 x; now take the supremum

of this over all e 2 x.

Finally, for any extension g of f we have:

Ng.x/ D sup
d2x

g
�

Qd
�

D sup
d2x

Af .d/ D Nf .x/;

by the definitions of tightening and extension.

The theorems in this chapter are so fundamental for the sequel, that the reader is advised to memorise

them and think of them as tools of first resort: we will be using them constantly without reference.

We conclude this chapter with a remark about tight functions. A tight function is practically the least

extension to all of OD of an incresing function in D; and as we saw in the introduction, section 1.5, we

are usually interested in the least extension as they are often the most intuitive extensions. Despite the

usefulness of tight extensions, however, non-tight functions play an important role, and we have to take

them into account, because eliminating them would leave us incapable of performing basic tasks:

Example. The composition of tight functions may not be tight.

Demonstration. We will give two functions on the domain D with extension OD shown in Figure 1.3.

Define g; hW D ! D by

g.n/ D

8̂<̂
:

?; if n D ?; tt; ff
2n; if n D 0; 2; 4; : : : (i.e. an even integer)

4n; if n D 1; 3; 5; : : : (i.e. an odd integer)

and

h.n/ D

8̂<̂
:

?; if n D ?; tt; ff
tt; if n � 0 .mod 4/

ff; if n 6� 0 .mod 4/:

20

4.1 Tight Functions and Tight Extensions

Now consider the tight extensions of g; h on OD; recall that

Ng.x/ D sup
d2x

eg.d/ and Nh.x/ D sup
d2x

eh.d/:

We claim that
�

Nh B Ng
�
is not tight; in particular, we show that

�
Nh B Ng

�
.N/ ¤ supn2N

�
Nh B Ng

�
. Qn/. Indeed,

Ng.N/ D sup
n2N

eg.n/ D sup
˚
Q0; Q4; Q4; Q8; e12; e12; : : :

	
D EVEN;

and
Nh.EVEN/ D sup

n2EVEN

eh.n/ D supfeh.0/; eh.2/; eh.4/; : : : g D supf ett; eff; ett; : : : g D B:

Thus,
�

Nh B Ng
�

.N/ D Nh . Ng .N// D Nh .EVEN/ D B. On the other hand, Ng. Qn/ D eg.n/ (as Ng is an extension

of g; similarly for h) and thus:

sup
n2N

�
Nh B Ng

�
. Qn/ D sup

n2N

Nh . Ng . Qn// D sup
n2N

Bh.g.n// D sup
n2N

ett D ett:

This example also shows that there is a functional � whose least fixed point is not tight: one can take

�ŒF � D h ı g.

Example. It is also not difficult to prove that there is a domain D and an extension OD such that a con-

tinuous function f W D ! D does not have any tight continuous extension in Œ OD ! OD�.

?

tt

ffx0 x1 x2 x3 � � �

s1

s2

s3

…

y0y1y2y3� � �

t1

t2

t3

…

p

U

Figure 4.1: Domain D with extension OD in the example.

Demonstration. Consider the domain D and its extension OD depicted in Figure 4.1. Solid lines connect

elements of D, while dotted ones represent the ordering of the extension OD. [A realistic construction

of such a domain extension would be to take xi D 2i C 1, yi D 2i , and add types sj D ODD�2j C1,

tj D EVEN�2j and p D N (i � 0; j � 1); note that ff v tt and there is no Boolean type B.]

Now let the function f W D ! D be defined by mapping xi 7! ff and yi 7! tt (and ?; tt; ff to ?).

It is easy to see that S D fs1; s2; : : : g and T D ft1; t2; : : : g are both directed sets in OD with the same

supremum p. Therefore, f cannot have a tight, continuous extension, as the tight extension would send

si 7! ff and ti 7! tt, and this would make it discontinous at S .

Given that f has both a tight extension (namely Nf) and a continuous one (e.g. extend it by mapping

si ; ti ; p; U 7! U), this example shows that the notions of tightness and continuity are not equivalent.

21

4 Function Domains

Following the idea in the last sentence of the example, it is not difficult to find conditions on OD forcing

every continuous f W D ! D to have a continuous extension in Œ OD ! OD�. Such a condition is, for

example, that D is a down-set of OD, in the terminology of [DP02], i.e. if s v d for some s 2 OD and

d 2 D, then s 2 D (formally: if s � Qd for some d 2 D, then s D Qe for some e 2 D, but we identify the

embedding of D into OD as the inclusion map).

Indeed, we can then map all s 2 OD n D to U ; this extension is obviously increasing and continuous.

(To see this, note that an element s 62 D cannot be the supremum of a directed subset of D, as that would

be directed also in D, and thus D, being a domain, would contain the supremum s.)

Note that all flat domains satisfy this condition; how this extends to functions of higher arities, however,

remains unclear.

Open Question. In [SW77], the authors claim that there are examples of domains D with extension OD

and a continuous function f W D ! D such that f has no continuous extension in Œ OD ! OD�, but the

author of the current thesis has not been able to find such an example.

Example. One may try to give a more general definition of tight extensions for functions of many argu-

ments without using Currying. For increasing f W Dn ! D write Nf for the increasing function ODn ! OD

defined by

Nf .A1; A2; : : : ; An/ D supfHf .b1; b2; : : : ; bn/ W bi 2 Aig: (4.7)

With this definition, the if-then-else from Definition 1.1 is the tight extension of the if-then-else on D.

When we write Nf for a multiargument function f we will usually have definition (4.7) in mind, unless

something else is stated. However, (4.7) and the tight extension of the corresponding Curried function

(i.e. the one tightly extended argument-by-argument) coincide in most cases.

Example. Let D be a domain with values tt; ff, natural numbers, and lists. Suppose that we work in

a lazy (call-by-name) language, so that terms like cons.?; nil/ are not equal to ?; thus D is not a flat

domain. Let OD be the domain extension obtained by adjoining to D types EVEN;ODD; N; B; List, with
the obvious meaning. Then for the tight extension cons of cons we have:

cons.B; enil/ D sup
b2B

Fcons.b; nil/

D sup
nFcons.b; nil/ W b 2 B

o
D sup

8<: f?; ? W W ?; ? W W nilg;

f?; ? W W ?; ? W W nil; tt W W ?; tt W W nilg;

f?; ? W W ?; ? W W nil; ff W W ?; ff W W nilg

9=;
D List:

The point here is that the only ideal in OD that contains the set

A D f?; ? W W ?; ? W W nil; tt W W ?; tt W W nil; ff W W ?; ff W W nilg

is List. This is not the end of the matter, however: since A is an ideal itself, if one adds it to OD then then

cons.B; enil/ D A. In other words, cons.B; enil/ is the type of all lists of Booleans of length 1. The

reasoning can be extended lists of higher lengths.

22

5 Arrow Functions

The aim of this chapter is to define a method for performing case-analysis. (Conceptually, case analysis

is a method for deriving properties about functions by distinguishing cases about their arguments. For

example, one may refine one’s knowledge that the function n 7! 3n C 1 is of type N ! N by further

analysing cases to obtain that is also of type .EVEN ! ODD/ u .ODD ! EVEN/; i.e. it maps even natural

numbers to odd, and odd to even.)

Before attempting this, it will be beneficial if we study the properties of the arrow operator .� ! �/ we

introduced informally earlier.

5.1 Arrow Operator

Definition 5.1. Given x; y 2 OD, we define the function .x ! y/ W OD ! OD to be:

.x ! y/
def
D �z:.if z v x then y else U /:

Obviously, .x ! y/ is increasing, so it is in Œ OD ! OD�. As argued previously, .x ! y/ represents the

“function-type” of functions of type x ! y, that is functions that given an argument of type x return an

argument of type y (and given an argument not of type x, return an argument of the universal type U).

We now make this precise:

Theorem 5.2. For any x; y in OD and any h in Œ OD ! OD� the following are equivalent:

(i) h v
Œ OD! OD�

.x ! y/;

(ii) h.x/ v y;

(iii) h.z/ v y whenever z v x.

Care must be given to the fact that in (i), v refers to the pointwise function ordering induced by v

on OD ! OD. We usually follow the common mathematical practice and suppress such indices on the

understanding that no confusion will be caused to the attentive reader.

Proof. Obviously (iii) implies (ii), and conversely, (ii) implies (iii) because h is monotonic. By definition,

if h v .x ! y/ then for any z v x we have h.z/ v .x ! y/.z/ D y; so (i) implies (iii). Finally, if

(iii) holds then for any z in OD, if z v x then h.z/ v .x ! y/.z/, and if not h.z/ v .x ! y/.z/ D U ,

showing that h v .x ! y/. So (iii) implies (i).

We can intuitively understand the arrow operator as a knowledge ordering. Under this interpretation,

! is increasing in its second argument, but decreasing in the first.

Theorem 5.3. For x; x0; y; y0 in OD,

if x0 v x and y v y0, then .x ! y/ v .x0 ! y0/.

Proof. For z in OD, if z 6v x then .x ! y/.z/ D U and .x0 ! y0/.z/ D U , as also z 6v x0. If

x0 6v z v x then .x ! y/.z/ D y and .x0 ! y0/.z/ D U . Finally, if z v x0 then .x ! y/.z/ D y and

.x0 ! y0/.z/ D y0. In all cases, .x ! y/.z/ v .x0 ! y0/.z/, as wanted.

Remark 5.4. In most type systems, types are domains in their own right, and thus for any two types

X; Y , the function-type ŒX ! Y � is itself a domain, which is increasing in both X and Y . In our system,

however, the arrow operator is decreasing in x. This behavioural difference is due to the fact in our

system, a type can be a subtype of another type.

23

5 Arrow Functions

5.2 Case Analysis

Using the arrow operator, it is relatively easy to construct compound function-types. To be precise, this

is achieved by taking the (pointwise) infimum of functions (which we shall abbreviate with the symbol

“u” for finitely many functions), as the following theorem shows.

Theorem 5.5. For x; x0; y; y0; z in OD, we have:

(i) If either x v y or y v z, then .x ! y/ u .y ! z/ v .x ! z/; and

(ii) .x ! y/ u .x0 ! y0/ v .x u x0/ ! .y u y0/.

Proof. For (i), we procceed by case analysis. Let f D .x ! y/ u .y ! z/. Then for any w,

• if w v x and w v y, then f .w/ D y u z and .x ! z/.w/ D z;

• if w v x and w 6v y, then f .w/ D y u U D y and .x ! z/.w/ D z;

• if w 6v x and w v y, then f .w/ D U u z D z and .x ! z/.w/ D U ;

• if w 6v x and w 6v y, then f .w/ D U u U D U and .x ! z/.w/ D U .

Then, the only case that f .w/ v .x ! z/.w/ may fail is the second case, that there is some w with

w v x but w 6v y, and further y 6v z. But by the assumption, if y 6v z then x v y, and so no such w

exists.

For (ii), by a similar case analysis, we note that if w 6v x or w 6v x0 then w 6v x u x0 and so

..x u x0/ ! .y u y0//.w/ D U so the inequality holds. Now if w v x; x0 then w v x u x0 and

..x ! y/ u .x0
! y0//.w/ D y u y0

D ..x u x0/ ! .y u y0//.w/:

Thus u acts like intersection of functions in a types-as-sets system. On the other hand, t is very

different from set union, and in fact redundant: for any x; x0; y; y0,

.x ! y/ t .x0
! y0/ D .x u x0/ ! .y t y0/:

Indeed, if f D supf.x ! y/; .x0 ! y0/g, then f .z/ D supf.x ! y/.z/; .x0 ! y0/.z/g for z 2 OD.

Thus, if z 6v x u x0 then either z 6v x or z 6v x0, so either .x ! y/.z/ D U or .x0 ! y0/.z/ D U , and

f .z/ D U . If z v x u x0 then f .z/ D y t y0.

Special cases of compound types can be used to perform case-analysis. The idea is that we want to

perform a finer analysis of the functions of type x ! y (i.e. elements “below” x ! y in the pointwisely-

ordered poset of functions).

Definition 5.6. We define a case-analysis of x ! y to be a function of the form

.x1 ! y/ u .x2 ! y/ u � � � u .xn ! y/;

such that the type x is the set union of types x1; : : : ; xn.

Informally, when we treat D as a subset of yD, this means that for all y 2 D,

y v x , .9i/y v xi I

formally, we constructed yD as a subset of the powerset P .D/ (and identified D with the family of sets

of the form Qd), so the condition is to be interpreted literally. As D will in general not be a flat domain,

we leave open the possibility that some of the xi may actually represent elements of D. (Note, however,

that the case that x represents an element of D is uninteresting, as then some xi equals x.)

As an example, .EVEN ! R/ u .ODD ! R/ is a case analysis of N ! R. This example shows that

a function and its case analysis may not be equal on yD: applied to N the first one gives U , whereas the

second one R. However:

24

5.2 Case Analysis

Lemma 5.7. For a case analysis f
def
D .x1 ! y/ u � � � u .xn ! y/ of x ! y and any z in D,

f .z/ D .x ! y/.z/:

Proof. That z is in D is an abuse of notation to say that z D Qd for some d 2 D; fix that (unique) d . There

are two cases: z � x or not. If not, then also z › xi for all i , and hence f .z/ D U D .x ! y/.z/. If

z � x, then d 2 z � x and thus for some i , d 2 xi , meaning (because types are downwards-closed) that

z D Qd � xi , and thus .x ! y/.z/ D y D f .z/. (The last equality is true because every .xi ! y/.z/ is

either U or y.)

The relation between f in the notation of the preceding lemma and .x ! y/ is also more profound:

Theorem 5.8. If f is a case analysis of x ! y then Nf D .x ! y/.

Proof. Recall that the tightening Nf of f satisfies

Nf .z/ D sup
d2z

f
�

Qd
�

:

As f . Qd/ D .x ! y/. Qd/ by Lemma 5.7, we have to show that

.x ! y/.z/ D sup
d2z

.x ! y/
�

Qd
�

:

If z � x then for all d 2 z, Qd � x so .x ! y/. Qd/ D y, and the two sides are equal indeed. If z › x

then there is some d 2 z n x, and Qd › x so .x ! y/. Qd/ D U and again the two sides are equal.

At this point, we remind that while we constructed types as sets of objects (objects being a word for

“elements of D”), this is only a formal distinction, to convince ourselves that the approach we propose is

consistent, and that in fact one should think that types are (some kind of) generalized objects themselves.

From this point of view, we have the ability to add types dynamically to a (PCF-like) programming

language. In fact it is precisely this ability together with the distinction between a function and its case

analysis that allows us to use case analysis to prove properties about recursive programs (as we will see in

Chapter 7), and the inability to perform such analysis in a traditional set-based type system that inhibits

this method of proof in such systems.

25

6 Recursion over Extended Domain

Before we procceed to study proofs by case analysis, we will explore the relation between the meaning

(semantics/model) of recursive programs over D and over OD. Assume � is a term (also called functional)

in our PCF-like language, and consider the recursive program

F D �ŒF �: (6.1)

The semantics of this has already been discussed in Chapter 1. Given an interpretation(1) b in the target

domain D of the function-symbols, put Y�b
def
D lfp.�b/, the least fixed point of �b . As an example, let

�ŠŒF � D �n:if n < 1 then 1 else n � F.n � 1/ :

In this example, the primitive language symbols used are the “�”, “if-then-else”, “<”, “C”, “�” and “�”,

of which all except “�” are function-symbols. If we take as our target domain .N [ftt; ffg/? (i.e. N

together with truth-values flatly ordered) and interpret the function-symbols as the operations in N they

usually stand for (with the usual definition that a � b D 0 if a < b), then the least fixed point of this

recursive program is the factorial function.

Our aim in this chapter is to establish a compatibility result for the solution of recursive programs over

D and OD. We fix some notation which is used in this and the following chapters: let

• D be a domain with a type extension OD;

• � be a term (functional) of our programming language;

• b be an interpretation in D of function-symbols appearing in � ;

• Ob be an interpretation in OD extending b (i.e. for every function-symbol f, f Ob
extends fb);

• Nb be the interpretation in OD consisting of the tight extensions of the functions interpreted by b.

Lemma 6.2. With the notational convention made above, for any g in ŒD ! D� with extension Og in

Œ OD ! OD�,

� Ob
Œ Og� is an extension of �bŒg�: (6.3)

Proof. We want to show that for any d 2 D,

� Ob
Œ Og�

�
Qd
�

D C�bŒg�.d/: (6.4)

[The outline of the proof is as follows: The term � Ob
Œ Og� depends only on functional constants which are

interpreted by b and Ob, and on the function Og. Of these two interpretations, one is an extension of the

other, and Og also extends g. Thus in the process of evaluating(2) � Ob
Œ Og�. Qd/, we will only deal with subterms

of the form f Ob
. Qe/ and Og. Qe/, where f Ob

stands for the interpretation of functional symbol f by Ob. Since

f Ob
. Qe/ D Afb.e/ and Og. Qe/ D eg.e/ for e 2 D and all functions involved (g; Og and those interpreted by Ob)

are increasing, we conclude that the computations of �bŒg�.d/ and � Ob
Œ Og�. Qd/ are parallel in the sense that

(1) Recall that this means that, like in first-order logic, we assign a function f in ŒDn ! D� to every n-ary function-symbol f
in the programming language.

26

in every step where the first computes a the second computes Qa, and also the second one always computes

terms of this form (i.e. elements of the embedding of D into OD).]

For the formal proof, note that � was assumed to be a functional of our programming language; this

means that it is expressible in our programming language, and therefore we can use structural induction

on subterms of �Œg�.d/ to prove the result.

To be precise, fix d 2 D, and incorporate to our programming language a new function-symbol g and
a new constant d, and expand interpretations b; Ob to interpret g as g; Og and d as d; Qd respectively. Now

set T D �Œg�.d/, which is a closed term of our programming language. We prove by structural induction

on T that for every subterm t of T ,

ŒŒt �� D fhti;
where hti, ŒŒt �� are the meaning (interpreted under b, Ob) of t in D, OD respectively.

Every subterm of �Œg�.d/ is of the form:

• c, for constant c – evidently the result holds for constants;

• f.t1; : : : ; tn/ for n-ary function symbol f and terms t1; : : : ; tn – as the interpretation of f by Ob is an

extension of its interpretation by b, and the result holds for subterms ti (by induction), we conclude

that the result holds for this case as well;

• g.t/ – by assumption, the meaning of g in OD, namely Og, is an extension of its meaning in D, namely

g; thus the result holds for this case as well.

Corollary 6.5. With the notation of Lemma 6.2, if Nb is a tight interpretation of functions in b, we have:

� Ob
Œ Og�

(i)
D �bŒg�

(ii)

v � Nb
Œ Ng�

(iii)

v � Nb
Œ Og�

(iv)

v � Ob
Œ Og�:

Proof. (iii) and (iv) are similar to the preceding proof. We prove (i). First note that the bars mean different

things in the two sides of the equation: in the left, it means the tightening; in the right, the tight extension.

Let x be in OD. Then by definition

� Ob
Œ Og�.x/ D sup

d2x

� Ob
Œ Og�

�
Qd
�

:

Similarly, by definition,

�bŒg�.x/ D sup
d2x

C�bŒg�.d/:

But by Lemma 6.2 (i.e. eq. (6.4)), the right sides of the two equations are equal, so (i) is proven. Finally,

apply (i) to the special case Ob D Nb and Og D Ng to get � Nb
Œ Ng� D �bŒg�. Since � Nb

Œ Ng� v � Nb
Œ Ng�, we get (ii).

Theorem 6.6. With the notation of Lemma 6.2, the least fixed point Y� Ob
is an extension of the least fixed

point Y�b of �b:

Y� Ob

�
Qd
�

D BY�b.d/ for every d 2 D: (6.7)

Proof. To avoid notational clashes, we will write
F

i2I Ai to denote the least upper bound (supremum)

of ideals Ai in OD – recall that OD is a complete lattice by Theorem 3.5, and hence this supremum exists;

we will reserve “sup” for the supremum of directed sets in A.

Since D is chain-complete (being a domain) and OD is a complete lattice, ŒD ! D� and Œ OD ! OD�

are also chain-complete, and hence the least fixed points of � Ob
; �b are given by the construction in Theo-

rem 2.3. Define the ordinal-sequences f˛; Of˛ by recursion: f0 D �d:?, Of0 D �x: Q?, and for ˛ > 0,

f˛ D �bŒfˇ � and Of˛ D � Ob
Œ Ofˇ � if ˛ D ˇ C 1;

f˛ D sup
ˇ<˛

fˇ and Of˛ D

G
ˇ<˛

Ofˇ if ˛ is a limit;

(2) We haven’t specified an evaluation strategy for our language, but this does not affect the result as long as we choose one

consistently for both D and OD.

27

6 Recursion over Extended Domain

where the operation of supremum is defined pointwise. Recall that each of the sequences .f˛/, . Of˛/ is

pointwise increasing (Theorem 2.3). We will prove by induction on ˛ that

Of˛ is an extension of f˛.

There are three cases to examine.

• Zero: Of0. Qd/ D Q? D Af0.d/, so Of0 is an extension of f0.

• Successor: Suppose that ˛ D ˇ C 1 and that Ofˇ is an extension of fˇ . Then

OfˇC1 D � Ob
Œ Ofˇ � is an extension of �bŒfˇ � D fˇC1

by Lemma 6.2. Thus Of˛ is an extension of f˛.

• Limit: Finally suppose that ˛ is a limit ordinal, and that for every ˇ < ˛, Ofˇ is an extension of fˇ .

This means that for every ˇ < ˛ and every d 2 D, Ofˇ . Qd/ D Afˇ .d/. Recall that

f˛.d/ D sup
ˇ<˛

fˇ .d/ and Of˛

�
Qd
�

D

G
ˇ<˛

Ofˇ

�
Qd
�

;

and note that the inductive hypothesis yields

Of˛

�
Qd
�

D

G
ˇ<˛

Ofˇ

�
Qd
�

D

G
ˇ<˛

Afˇ .d/: (6.8)

Nowfˇ .d/ v f˛.d/) Afˇ .d/ � Af˛.d/ forˇ < ˛, i.e. Af˛.d/ is an upper bound of
n Afˇ .d/W ˇ < ˛

o
,

and hence it is greater (�) than the least upper bound, which is Of˛. Qd/ by (6.8). This establishes

that
Of˛

�
Qd
�

� Af˛.d/:

Conversely, we show that Af˛.d/ � Of˛. Qd/; this is equivalent to showing

f˛.d/ 2 Of˛

�
Qd
�

(6.8)
DD

G
ˇ<˛

Afˇ .d/:

But for every ˇ < ˛, fˇ .d/ 2 Afˇ .d/ � Of˛. Qd/ which is an ideal (being an element of OD); thus

ffˇ .d/W ˇ < ˛g is a directed subset (in fact a chain) of Of˛. Qd/, so its supremum f˛.d/ is also in

Of˛. Qd/ by Definition 3.2. This concludes the induction.

Finally, for any d 2 D,

Y� Ob

�
Qd
�

D

G
˛2Ord

Of˛

�
Qd
�

D

G
˛2Ord

Af˛.d/

D Esup
˛2Ord

f˛.d/ because the increasing se-

quence f˛.d/ stabilises to

a greatest element

D BY�b.d/:

This concludes the proof of the theorem.

28

Remark 6.9. Generally, all functionals one encounetrs in practice are continuous (cf. Chapter 2), and

hence have closure ordinal !. In the proof we used Lemma 6.2 which assumed � to be a programming

functional, so the theorem needs to make this assumption as well. Thus, if the proof causes confusion,

it may be read to terminate at !; however we still need the limit case. However, we chose to write

the prooff this theorem holds more generally even for non-continuous functionals. (Of course, if for a

non-continuous functional the result of Lemma 6.2 holds, the conclusion of the theorem also holds.)

Corollary 6.10. With the notation of Theorem 6.6, and for types x; y in OD, and f; Of are the least fixed

points of �b; � Ob
, if Nf v .x ! y/ or Of v .x ! y/ then f .d/ 2 y for all d 2 x.

Proof. Recall that for f in ŒD ! D� and h 2 Œ OD ! OD�, h is an extension of f iff Nf v h. Since Of is

an extension of f , it suffices to consider only the case for Nf . Let d 2 x. Then Qd � x and Nf . Qd/ � y, so
Af .d/ D Nf . Qd/ � y. Consequently, f .d/ 2 y.

Corollary 6.11. With the notation of Theorem 6.6,

Y� Ob
D Y�b v Y� Nb

v Y� Ob
:

Proof. This is similar to Corollary 6.5. For x 2 OD,

Y� Ob
.x/ D

G
d2x

Y� Ob

�
Qd
�

D

G
d2x

BY�b.d/ D Y�b.x/:

The inequality Y�b v Y� Nb
is proved as in Corollary 6.5, by considering the special case Ob D Nb. For the

final inequality, let f be in Œ OD ! OD� and observe that � Nb
Œf � v � Ob

Œf �. The result is obtained by iterating

over the ordinals the application of � Nb
; � Ob

on f D �x: Q?.

29

7 Type Checking

In this chapter, our aim is to show how we can use the theory developed so far to perform basic type-

checking, and also property proving. For our purposes, to type check a program F D �ŒF � is to prove

an inequality of the form

Y�b v .x1 ! y1/ u .x2 ! y2/ u � � � u .xn ! yn/:

The results in Chapter 6, especially Corollary 6.11, may be useful.

Example. Suppose our program is

F.n/ D �ŒF �.n/ � if .n D 0/ then 0 else .3 � F.n � 1/ C 1/ ; (7.1)

and we want to show that the least fixed point (with the standard interpretations of operations on N and

the tight if-then-else defined in Chapter 1) maps even integers to even integers, and odd to odd. By

Corollary 6.11 it suffices to show that

Y� Ob
v .EVEN ! EVEN/ u .ODD ! ODD/;

for some suitable interpretation Ob (which we define below).

Now proving a property of the program is reduced to proving an assertion about least fixed points,

which is a well-studied problem.

In our particular problem, we go for brute-force direct computation. Fist we will rewrite(1) the program:

F.n/ D if EQUALS.n; 0/ then 0 else ADD1.MULTBY3ŒF .PRED.n//�/ ; (7.2)

where EQUALS.a; b/ � .a D b/, ADD1.n/ � .n C 1/, MULTBY3.b/ � .3 � b/, PRED.n/ D .n � 1/ (the

latter is 0 if n D 0). We rewrote the equation in this form to avoid misunderstandings.

Now consider the interpretations b and Ob defined by

b D h.if � then � else � /IEQUALSN IADD1N IMULTBY3N IPREDNi

and
Ob D h.if � then � else � /tightIEQUALSN IADD1N IMULTBY3N IPREDNi;

where EQUALSN (&c.) stands for the standard equality (&c.) in N, EQUALSN (&c.) stands for its tight

extension to OD, and (as we defined it in the introduction)

if tt then a else b D aI

if ff then a else b D bI

if B then a else b D a t b D supfa; bg:

In the following we will use the more familiar D; C; �; �, understanding them to be shorthands for

EQUALS &c. interpreted by Ob. For any function F in Œ OD ! OD�,

�ŒF �.EVEN/ D if .EVEN D 0/ then 0 else .3 � F.EVEN � 1/ C 1/ :

(1) This step is not essential and the reader may omit it without loss of understanding.

30

But EQUALS is tight, so EQUALS.EVEN; 0/ D supnvEVEN EQUALS.n; 0/ D B, because the expression

EQUALS.n; 0/ evaluates to tt for n D 0 v EVEN, and ff for 0 ¤ n v EVEN. Similarly, because

PRED is tight, PRED.EVEN/ D supnvEVEN PRED.n/ D ODD, and thus

�ŒF �.EVEN/ D Œif B then 0 else .3 � F.ODD/ C 1/ � D 0 t .3 � F.ODD/ C 1/: (7.3)

By similar but simpler arguments we can show that

�ŒF �.ODD/ D 3 � F.EVEN/ C 1: (7.4)

In particular, (7.3), (7.4) hold when F is Y� Ob
, which is given by

F D sup
˛2Ord

� .˛/Œconstantly?�;

where constantly? is the constantly ? (“constantly undefined”) function; this equation is an instance of

Theorem 2.3 for the functional � .(2) Thus we may compute the values of F.EVEN/; F .ODD/ for F D Y� Ob
by successive approximations, i.e. by successively applying the map�

A

B

�
7!

�
0 t Œ3 � B C 1�

Œ3 � A C 1�

�
beginning with .?; ?/. We get:

.?; ?/ 7! .0 t .3? C 1/I .3? C 1// D .0I ?/

7! .0 t .3? C 1/I .3 � 0 C 1// D .0I 1/

7! .0 t .3 � 1 C 1/I .3 � 0 C 1// D .0 t 4I 1/ D .EVENI 1/

7! .0 t .3 � 1 C 1/I 3 � EVEN C 1/ D .0 t 4I ODD/ D .EVEN;ODD/;

and we are done (the process stabilises at this point: .EVEN;ODD/ 7! .EVEN;ODD/).

Another approach to obtain the result would be to show that .EVEN ! EVEN/ u .ODD ! ODD/ is a

prefixed point of � Ob
; as Y� Ob

D lfp.� Ob
/ is the least prefixed point, this implies the result.

Let g is the function .EVEN ! EVEN/ u .ODD ! ODD/. We want to show the inequality � Ob
.g/ v g.

The calculations now are even more straightforward:

� Ob
.g/.EVEN/ D if .EVEN D 0/ then 0 else 3 � g.EVEN � 1/ C 1

D if B then 0 else 3 � g.ODD/ C 1

D 0 t .3 � g.ODD/ C 1/

D 0 t .3 � .U u ODD/ C 1/

D 0 t .3 � ODD C 1/

D 0 t .ODD C 1/

D 0 t EVEN

D EVEN;

and similarly for � Ob
.g/.ODD/.

(2) As a side comment, we remark that almost all functionals arising in practice are continuous as they are defined usingmonotonic

functions, so we need only consider the ordinals ˛ < !.

31

8 Case Analysis of Recursive Programs

Themethods described in the previous chapter fail to produce results when some sort of analysis by cases

is required. As a very simple example, consider the functional

�ŒF � D �n:if .n D 0/ then n else 0 :

Then the solution f to the programF D �ŒF � overD is the constantly zero function; but we cannot prove

for its fixed point Of in OD that Of v .N ! 0/(1) ; indeed, while .N ! 0/.N/ D 0, with the interpretation

of “D” as EQUALS from the previous chapter one has

Of .N/ D �Œ Of �.N/ D Œif .N D 0/ then N else 0 � D Œif B then N else 0 � D ŒN t 0� D N:

In this chapter we show how we can exploit the fact that types can be added at will to perform a

satisfactory case analysis of such programs. Suppose that we add a new type NC for positive integers to

our domain OD. Then (with the strict interpretation of equality), .NC D 0/ is ff, and hence

Of v .0 ! 0/ u .NC ! 0/:

Since the right side is a case analysis of .N ! 0/, by Theorem 5.8 we obtain

NOf D Nf v .N ! 0/;

and from this we conclude that f applied to every integer is 0.

Let us recapitulate: we wanted to show that a certain recursive program F D �ŒF � satisfies a simple

property .…/ which is equivalent to showing that (for a suitable interpretation b in our target domain D

with extension Ob in OD) the least fixed point Of of � Ob
satisfies Of v .a ! b/ for some types a; b; and it

may sometimes happen that this is not the case, although the program does indeed satisfy property .…/.

This is a general problem, whose true extent does not appear in this simplistic example (although, as in

the example above, it is genenrally the value of Of .a/ that breaks the proof; one might try to circumvent

this by adding more types to the system: sometimes this solves the problem, and sometimes not).

The solution suggested above is simple: split the proof into cases, i.e. prove instead that Nf v g for

a suitable case-analysis g of .a ! b/; that way we avoid difficulties about Of .a/. Now there are in

principle many ways to prove this inequality; one that was hinted in the last chapter (chapter 7) is to

prove that g is a prefixed point of � Ob
. The advantage of this method is that one does not need to compute

Y�b , or in fact know anything about it.

Theorem 8.1. With the notation of Lemma 6.2, if g is any element of Œ OD ! OD�,

� Ob
Œ Ng� v g implies Y�b v g:

Proof. Define the sequence f˛ as in the proof of Theorem 6.6. For every ordinal ˛ we shall show for the

tight extension Nf˛ of f˛ that Nf˛ v g. The base of the induction (˛ D 0) is trivial. Now assume that it

holds for ˛. Then:
Nf˛ v g) Nf˛ D Nf˛ v Ng

) � Ob
Œ Nf˛� v � Ob

Œ Ng�

) � Ob
Œ Nf˛� v g by assumption

) �bŒf˛� v g by Corollary 6.5

) Nf˛C1 v g by definition of f˛C1:

(1) For convenience, we shall write 0 instead of the –technically correct– Q0, and shall do likewise for other elements ofD, keeping

only distinct notations for functions on D and their extensions on OD: the latter’s names will usually have “hats” (O�).

32

The limit case is immediate. Thus we’ve proven that Nf˛ v g for all ordinals ˛.

Using this, we will show that Y�b v g (remember that Y�b D sup˛ f˛, the supremum being taken over

all ordinals). Indeed, for every x in D we have:

Y�b.x/ D sup
d2x

BY�b.d/

D sup
d2x

Dsup
˛

f˛.d/

D sup
d2x

sup
˛

Af˛.d/ because sup˛ f˛.d/ stabilises

D sup
˛

sup
d2x

Af˛.d/

D sup
˛

Nf˛.x/

v sup
˛

g.x/ by induction above

D g.x/:

Example. We shall now illustrate the importance of this theorem. Suppose that our programming lan-

guage supports both primitive (truth-values, natural numbers, the empty list, and the empty tree) and also

two kinds of composite objects: binary trees and strings.(2)

Suppose, further, that it has six specialised operators to work with these composite objects: left.t/,

right.t/, atom?.t/, grow.p; t; t 0/, list.a/, and s1*s2. These stand (in order) for the left subtree of t ,

the right subtree of t , a check if t is an atom (i.e. single-node tree or, equivalently, single-object string),

the construction of a new tree with primitive object p as root and t [resp. t 0] as left [resp. right] subtree,

the construction of a list consisting of object a, and the concatenation of strings s1; s2.

Now consider the recursive program

F.t/ D if atom?.t/ then t else ŒF .left.t//*F.right.t//�

It should be easy to verify that F flattens a tree into a string. Let OD be obtained by adjoining to D the

types TREE and STRING and let the operations mentioned above be extended tightly.(3) The property we

would like to prove is that the least fixed point of this program, call it Of , lies below .TREE ! STRING/.

But this is not true:

Of .TREE/ D if B then TREE else Œ Of .TREE/* Of .TREE/� D TREE t Œ Of .TREE/* Of .TREE/� w TREE; (4)

and certainly TREE 6v STRING.

Even if we add two more types, ATOM and NONATOM, below TREE, we still fail to prove that Of v

g ´ .ATOM ! STRING/ u .NONATOM ! STRING/, for this would imply that Of .ATOM/ v STRING

and Of .NONATOM/ v STRING; but simple calculations give Of .ATOM/ D ATOM and Of .NONATOM/ D

Of .TREE/� Of .TREE/, and as we saw above, Of .TREE/ 6v STRING.

If, however, we use Theorem 8.1, then Ng D .TREE ! STRING/ and we have to show that

� Ob
ŒTREE ! STRING� v .ATOM ! STRING/ u .NONATOM ! STRING/:

This is true, since

� Ob
ŒTREE ! STRING�.u/ D if atom‹.u/ then u else .TREE ! STRING/.left.u//*.TREE ! STRING/.right.u//

(2) Strings are plain lists of primitive objects. Although every string can be represented by a binary tree every node of which has

empty left subtree, we only identify single-object strings with single-node trees, which we call atoms. (The LISP program-

ming language is relevant, in that it represents both strings and trees as lists. In LISP, lists can be nested: we leave open the

possibility that our language may be LISP-like, and strings and trees are special instances of lists as well.)
(3) Of the statements below, those that do not hold for the tight extension will not hold for any other extension as well.
(4) It is interesting to examine what is the least solution to a D TREE t .a�a/. The answer seems to be TREE.

33

8 Case Analysis of Recursive Programs

and thus

� Ob
ŒTREE ! STRING�.ATOM/ D ATOM v STRING

� Ob
ŒTREE ! STRING�.NONATOM/ D .TREE ! STRING/.left.NONATOM//*.TREE ! STRING/.right.NONATOM//

D .TREE ! STRING/.TREE/*.TREE ! STRING/.TREE/

D STRING*STRING

D STRING:

Example (McCarthy’s 91-function). We will now study McCarthy’s famous 91-function:

F.n/ D �ŒF �.n/ � if .n � 100/ then F.F.n C 11// else .n � 10/ : (8.2)

Let D be the the domain in Figure 8.1, b be the standard interpretation of the function-symbols in � and Nb

the associated interpretation of tight extensions. Put f D Y�b . It is not difficult (but takes some thought)

to prove that f .n/ D 91 for n � 100. Here we prove the more modest result that Nf v .N ! N�91/.

?

tt ff : : : 90 91 92 : : : 99 100 101 102 � � �

B N�100 N>100 N�91

N

U

Figure 8.1: Domain D with extension OD. Solid lines show the ordering of elements of D, and dotted

ones the object-type relations and type inclusions in the extension OD.

We use the case analysis g
def
D .N�100 ! N�91/ u .N>100 ! N�91/ of .N ! N�91/. By Theo-

rem 8.1, it suffices to show that � Nb
Œ Ng� v g.

To prove this, it suffices to show that � Nb
Œ Ng� v .N�100 ! N�91/ and � Nb

Œ Ng� v .N>100 ! N�91/.

Both are easy. By Theorem 5.2, we have:

� Nb
Œ Ng�.N>100/ D if .N>100 � 100/ then Ng. Ng.N>100 C 11// else .N>100 � 10/

D if ff then � � � else .N>100 � 10/

D N>100 � 10

D f91; 92; 93; : : : g D N�91:

� Nb
Œ Ng�.N�100/ D if .N�100 � 100/ then Ng. Ng.N�100 C 11// else .N�100 � 10/

D if tt then Ng. Ng.N�100 C 11// else � � �

D Ng. Ng.N�100 C 11//

D Ng. Ng.N//

D Ng.N�91/

D N�91:

34

Note that N�100 C 11 D supn2N�100
Bn C 11 D supf Qm j m � 111g D N; this is because we don’t have

a type N�111 in our system; even if we did, however, the result would still be the same, as N�111 � N

and thus Ng.N�111/ D N�91.

There seems to be no (practical) way to prove that Nf v N�100 ! N�91 (for a suitably defined type

N�91). Part of the problem with trying to prove this statement is that to compute with N�100 we also

need N>100, and there the statement is false. A possible workaround is to add, for every pair m < n of

non-negative integers, a data-type Œm; n� D fm; m C 1; : : : ; ng [f?g. Then one can actually prove this

statement by directly translating the normal mathematical proof into our type system (and in fact, one

only needs to add data-types Œ0; 1�; Œ2; 12�; : : : ; Œ68; 78�; Œ79; 89�; Œ90; 100�; for every x in the k-th interval

from the right, k is the least number such that x C 11k > 100). However this is highly inefficient, as it

requires us to compute the values of all tight extensions used on these new data-types.

Another recursive equation that cannot be typed in our system is Collatz’s Conjecture.

35

9 ATake on Negation Types

In this chapter we make an attempt to define a notion of negation for data-types. We will then demonstrate

a few properties of our definition.

Definition 9.1. Let D be a domain and x be an ideal of D; we define the core of the negation of x to be

the set

.:x/ı def
D fd 2 D W Qd \ x D Q?g: (9.2)

For simplicity, we will use the notation :x for .:x/ı.

This definition says that d is in the core of the negation of x if and only if the only member of x below

d is ?. Conceptually, when we interpret the domain’s ordering v as an information ordering, the core of

the negation of x is the set of elements that are information-independent from x.

As we will see, the core of the negation satisfies some intuitive properties one may expect of negation.

Before we venture into that direction, however, we must first prove that it is an ideal if this concept is

going to be of any value to us, as we have defined data-types to be ideals. As it happens, this is not always

the case:

Example. The core of the negation of an ideal x may not be an ideal.

?

a b1

b2

>

Figure 9.1: A domain with an ideal whose core of the negation is not an ideal. (The dotted line represents

an infinite chain b1 v b2 v b3 v � � � with supremum >)

Demonstration. Let the domain D be as shown in Figure 9.1, and let x be the ideal f?; ag in D. Then

:x D f?g [fb1; b2; b3; : : : g

is not an ideal (the supremum of the directed set fbi j i 2 Ng is not in :x).

The core of the negation, however, is an ideal under some conditions:

Definition 9.3. Achain-complete poset D is said to have determinate infinite chains if for every infinite

chain C of D and every a 2 D it holds that

a @ supC , .9c 2 C /.a v c/;

that is, every element below (and not equal to) supC is below (or equal to) some element of C .

Lemma 9.4. Let D be a domain and x an ideal of D; then :x is downward-closed. Furthermore, if :x

is countable and D has determinate infinite chains, then :x is an ideal.

36

Proof. If d1 v d2 and d2 2 :x, then Qd2 \ x D Q?; consequently also Qd1 \ x D Q?, as Qd1 � Qd2.

Now assume that D has determinate infinite chains. We prove that :x is an ideal; by the previous part,

it remains to show that:x contains the suprema of itsD-directed subsets. Suppose thatA is aD-directed

subset of :x, and put s D supA.

If A has a greatest element, that element is s, hence s 2 :x.

Thus suppose that A does not have a greatest element. As :x is countable, so is A, and thus one may

enumerate its elements as a1; a2; a3; : : : . Now we construct an increasing sequence .bn/ of elements of

A with the same supremum as A. We do this recursively. Put b1 D a1, and for n � 1, let bnC1 be an

element of A greater than bn; an; to avoid arbitrary choises, we define

bnC1 D ak for the least k such that bn; an v ak — at least one such k exists as A is directed.

It is plain to see that the set of values of .bn/ is infinite (because A doesn’t have a greatest element).

Claim. supj bj D supi ai :

That supj bj v supi ai is trivial. Conversely, since an v bnC1 for every n, we deduce supi ai v supj bj .

Now we conclude the proof that s 2 :x. Pick d 2 Qs \ x; in other words, d v s and d 2 x. Note

that d ¤ s as s … x (as then all bn would be in x as well). Thus d @ s. Because D has determinate

infinite chains and .bn/ is one with supremum s, we deduce that d v bn for some n, and consequently

d 2 Qbn \x. But bn 2 A � :x, so d 2 Qbn \x implies d D ?. As d was arbitrary, this means Qs \x D Q?,

and s 2 :x.

Remark 9.5. Note that all we needed is that D has determinate infinite chains, and that for every directed

subset A of D without a greatest element there is a chain with supremum supA.

The most important application of this lemma is the following special case:

Theorem 9.6. If D is a countable domain with determinate infinite chains, then for every ideal x its core

of the negation .:x/ı is also an ideal.

The next question one has to ask is whether this notion satisfies any of the familiar properties of nega-

tion. It turns out that it does not satisfy the double negation law — but it shouldn’t be supposed to, by

the Curry-Howard Isomorphism.

Example. The core of the negation does not satisfy the double negation law.

?

a

b

c

Figure 9.2: A domain and an ideal whose double negation is not itself.

Demonstration. Let D be the domain shown in Figure 9.2, and x be the ideal f?; ag. Then :x D f?; cg,

::x D f?; a; bg. Obviously x ¤ ::x; note however that x � ::x.

Lemma 9.7. For every ideal x of D, x � ::x.

Proof. Let d 2 x. We show that Qd \ .:x/ D Q?; equivalently, we show that if a v d and a 2 .:x/

then a D ?. Indeed, let a v d be such that Qa \ x D ?. As x is an ideal and d 2 x, also a 2 x, or

equivalently, Qa � x. This means that a D ?.

However, as predicted again by the Curry-Howard isomorphism, the core of the negation does satisfy

the triple negation law.

37

9 A Take on Negation Types

Theorem 9.8. For any ideal x of D,

:::x D :x:

Proof. We already have that :x � :::x. We show the reverse inclusion. Let d be in :::x; this

means that Qd \ .::x/ D Q?. As x � ::x (Lemma 9.7), a fortiori we get Qd \x D Q?. Thus d 2 :x.

Example. In terms of the domain in Figure 1.3, EVEN D N \ .:ODD/ı. Similarly, if one allows data-

types for lists of even and odd length, one has EVENLIST D LIST\ .:ODDLIST/ı. Sometimes, the core of

the negation fails to give any meaningful information: e.g. the core of the negation of the data-type Q? is

again Q?, but one shouldn’t expect to be able to define a “defined elements” data-type, as that is generally

uncomputable.

38

Bibliography

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University

Press, 2nd edition, 2002.

[PWF12] A. Pitts, G.Winskel, andM. Fiore. Lecture Notes on Denotational Semantics for the Computer

Science Tripos, Part II, 2012. https://www.cl.cam.ac.uk/teaching/1112/DenotSem/
dens-notes-bw.pdf, Accessed: 2024, November 2.

[SW77] Adi Shamir and William W. Wadge. Data types as objects. In Arto Salomaa and Magnus

Steinby, editors, Automata, Languages and Programming, pages 465–479, Berlin, Heidel-

berg, 1977. Springer Berlin Heidelberg.

[Ten91] Robert Tennent. Semantics of programming languages. Prentice Hall International Series in

Computer Science. Prentice Hall, 1991.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages, An Introduction. MIT

Press, January 1993.

39

https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf
https://www.cl.cam.ac.uk/teaching/1112/DenotSem/dens-notes-bw.pdf

	Introduction
	About this Thesis
	Generally about Semantics
	PCF: A model language
	Denotational Semantics of First-order Languages: A Brief Study
	About the suggested approach

	Domains & Fixed Points
	Posets and Fixed points

	Formal Construction of Domain Extension
	Domains and Data Types
	Axiomatic Characterisation of the extension
	Examples

	Function Domains
	Tight Functions and Tight Extensions

	Arrow Functions
	Arrow Operator
	Case Analysis

	Recursion over Extended Domain
	Type Checking
	Case Analysis of Recursive Programs
	A Take on Negation Types
	Bibliography

