
DeFi vulnerabilities in the eUTxO model

Georgios Tsoumas
7115142200018

Examination committee:
Aris Pagourtzis, School of Electrical and Computer
Engineering, National Technical University of
Athens.
Dimitris Fotakis, School of Electrical and Computer
Engineering, National Technical University of
Athens.
Nikos Leonardos, School of Electrical and Computer
Engineering, National Technical University of
Athens.

Supervisor:
Aris Pagourtzis, Professor,
School of Electrical and Computer
Engineering,
National Technical University of Athens.

ABSTRACT

Miner Extractable Value (MEV) refers to the additional profits block producers can
earn by manipulating the inclusion and ordering of transactions within a block. This
practice, known as transaction reordering attacks, typically targets Decentralized Fi-
nance (DeFi) transactions. MEV incidents alone cost the Ethereum ecosystem over
$350 million in 2023.

MEV opportunities are specific to the underlying blockchain infrastructure, includ-
ing network topology, smart contract logic, and accounting model. While MEV in
Ethereum has been well-studied in the academic literature, there has been little research
on MEV in the eUTxO model.

In this work, we present the necessary background knowledge regardingMEV in the
eUTxO model. We compare the account-based and eUTxO accounting models in the
context of MEV. Additionally, we introduce the major Decentralized Exchange (DEX)
paradigms, namely Constant Product Market Makers and Limit Order Books. Finally,
we offer a game-theoretic definition of MEV and analyze three vulnerabilities within
Cardano's eUTxO DeFi ecosystem.

ΣΎΝΟΨΗ

Η Εξαγώγιμη Αξία από Παραγωγούς Μπλοκ (MEV) αναφέρεται στα επιπλέον κέρδη
που μπορούν να αποκομίσουν οι παραγωγοί μπλοκ μέσω της χειραγώγησης της εισαγωγής
και της σειράς εκτέλεσης των συναλλαγών σε ένα μπλοκ. Αυτή η πρακτική, γνωστή ως
επιθέσεις αναδιάταξης συναλλαγών, στοχεύει κυρίως συναλλαγές τωνΑποκεντρωμένων
Χρηματοοικονομικών (DeFi). Μόνο το 2023, τα περιστατικάMEVκόστισαν στο οικοσύ-
στημα του Ethereum πάνω από 350 εκατομμύρια δολάρια.

Οι ευκαιρίεςMEV είναι συγκεκριμένες ως προς την υποκείμενη υποδομή του εκάστοτε
blockchain, περιλαμβάνοντας την τοπολογία του δικτύου, τη λογική των έξυπνων συμβολαί-
ων και το λογιστικό μοντέλο. Αν και τοMEV στο Ethereum έχει μελετηθεί εκτενώς στη
βιβλιογραφία, η έρευνα σχετικά με το MEV στο μοντέλο eUTxO είναι περιορισμένη.

Σε αυτή την εργασία, παρουσιάζουμε τις απαραίτητες γνώσεις σχετικά με το MEV
στο μοντέλο eUTxO. Συγκρίνουμε τα λογιστικά μοντέλα λογαριασμών και eUTxO
σε σχέση με το MEV. Επιπλέον, εισάγουμε τα κύρια παραδείγματα Αποκεντρωμένων
Ανταλλακτηρίων (DEX), συγκεκριμένα τις αυτόματες αγορές σταθερού γινομένου και
τα βιβλία παραγγελιών ορίου. Τέλος, προσφέρουμε έναν παιγνιοθεωρητικό ορισμό
του MEV και αναλύουμε τρεις ευπάθειες στο οικοσύστημα DeFi του Cardano με το
μοντέλο eUTxO.

CONTENTS

1 Introduction 1

2 Preliminaries 5
2.1 Cryptography . 5
2.2 Game theory . 6

2.2.1 Game theory in Blockchain; Classical results 7
2.3 The Cardano blockchain . 8

2.3.1 Network Layer . 8
2.3.2 Consensus layer . 9
2.3.3 Application Layer . 10

3 Ledger Models 13
3.1 The account-based model . 13

3.1.1 Ethereum Transactions . 14
3.2 The UTxO model . 17

3.2.1 UTxO Transactions . 19
3.2.2 Bitcoin Transactions . 19

3.3 The eUTxO model . 21
3.3.1 eUTxO Transactions . 22
3.3.2 Concurrency . 23

3.4 eUTxO and account-based comparison 24

4 Decentralized Finance 29
4.1 Types of Security . 30
4.2 Limit Order Books . 32
4.3 Automatic Market Makers . 34

4.3.1 Constant Product Automatic Market Makers 36
4.3.2 UniSwap . 40

4.4 LOB and CPMM comparison . 40

5 Transaction Ordering 43
5.1 Rational Block Producers . 44
5.2 Transaction Reordering Attacks . 45

i

CONTENTS

5.2.1 Sandwich Attacks . 45
5.2.2 Cyclic Arbitrage Opportunities 46
5.2.3 Front-running in the eUTxO Model 47

5.3 Block Producer Surplus . 48
5.3.1 Off-Chain Agreement . 49

6 eUTxO DeFi 51
6.1 Transaction Batchers . 51
6.2 MuesliSwap . 53

6.2.1 BPS incidents in MuesliSwap 54
6.3 MinSwap . 56

6.3.1 Sandwich attacks in MinSwap 57
6.4 SundaeSwap . 58

6.4.1 Fatal front-running SundaeSwap batch transactions 59

7 Conclusion 63
7.1 Future Work . 63

Bibliography 64

ii

CHAPTER1
INTRODUCTION

In traditional digital finance, if Alice wants to transact with Bob and exchange value
between them, a third entity usually has to step in and facilitate that transaction. This
creates additional complexities for Alice, namely:

• Increased costs in the form of banking fees.

• Privacy concerns. Both Alice and Bob need to share much of their financial and
personal information with the bank.

• Counterparty risk. The bank could default or deny facilitating the transaction for
various reasons, such as compliance or political beliefs.

• Geographical constraints. Many third-world countries do not have access to the
banking system.

Overall, the traditional banking system has several weaknesses. For the past decades,
many have advocated for open, confidential, and censorship-resistant payment systems.
In other words, a decentralized permissionless transaction ledger that anyone can use
and that cannot be manipulated by any central authority.

In 2008, Satoshi Nakamoto introduced Bitcoin [1], an electronic peer-to-peer pay-
ment system. Bitcoin's novel idea is the Nakamoto-style consensus, a new consensus
mechanism. This, paired with Proof of Work [2], solved the permissionless decen-
tralized ledger problem, as formally proven by GKL in [3]. Bitcoin is a protocol that
allows users to transact with one another using pseudonyms. Several entities known
as miners or block producers (BPs) are tasked with the maintenance of the decentral-
ized transaction ledger by participating in Bitcoin's consensus mechanism. They also
receive monetary rewards denominated in BTC (Bitcoin's native token), thus encour-
aging honest participation and constant uptime. Due to Bitcoin's use of cryptography,
all protocols that facilitate payments through a permissionless transaction ledger have
come to be known as cryptocurrencies.

Although Bitcoin solved the problem of online decentralized payments, there were
still many financial services that it could not provide, such as loans, contracts, and asset

1

ownership. Additionally, it was apparent since the early days of Bitcoin that it could
not scale sufficiently to accommodate the financial needs of the entire planet.

Bitcoin's launch opened the floodgates for many other projects, all promising to
fulfill its original goal. The first notable cryptocurrency to follow through though, was
Ethereum [4], launching in July 30, 2015. Ethereum's novelty, originally envisioned
by Vitalik Buterin, was to imbue a blockchain with additional programmability, thus
enabling the blockchain to finalize a payment only when certain conditions are met, or
issuing an asset on top of the blockchain. This notion was named smart contract, due
their ability to automatically enforce and execute agreements written in code, function-
ing like traditional contracts but without the need for intermediaries.

Now enabled by smart contracts, users can issue and maintain secondary assets (i.e.,
other than the blockchain's native token). The most common utilities of these assets are:

• Utility tokens: They provide users with access to a product or service within a
blockchain ecosystem.

• Governance tokens: They grant holders the right to participate in decision-
making processes.

• Stablecoins: They are pegged to a stable asset, often a fiat currency like the US
dollar.

These assets are collectively known as fungible tokens, non-native tokens, or cryp-
toassets. With the mass adoption of these tokens, the need for a way to trade them
quickly arose. Centralized exchanges (CEXs) proved to be untrustworthy, with many
CEXs, such as Mt. Gox1 and QuadrigaCX2, collapsing due to mismanagement or tech-
nical breaches in security.

This gave rise to the concept of a Decentralized Exchange (DEX), which is an ex-
change that operates by leveraging blockchain infrastructure and lacks a central owner.
Building on an idea that was already advocated by many, including Vitalik Buterin [5],
the UniSwap [6] DEX launched in November 2, 2018. UniSwap, an Ethereum-based
DEX, attracted a significant user base and achieved market dominance, becoming the
benchmark for all other DEXs3. We will analyze DEX primitives in detail in the fol-
lowing chapters.

Following Ethereum's massive success, many smart contract-capable blockchains
were launched, includingCardano in 2017. Cardano, originally envisioned by Ethereum
co-founder Charles Hoskinson [7], is a Proof of Stake blockchain designed to sup-
port smart contracts while inheriting key aspects of Bitcoin's original design, such as
Nakamoto-style consensus and the UTxO accounting model. The Cardano team suc-
ceeded in enhancing Satoshi's UTxO model with smart contract capabilities, naming
this novel approach the extended Unspent Transaction Outputs (eUTxO) model.

1The Guardian's report: https://www.theguardian.com/technology/2017/jul/11/
gox-bitcoin-exchange-mark-karpeles-on-trial-japan-embezzlement-loss-of-millions

2Reuters' report: https://www.reuters.com/article/us-crypto-currencies-quadriga/
canadian-cryptocurrency-firm-collapsed-due-to-ponzi-scheme-by-late-founder-regulator-says-idUSKBN23I3AF/

3As of the time of writing, the total value locked in UniSwap is $3.74 billion: https://defillama.
com/chain/Ethereum

2

https://www.theguardian.com/technology/2017/jul/11/gox-bitcoin-exchange-mark-karpeles-on-trial-japan-embezzlement-loss-of-millions
https://www.theguardian.com/technology/2017/jul/11/gox-bitcoin-exchange-mark-karpeles-on-trial-japan-embezzlement-loss-of-millions
https://www.reuters.com/article/us-crypto-currencies-quadriga/canadian-cryptocurrency-firm-collapsed-due-to-ponzi-scheme-by-late-founder-regulator-says-idUSKBN23I3AF/
https://www.reuters.com/article/us-crypto-currencies-quadriga/canadian-cryptocurrency-firm-collapsed-due-to-ponzi-scheme-by-late-founder-regulator-says-idUSKBN23I3AF/
https://defillama.com/chain/Ethereum
https://defillama.com/chain/Ethereum

CHAPTER 1. INTRODUCTION

Cardano launched its smart contract support with the Alonzo fork on September 12,
2021. Shortly after, a robust DeFi ecosystem began to develop, including the first Car-
danoDEXs: MuesliSwap, SundaeSwap, andMinSwap, all launching between late 2021
and early 2022. Initially, these DEXs faced challenges adapting Ethereum's DeFi proto-
cols to the eUTxO model, prompting them to develop unique solutions. Although Car-
dano's DeFi ecosystem is valued at over $200 million, most scientific literature around
DeFi focuses on Ethereum. Ethereum's account-based model and Cardano's eUTxO
model exhibit significant differences, and we believe more focus should be given to
DeFi within the eUTxO model. Therefore, this will be the primary focus of this work.

Structure of this work
In Chapter 2, we will begin by introducing key definitions that are essential to under-
standing this work's concepts, though thesemay already be familiar to those well-versed
in blockchain-related fields.

In Chapter 3, we will analyze how different blockchains track users' balances, ex-
ploring each blockchain's accounting model. Specifically, we will define and discuss
Bitcoin's UTxOmodel, Ethereum's account-basedmodel, and Cardano's eUTxOmodel.
Wewill also examine the concurrency issue and compare the eUTxO and account-based
models.

In Chapter 4, we will formally define decentralized finance applications, focus-
ing particularly on two DEX paradigms: Automated Market Makers and Limit Order
Books, while discussing their properties.

In Chapter 5, we will explore the concept of Miner Extractable Value, which refers
to the additional profits that rational block producers can earn by manipulating trans-
action inclusion and ordering.

In Chapter 6, we will apply the previously defined concepts to analyze three major
Cardano DeFi projects, identifying a security vulnerability within each.

Finally, in Chapter 7, we will present our conclusions from the analysis of Cardano's
DeFi ecosystem and highlight open challenges related to DeFi in the eUTxOmodel. We
will also offer our perspective on the future direction of research in this area.

3

4

CHAPTER2
PRELIMINARIES

2.1 Cryptography
Below, we will briefly define and discuss some cryptographic primitives that are used
in all blockchain protocols. We will treat these primitives as black boxes, using them
without delving into their theoretical definitions and analyses, as these aspects are or-
thogonal to our work.

Definition 2.1 (Hash function, [8]). A hash function (with output length ℓ) is a pair of
probabilistic polynomial-time algorithms (Gen,H) satisfying the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1n and
outputs a key s. We assume that 1n is implicit in s.

• H takes as input a key s and a string x ∈ {0, 1}∗ and outputs a string Hs(x) ∈
{0, 1}ℓ(n), where n is the value of the security parameter implicit in s.

Definition 2.2 (Collision resistant Hash function, [8]). A hash functionΠ = (Gen,H)
is collision resistant if for all probabilistic polynomial-time adversaries A, there exists
a negligible function negl such that

Pr[Hash-collA,Π(n) = 1] ≤ negl(n).

All the hash function we are interested in this work exhibit the collision resistance
property.

Definition 2.3 (Signature Scheme, [8]). A (digital) signature scheme consists of three
probabilistic polynomial-time algorithms (Gen, Sign,Vrfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1n and
outputs a pair of keys (pk, sk). These are called the public key and the private
key, respectively. We assume that pk and sk each have length at least n, and that
n can be determined from pk or sk.

2. The signing algorithm Sign takes as input a private key sk and a messagem from
some message space (which may depend on pk). It outputs a signature σ, and we
write this as σ ← Signsk(m).

5

2.2. GAME THEORY

3. The deterministic verification algorithm Vrfy takes as input a public key pk, a
message m, and a signature σ. It outputs a bit b, where b = 1 means valid and
b = 0 means invalid. We write this as b := Vrfypk(m,σ).

It is required that, except with negligible probability over (pk, sk) output byGen(1n),
it holds that Vrfypk(m, Signsk(m)) = 1 for every (legal) messagem.

If there is a function ℓ such that for every (pk, sk) output by Gen(1n) the message
space is {0, 1}ℓ(n), then we say that (Gen, Sign,Vrfy) is a signature scheme for mes-
sages of length ℓ(n).

We callσ a valid signature on amessagem (with respect to pk and sk) if Vrfypk(m,σ) =
1.

By using a digital signature scheme, we can establish a notion of identity in a per-
missionless ad-hoc network such as a blockchain. Each entity in this network generates
a public key and uses a series of hashes on it to create an address. Transactions orig-
inating from a particular address are signed with the user's private key. Henceforth,
we will assume that this transaction validation process is performed each time. Valid
transactions are accepted by the consensus mechanism participants and submitted for
consensus, while invalid transactions are discarded.

2.2 Game theory
In game theory, strategic agents interact with one another, aiming to maximize their
individual payoff or utility. The rules or circumstances that govern this strategic in-
teraction can be collectively described as a game. Below, we will provide some ba-
sic game-theoretic definitions as presented in a number of introductory textbooks on
game theory, such as [9]. We will also discuss some fundamental results of the profit-
maximization mindset in blockchain, specifically how strategic behavior shapes the
design of distributed mechanisms.

Definition 2.4 (Game, [9]). A game is defined as a tuple G = (N,S, u), where:

• N = {1, 2, . . . , n} is the set of players.

• S = S1 × S2 × · · · × Sn is the strategy space, where Si is the set of strategies
available to player i.

• u = (u1, u2, . . . , un) is the payoff or utility function, where ui : S → R gives
the payoff to player i for each strategy profile s = (s1, s2, . . . , sn) ∈ S.

Definition 2.5 (Utility Function, [9]). A utility or payoff function ui : S → R is a
function that assigns a real number (utility) to each strategy profile s ∈ S, representing
the payoff or satisfaction player i receiveswhen the strategy profile s = (s1, s2, . . . , sn)
is played.

Definition 2.6 (Expected Utility,[9]). For a set of outcomes x1, x2, . . . , xn with corre-
sponding probabilities p1, p2, . . . , pn, the expected utility for a player j is given by:

E[uj] =

n∑
i=1

piuj(xi)

.

6

CHAPTER 2. PRELIMINARIES

In game theory, each player is considered rational, i.e. they consistently choose
strategies that maximize their utility, given their beliefs about the strategies of other
players. Rationality implies that each player will select a strategy that provides the
highest expected payoff. This assumption leads naturally to the next definition.

Definition 2.7 (Strictly Dominated Strategies, [9]). A strategy si ∈ Si for player i is
strictly dominated if there exists another strategy s′i ∈ Si such that for every possible
combination of the other players' strategies s−i ∈ S−i, the following holds:

ui(s
′
i, s−i) > ui(si, s−i) for all s−i ∈ S−i.

This means that no matter what the other players do, player i will always receive a
higher payoff by choosing s′i over si.

Player rationality implies that a profit maximizing player will never choose a strictly
dominated strategy.

2.2.1 Game theory in Blockchain; Classical results
In classical distributed computing literature, most models were constructed to account
for participants that might go inactive (crash fault tolerance)[10] or be corrupted by an
adversary (Byzantine fault tolerance)[11] during the execution of protocols. This fo-
cus stemmed from the fact that BFT mechanisms were originally designed to operate
among a fixed number of known participants, such as a group of servers owned by a
single company. Therefore, the threat model was limited to an adversary crashing or
corrupting up to a fixed number of honest parties. The remaining honest parties were
assumed to behave as the protocol intended. This made sense at the time because the
honest parties were servers, usually geographically distributed across the planet, all
owned by a single company.

With the rise of Bitcoin and permissionless consensus mechanisms, it became pos-
sible for parties to connect ad hoc to a network and participate in its consensus. Of
course, numerous papers have analyzed Nakamoto-style consensus under the same as-
sumptions as BFT, including the Bitcoin Backbone[3], a seminal paper by Garay, Ki-
ayias, and Leonardos. These works were necessary for ensuring the security of Bitcoin
and other Nakamoto-style protocols, but one wonders if they are sufficient. Specifi-
cally, the honest-adversary security model may fail to capture a third type of actor in a
permissionless consensus protocol: the profit maximizer. This actor is neither honest,
i.e., following the consensus protocol to the letter, nor an adversary who does every-
thing in their power to harm the consensus. They are simply rational and utilize the
consensus mechanism to maximize their utility, bending the rules slightly whenever it
benefits them.

The first work to introduce the concept of rationality in blockchain protocols is [12].
In this work, Eyal et al. introduced the selfishmining strategy for block producers (BPs).
Selfish mining involves a BP creating a block, B1, and not immediately publishing it.
Instead, they keep it private and work to extend their chain. When a new block, B2, is
published by a third party, they then publish their private block in an attempt to orphan
B2.

Definition 2.8 (Selfish Mining, [13]). The Selfish-Mine strategy can be summarized as
follows:

7

2.3. THE CARDANO BLOCKCHAIN

• Which Block: Oldest blockm.

• Private Chain Length: Privatem.

• Publish Block B?:

– If Height(B) = H , then yes.
– If RacingmH is true, and Privatem = H + 1, then yes.
– Otherwise, no.

Racingmi is a boolean variable that is true if there are two blocks of height i, one
produced by the minerm and the other by another miner.

Eyal et al. proved that:

ui(sselfish mining, s−i) > ui(shonest, s−i), ∀i ∈ N

Following the shellfish mining strategy, rather than being honest, strictly increases
a BP's rewards, thus strictly dominating honest behavior. Additionally, the greater their
hashing power as a percentage of the overall network's hashing power, the larger their
reward. Consequently, BPs are incentivized to form increasingly large coalitions to ex-
ecute the selfish mining strategy. Large miner coalitions pose a serious decentralization
risk for Bitcoin and can lead to security breaches or forks1.

2.3 The Cardano blockchain
Below, we will analyze several key concepts of the Cardano blockchain. We will break
down our analysis into three separate layers, namely the Network Layer, the Consensus
Layer, and the Application Layer. Each layer operates on top of the others.

2.3.1 Network Layer
Currently, the Cardano network operates under the "dynamic Peer-to-Peer" model, as
described in the IOG2 documentation [14] [15].In this model, there are two distinct
types of nodes:

• Block-producing nodes: These nodes are responsible for participating in Car-
dano's consensus mechanism. Block producers run block-producing nodes that
require incoming connections to receive block information and outgoing connec-
tions to propagate the blocks they generate. We will explore the responsibilities
of BPs in more detail later in this chapter, particularly as they relate to their role
in the consensus mechanism.

• Relay nodes: These nodes are responsible for communicating with other relays
in the network and broadcasting blocks from block-producing nodes. There is a

1At the time of writing, the two largest mining pools control more than 51% of the total hashing power
in Bitcoin. You can check the hashing power allocated across different entities in Bitcoin in real-time here:
https://hashrateindex.com/hashrate/pools

2Input Output Global (IOG) was the company responsible for developing Cardano until the Chang hard-
fork, when the responsibility for development and governance of the Cardano blockchain shifted to the com-
munity, utilizing on-chain governance tools for decision-making

8

https://hashrateindex.com/hashrate/pools

CHAPTER 2. PRELIMINARIES

subcategory of relay nodes, known as trusted relays. A trusted relay is responsi-
ble for providing accurate on-chain data for decentralized applications (DApps),
i.e., protocols that utilize the Cardano blockchain for data storage and operate in
a decentralized manner. Each DApp has a different set of trusted relays.

Figure 2.1: A visualization of the Cardano network topology, as given in [15]

Relay nodes act as an additional defense layer, securing a block-producing node
from being directly accessible to adversarial entities on the network. The protocol
requires that each Block Producer operates one block-producing node and two relay
nodes. Due to the anonymity of the network, a Block Producer may control more relay
nodes.

Essentially, relay nodes are utilized by Block Producers in a gossip protocol [16].
A gossip protocol is a method for information propagation in distributed and ad-hoc
networks like Cardano.

2.3.2 Consensus layer
At the time of writing, Cardano uses Ouroboros Praos [17], the second iteration of the
Ouroboros [18] protocol family, designed by Kiayias et al. Ouroboros is a longest-chain
(Nakamoto-style) Proof-of-Stake consensus protocol. We will briefly discuss and ana-
lyze some primitives of the Ouroboros protocol that are relevant to our work and are,
at this point, widely known, while treating all other aspects of Ouroboros as a black box.

Cardano employs the Ouroboros consensus mechanism to maintain a robust public
transaction ledger. The entities that use this transaction ledger to maintain and exchange
value are called users. The entities responsible for maintaining and updating the trans-
action ledger are called miners or Block Producers (BPs).

Transactions are submitted by users to BPs for inclusion in the ledger. BPs check if
these transactions are valid and subsequently order these transactions. The execution

9

2.3. THE CARDANO BLOCKCHAIN

of these transactions happens serially as they are ordered. This ordering is encoded
as a block. A block consists of its header and its body. The body consists of the or-
dered transactions and other consensus-specific information (such as a nonce and the
timestamp). The header is a hash of the body, thus encoding the block in an immutable
manner. In turn, blocks are ordered by the consensus mechanism, forming a chain of
blocks or a blockchain. The time window in which a block is created and validated
through consensus is named a round of the protocol.

Note that users do not participate in the consensus and, thus, are not able to submit
transactions themselves. Instead, they must submit their transactions through a BP. Due
to the distributed nature of the blockchain, each BP has knowledge of different submit-
ted transactions waiting for block inclusion. This is known as a BP's local knowledge
or mempool (short for memory pool).

Finally, BPs are incentivized to maintain the ledger by the ledger itself. This is
done by BPs receiving fees for including each transaction in a block. We note that,
compared to other blockchains like Ethereum, in Cardano the users do not decide the
amount of this fee. Instead, the fee is computed by a predefined rule of the protocol and
is proportional to each transaction's complexity and memory requirements.

2.3.3 Application Layer
The application layer consists of decentralized applications (DApps) that run on top of
the blockchain. These DApps function by deploying smart contracts on the blockchain.
A smart contract is a self-executing program with predefined rules that, when certain
conditions are met, automatically executes the encoded logic, such as triggering a trans-
action or updating a state.

On the Cardano blockchain, smart contracts are written using functional program-
ming languages, making them resemble functions that produce deterministic outputs
for specific inputs. In this work, we assume that smart contracts behave as intended by
their creators and do not delve into bugs that may arise from programming errors. One
can think of Smart contracts3 imbuing programmability on the blockchain.

In [21], Warner et al identify four properties that smart contracts need to have in
order for DeFi applications to run on top of them. They must:

1. Be expressive enough to encode protocol rules.

2. Allow conditional execution and bounded iteration.

3. Be able to communicate with one-another, via message-calls, within the same
execution context (typically a transaction).

4. support atomicity, i.e., a transaction either succeeds fully or fails entirely.

Of course, not all data used by DApps comes from smart contract execution. Many
DApps need to track on-chain information about their users, such as asset ownership
and account balances. To achieve this, as explained earlier, each DApp relies on a set

3Interestingly, the concept of smart contracts predates blockchain technology, originating in 1997[19],
[20].

10

CHAPTER 2. PRELIMINARIES

of trusted relay nodes. These relay nodes are responsible for providing accurate and
up-to-date data to their respective DApps.

11

2.3. THE CARDANO BLOCKCHAIN

12

CHAPTER3
LEDGER MODELS

Much like traditional banking, in a distributed ledger, each user possesses accounts with
which they transact with one another. Due to the financial nature of the application, we
should be careful so users cannot double spend tokens, i.e., the total balance on their
accounts should not exceed the tokens that they can spend in future transactions.

There are several ways to represent the abstract notion of account balance, and each
one is specifically tied to the underlying blockchain on top of which the distributed
ledger is maintained. The account balance abstraction is known as ledger model [22].
The two most dominant paradigms are Bitcoin's UTxOmodel and Ethereum's account-
based model.

Ethereum turned away from Bitcoin's UTxO paradigm because, at that time, it was
believed that the UTxO model could not support additional programmability. Hence,
the account-based model was developed with smart contract support in mind. Later,
Cardano's team introduced a generalization of the UTxO model, named the extended
UTxOmodel, which was indeed capable of supporting smart contracts. In the rest of this
chapter, we will take a deep dive into how transactions are represented in each ledger
model.

3.1 The account-based model

The account-based model can be thought of as operating similarly to a digital banking
system. In this model, the decentralized ledger maintains a database of each user's out-
standing account balance, i.e., the amount of token X that each user possesses and has
not yet spent. A user's balance for each token she possesses is encoded in her account
state. Themapping between account addresses and account states is known as theworld
or global state of the blockchain.

Definition 3.1 (World state, [23]). The World State in Ethereum can be represented
as a mapping:

13

3.1. THE ACCOUNT-BASED MODEL

WorldState : Address→ AccountState

Each account in Ethereum is represented by an account state, which is a tuple:

AccountState = (nonce, balance, storageRoot, codeHash)

• nonce: A scalar value that tracks the number of transactions sent from the account
(for externally owned accounts) or the number of contract creations (for contract
accounts).

• balance: A scalar value equal to the amount of ETH (Ethereum's native token)
owned by the account.

• storageRoot: The root of the Merkle Patricia Trie that encodes the storage con-
tent of the account.

• codeHash: The hash of the EVM (Ethereum Virtual Machine) bytecode associ-
ated with the account. For externally owned accounts, this field is empty.

We will now give a simple example to illustrate how the account-based model op-
erates. In this scenario, we assume that each entity identifies herself on the blockchain
by leveraging an existing public key infrastructure (PKI), but we abstract away this
fact for simplicity. Let's suppose that both Alice and Bob have a balance of 100 tokens
of X in their accounts and Alice wants to send Bob 30 tokens. She also needs to pay
a transaction fee of 2 tokens. Let's see how this transaction will be processed in this
model.

Alice submits her transaction to a BP. The BP will query her local view of the
blockchain and verify that Alice indeed has enough balance in her account to execute
this transaction. After Alice's transaction has been included in the blockchain, Alice's
and Bob's account balances will be adjusted accordingly.

Notice that to describe the above-mentioned example, the notion of coin or token
identity was not needed. In the account-based model, each user account is simply a list
of their owned assets, and tokens are indistinguishable from one another.

3.1.1 Ethereum Transactions
The account-basedmodel is formally described byGavinWood, an Ethereum co-founder,
in Ethereum's Yellow Paper [23]. In this construction, Ethereum can be viewed as a
transaction-based state machine.

Definition 3.2 ([24]). A state machine is defined as a 5-tuple (Q,Σ, δ, q0, F) where:

• Q is a finite set of states.

• Σ is a finite set of input symbols (the alphabet).

• δ : Q×Σ→ Q is the state transition function, mapping a state and input symbol
to a new state.

14

CHAPTER 3. LEDGER MODELS

30 tokens

2 tokens as fees

Alice
New Balance:

68 tokens

Bob
New Balance:

130 tokens

Figure 3.1: A transaction in the account-basedmodel. The edges represent transactions,
and the nodes represent accounts.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting (or final) states.

For more information about state machines, see [24] by Hopcroft, Motwani and
Ullman.

Definition 3.3 (Ethereum canonical version,[23],simplified). To adapt the state ma-
chine definition to Ethereum's notation:

• State (σ): The global state of Ethereum at time t, denoted σt. It encodes infor-
mation such as account balances, contract storage, etc.

• Initial State (σ0): This in an arbitrary initial state from which all BPs start from.
Specifically in Ethereum, it is its Genesis block.

• Transactions (T): Operations that trigger state transitions. Each transaction rep-
resents valid arcs between states.

• Ethereum state transition function (Υ): Defines how the global state σt is
transformed into a new state σt+1 based on the execution of a transaction T :

σt+1 ≡ Υ(σt, T)

15

3.1. THE ACCOUNT-BASED MODEL

• Blocks (B): Transactions are grouped into blocks by a resource-intensivemethod
like a PoW or PoS. Formally:

B ≡ (. . . , (T0, T1, . . .), . . .)

• Block-level state transition function(Π): Determines how the state is updated
based on the transactions within a block:

σt+1 ≡ Π(σt, B) ≡ Υ(B,Υ(Υ(σt, T0), T1), . . .)

There are several things to be unpacked in this definition, in particular, what hap-
pens in the BP's local view, and what happens in the blockchain's global view.

Blocks are produced by BPs and contain not-yet-executed transactions that were
part of their local mempool at the time of block creation. Hence, to produce a valid
block, a BP needs to apply the state transition function until her local mempool is empty
or the block size limit has been reached. Notice that a BP has complete control over
what transactions are included in the block and in what order, as long as all transactions
are valid. We will then see that this ability, coupled with the fact that BPs in our model
are rational, creates additional complexities in DeFi.

Let us now shed some light on how BPs are synchronized to update the global state
in each epoch. When a valid block is produced, it is propagated in the network. Then,
BPs run Ethereum's BFT-style consensus mechanism. The way consensus is achieved
is orthogonal to our work, and we won't go into much detail here. For more informa-
tion about it, see [25] by Vitalik and Griffith. After all fork resolution rules have been
applied and consensus has been reached, each BP accepts the same block. With it, she
applies the block transition function to her previous local state, arriving at a new one.
Observe that all BPs begin from the same initial state (the Genesis block), and in each
round, apply the block transition function with the same block. Hence, they are syn-
chronized once again to achieve a single global state.

Definition 3.4 (Account-based transaction, [26]). An account-based transaction is de-
fined as:

Acctx := (sender : Address, receiver : Address, value : Value, forge : Value, fee : Value)

Where:

• The sender field indicates the sender's address.

• The receiver field indicates the receiver's address.

• The value field indicates the transaction's value, denominated in native tokens.

• The forge field indicates the total amount of tokens created in this transaction.
It is only relevant for transactions that mint new tokens, often called coinbase
transactions. Coinbase transactions are the only type of transactions to which
the conservation law does not apply. A blockchain's minting policy is outside the
scope of this work and thus is only included here for completeness.

• The fee field indicates the amount of tokens transferred to the BP of the block in
which this transaction is included.

16

CHAPTER 3. LEDGER MODELS

3.2 The UTxO model
We now turn to the Unspent Transaction Outputs (UTxO) ledger model, first encoun-
tered in Bitcoin. As the name suggests, UTxO blockchains treat each individual account
balance as the sum of the value of the unspent transactions belonging to that account.

Let’s examine how transactions in the UTxO setting look. Again, because we are
only interested in the way transactions are created and recorded in the ledger, we will
abstract away many of the technical details. Value (denominated in tokens) is grouped
together and encoded by cryptographic hashing. These coalition resistant hash encod-
ings of value are known simply asUnspent Transaction Outputs (UTxOs). Each UTxO
transaction has inputs and outputs. Its inputs are the UTxO hashes of previous transac-
tions which are not yet spent. Its outputs are also UTxO hashes, such that the total value
of the input transactions has to be equal to the total value of the output transactions. This
property is known as the conservation law. Summing up, a UTxO transaction consumes
UTxOs and creates new ones, while maintaining the total value.

Definition 3.5 (Conservation Law, [27], adjusted). If υ represents the value of a trans-
action then for every transaction is must hold that:∑

i∈UTxO input set

υi =
∑

j∈UTxO output list

υj

Much like the account-based model is akin to digital banking, accounting in the
UTxO setting closely resembles cash transactions. Hence, Bitcoin transactions operate
like cash transactions, except for some improvements, as elegantly captured by Zah-
nentferner in [26]:

• Arbitrary Denominations: Cash has fixed denominations (e.g., $1, $5, $10),
while Bitcoin allows arbitrary amounts encoded in UTxOs.

• Transaction Process: In cash transactions, physical coins and notes are passed
intact. In Bitcoin, UTxOs are destroyed when spent and new ones of equal value
are created.

• Exact Payment: With cash, if the exact amount isn't available, the buyer over-
pays and waits for change. In Bitcoin, the buyer can send the exact payment and
receive the change in the same transaction.

Again, we will illustrate the way that the UTxO model operates by revisiting our
previous example. Let’s suppose that Alice has a balance of 100 tokens, sends Bob 30
tokens, and also pays 2 as fees. In our cash analogy, Alice would go to a bank, ex-
changing one of her two $50 bills for change. Then she would give $30 to Bob, $2 for
fees, and keep the change ($18).

To spend tokens in this setting, Alice needs to reference her previous UTxOs as
input in her new transaction. Let’s assume that Alice owns two UTxOs from previous
transactions, each one having a value of 50 tokens. Alice creates a transaction with one
of the 50-token UTxOs as input. This transaction will create three UTxO outputs: one

17

3.2. THE UTXO MODEL

belonging to Bob with a value of 30 tokens, one belonging to the BP of Alice's block
with a value of 2 tokens, and one belonging to Alice with a value of 18 tokens. Each of
these output transactions is now owned by their corresponding entities and can be used
as input to future transactions.

30 tokens

2 tokens as fees

Alice
New Balance:

68 tokens

Bob
New Balance:

130 tokens

Transfer of Value

UTxO Transaction Composition

UTxO
Transaction

UTxO Inputs UTxO OutputsTo: Bob
Value: 30

To: Alice
Value: 18

To: BP
Value 2

From: Alice
Value: 50

18 tokens

Figure 3.2: A transaction in the UTxO model.

When Alice submits her transaction to the BPs for inclusion in the blockchain, the
BPs need to validate that the Conservation Law is upheld. They also need to validate
that Alice has not already spent her UTxO inputs. To do so, BPs hold a list of all un-
spent UTxOs, which is known as the UTxO set. In each round, when new blocks are
created and propagated throughout the network, each BP participates in the consensus
mechanism to determine which block to accept. From the agreement property, each
honest BP will accept the same block. Thus, after the round, all honest BPs' UTxO sets
will be identical.

Overall, a UTxO transaction consists of a set of inputs and a list of outputs, where
outputs represent a specific UTxO that can be spent as an input of future transactions.
Each output can be spent by exactly one input. Thus, cycles are not allowed in these
connections, so a collection of transactions that spend from one another can be viewed
as a directed acyclic graph (DAG) [27]. In this DAG, a transaction with m inputs and
n outputs is represented by a node with m incoming edges and n outgoing edges. Ad-
ditionally, the conservation law must be upheld in each internal node.

18

CHAPTER 3. LEDGER MODELS

3.2.1 UTxO Transactions
Definition 3.6 (UTxO transaction output,[26], adjusted). A UTxO transaction output
is in the form of:

Output := (address : Address, value : Value)

where the Address field corresponds to the UTxO's owner, and the Value field indicates
the UTxO's value denominated in native tokens.

Definition 3.7 (UTxO transaction input,[26], adjusted). A UTxO transaction input is
in the form of:

Input := (id : Id, index : Int)

where the id field references a previous unspent transaction that this input refers to, and
the index field indicates which of the referred transaction’s ordered outputs should be
spent in this transaction.

Definition 3.8 (UTxO transaction,[26], adjusted). A UTxO-based transaction is de-
fined as:

UTxOtx := (inputs : Set[Input], outputs : List[Output], forge : Value, fee : Value)

Where:

• Inputs are elements of the UTxO set.

• Outputs are ordered in a list so that they can be referenced by future transactions.

• The forge field indicates the total amount of tokens created in this transaction.
It is only relevant for transactions that mint new tokens, often called coinbase
transactions. Coinbase transactions are the only type of transactions the conser-
vation law does not apply to. A blockchain's minting policy is outside the scope
of this work and thus is only included here for completeness.

• The fee field indicates the amount of tokens transferred to the BP of the block
that this transaction is included in.

3.2.2 Bitcoin Transactions
The UTxO ledger model definitions we presented in this section help establish some
intuition about the inner workings of the UTxOmodel, but they don't exactly reflect the
reality of Bitcoin. We will amend this though, following Zahnentferner's definitions on
[28]. To do so, we first have to introduce two new primitives, namely redeemers and
validators.

The UTxO ledger model definitions we presented in this section help establish some
intuition about the inner workings of the UTxOmodel, but they don't exactly reflect the
reality of Bitcoin. We will address this by following Zahnentferner's definitions in [28].
To do so, we first need to introduce two new primitives, namely redeemers and valida-
tors.

19

3.2. THE UTXO MODEL

A validator is a script associated with each transaction output in Bitcoin. Unlike
the abstracted UTxO model, where the owner's address is encoded in the UTxO, the
validator script defines the conditions that must be met for a UTxO to be spent in future
transactions. When a transaction is created, each output includes this validator script,
which is an algorithm that determines how a UTxO should be spent. Usually, the val-
idator checks if the provided signature matches the corresponding private key, although
its logic can be more complex.

A redeemer is a script provided by a transaction input that interacts with the cor-
responding validator script of the output it aims to spend. When a transaction input
attempts to spend a UTxO, its redeemer script supplies the necessary data or proof
required by the validator script to authorize the spending. If the redeemer script suc-
cessfully meets the criteria defined by the validator script, the input is considered valid,
and the transaction can proceed. If it fails, the transaction is invalid, and the output
cannot be spent.

Together, the validator and redeemer scripts can be thought of as a lock-and-key
system, where the validator script locks the output with specific conditions, and the re-
deemer script unlocks it by providing the required proof or data.

Definition 3.9 (Bitcoin transaction output, [28], adjusted). ABitcoin transaction output
is in the form of:

Output := (validator : Script, value : Value)

where the validator field corresponds to a cryptographic hash of the validator script
(that is kept off-chain), and the value field indicates the UTxO's value denominated in
native tokens. Notice that there is no mention of the owner's address in this iteration
of the UTxO model. The proof of ownership is left to the validator script, which is
accomplished using cryptography.

Definition 3.10 (Bitcoin transaction input, [28], adjusted). A Bitcoin transaction input
is in the form of:

Input := (id : Id, index : Int, redeemer : Script)

where the id field references a previous unspent transaction that this input refers to, and
the index field indicates which of the referred transaction’s ordered outputs should be
spent in this transaction. The redeemer field contains the appropriate script that will
interact with the validator script and allow the referenced UTxO to be spent.

Definition 3.11 (Bitcoin transaction, [28], adjusted). A Bitcoin transaction defined as:

BUtxoTx := (inputs : Set[Input], outputs : List[Output], forge : Value, fee : Value)

where each field is identical to the corresponding UTxO transaction definition given
above.

20

CHAPTER 3. LEDGER MODELS

3.3 The eUTxO model
Due to the UTxO model's limited expressiveness, it was believed that it could not sup-
port complex transaction logic, such as escrow deposits or loans. However, Chepurnoy
et al. proved in [29] that a UTxO blockchain is, in fact, Turing-complete [30], and
therefore capable of supporting smart contracts.

Following up, Chakravarty et al. introduced the extended Unspent Transaction Out-
puts (eUTxO) model in [22]. The eUTxO model is an expansion of the UTxO model,
inheriting all of its characteristics and properties. Specifically, as in Bitcoin, each trans-
action references previous UTxOs as inputs and produces UTxOs as outputs, which can
be referenced by future transactions. Additionally, the eUTxO model employs the re-
deemer and validator primitives.

Additionally, they augmented the standard UTxO model with these three novel
primitives:

• Datum: An additional piece of data carried by all transactions, passed on as an
additional input to the validator script. This enables a smart contract to store
some notion of state without altering the validator code.

• Context: Additional information about the transaction that is being validated. It
enables the validator to enforce much stronger conditions than is possible with a
bare UTxO model. In particular, it can inspect the outputs of the current transac-
tion. The information provided by Context is entirely determined by the transac-
tion itself.

• Validity Interval: The time interval in which a transaction can be processed. It
is measured in ticks, i.e., a monotonically increasing unit of progress in the ledger
system. It corresponds to the block number or block height.

To illustrate the eUTxO model, we will reiterate the example given by Chakravarty
et al. in [28], a multisignature wallet. Specifically, we wish to create a smart contract
that locks value υ and has a set of m signatures hard-coded into it. In order for υ to
be spent, at least n signatures need to be collected (m > n). We will construct a state
machine, use the datum δ to save the state, and use the validator-redeemer interaction
to update the state as needed. See Figure 3.3 for the transition diagram of this state
machine.

Name Symbol Meaning
Transaction tx A transaction on the decentralized ledger
Redeemer ρ The redeemer script for one of the transaction's UTxO inputs
Value υ The value of a transaction denominated in native tokens
Datum δ A piece of data containing contract-specific data.
Validator V (·) The validator script. A transaction is valid if V(υ, δ, ρ, tx) = 1

Table 3.1: List of symbols in eUTxO

• A validator function V along with the datum δ is used to lock υ.

21

3.3. THE EUTXO MODEL

Figure 3.3: Transition diagram for the multi-signature state machine; edges labelled
with input from redeemer and transition constraints. As given in [22]

• The datum δ stores the machine state, which can take the form of:

– Holding, when only the locked value υ is held.
– Collecting((υ, κ, d), sigs), when collecting signatures sigs for a pay-
ment of υ to κ by the deadline d.

• The initial output for the contract is (V, υ, Holding).

• The validator V implements the state transition diagram from Figure 3.3 by:

– Using the redeemer ρ of the spending input to determine the required state
transition.

– Validating that the spending transaction tx is a valid representation of the
newly reached machine state. This requires:
* Ensuring tx keeps υ locked by V .
* Verifying that the state in the datum δ′ is the successor state of δ ac-
cording to the transition diagram.

• The redeemer ρ (state machine input) can take one of four forms:

– Propose(υ, κ, d): Proposes a payment of υ to κ by the deadline d.
– Add(sig): Adds a signature sig to a payment.
– Cancel: Cancels a proposal after its deadline has expired.
– Pay: Makes a payment once all required signatures have been collected.

3.3.1 eUTxO Transactions
Bellow, we will state definitions for the eUTxO transactions, as given in [22].

Definition 3.12 ([22], Adjusted). A eUTxO transaction output is in the form of:

Output := (value : Quantity, addr : Address, datumHash : DataHash)

22

CHAPTER 3. LEDGER MODELS

where the value field indicates the value of the UTxO denominated in native cur-
rency, the address field is a hash of the UTxO's validator script and the datumHash field
is a hash of the transactions data.

Definition 3.13 ([22], Adjusted). A eUTxO transaction input is in the form of:

Input = (outputRef : OutputRef, validator : Script, datum : Data, redeemer : Data)

where:

• The outputRef field references a previous unspent transaction that this input refers
to.

• The validator field indicates this transaction's validator script.

• The datum field indicates this transaction's datum data.

• The redeemer indicates field this transaction's redeemer script.

Definition 3.14 ([22], Adjusted). A eUTxO transaction is defined as:

eUTxOTx = (inputs : Set[Input], outputs : List[Output], validityInterval : Interval[Tick])

where the inputs field indicates the transaction's input set, the outputs field indicates
this transaction's output set and the validityInterval field indicates the amount of time
(measured in ticks) this transaction has to be validated in. We assume that there is some
notion of a current tick for a given ledger.

3.3.2 Concurrency
Concurrency is an issue in the UTxO and eUTxO models. As we have seen during this
chapter, a UTxO transaction references and consumes UTxOs to produce new ones.
This means that if there are multiple transactions referencing the same UTxO, all but
one of them will fail.

To unpack the meaning behind this statement, let's suppose that both Alice and Bob
submit transactions to be included in the same block, txA and txB respectively. Also,
both of these transactions reference the same UTxO, UTxO1. Without loss of general-
ity, we suppose that Alice's transaction is processed first. This results in txA consuming
the UTxO to produce a new one, UTxO2. Hence, UTxO1 is removed from the UTxO
set. When Bob's transaction is processed next, it would be referencing a UTxO not be-
longing to the UTxO set, and thus will fail. Notice that things don't get better for Bob
in subsequent turns; the UTxO his transaction tries to reference will never be back in
the UTxO set.

Concurrency is not a major problem in Bitcoin because the only type of transaction
is a transfer between accounts. Hence, if Alice wants to transfer BTC to both Bob and
Charlie (TxB and TxC respectively), she either has to reference different UTxOs for
each transaction or execute TxB first and then reference the resulting UTxO in TxC .

23

3.4. EUTXO AND ACCOUNT-BASED COMPARISON

In both cases, she simply needs to plan her transactions accordingly.

This is not the case for eUTxO blockchains that support smart contracts, such as
Cardano. Due to the smart contract capabilities of Cardano, several DeFi projects oper-
ate on it. These DeFi projects deploy smart contracts on Cardano to implement various
DeFi applications. Because of the eUTxO model, users can interact with those smart
contracts by referencing them as UTxOs in their transactions. However, due to the
popularity of these smart contracts, there are usually several different users trying to
transact with them at any given moment, often within the timespan of a single block's
creation. As we explained above, only one of these transactions can be valid before
the smart contract's UTxO is altered by it. Thus, only one of these transactions can
be included in a single block. Concurrency creates a bottleneck 1 for the scalability of
an eUTxO blockchain and needs to be addressed by new primitives, resulting in the
off-chain processing of these transactions. We will analyze how concurrency affects
Cardano's DeFi in later chapters.

3.4 eUTxO and account-based comparison
Brünjes and Gabbay provide an in-depth comparison between the eUTxO and account-
basedmodels in [31]. In their work, they formally highlight how eachmodel operates on
a technical level and compare their effectiveness concerning the blockchain's concurrent
and distributed nature.

Ethereum's account-based model naturally aligns with an imperative programming
style, which is by far the most popular style among active developers today. Addition-
ally, in the account-based model, each account is simply a list of asset ownership. This
abstraction feels natural and quite intuitive, which explains why most of the blockchain
industry works on Ethereum2 or an other EVM framework. In Ethereum, a smart con-
tract is a program thatmodifies a global state bymapping global variables, i.e., accounts,
to values. Therefore, Ethereum's smart contracts need to explicitly know the global state
to operate correctly, which is not trivial considering the blockchain's highly concurrent
nature. This has led to many security breaches, including the DAO hack, which cost
Ethereum's ecosystem $70 million.

On the other hand, Cardano's eUTxO is best implemented using a functional pro-
gramming approach. In this model, a smart contract is a function that takes a UTxO-list
as its input and returns a UTxO-list as its output, with no other dependencies. Brün-
jes and Gabbay proved that a UTxO transaction is either valid (and thus included in a
block) or invalid. Most importantly, the validity and outputs of a UTxO transaction can
be determined by considering only its inputs (i.e., the UTxO set). Hence, if a transaction
is submitted for inclusion in the blockchain, at worst, other entities might prevent its
inclusion. However, if the transaction is included in the blockchain, its owner obtains
the originally intended result. This concept is known as transaction determinism, and
is pivotal for DeFi-specific applications. We will highlight its effects in the upcoming
chapters.

1This became apparent to users during the launch of SundaeSwap, Cardano's biggest DEX:
https://cointelegraph.com/news/sundaeswap-launches-on-cardano-but-users-report-failing-transactions

2For a rundown of developer activity in open-source blockchain projects, see:
https://www.developerreport.com/

24

CHAPTER 3. LEDGER MODELS

Example
Finally, we will provide a simple example to illustrate the above-mentioned point, in-
volving three parties: Alice, Bob, and Charlie. We will see how the same series of
transactions are handled by the eUTxO and the account-based models.

Tx0

Tx2

Tx1

Tx3

To: Alice
Value: 6

To: Bob
Value: 4

To: Charlie
Value: 3

To: Charlie
Value: 2

To: Alice
Value: 3

To: Bob
Value: 2

To: Alice
Value: 2

To: Bob
Value: 3

Figure 3.4: A series of transactions involving three parties: A, B and C. The incoming
edges represent an outstanding account balance for A and B.

eUTxO Example
In the eUTxO model, each transaction references specific UTxOs as inputs, and these
UTxOs are consumed to produce new UTxOs. Consider the following series of trans-
actions involving Alice (A), Bob (B), and Charlie (C):

• Tx0: Initial transaction that creates two UTxOs:

– 6 ADA sent to Alice (A).

– 4 ADA sent to Bob (B).

• Tx1: Alice sends 3 ADA to Charlie (C) from the 6 ADA she received.

• Tx2: Bob sends 2 ADA to Charlie (C) from the 4 ADA he received.

25

3.4. EUTXO AND ACCOUNT-BASED COMPARISON

• Tx3: Charlie sends 2 ADA back to Alice and 3 ADA to Bob from the 5 ADA he
received in Tx1 and Tx2.

The sequence of transactions in the eUTxO model is as follows:

Transaction Input (UTXO) Output Resulting Balances
Tx0 O → A 6→ A A: 6 ADA, B: 4 ADA, C: 0 ADA

O → B 4→ B
Tx1 A→ C 3→ C A: 3 ADA, B: 4 ADA, C: 3 ADA
Tx2 B → C 2→ C A: 3 ADA, B: 2 ADA, C: 5 ADA
Tx3 C → A 2→ A A: 5 ADA, B: 5 ADA, C: 0 ADA

C → B 3→ B

Account-Based Model Example
In the account-basedmodel, transactions update the balances of accounts directly. How-
ever, this model can lead to issues if transactions are processed in an arbitrary order.
Consider the following sequence of transactions in two different orders:

First Order (All Transactions Valid):

• Tx0: Alice (A) receives 6 ETH, and Bob (B) receives 4 ETH.

• Tx1: Alice sends 3 ETH to Charlie (C).

• Tx2: Bob sends 2 ETH to Charlie (C).

• Tx3: Charlie sends 2 ETH back to Alice and 3 ETH to Bob.

The resulting balances after each transaction in the account-based model:

Transaction A (ETH) B (ETH) C (ETH)
Tx0 6 4 0
Tx1 3 4 3
Tx2 3 2 5
Tx3 5 5 0

Second Order (Some Transactions Invalid):

• Tx0: Alice (A) receives 6 ETH, and Bob (B) receives 4 ETH.

• Tx1: Alice sends 3 ETH to Charlie (C).

• Tx3: Charlie sends 2 ETH to Alice and 3 ETH to Bob (invalid).

• Tx2: Bob sends 2 ETH to Charlie (C).

In this scenario, the transaction Tx3 is processed before Tx2, which leads to an in-
valid transaction because Charlie (C) would not have enough ETH to send both 2 ETH
to Alice and 3 ETH to Bob before receiving the 2 ETH from Bob.

The resulting balances in the account-based model when processed in the wrong
order:

26

CHAPTER 3. LEDGER MODELS

Transaction A (ETH) B (ETH) C (ETH)
Tx0 6 4 0
Tx1 3 4 3
Tx3 5 5 (Invalid)
Tx2 3 2 5

Key takeaways
In the eUTxO model, the sequence of transaction processing is enforced by the UTxO
input set of each transaction. Hence, it is not possible for Tx3 to be included in the
blockchain before Tx2, since Tx3 references one of Tx2's outputs. It will either be
included after Tx2 or it would be invalid. To rephrase this in graph-theoretic terminol-
ogy, a valid UTxO transaction execution sequence is one that respects the topological
ordering of the UTxO DAG.

In this account-based model example, the arbitrary ordering of transactions can lead
to invalid transactions, which poses a risk to the integrity of the transaction process.

27

3.4. EUTXO AND ACCOUNT-BASED COMPARISON

28

CHAPTER4
DECENTRALIZED FINANCE

Unlike traditional financial systems, which rely on centralized institutions like banks,
decentralized finance (DeFi) projects leverage blockchain smart contracts to enable
users to access financial services without the need for intermediaries.

Perhaps the most popular DeFi application is decentralized exchanges (DEXs).
A DEX project deploys smart contracts that facilitate trading between tokens on the
blockchain. In [21], Warner et al. gave a brief rundown of the ideal properties of a
DeFi application, namely:

1. Non-custodial: participants have full control over their funds at any point in
time.

2. Permissionless: anyone can interact with financial services without being cen-
sored or blocked by a third party.

3. Openly auditable: anyone can audit the state of the system.

4. Composable: its financial services can be arbitrarily composed such that new
financial products and services can be created.

There are two prominent DEX paradigms: Automated Market Makers (AMMs)
and Limit Order Books (LOBs). In the remainder of this chapter, we will provide an
overview of the DeFi infrastructure, define AMMs and LOBs, and compare their re-
spective strengths and weaknesses.

We will first discuss LOBs. The concept is straightforward and closely resembles
how traditional financial institutions (e.g., stock exchanges) operate. Specifically, each
party that wishes to trade a certain asset pair (e.g., asset X for asset Y) declares their
intent, the amount of the asset they wish to trade, and their asking price. For example,
let's say Alice wants to sell 100 units of asset X for at least 80 units of asset Y. This
is a limit order, i.e., an order that is executed only of a certain price limit is met. A
collection of such limit orders is called a limit order book, or LOB for short. An on-
chain LOB utilizes the blockchain to store and match buy orders and sell orders with
one another. The entities responsible for matching buy orders to sell orders are called

29

4.1. TYPES OF SECURITY

market makers and are usually the BPs or some trusted third party. Note that in a LOB,
an order will be executed only when it is matched. Hence, a trader might have to wait
a while for their order to be executed.

On the other hand, as the name suggests, an Automated Market Maker tries to au-
tomate this process, offering near-instant transaction execution. The trade-off is that
in an AMM, traders only have control over their intent and the amount of the traded
asset, but not the price. Instead, the price is set by an on-chain mechanism, which is
publicly verifiable by anyone querying the blockchain. So, returning to our previous
example, instead of Alice being matched with Bob to trade, Alice deposits 100 units of
token X into a smart contract to receive some amount of token Y, based on the current
exchange rate at that time. This type of smart contract is called a liquidity pool because
it offers the required liquidity for the trade to be made in exchange for a predetermined
fee. It obtains said liquidity from other users called Liquidity Providers (LPs). We will
explore AMMs and LOBs in much more detail later in this chapter.

4.1 Types of Security
DeFi is a relatively new and vibrant multidisciplinary area that encompasses primitives
from many other fields such as distributed computing, algorithmic game theory, com-
putational finance, and cryptography. Each area intersects with the others in fine points,
and to achieve overall security, a protocol needs to be safe across all the aforementioned
areas.

Before providing concrete definitions of DeFi, it is prudent to discuss different DeFi
security notions. DeFi has grown rapidly in recent years, and there has been no shortage
of incidents in which users' funds were stolen. These incidents gave rise to two types
of security models: technical security and economic security.

Among the first and most famous breaches in DeFi technical security is the DAO
hack1. In this hack, the attackers manipulated a smart contract and managed to drain
funds valued at $70 million at the time. The Ethereum community intervened, resulting
in a network fork to stop the attack.

Definition 4.1 (Technical Security, [21]). A DeFi protocol is technically secure if it is
not possible for an attacker to atomically exploit the protocol at the expense of value
held by the protocol or its users. Due to atomicity, these attacks can generate risk-
free profit. A common property of technical exploits is that they occur within a single
transaction or a bundle of transactions in a block.

The most common instances of technical breaches in security are:

• Manipulating a smart contract within a single transaction, which is risk-free for
anyone. This manipulation often targets a logical error in the smart contract's
design or a bug in its implementation. These kinds of attacks are atomic (i.e., can
be facilitated by a single party) and risk-free because themanipulating transaction
will either be valid and included in the blockchain, or invalid and discarded. In

1Coindesk report: https://www.coindesk.com/learn/understanding-the-dao-attack/.

30

https://www.coindesk.com/learn/understanding-the-dao-attack/

CHAPTER 4. DECENTRALIZED FINANCE

the first case, the adversary profits, and in the second, they only have to pay a
(relatively small) transaction fee.

• Manipulating transactions within the same block, which is risk-free for the miner
generating that block.

• Bundled transactions created by an attacker that must execute atomically in the
given order. The adversary can chain the transactions in such a way that they are
either all executed in the given sequence, or none of them are executed. These
types of attacks usually involve flash loans. Flash loans are not possible in UTxO
models and are predominant in account-based models. Hence, they are outside
the scope of this work.

Figure 4.1: Diagram of a technical exploit, as presented in [21]. All the adversarial
transactions are executed sequentially.

On the other hand, a DeFi security risk is considered economic if an attacker can
perform a non-atomic exploit to profit at the expense of the protocol or its users. In
an economic exploit, the attacker carries out multiple actions at different points in the
transaction sequence without controlling what happens in between, meaning there's no
guarantee of profit from the final action. Economic security involves an attacker ma-
nipulating a market or incentive structure over a (maybe brief) period of time,but not
instantly. Unlike technical exploits, economic attacks are non-atomic, involve upfront
costs, carry the risk of failure, and often require manipulation across multiple transac-
tions or blocks.

An example of an economic attack is the Harvester incident2, costing its users
around $24M. The attacker took out a large loan in cryptocurrency and used this bor-
rowed money to temporarily manipulate the prices of cryptocurrencies that Harvest
Finance was using. This manipulation took place on other DEXs that Harvest Finance
was tracking. By artificially changing the prices, they made it look like their deposits
were worth much more than they actually were. The hackers then withdrew this in-
flated amount, repaid the loan, and kept the difference as profit. The hack was possible
because of the way Harvest Finance calculated the value of its investments. The at-
tackers took advantage of the fact that the platform relied on external sources to get

2Coindesk report:https://www.coindesk.com/tech/2020/10/26/
harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit/.

31

https://www.coindesk.com/tech/2020/10/26/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit/.
https://www.coindesk.com/tech/2020/10/26/harvest-finance-24m-attack-triggers-570m-bank-run-in-latest-defi-exploit/.

4.2. LIMIT ORDER BOOKS

the prices of cryptocurrencies. By manipulating these prices for a short period, they
tricked the system into giving them more money than they were supposed to get.The
attack was non-atomic because it involved several coordinated steps across different
DeFi protocols to manipulate the market prices. The success of the attack depended on
the broader economic environment, such as the liquidity in the market and how quickly
the manipulated prices could be used to drain funds from Harvest Finance.

Definition 4.2 (Economic Security, [21], adjusted). A DeFi protocol is economically
secure if it is economically infeasible (e.g., unprofitable) for an attacker to perform ex-
ploits that are strictly non-atomic at the expense of value held by the protocol or its
users. As economic exploits are non-atomic (or else they are better described as techni-
cal), they are not risk-free. A central assumption in considering the class of economic
security attacks is that of game theoretic rationality.

Figure 4.2: Diagram of an economical exploit, as presented in [21]. There are transac-
tions between the attacker's transactions, reflecting the non-atomic nature of the attack.

Overall, this dichotomy clarifies the attacks in a straightforward manner. Technical
attacks stem from problems that occur during the implementation of the protocol, in-
cluding issues in cryptography and smart contract design. On the other hand, economic
attacks exploit weaknesses in the protocol’s economic model, involving issues related
to its game-theoretic or financial blueprint.

4.2 Limit Order Books
Limit order books are the most common framework to facilitate trade in traditional fi-
nance. Most of the stock exchanges around the world operate under this general frame-

32

CHAPTER 4. DECENTRALIZED FINANCE

work. In a LOB, each party that intends to trade a specific asset pair (e.g., asset X
for asset Y) submits their intent, the quantity of the asset they wish to trade, and their
desired price. This type of order, which is executed only when a specified price condi-
tion is met, is known as a limit order. A collection of these limit orders forms what is
known as a limit order book (LOB). The entities responsible for matching these orders
are called market makers or matchmakers.

In a LOB, every trader has the option of posting buy (respectively, sell) orders.
Formally:

Definition 4.3 (Limit Order Book (LOB), [32], Adjusted). An order x = (px, ωx, tx)
submitted at time tx with price px and size ωx > 0 (respectively, ωx < 0) is a com-
mitment to sell (respectively, buy) up to |ωx| units of the traded asset at a price no less
than (respectively, no greater than) px. A LOB L(t) is the set of all active orders in a
market at time t.

In each time t, there are two price thresholds that describe the state of the LOB,
namely the bid and ask prices.

Definition 4.4 (Bid price, [32]). The bid price at time t is the highest stated price among
active buy orders at time t,

b(t) := max
x∈B(t)

px.

Definition 4.5 (Ask price, [32]). The ask price at time t is the lowest stated price among
active sell orders at time t,

a(t) := min
x∈A(t)

px.

Definition 4.6 (Bid-ask spread,[32]). The bid-ask spread at time t is s(t) := a(t)−b(t).

At any given time t, the bid price b(t) and the ask price a(t) determine the thresholds
for trades:

Definition 4.7 (Price changes in LOBs, [32], Adjusted). Consider a buy (respectively,
sell) order x = (px, qx, tx) that arrives immediately after time t.

• If px ≤ b(t) (respectively, px ≥ a(t)), then x is a limit order that becomes active
upon arrival. It does not cause b(t) or a(t) to change.

• If b(t) < px < a(t), then x is a limit order that becomes active upon arrival. It
causes b(t) to increase (respectively, a(t) to decrease) to px at time tx.

• If px ≥ a(t) (respectively, px ≤ b(t)), then x is a market order that immediately
matches to one or more active sell (respectively, buy) orders upon arrival. When-
ever such a matching occurs, it does so at the price of the active order, which is
not necessarily equal to the price of the incoming order.

Notice that, many buy orders (respectively sell orders) might be eligible for exe-
cution, but there might not be enough liquidity to fulfill each one. The responsibility
for matching eligible buy orders with sell orders falls to the market maker. In the case
of on-chain markets that we are interested in, this matching process can be a source of
revenue for the market maker. We will discuss the consequences of this observation in
the coming chapters.

33

4.3. AUTOMATIC MARKET MAKERS

Figure 4.3: Schematic of a LOB. As given in [32]

4.3 Automatic Market Makers
Before formally defining AMMs, we have to discuss about their basic structure. Re-
member that an AMM is nothing more than a smart contract deployed on the blockchain
to facilitate trade between users, in a permitionless and trustless manner. Also, the
quoted exchange rate for an asset pair should be varifable using data that are public and
stored on-chain.

Definition 4.8 (AMM actors,[33],informal). Xu et al. provide an informal description
of AMMs, starting with all the parties involved:

1. Liquidity provider (LP): A liquidity pool can be deployed through a smart con-
tract with some initial supply of crypto assets by the first LP. Other LPs can
subsequently increase the pool’s reserve by adding more of the type of assets that
are contained in the pool. In turn, they receive pool shares proportionate to their
liquidity contribution as a fraction of the entire pool. LPs earn transaction fees
paid by exchange users. While sometimes subject to a withdrawal penalty, LPs
can freely remove funds from the pool by surrendering a corresponding amount
of pool shares.

2. Exchange user (Trader): A trader submits an exchange order to a liquidity pool
by specifying the input and output asset and either an input asset or output asset
quantity; the smart contract automatically calculates the exchange rate based on
the conservation function as well as the transaction fee and executes the exchange
order accordingly.

3. Protocol foundation: A protocol foundation consists of protocol founders, de-
signers, and developers responsible for architecting and improving the protocol.

34

CHAPTER 4. DECENTRALIZED FINANCE

The development activities are often funded directly or indirectly through ac-
crued earnings such that the foundation members are financially incentivized to
build a user-friendly protocol that can attract high trading volume.

Definition 4.9 (AMMAssets, [33], informal, adjusted). Several distinct types of assets
are used in AMM protocols for operation:

1. Risky assets: Characterized by illiquidity, risky assets are the primary type of
assets for which AMM-based DEXs are designed. Like centralized exchanges,
an AMM-based DEX can facilitate an initial exchange offering to launch a new
token through liquidity pool creation, which is particularly suitable for illiquid
assets. Note that this category includes all the secondary assets described in the
introduction.

2. Base assets: This is the native token of the blockchain on which the AMM is
deployed. Some protocols require a trading pair to always consist of a risky asset
and a designated base asset. Most of the time, its price is more stable than that of
risky assets, due to the native token's overall utility in the blockchain.

3. Pool shares: Also known as “liquidity shares” and “LP shares,” pool shares rep-
resent ownership in the portfolio of assets within a pool and are distributed to
LPs. Shares accrue trading fees proportionally and can be redeemed at any time
to withdraw funds from the pool.

4. Protocol tokens: Protocol tokens represent voting rights on protocol governance
matters and are thus also referred to as “governance tokens”. Protocol tokens are
typically valuable assets that are tradable outside of the AMMand can incentivize
participation when, for example, rewarded to LPs proportionate to their liquidity
supply. AMMs compete with each other to attract funds and trading volume. To
bootstrap an AMM in the early phase with incentivized early pool establishment
and trading, a feature called liquidity mining can be implemented, where the
native protocol’s tokens are minted and issued to LPs and/or exchange users.

In this work, the only relevant type of assets are the risky ones and the base asset,
which we will otherwise call native token or numéraire 3. We will use those terms in-
terchangeably. Additionally, in this work, we are primarily focused on risky assets and
the numéraire, and will steer away from discussing LP shares and governance tokens.
These have been included only for completeness and to provide the reader with a more
comprehensive view of the AMM mechanism.

Definition 4.10 (Fundamental AMM dynamics, [33], informal,adjusted). .

1. Invariant properties: The functionality of an AMM depends upon a conser-
vation function which encodes a desired invariant property of the system. As
an intuitive example, UniSwap’s constant product function determines trading
dynamics between assets in the pool as it always conserves the product of value-
weighted quantities of both assets in the protocol—each trade has to be made

3In Finance: The numéraire is often used as a benchmark to express prices or values of various assets. It
might be a specific currency like USD or a blockchain's native token.

35

4.3. AUTOMATIC MARKET MAKERS

in a way such that the value removed in one asset equals the value added in the
other asset. This weight-preserving characteristic is one desired invariant prop-
erty supported by the design of UniSwap.

2. Mechanisms: An AMM typically involves two types of interaction mechanism:
asset swapping of assets and liquidity provision/withdrawal. Interaction mech-
anisms have to be specified in a way such that desired invariant properties are
upheld; therefore the class of admissible mechanisms is restricted to the ones
which respect the defined conservation function, if one is specified, or conserve
the defined properties otherwise.

4.3.1 Constant Product Automatic Market Makers
Now that we are familiarized with the basic concepts behind AMMs, we will analyze
the most basic and popular instance of AMMs, namely Constant Product Market Mak-
ers (CPMM). We will begin by stating the basic form of a CPMMwith no trading fees,
as seen in [34] by Zhang et al. Let us suppose that this AMM is facilitating the trade of
the X-Y token pair.

Let x and y be the number of tokens X and Y, respectively, that the exchange cur-
rently holds. We will call this number the reserve or the liquidity of a single token in
the pair. In the constant product AMM implementation, as the name suggests, we set
the exchange price between the two tokens so that the product x× y remains constant.

So after a sell order of token X in this pair, i.e. ∆x tokens X for ∆y tokens of Y.
The constant product rule must hold, hence:

x · y = (x+∆x) · (y −∆y)

Thus, the price ∆x
∆y is a function of x

y .

The new reserves are updated:

x′ = x+∆x = (1 + α)x =
1

1− β
x

y′ = y −∆y =
1

1 + α
y = (1− β)y

where
α =

∆x

x
, β =

∆y

y

We can calculate the amounts∆x and∆y by solving for them. Hence:

∆x = β
1

1− β
x,∆y = α

1

1 + α
y

Definition 4.11 (AMM state, [35]). The state (or depth) of an AMM market X/Y at
time t is defined as st = (x, y), where x is the amount of assetX , and y is the amount
of asset Y in the liquidity pool. The state at a given blockchain block N is denoted as
sN = (xN , yN).

Each trade in a CP AMM impacts the AMM's state.

36

CHAPTER 4. DECENTRALIZED FINANCE

A trade on a CPMM
The liquidity pool initially holds 100 units of Token X and 200 units of Token Y, where
x and y represent the reserves of Token X and Token Y, respectively. In this scenario,
k is given by:

k = 100× 200 = 20,000

The price of Token X in terms of Token Y before any trade occurs is:

PAB =
y

x
=

200

100
= 2 Token Y per Token X

Let us suppose that Alice wants to trade 10 tokens X. After this trade, the reserves
of Token X increase to:

x′ = 100 + 10 = 110

Tomaintain the constant product k, the new reserve of Token Y, denoted by y′, must
satisfy:

110× y′ = 20,000 =⇒ y′ =
20,000

110
≈ 181.82

Thus, Alice receives:

∆y = 200− 181.82 = 18.18 Token Y

The effective price realized by the trader, considering the trade's impact, is:

Effective Price =
∆y

∆x
=

18.18

10
≈ 1.82 Token Y per Token X

The example above illustrates the impact that a trade has on an AMM's liquidity,
and the trader's return. This phenomenon is known as slippage.

Definition 4.12 (Slippage, [21]). Slippage is defined as the difference between the spot
price and the realized price of a trade. Instead of matching buy and sell orders, AMMs
determine exchange rates on a continuous curve, and every tradewill encounter slippage
conditioned upon the trade size relative to the pool size and the exact design of the
conservation function. The spot price approaches the realized price for infinitesimally
small trades, but they deviate more for bigger trade sizes. This effect is amplified for
smaller liquidity pools as every trade will significantly impact the relative quantities of
assets in the pool, leading to higher slippage.

Definition 4.13 (Liquidity sensitivity, [33] [36], adjusted). AnAMM is liquidity-sensitive
when a fixed swap size (same input quantity) makes a larger price impact, i.e. higher
slippage, in a thin liquidity pool than a deep liquidity pool.

Definition 4.14 (Demand sensitivity, [33]). An AMM is demand-sensitive when the
average swap price (i.e. the effective exchange rate) increases as the swap size (input
quantity) increases. Intuitively, this suggests that as with the increment of the demand
in output token, its price denominated input token will be driven up.

37

4.3. AUTOMATIC MARKET MAKERS

A constant product AMM is both liquidity-sensitive and demand-sensitive. Hence,
The relative size of the trade in relation to the AMM's liquidity is crucial for determin-
ing the trade's effective price. In the next chapter, we will discuss how transactions
with significant slippage can be targeted by profit-maximizing bots to generate profit,
often resulting in a worse effective price for the trade.

A geometric interpretation
Since trading on a Constant Product (CP) AMMmaintains the product of the two tokens
as a constant, its geometric representation is a hyperbola, where each point represents
a possible liquidity state of the X-Y token pair. If the AMM is at point A, then the
coordinates of the vector A⃗B represents the amount a trader must pay in one token to
receive a corresponding amount of the other token. This visualization makes it easy
for a trader to compute the outcome of a trade, making a CP AMM an intuitive and
straightforward trading mechanism.

100 150 200 250

100

150

200

250

A(100, 200)

B(110, 181.82)
A⃗B

Token X Quantity

Token Y Quantity

Figure 4.4: The graph of the CP AMM given in our example

A δx, δy trade on a CPMM[34] market with state (liquidity) s = (x, y) depends
only on the size of the trade. Partitioning the trade on smaller ones does not change the
outcome of the trade (for better or for worse). This property in known as Path Indepen-
dence [33].

Proof for 2 trades:

LetX · Y = k a CPMM with state s = (x, y) at time t. A trader swaps δx of token
X on it for δy tokens Y.

1-shot execution of this trade:

(δx + x)(y − δy) = k ⇒

38

CHAPTER 4. DECENTRALIZED FINANCE

(y − δy) =
k

(δx + x)
⇒

δy = y − k

(δx + x)

2-shot execution of this trade:

With inputs δx1
, δx2

and outputs δy1
, δy2

respectively, such that δx1
+ δx2

= δx.
We want to prove that δy1

+ δy2
= δy

First trade within input δx:

(δx1
+ x)(y − δy1

) = k ⇒

(y − δy1
) =

k

(δx1
+ x)

⇒

δy1 = y − k

(δx1
+ x)

After the execution, the state of the CPMM is updated s′ = (x′, y′) = (x+δx1
, y−

δy1
)

Second trade execution:

(δx2
+ x′)(y′ − δy2

) = k ⇒

(y′ − δy2
) =

k

(δx2
+ x′)

⇒

δy2
= y′ − k

(δx2
+ x′)

We substitute x′, y′ and we get:

δy2
= y − δy1 −

k

(δx1
+ δx2) + x

⇒

δy2
+ δy1 = y − k

(δx1
+ δx2) + x

⇒

δy = y − k

(δx + x)

So we notice that the 2-shot serial execution of a trade gets the exact same returns
as the 1-shot execution. This argument can be generalized for n-shot serial executions
with induction.

39

4.4. LOB AND CPMM COMPARISON

4.3.2 UniSwap

In the previews section, we discussed the basic scheme for a CP AMM, but we have
abstracted away one important detail: trading fees. As mentioned earlier, an AMM re-
quires liquidity to function, which is provided by liquidity providers (LPs). Therefore,
the AMM must offer financial incentives to encourage LPs to deposit liquidity. These
incentives come from the AMM's trading fees ρ, which are applied to each transac-
tion as a small percentage of the transaction's value. This model is the first version of
Ethereum's flagship DEX, UniSwap [34].

We have three parameters:

α =
∆x

x
, β =

∆y

y
, γ = 1− ρ

After a X sell order (equivalent to the previews example), the new reserves of the
AMM will be:

x′ = x+∆x = (1 + α)x =
1 + β(1γ − 1)

1− β
x

y′ = y −∆y =
1

1 + αγ
y = (1− β)y

The cost (denominated in token X) will be∆x = β
1−β ·

1
γ · x.

The return (denominated in token Y) will be∆y = αγ
1+αγ · y.

Naturally, the numerical example and the geometric analysis we provided for the
CPMMwithout fees extend to UniSwap, albeit with slight changes in values due to the
trading fees. UniSwap's trading fees are approximately 0.3%. .

4.4 LOB and CPMM comparison
The most important aspect of DEX mechanisms is how they manage liquidity, i.e., the
existing and future supply of the risky asset (numéraire) under their jurisdiction. In the
LOB paradigm, things were simple. Trades in a pair occurred only when both parties
were satisfied, i.e., when both the buyers and the sellers had quoted prices within the
range of their corresponding accepted prices. This property is advantageous, but the
mechanism does not perform well under extreme market conditions, which are not un-
common in the DeFi world.

Supposewe have an LOBmanaging theX-Y trading pair, withX being the numéraire
and Y being the risky asset. If, for whatever reason, there are extremely few sell orders
for token Y in the market and a lot of buying demand, i.e., high demand for token Y,
basic economic principles suggest that the price of token Y, denominated in token X
(the numéraire), will increase.

Using an LOB to implement this market presents a few problems:

40

CHAPTER 4. DECENTRALIZED FINANCE

1. Token Y sellers must monitor the market and adjust their prices accordingly, or
they risk selling their valuable token at a lower price. Tracking blockchainmarket
conditions in real-time is generally difficult and requires specialized equipment
and technical knowledge.

2. Even if sellers take the effort to update their sell prices, this process can be costly
due to the substantial fees involved. We will not assess whether this is still ad-
vantageous for them, but this complexity adds an additional layer of difficulty
for users.

3. Classical LOB orders must be completed as stated or not at all. Therefore, a
trader using LOBs is guaranteed to receive the price they wish, but they might
have to wait until the bid and ask prices adjust accordingly for their trade to be
eligible for execution.

On the other hand, CPMMs are designed to ensure that liquidity never runs out and
that prices adjust according to natural market conditions (i.e., supply and demand). Ad-
ditionally, trades are executed nearly instantly. However, due to the constantly shifting
prices in the CPMM model, traders might experience suboptimal outcomes.

These observations are formally captured and proven by Roughgarden et al. in [37].
They proved that the expressiveness of an on-chain trading mechanism is proportional
to its complexity, and thus the amount of on-chain data it requires to function. There-
fore, although CPMMs may be less descriptive than LOBs, their state can be more
easily saved on-chain, which reduces the trading fees required to operate.

Conversely, LOBs require more on-chain data space to save their state. However,
they are far more descriptive than CPMMs, ensuring more accurate and satisfactory
outcomes for traders.

41

4.4. LOB AND CPMM COMPARISON

42

CHAPTER5
TRANSACTION ORDERING

The notion of transaction ordering within the same block seems straightforward, but it
may hold caveats when considering the role that the blockchain plays as a foundation
for different DeFi applications. As we discussed in the previous chapter, each transac-
tion on a CPMM alters its state and thus impacts the price between the pair being traded
on that DEX. Therefore, the order of transactions within the same block can result in
vastly different outcomes for the trades these transactions encode.

Perhaps the most illuminating example of this occurs during times of extreme mar-
ket volatility. Let’s suppose that, for whatever reason (e.g., a hack taking place), there
is significant selling pressure on asset X in the X-Y pair. This means that all the X sell
orders will negatively impact X's price. Therefore, the order of these transactions will
directly influence each transaction's outcome. Each trader, being rational, will have an
incentive to have their transaction prioritized within that block. Since the difference
in price can be substantial, each trader has an incentive to tip the BP to prioritize their
transaction. The BP plays the role of the kingmaker in this scenario, so each trader will
compete by offering increasing amounts for priority. This creates a kind of auction for
block space, which is a well-known phenomenon in Ethereum known as priority gas
auctions.

On the other hand, the Cardano blockchain does not include an option for users to
tip a BP for prioritizing their transactions, at least not through an on-chain mechanism.
Thus, the same scenario that can earn an Ethereum BP a substantial reward as a tip is
irrelevant for a Cardano BP. It becomes clear that when discussing the financial nature
of transaction ordering, the underlying blockchain infrastructure plays a pivotal role in
this discussion.

Definition 5.1 (Domain, [38]). A domain D is a self-contained system with a glob-
ally shared state st. This state is altered by various agents through actions (sending
transactions, constructing blocks, slashing, etc.), that execute within a shared execu-
tion environment’s semantics. Each domain has a predefined consensus protocol that
includes a set of valid algorithms to order transactions, denoted by prt(D).

43

5.1. RATIONAL BLOCK PRODUCERS

Each individual blockchain is a domain. However, there are other non-blockchain
domains, like decentralized exchanges that execute their transactions off-chain. Most
of the body of work around transaction ordering, including transaction reordering at-
tacks for profit maximization, focuses on Ethereum. That will be our focus for the rest
of the chapter, beginning with a few key definitions, as given by Daza et al. in [38].

5.1 Rational Block Producers
Definition 5.2 (Types of Block Producers, [38], adjusted). We distinguish four types
of BPs:

1. Dummy: A BP is dummy if he follows the validator consensus protocol prt(D)
as indented.

2. Dummy Byzantine: A BP is dummy Byzantine if they misbehave, but other
nodes can detect his misconduct. This notion is akin to an adversarial BP in
classic distributed protocols.

3. Rational: A BP is rational if it follows a set of valid actions on the domain
D to maximize its utility function, including deviating from prt(D). Therefore,
if a player misbehaves to maximize their payoff but cannot be identified and
punished, we say that is a rational player.

4. Partially Rational: A sequencer is partially rational if they commit to using a
specific valid ordering mechanism to maximize its payoff.

For now, we will assume that each BP is partially rational, meaning that they con-
struct a block (i.e., a valid sequence of transactions) in a way that maximizes their tip-
ping rewards. However, they do not include their own transactions to further increase
their utility, which distinguishes them from a fully rational BP.

Definition 5.3 (Knapsack Extractable Value (KEV) Problem, [38], adjusted). A BP
receives a set of transactions tx1, . . . , txn with gas prices m1, . . . ,mn and g1, . . . , gn
units of gas. If the sequencer includes txi, it obtains migi in fees. Since the gas used
per block is restricted in every domain by some constant L, the sequencer must choose
a subset of transactions T such that ∑

txi∈T

gi ≤ L.

Then, a node that tries to maximize its revenues per block needs to solve the fol-
lowing Knapsack optimization problem:

max
n∑

i=1

ximigi

s.t.
n∑

i=1

xigi ≤ L,

xi ∈ {0, 1}.
Daza et al. note that since Knapsack optimization problems are NP-complete, each

sequencer usually chooses different algorithms to approximate the optimal solution.

44

CHAPTER 5. TRANSACTION ORDERING

5.2 Transaction Reordering Attacks
We have seen that BPs are responsible for determining the order in which transactions
appear within a block. If a BP is dummy, transactions should be ordered in the sequence
in which the BP receives them, i.e., as they appear in the BP's mempool. However, if a
BP acts rationally, this may not always be the case. It’s important to note that as long as
the BP operates within the rules of the consensus mechanism, they are not considered
adversarial. Instead, they are exploiting the authority granted to them to extract more
value for themselves. These practices are knows as transaction reordering manipula-
tions.

Definition 5.4 (Transaction reordering manipulations, [39]). There are three kinds of
transaction reordering required by the most common BPS opportunities:

1. Fatal front-running: Fatal front-running describes a transaction reordering ma-
nipulation by which the attacker’s transaction TA front-runs (executes before)
the victims transactions TV . In the process, the attacker’s transaction causes the
victim’s transaction to fail.

2. Front-running: Front-running is a transaction reordering manipulation that has
attacker’s transaction TA front-run the victims transactions TV . As opposed to fa-
tal front-running, the attacker ensures that the victim transaction will still execute.
Generally, the conditions for the victim transaction, will however, be worse.

3. Back-running: Back-running occurs when the attacker’s transaction TA back-
runs (executing after) the victims transactions TV .

Figure 5.1: Figure (a) shows a block with no manipulation, while Figures (b), (c),
and (d) illustrate different transaction reordering strategies. Successful transactions are
green, and failed transactions are red with a cross. As presented in [39].

5.2.1 Sandwich Attacks
As the name suggests, sandwich attacks are an advanced transaction reordering strategy,
combining front-running and back-running transactions to envelop (i.e., 'sandwich') a
user's transaction. Sandwich attacks are a common strategy to extract Block Producer
Surplus from trades on a Constant Product Automated Market Maker (Section 4.3.2).

As discussed earlier, a relatively large to the liquidity depth enough X-Y trade will
cause slippage in an AMM pair. This slippage can be calculated by any party that
knows the initial state s0 = (x0, y0) of the AMM before a transaction and the details

45

5.2. TRANSACTION REORDERING ATTACKS

of the transaction TV (e.g., selling an amount of asset X for asset Y). Both pieces of
information are available to a BP whenever a transaction is submitted to their mempool
for block inclusion. A BP can then execute the following strategy, creating and ordering
transaction on his block:

• Create a buy order, TF , to inflate the price of asset Y.

• Include the trader's buy order, TV , further inflating the price of token Y.

• Finally, include their sell order, TB , selling all the units of asset Y acquired from
TF .

Since the trader's buy order TV is executed between the BP's buy order TF and sell
order TB , the per-unit price of asset Y has increased. Additionally, because TV was
targeted for creating significant slippage, it is relatively large compared to the AMM's
liquidity depth, making the increase in Y's per-unit price substantial. Hence, the BP
profits from this series of transactions. The proof of this claim is merely an algebraic
application of the CP AMM's equations, and will be omitted.

Figure 5.2: Sandwich attack visualization in a CP AMM. Notice that TV receives a
worse price in the presence of the sandwich attack. As presented in [39].

5.2.2 Cyclic Arbitrage Opportunities
CPMMs can create cyclic arbitrage opportunities due to temporary price inaccuracies
across liquidity pools. For instance, consider a CPMM with three liquidity pools be-
tween assets X , Y , and Z. If prices are unsynchronized, a trader can potentially profit
by executing a cyclic trade: exchangingX for Y at price PX→Y , then Y for Z at price
PY→Z , and finally Z for X at price PZ→X . The trade is profitable if:

PX→Y · PY→Z · PZ→X ≥ 1.

This opportunities can be the target of a transaction reordering attack by the follow-
ing two ways:

46

CHAPTER 5. TRANSACTION ORDERING

1. Fatal front-running: When a user finds such an opportunity and submits a cor-
responding transaction to the mempool, anyone listening to the mempool can
subsequently see this arbitrage opportunity. Through fatal front-running, an at-
tacker can steal such an arbitrage opportunity.

2. Back running: The attacker can predict the imbalance just as it is created by a
transaction. Then, they just need to back-run this transaction to capture all the
arbitrage profit.

Figure 5.3: Cyclic trade execution between tokens X,Y and Z. As presented in [39].

5.2.3 Front-running in the eUTxO Model
As Heimbach and Wattenhofer stated in [39], transactions in the UTxO and eUTxO
models cannot be front-run. Instead, any front-running attempt by an adversary would
cause the transaction to fail.

The outline of the proof behind this claim is as follows: Suppose the victim's trans-
action TV references UTxO1 as its input. To front-run the victim transaction, the ad-
versary must create a front-running transaction TF that also references UTxO1 as its
input, and have TF execute before TV . If successful, UTxO1 would be spent, causing
the subsequent transaction TV to become invalid and fail.

Notice that the front-running attempt fails because the adversary cannot force TV to
reference TF 's UTxO as its input. This property is a byproduct of the eUTxO model’s
requirement for specific input references. In contrast, the account-based model does
not specify inputs for each transaction, treating them instead as changes in account
balances. This distinction clearly highlights the difference between the eUTxO and
account-based models.

This is an important property of the eUTxO model, which also applies to any trans-
action reordering attacks involving front-running transactions. Therefore, in the eUTxO
model, transactions cannot be sandwiched either.

However, this desirable property does not hold in CardanoDeFi. In the next chapter,
we will see that due to concurrency issues (subsection 3.3.2) in the eUTxOmodel, DeFi
applications cannot achieve the necessary throughput to meet users' demand for trades.

47

5.3. BLOCK PRODUCER SURPLUS

As a result, DEXs resort to off-chain processing and execution of transactions, where
the aforementioned property of the eUTxO model no longer applies.

5.3 Block Producer Surplus
Miner Extractable Value (MEV), or Block Producer Surplus (BPS), as it later came to
be known, refers to the profits that block producers earn by leveraging their ability to
order transactions. This can include arbitrage opportunities as well as additional fees
that users may pay to BPs to prioritize their transactions within a block. Assuming
rational participation in the protocol (i.e., block producers being profit maximizers),
nodes will seek to exploit any MEV opportunities to maximize their payoff.

MEV opportunities arise from the information asymmetry between users and block
producers. Since BPs choose and order the transactions contained in each block, they
can profit by including or excluding transactions as they see fit.

Daian et al. in [40] were the first to define BPS and analyze the opportunities that
block producers exploit to harvest it. In their work, they explored design flaws in de-
centralized exchanges that led to the emergence of arbitrage bots and measured their
behavior. They identified that most BPS is extracted from the direct or indirect ex-
ploitation of Pure Revenue Opportunities.

Definition 5.5 (Pure Revenue Opportunities (PROs), [40], Adjusted). A specific sub-
category of DEX arbitrage representative of broader activity, these are blockchain trans-
actions that issue multiple trades atomically through a smart contract and profit uncon-
ditionally in every traded asset.

Sandwich attacks and Cyclic Arbitrage Opportunities are instances of PROs. As
the name suggests, when located in a BP's mempool, PROs offer atomically executable
and risk-free profit to either the BP or any other entity that can take advantage of this
opportunity by launching a successful transaction reordering attack.

In practice, in the Ethereum ecosystem, the aforementioned pure revenue opportu-
nities are identified by bots, known as searchers, rather than BPs. These bots engage
in bidding wars, each offering increasingly higher transaction fees to the BP so that
they can be the searcher to capture the PRO. These phenomena are called Priority Gas
Auctions.

Definition 5.6 (Priority Gas Auctions (PGAs), [40], Adjusted). Because pure revenue
opportunities offer unconditional revenue, arbitrage bots compete against each other by
bidding up transaction fees (gas) in what we call PGAs.

Naturally, BPs profit from these auctions. These profits are called Ordering Op-
timization (OO) fees. This phenomenon is well known in Ethereum, and it has been
officially adapted in the protocol. It is called searcher-builder separation, as discussed
in [41].

Summing up, in the presence of PROs, a BP can profit in two ways. Either by
directly launching a transaction reordering attack themselves to harvest this arbitrage

48

CHAPTER 5. TRANSACTION ORDERING

opportunity, or by harvesting the Ordering Optimization fees stemming from the Pri-
ority Gas Auctions. Either way, this is reflected in the following definitions of BPS,
given by Roughgarden et al.

Definition 5.7 (Transaction FeeMechanism (TFM), [42], Adjusted). A transaction fee
mechanism is a triple (x, p, q) where:

• x is a allocation rule,

• p is a payment rule. It is a function p that specifies a nonnegative payment
pt(B, b) for each transaction t ∈ B in a block B, given the bids b of all known
transactions.

• q is a burning rule. It is a function q that specifies a nonnegative burn q(B, b) for
a block B, given the bids b of all known transactions.

Each BP values a transaction according to his model. Roughgarden et al. identify
two discrete cases:

1. Additive valuation: An additive valuation corresponds to a BP that extracts value
from each transaction independently. vBP (B) :=

∑
t∈B µt

2. Single-minded valuation: This corresponds to an PRO exploitation. It is either
equal to 0 (if the BP does not capture the liquidation opportunity in B) or to some
fixed constant μ (otherwise, where μ is the value of the opportunity).

vBP (B) =

{
µ if B ∈ S

0 otherwise

Definition 5.8 (Block Producer Surplus (BPS), [42], Adjusted). For a TFM (x, p, q),
BP valuation vBP , BP blocksetB (the non-empty set of all possible blocks) , and trans-
action bids b, the block producer surplus of a BP that chooses the block B ∈ B is

uBP (B) := vBP (B) +
∑
t∈B

pt(B, b)− q(B, b).

We remark that, as noted in [38], the blockset of each BP is constrained by that
player’s information (mempool), gas efficiency, budget, and ability to propose blocks.
Hence, at any given time, each BP has a unique BPS associated with it.

One final notion of BP utility that will be relevant later in this work is the Off-Chain
Agreement, as introduced by Roughgarden in [43]. Simply put, each creator of a trans-
action t agrees to submit t with an on-chain bid of bt while transferring τt to the miner
m off-chain; the miner, in turn, agrees to mine a block comprising the agreed-upon
transactions of T .

5.3.1 Off-Chain Agreement
Definition 5.9 (Off-Chain Agreement (OCA), [43], Adjusted). For a miner m and a
set T of transactions, an off-chain agreement between T 's creators andm specifies:

• a bid vector b, with bt indicating the bid to be submitted with the transaction
t ∈ T ;

49

5.3. BLOCK PRODUCER SURPLUS

• an allocation vector x, indicating the transactions that the miner m will include
in its block;

• a transfer τt from the creator of each transaction t ∈ T to the minerm.

Although instances of OCA are not generally known in Cardano at the moment, it
is prudent to account for them in a DeFi protocol, as it is in the best interest of colluding
users and BPs to maintain this secrecy.

50

CHAPTER6
EUTXO DEFI

6.1 Transaction Batchers
As discussed in Subsection 3.3.2, concurrency is a significant issue affecting the scal-
ability of a DEX protocol within the eUTxO accounting model. Since each UTxO can
be referenced only once per block, each smart contract UTxO can be accessed by only
one user per block. Given Cardano's block production speed of one block every 20–40
seconds, this creates a bottleneck for popular DeFi applications, such as CPMMs and
LOBs.

To address this challenge, Cardano's ecosystem introduced a novel primitive called
the batcher. Batchers mitigate the concurrency issue by aggregating all transactions
referencing the same eUTxO into one, and then including this aggregate transaction
within a block. As a result, the batcher's UTxO and the DEX's UTxO are referenced
together in a single transaction, with the outputs distributed to the users who initially
interacted with the batcher. Below, we provide a more detailed analysis of the batcher
primitive, drawing from the information in [44]. To the best of our knowledge, there is
no formal work analyzing the concept of UTxO transaction aggregation via batchers.

Batchers are entities that run special nodes on the Cardano network. While many
batchers may also be the same entities as Cardano BPs, this is not necessary. What all
batchers have in common is the ability to create and submit transactions that invoke
the validator scripts of the UTxOs belonging to a DEX's smart contracts. Batchers
aggregate multiple user transactions into a single transaction and submit it to a BP to
be included in a future block.

The Batching Process
The batching process works in two steps. In the first step, users submit their transac-
tions by locking their funds in a smart contract controlled by the batcher. They also
specify the conditions under which their funds can be spent. In an X-Y trading pair,
this would be the amount of token Y they expect to receive in exchange for the amount
of token X they locked in the batcher's smart contract. This smart contract UTxO can

51

6.1. TRANSACTION BATCHERS

be spent by anyone who creates a valid transaction that satisfies those conditions, but
it is usually spent by the batcher.

In the second step, the batcher creates a single transaction. Its inputs consist of all
the users' UTxOs that are locked in the batching contract and are eligible for execution.
The eligibility is determined by the DEX's economic model (either LOB or CPMM)
and is specific to each DeFi application. Additionally, the transaction takes as input the
DEX's UTxO. All these UTxOs are aggregated together and are submitted as a single
atomic transaction, meaning they are either all executed, on non is executed at all.

The transaction outputs are UTxOs belonging to each user who submitted a trans-
action in the first step, the DEX's UTxO to be referenced in future transactions, and a
UTxO belonging to the batcher that contains their batching fees.

Figure 6.1: The Batching Process, as given in [44].

A batcher cannot use the funds locked into their smart contract for transactions that
do not satisfy the users' spending conditions. Hence, they cannot divert funds in any
way and must use them to fulfill each user's demands. However, they have the power to
order transactions in any way they see fit. This enables them to orchestrate transaction
reordering attacks, bypassing the front-running protection offered by the eUTxOmodel.

Additionally, batchers represent a single point of failure for any DEX that utilizes
them, weakening the technical security of the DeFi protocol and opening up additional
attack vectors. We will discuss an example of batcher manipulation later in the chapter.

Lastly, batchers are entities that are either trusted by a DEX or directly controlled
by the DEX team. This raises centralization concerns and encourages monopolistic
behavior within Cardano's DeFi ecosystem.

52

CHAPTER 6. EUTXO DEFI

6.2 MuesliSwap
MuesliSwap [45] was the first DEX to be deployed on the Cardano main net, launching
on November 2021. It operates under the Limit Order Book model described in 4.2.
Given a specific X-Y trading pair, there are two types on entities interacting on the
model, traders and matchmakers.

• Trader: A trader interacts with the LOB by placing limit orders via a Mues-
liSwap's batching smart contract. The limit order locks the tokens the trader is
willing to sell in a UTxO, along with a fee in ADA. The limit order is denoted as
O = (X,Y, n, p, f), where:

– X: The token the trader is willing to sell,
– Y : The token the trader wants to buy,
– n: The quantity of token Y the trader wants to buy,
– p: The maximum price of X per unit of Y ,
– f : The batching fee in ADA locked with the order.

The order's UTxOs remains locked on the batching smart contract until it is either
executed or removed by the trader.

• Matchmaker: Matchmakers monitor the batching smart contract for executable
orders. Suppose they find n orders O1, . . . , On that:

– Are ready for execution.
– Have sufficient liquidity in both directions to cover at least n − 1 orders
fully.

– Satisfy the condition
∑n

i=1 fi > F , where F is the network fee for the
aggregate order.

If all the above conditions are met, the matchmaker batches together all the rel-
evant UTxOs and executes an atomic swap, satisfying all parties and retaining∑n

i=1 fi − F ADA as fees.

Note that there may not be enough liquidity in one direction to fully fulfill order
On. In that case, a new UTxO will be created for the unfulfilled remainder and locked
in the batching smart contract for future fulfillment.

In [45], the MuesliSwap team notes that a decentralized order book relying on a
single matchmaker to coordinate exchanges may exhibit monopolistic behaviors, such
as excluding certain traders. They emphasize the need for multiple matchmakers to be
active in the protocol and aim to create a market for matchmakers using incentives to
ensure that matching and ordering are executed fairly.

However, in [46], they state that all matchmakers currently active on MuesliSwap
are licensed by the MuesliSwap team. This restriction is enforced by allowing only
licensed entities to interact with the validator scripts that secure the DEX's UTxOs,
effectively preventing any other entity from serving as a matchmaker. We note that this
monopolistic behavior by the MuesliSwap team has created issues for the DEX, which
we will explore shortly. Hence, although the project's whitepaper does not directly
state this, MuesliSwap falls under the Trusted Third Party Transaction Ordering, as
described in [39] by Heimbach and Wattenhofer.

53

6.2. MUESLISWAP

6.2.1 BPS incidents in MuesliSwap
Although not clearly stated in the whitepaper, MuesliSwap allows users to specify a
maximum slippage ratio in their transactions, i.e., given an X − Y sell order, a per-
centage over the maximum price of X per unit of Y . Thus, given an order O =
(X,Y, n, p, f) with slippage s, the slippage can be incorporated into the order and en-
coded as O′ = (X,Y, n, p′, f), such that p′ ∈ (p, 100p+s

100), matching MuesliSwap's
order format.

However, if the order O is in the opposite direction (i.e., an X − Y buy order),
the slippage s will affect the price in the opposite way. Hence, the order becomes
O′ = (X,Y, n, p′, f), where p′ ∈ (100p−s

100 , p).

Note that this notion of slippage is not the same as given in Definition 4.12. Slip-
page is a notion relevant to CPMMs and is not applicable to a LOB such asMuesliSwap.

This results in two bid prices: the original bid price as intended by the trader, de-
noted b, and the bid price after slippage, denoted b′. Note that if slippage is non-zero,
b < b′. Similarly, trades in the opposite direction will affect the ask price a, resulting
in two distinct ask prices, a and a′, where a′ < a when s ̸= 0. We will update the
standard LOB notation to much this implementation, denoting the spread as usual, and
defining the spread after slippage to be the difference of the bid and ask prices after
slippage. See figure 6.2 for a visualization.

b b′ a′ a

spread
spread after slippage

buy slippage sell slippage

Figure 6.2: A visualization of the spread and spread after slippage values at a given
LOB.

At the beginning of August 2023, the Cardano community noticed1 that swaps on
the DEX were executed using orders at their maximum slippage price p′, in both di-
rections. Although we do not have on-chain data from that time to verify the validity
of this claim, we will assume it is true, as it has not been disputed by the MuesliSwap
team in their report on the incident.2.

We assert that this is an act of Miner Extractable Value by the matchmaker, by prov-
ing that a rational matchmaker that was the option of executing a swap with a slippage
margin, will always choose to execute the swap at max slippage. To do so, we only
have to prove this claim for orders that get matched to an active order as soon as they
join the LOB. These events are the only ones that remove orders from the order book,
and are thus the only ones that generate any profit for the matchmaker.

1The issue was raised via X https://x.com/CryptoHodlerrrr/status/1688702767009800192
2https://x.com/muesliswapteam/status/1688546719225589760

54

https://x.com/CryptoHodlerrrr/status/1688702767009800192
https://x.com/muesliswapteam/status/1688546719225589760

CHAPTER 6. EUTXO DEFI

We reiterate the BPS equation, as presented in 5.8, adjusting them to the batcher
model:

uMM (B) = vMM (B) +
∑
t∈B

ft − q

In the MuesliSwap protocol there is no burning mechanism, and the fees are con-
stant. Since there are multiple pure revenue opportunities to be exploited by a mo-
nopolistic 3 matchmaker, it is logical to assume that his valuation is additive. Hence,
vMM (B) =

∑
t∈B µt. Thus,

uMM (B) =
∑
t∈B

µt +m · f,where m is the number of the aggregated transactions

The maximization of
∑

t∈B ft is a variation of the Knapsack Extractable Value.
The number of aggregated transactions is upper bounded by the number of inputs and
outputs a eUTxO transaction can have, which in the current iteration of Cardano is 64.
Also, in the correct MuesliSwap iteration the fees per swap is 1.7 ADA. Hence trans-
action fees are relatively low to the profit of a pure revenue opportunity exploitation,
and we will no focus of them.

Suppose that, without loss of generality, a buy order O = (X,Y, n, p′, f), where
p′ ∈ (p, 100p+s

100), gets executed instantly. Thus, a′ < p′. Since we are interested in
profit maximization by the matchmaker, let p′ = 100p+s

100 . We distinguish between two
different matchmaker strategies sd and sr, depending on the matchmaker's rationality
model.

• sh: If the matchmaker were dummy and tried to maximize the traders' utility, they
would execute the swap at a price within the range (a′, p′). Hence, µ = 0. Note
that this outcome is desirable for the traders because the swap price is within their
preferred price range.

• sr If the matchmaker were rational, they would execute the following strategy:
They would set different prices for the buyer and the seller, specifically their
maximum slippage prices. Given that n tokens are swapped in this trade, their
pure revenue would be µO = n · (p′ − a′). This represents the maximum payoff
they can achieve from this trade.

We can see that vMM (sr) = n · (p′−a′) > 0 = vMM (sh) Thus, sd is strictly dom-
inated by sr, and a rational matchmaker will always choose to behave rational when
given the chance.

Of course, an argument can be made that rational behavior can damage the DEX's
credibility, acting as a counter incentive for this kind of behavior. We will avoid as-
suming anything about the DEX's long term strategic goals, and will instead focus on
the DEX's roll as a matchmaker.

3In fact there were only two distinct matchmaking entities on the MuesliSwap protocol at the
time of the exploit, both approved by the MuesliSwap team: https://cexplorer.io/asset/
asset1urgqlyjezmj2cy50x28zm3zpl4n78y99cjl3ck/owner#data

55

https://cexplorer.io/asset/asset1urgqlyjezmj2cy50x28zm3zpl4n78y99cjl3ck/owner##data
https://cexplorer.io/asset/asset1urgqlyjezmj2cy50x28zm3zpl4n78y99cjl3ck/owner##data

6.3. MINSWAP

a′ p p′ a
Matchmaker revenue

Figure 6.3: A visualization of the rational matchmaker's strategy. The length of the a′p′
interval indicates the pure revenue of the matchmaker per token swapped.

Observe that the rational execution of this trade does, in fact, validate the transac-
tion validator scripts guarding the traders' UTxOs.

We note that our goal is not to determine the optimal strategy for the matchmaker
but simply to prove that the activity observed by the Cardano community can indeed
be classified as an instance of MEV.

Notice that this strategy can be applied to every instantaneously matched order en-
tering the LOB. Hence, a good, though perhaps not optimal, choice for the adversary is
to order incoming transactions based on the pure revenues their individual exploitation
provides and to execute them in decreasing order. Finding the optimal strategy for the
adversary is beyond the scope of this work.

6.3 MinSwap
MinSwap [47] is the most dominant Cardano DEX in terms of Total Value Locked
(TVL)4 as of September 2024. MinSwap's original design involved developing aCPMM,
using smart contracts that users could interact with on-chain. However, this design
could not achieve the desired transaction throughput due to concurrency issues [48].
As explained in 3.3.2, due to the DEX's high traffic, multiple users were attempting to
reference a specific smart contract UTxO in the same block. This resulted in only a
single transaction being processed while all others were reverted.

To address concurrency, the MinSwap team opted for off-chain transaction execu-
tion through a transaction batcher protocol named Laminar [49]. At the time of writ-
ing, the only entity allowed to operate a Laminar batcher is MinSwap Labs themselves.
Therefore, Laminar operates under a trusted third-party ordering scheme as described
in [39].

Users can interact with MinSwap's DeFi smart contracts to provide additional liq-
uidity or swap tokens in one of its pools. To do so, they must submit their transac-
tions along with the corresponding funds to MinSwap's batcher smart contracts. Each
transaction carries metadata associated with the user, including their financial intent
(redeemer, desired price, timestamp). Like all batcher aggregation methods, the sub-
mitted transaction will only be executed if the appropriate conditions are met, i.e., if
the desired swap price is reached.

At the end of each Ouroboros round, the batcher will gather all the UTxOs locked

4TVL is a common term in DeFi, referring to the total monetary value locked in a protocol's smart con-
tracts. You can view the Cardano projects' TVL here

56

https://defillama.com/chain/Cardano

CHAPTER 6. EUTXO DEFI

in the batching smart contract. Then, these transactions will be ordered by their cor-
responding hashes, as they appear in the batcher smart contract. Transaction ordering
initially occurred in ascending order until an adversarial entity orchestrated a series of
sandwich attacks by exploiting this fact. We will explore this attack shortly. The out-
put of this off-chain aggregation is then published on the blockchain, thus finalizing the
transactions.

6.3.1 Sandwich attacks in MinSwap

In MinSwap's incident report [50], it was revealed that an attacker exploited the batch-
ing algorithm to carry out a sandwich attack on several trades occurring on the DEX.
According to the team's report, the attack drained approximately 11k ADA from Min-
Swap's smart contracts, successfully sandwiching around 880 trades.

The attacker's strategy was as follows: theymonitored the batcher smart contract for
UTxOs of large transactions that could cause sufficient slippage in the CPMM, mak-
ing the attack profitable. When another user submitted a qualifying transaction, the
attacker observed its hash and created a front-running transaction with a smaller hash.
Since cryptographic hash function outputs follow a uniform distribution over the func-
tion's codomain [51], this process is computationally feasible in the average case. The
attacker repeatedly adjusted the parameters of their order to change the transaction's
hash. Because hash generation is not computationally difficult, the attacker could con-
tinue until finding a transaction with a sufficiently low hash to front-run the victim's
transaction. Such attacks, often referred to as "nothing at stake" [52].

To complete the sandwich attack, the adversary only needs to back-run the victim's
transaction. This is easier than executing the front-running transaction. The adversary
simply needs to ensure that their transaction is included in the same batch as the vic-
tim’s transaction but after it. Alternatively, the adversary can submit the back-running
transaction in any future batch.

The aforementioned attack was executed by exploiting the logic within MinSwap's
smart contracts. It was an atomic and risk-free attack, thereby compromising the DEX's
technical security as defined in [21].

Below, we will do a very basic calculation about the probability of the above-
mentioned attack's success.

Let Y be the hash of the victim's transaction, normalized over the co-domain of
the hash function. Also, letX be the hash of the front-running transaction, normalized
likewise. We assume that Y and X are independent and identically distributed (iid)
from the Uniform (0, 1) distribution. We calculate that the front-running attack has a 1

2
probability of succeeding on the first try.

P (X < Y) =

∫ 1

0

∫ y

0

fX(x)fY (y) dx dy =

∫ 1

0

∫ y

0

1 · 1 dx dy ⇒

P (X < Y) =

∫ 1

0

(∫ y

0

1 dx

)
dy ⇒

57

6.4. SUNDAESWAP

P (X < Y) =

∫ 1

0

y dy =

[
y2

2

]1
0

=
1

2
⇒

P (X < Y) =
1

2

Even for an arbitrary constant Y ∈ (0, 1), the number of attempts, indicated as X,
until a front-running hash is found, follows the geometric distribution:

P (X = k) = (1− Y)k−1Y

Where:

• Y is the probability of success on each trial,

• X is the number of trials until the first success,

• k is the trial on which the first success occurs.

We see that the number of attempts until the first success is O(12
k
)

Also, the expected number of attempts until success is E[X] = 1
Y , which scales

linearly as Y approaches 0.

We note that since hashing is computationally (and thus financially) inexpensive,
the only limiting parameters for the adversary are the time available to execute the afore-
mentioned attack and the hash of the victim transaction. The front-running transaction
must be included in the same batch as the victim transaction, meaning the available
time window lies between when the transaction is added to the batching smart contract
and when the batcher collects all transactions for aggregation. This topic is outside the
scope of this work, so we digress.

6.4 SundaeSwap
SundaeSwap[53] was the first CPMMDEX to launch on Cardano; unfortunately, it fell
victim to significant concurrency issues right at launch5. As a result, SundaeSwap had
to address these concurrency issues, introducing a batching solution similar to those
implemented by the previous two DEXs.

As mentioned earlier, SundaeSwap operates under the CPMMmodel. The primary
difference from MinSwap's model is that SundaeSwap has decentralized its batching
scheme, introducing batchers who are not directly affiliated with the SundaeSwap team.
To mitigate MEV instances, they have selected a limited number of Cardano BPs and
provided themwith a batching license valid for one week. Consequently, SundaeSwap's
batching ecosystem falls under the category of Professional Market Makers, as outlined
in [39].

At the end of this period, only if the batcher "is in good standing with the Sun-
daeSwap team" (which we assume it entails that the batcher has not exploited anyMEV

5https://cointelegraph.com/news/sundaeswap-launches-on-cardano-but-users-report-failing-transactions

58

https://cointelegraph.com/news/sundaeswap-launches-on-cardano-but-users-report-failing-transactions

CHAPTER 6. EUTXO DEFI

opportunities), will the batcher be able to collect their accumulated batching fees.

This arrangement is interesting because it is more decentralized than MinSwap's,
while also imposing tangible penalties for exploitative behavior. This concept resem-
bles slashing[54] in Ethereum, where BPs that fail to participate in the consensus mech-
anism as required face monetary penalties. The intricacies of the Ethereum consensus
mechanism are not the focus of this work, so we digress.

We note that even in this context, the MEV definition provided by Roughgarden
and reiterated in subsection 5.8 remains applicable due to the q parameter that accounts
for burned funds.

In each round of the protocol, SundaeSwap market makers create aggregate trans-
actions that reference the traders' UTxOs locked in the batching smart contract and the
CPMM's liquidity pool UTxO. The outputs of this batch transaction must satisfy the
traders' specified economic intent (i.e., the swap price must be within their accepted
price range).

In subsection 3.3.2, we specified that if multiple eUTxO transactions referencing
the same UTxO are included in the same block, all but the first one (according to their
block ordering) will fail. Therefore, only a single batch transaction can be included in
the block per round.

This property of the eUTxOmodel forcesmatchmakers into a race. The batcher who
manages to submit their batch transaction first to the mempool of the BP responsible
for block production in that specific round6 is the one who wins the race, and thus reaps
the batching rewards for that specific round.

6.4.1 Fatal front-running SundaeSwap batch transactions

What we explained above is an execution of the SundaeSwap protocol as intended by
the designers, i.e., all the entities are described by the dummy model. Below, we will
describe ways that rational entities can diverge from the intended execution of the pro-
tocol to increase their utility functions.

Let's first identify the actors of this protocol (i.e. the players), for a given round of
Cardano protocol and give their utilities when playing strategy sd, i.e. when behaving
in a dummy manner:

• The matchmakers M1, . . . ,Mk. We will use the single-minded value definition

of 5.8. uMi
(sd)

{
1 if i gets their batch in the block,
0 otherwise.

• The block producer BP , uBP (sd) =
∑

t∈B ft

• The relay node operators,R1, . . . , Rl. Since the relay nodes do not get any mon-
etary incentives in Cardano, uRi

(sd) = 0, ∀i ∈ (1, . . . , l)

6The BPs for each round are known ahead of time, as stated in [18]

59

6.4. SUNDAESWAP

Note that in the Cardano network, a BP controls a block-producing node along with
two relay nodes that are neighboring the block-producing node in the network graph.
For convenience, we will contract these two relay nodes along with the block-producing
node in the network graph and treat them all as a single vertex. We will also assume
that the BP does not control any other relay nodes in the network graph. This is not a
strong assumption, because even if they did control more relay nodes, we can treat their
utility function as the sum of the respective utilities.

Additionally, since every matchmaker is one of the Cardano BPs, there will be
rounds where the BP for the round is one of the matchmakers. Hence, if ∃i : Mi =
BP ⇒ uBP (sd) =

∑
t∈B ft + 1 and uMj ̸=i

(sd) = 0.

Suppose that when all matchmakers behave in a dummy fashion, then one of them
is picked uniformly at random and has their batch transaction included in the block. In
this case

E[uMI
(sd)] =

1

k
· 1 + k − 1

k
· 0 =

1

k

A matchmaker can utilize off-chain agreements 5.9 with that round's BP, tipping
the BP τ so that the BP prioritizes their transaction over the rest of the matchmakers.

Suppose now that Mi chooses to utilize OCA with the BP, and is the only match-
maker to do so. We name this strategy sOCA and the tip will be a part ofMi's batching
fees, hence τ ∈ (0, 1). Since

uBP (sOCA) =
∑
t∈B

ft + τ >
∑
t∈B

ft = uBP (sd)

A rational BP would accept this offer. Thus, uMi
= 1 − τ . We notice that for

τ ∈ (0, k−1
k)

τ <
k − 1

k
⇒ τ < 1− 1

k
⇒ t− 1 < −1

k
⇒ 1− τ >

1

k

Thus, uMi(sOCA) > E[uMi]

Hence, given thatMi is the only one utilizing off-chain agreements, on expectation,
sOCA strictly dominates uMi . This is highly problematic for SundaeSwap's protocol.

Also, in this scenario, only one matchmaker is rational. Many players might at-
tempt to utilize off-chain agreements. Additionally, since the bidding data is off-chain,
no matchmaker can know the bids of the others, thus creating a sealed-bid auction [55]
with the BP as the auctioneer.

Furthermore, since there is a significant number of possible Block Producers in the
Cardano network7, some matchmakers might choose to tip relay nodes to influence
them. If a single matchmaker or a coalition of matchmakers could influence a set of
relay nodes that forms a dominating set in Cardano's network graph, they could prior-
itize their transactions over those of their peers, thereby reaping all of the batching fees.

7At the time of writing, this number is 2,763

60

CHAPTER 6. EUTXO DEFI

Of course, the fatal front-running does not occur within the SundaeSwap protocol
itself; rather, it affects SundaeSwap batch transactions and takes place on the Cardano
network. This highlights how the large total value locked (TVL) in a DEX that operates
on top of a blockchain can impact the blockchain itself. This phenomenon is already
known in Ethereum and relates to how significant on-chain tipping or off-chain agree-
ments can overshadow a protocol's monetary rewards to BPs, thereby altering rational
BPs' behavior. This, in turn, threatens the protocol's safety at the consensus level, as
noted in [40].

61

6.4. SUNDAESWAP

62

CHAPTER7
CONCLUSION

After investigating the three main Cardano DEXs, along with some of the security vul-
nerabilities present in them, it is now clear that the inner workings and limitations of the
eUTxO accounting model greatly affect Cardano DeFi. The concurrency issue has led
all the DEXs we analyzed to adopt a batching solution as a workaround. Alas, batching
smart contracts introduce a single point of failure for the DeFi infrastructure, making
them a significant target for any rational entity wishing to maximize profits. Addition-
ally, their permissioned nature undermines the decentralization of the Cardano protocol
and gives the DEXs strong monopolistic positions in the DeFi landscape.

In the MuesliSwap incident, we observed that the DEX team was able to leverage
their monopolistic position as the sole matchmakers to extract additional profits from
protocol users.

In the Minswap sandwich attack, an adversary exploited the batching algorithm of
the DEX to execute several sandwich attacks and extract profits from traders, with no
cost or risk to themselves. Although the specific exploit has since been patched, the
existence of a single batching smart contract remains a point of failure for the entire
DEX, making it a significant vulnerability for future adversaries.

Finally, in the case of SundaeSwap, there have not been any reported instances
of MEV targeting traders. Nevertheless, the batching completion introduced by the
DEX's decentralized model creates strong monetary incentives for BPs, relay nodes,
and matchmakers to establish off-chain agreements for transaction prioritization. This
could lead to a shadow economy on the Cardano consensus layer, impacting the overall
decentralization and security of the protocol.

7.1 Future Work
We believe that a drastic rework of the eUTxO transaction aggregation is needed to
address the aforementioned limitations. There are two routes one can explore: either a
rework of the batch ordering system or a complete abolishment of it in favor of novel

63

7.1. FUTURE WORK

primitives.

The main problem with the batching scheme is its lack of decentralization on both
the batching and liquidity sides. On the batching side, batchers have total control over
transaction ordering, incentivizing them to engage in MEV practices. We believe that
enhancing the batching scheme with additional ordering limitations could help mitigate
this issue. There are several routes one could take, as presented in [39]:

• Professional matchmaking: Currently, the monetary incentives for matchmak-
ers are rather lackluster. We believe that allowing traders to tip their matchmakers
as they see fit, coupled with a slashing mechanism similar to that of SundaeSwap,
could bring transparency to the process and deter many MEV exploits.

• Algorithmic Committee ordering: Another route is to introduce additional or-
dering rules regarding the time of inclusion of each transaction in the batching
contract. Since time in the blockchain can be quite variable, one could implement
a fair-ordering scheme like the one presented in [56] by Kiayas, Leonardos, and
Shen.

• Commit and reveal schemes: The final avenue we believe should be explored
in this direction is the inclusion of Zero-Knowledge (ZK) proofs [57]. ZK proofs
can be utilized to mask the depth and price of transactions, thereby obscuring
their impact on the market. This results in matchmakers not knowing the depth
of a transaction before execution, making it difficult for them to identify pure
revenue opportunities.

Another direction is to abolish batching schemes altogether. A novel idea presented
in [58] suggests encoding unexecuted trades as internal transactions within an eUTxO
account, allowing DEX-agnostic matchmakers to process them as long as they fulfill
the economic intent set by the trader. There is currently no formal analysis of this idea,
nor of the encoding process of a DeFi construction that utilizes it.

64

BIBLIOGRAPHY

[1] S. Nakamoto, ``Bitcoin: A peer-to-peer electronic cash system,'' 2008.

[2] R. L. Rivest, A. Shamir, and D. A.Wagner, ``Time-lock puzzles and timed-release
crypto,'' tech. rep., USA, 1996.

[3] J. A. Garay, A. Kiayias, and N. Leonardos, ``The bitcoin backbone protocol:
Analysis and applications,'' Journal of the ACM, 2015.

[4] V. Buterin et al., ``Ethereum white paper,'' GitHub repository, vol. 1, pp. 22--23,
2013.

[5] V. Buterin, ``The x*y=k market maker model.'' Online, 2018.
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-
makers/.

[6] H. Adams, N. Zinsmeister, M. Salem, R. Keefer, and D. Robinson, ``Uniswap v3
core,'' Tech. rep., Uniswap, Tech. Rep., 2021.

[7] C. HOSKINSON, ``Cardano whitepaper,'' 2017. Accessed: September 13, 2024.

[8] J. Katz and Y. Lindell, Introduction to modern cryptography: principles and pro-
tocols. Chapman and hall/CRC, 2007.

[9] M. J. Osborne, ``An introduction to game theory,''Oxford University Press google
schola, vol. 2, pp. 672--713, 2004.

[10] L. Lamport, ``Paxos made simple,'' ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pp. 51--58, 2001.

[11] M. Castro, B. Liskov, et al., ``Practical byzantine fault tolerance,'' inOsDI, vol. 99,
pp. 173--186, 1999.

[12] I. Eyal and E. G. Sirer, ``Majority is not enough,'' Communications of the ACM,
vol. 61, pp. 95 -- 102, 2013.

[13] M. Weinberg and A. Narayanan, ``On the instability of bitcoin without the block
reward,'' Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

65

BIBLIOGRAPHY

[14] IOHK, ``Dynamic p2p is coming to cardano,'' 2023. Accessed: 2024-09-18.

[15] C. Foundation, ``Cardano p2p networking,'' 2024. Accessed: 2024-09-18.

[16] A.-M. Kermarrec and M. Van Steen, ``Gossiping in distributed systems,'' ACM
SIGOPS operating systems review, vol. 41, no. 5, pp. 2--7, 2007.

[17] B. M. David, P. Gazi, A. Kiayias, and A. Russell, ``Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain,'' in International
Conference on the Theory and Application of Cryptographic Techniques, 2018.

[18] A. Kiayias, A. Russell, B. David, and R. Oliynykov, ``Ouroboros: A provably
secure proof-of-stake blockchain protocol,'' in Annual international cryptology
conference, pp. 357--388, Springer, 2017.

[19] M. Miller, ``The future of law,'' paper delivered at the Extro, vol. 3, 1997.

[20] N. Szabo, ``Formalizing and securing relationships on public networks,'' First
monday, 1997.

[21] S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, andW. Knottenbelt,
``Sok: Decentralized finance (defi),'' in Proceedings of the 4th ACM Conference
on Advances in Financial Technologies, AFT '22, (New York, NY, USA), p. 30–
46, Association for Computing Machinery, 2023.

[22] M. M. T. Chakravarty, J. Chapman, K. M. Mackenzie, O. Melkonian, M. P. Jones,
and P. Wadler, ``The extended utxo model,'' in Financial Cryptography Work-
shops, 2020.

[23] G. Wood et al., ``Ethereum: A secure decentralised generalised transaction
ledger,'' Ethereum project yellow paper, vol. 151, no. 2014, pp. 1--32, 2014.

[24] J. E. Hopcroft, R. Motwani, and J. D. Ullman, ``Introduction to automata theory,
languages, and computation,'' Acm Sigact News, vol. 32, no. 1, pp. 60--65, 2001.

[25] V. Buterin and V. Griffith, ``Casper the friendly finality gadget,'' arXiv preprint
arXiv:1710.09437, 2017.

[26] J. Zahnentferner, ``Chimeric ledgers: Translating and unifying utxo-based and
account-based cryptocurrencies,'' Cryptology ePrint Archive, 2018.

[27] D. Zindros, ``Blockchain foundations.'' https://ee374.stanford.edu/
blockchain-foundations.pdf#page=41.47. Accessed: 2024-08-23.

[28] J. Zahnentferner, ``An abstract model of UTxO-based cryptocurrencies with
scripts.'' Cryptology ePrint Archive, Paper 2018/469, 2018. https://eprint.
iacr.org/2018/469.

[29] A. Chepurnoy, V. Kharin, and D. Meshkov, ``Self-reproducing coins as universal
turingmachine,'' in InternationalWorkshop onData PrivacyManagement, pp. 57-
-64, Springer, 2018.

[30] A.M. Turing et al., ``On computable numbers, with an application to the entschei-
dungsproblem,'' J. of Math, vol. 58, no. 345-363, p. 5, 1936.

66

https://ee374.stanford.edu/blockchain-foundations.pdf#page=41.47
https://ee374.stanford.edu/blockchain-foundations.pdf#page=41.47
https://eprint.iacr.org/2018/469
https://eprint.iacr.org/2018/469

BIBLIOGRAPHY

[31] L. Brünjes and M. J. Gabbay, ``Utxo- vs account-based smart contract blockchain
programming paradigms,'' ArXiv, vol. abs/2003.14271, 2020.

[32] M. D. Gould, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D.
Howison, ``Limit order books,'' Quantitative Finance, vol. 13, no. 11, pp. 1709--
1742, 2013.

[33] J. Xu, K. Paruch, S. Cousaert, and Y. Feng, ``Sok: Decentralized exchanges
(dex) with automated market maker (amm) protocols,'' ACM Computing Surveys,
vol. 55, no. 11, pp. 1--50, 2023.

[34] Y. Zhang, X. Chen, and D. Park, ``Formal specification of constant product (xy=
k) market maker model and implementation,''White paper, 2018.

[35] L. Zhou, K. Qin, C. F. Torres, D. V. Le, and A. Gervais, ``High-frequency trading
on decentralized on-chain exchanges,'' in 2021 IEEE Symposium on Security and
Privacy (SP), pp. 428--445, IEEE, 2021.

[36] Y. Wang, ``Automated market makers for decentralized finance (defi),'' arXiv
preprint arXiv:2009.01676, 2020.

[37] J. Milionis, C. C. Moallemi, and T. Roughgarden, ``Complexity-approximation
trade-offs in exchange mechanisms: Amms vs. lobs,'' in International Conference
on Financial Cryptography and Data Security, pp. 326--343, Springer, 2023.

[38] B. Mazorra, M. Reynolds, and V. Daza, ``Price of mev: Towards a game the-
oretical approach to mev,'' in Proceedings of the 2022 ACM CCS Workshop on
Decentralized Finance and Security, DeFi'22, (New York, NY, USA), p. 15–22,
Association for Computing Machinery, 2022.

[39] L. Heimbach and R. Wattenhofer, ``Sok: Preventing transaction reordering ma-
nipulations in decentralized finance,'' Proceedings of the 4th ACM Conference on
Advances in Financial Technologies, 2022.

[40] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and
A. Juels, ``Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability,'' in 2020 IEEE Symposium on Security
and Privacy (SP), pp. 910--927, 2020.

[41] V. Buterin, ``The searcher-builder-proposer separation and the anti-censorship
properties of ethereum,'' 2024. Accessed on May 11, 2024.

[42] M. Bahrani, P. Garimidi, and T. Roughgarden, ``Transaction fee mechanism de-
sign with active block producers,'' ArXiv, vol. abs/2307.01686, 2023.

[43] T. Roughgarden, ``Transaction feemechanism design,'' J. ACM, vol. 71, aug 2024.

[44] cardanians.io, ``Understanding cardano batchers,'' 2024. Accessed: September
13, 2024.

[45] M. Labs, ``Musliswap whitepaper,'' 2021. Accessed: 2024-06-12.

[46] MuesliSwap Team, ``Matchmakers - muesliswap documentation,'' 2022. Ac-
cessed: 2024-09-15.

67

BIBLIOGRAPHY

[47] L. Nguyen, ``Minswap whitepaper,'' 2021. https://docs.minswap.org/get-
started/whitepaper.

[48] MinSwap, ``Minswap testnet reflections,'' 2022.
https://medium.com/minswap/minswap-testnet-reflections-64b01c5e7c45.

[49] MinSwap, ``Introducing laminar: An eutxo scaling protocol for accounting-style
smart contracts,'' 2022. https://medium.com/minswap/introducing-laminar-an-
eutxo-scaling-protocol-for-accounting-style-smart-contract-d1ac8847dde8.

[50] MinSwap, ``Incident report: Sandwich attack patch,'' 2022.

[51] J. Katz and Y. Lindell, Introduction to modern cryptography: principles and pro-
tocols. Chapman and hall/CRC, 2007.

[52] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, ``A survey on long-
range attacks for proof of stake protocols,'' IEEE access, vol. 7, pp. 28712--28725,
2019.

[53] S. Labs, ``Sundaeswap whitepaper,'' 2022. Accessed: 2024-06-12.

[54] Z. He, J. Li, and Z. Wu, ``Don’t trust, verify: The case of slashing from a popular
ethereum explorer,'' inCompanion Proceedings of the ACMWebConference 2023,
pp. 1078--1084, 2023.

[55] T. Roughgarden, ``Algorithmic game theory,'' Communications of the ACM,
vol. 53, no. 7, pp. 78--86, 2010.

[56] A. Kiayias, N. Leonardos, and Y. Shen, ``Ordering transactions with bounded un-
fairness: Definitions, complexity and constructions.'' Cryptology ePrint Archive,
Paper 2023/1253, 2023. https://eprint.iacr.org/2023/1253.

[57] A. Nitulescu, N. Paslis, and C. Rafols, ``Flip -and-prove r1cs,''

[58] I. Oskin, ``Spectrum bloom: A self-developing, sustainable, eutxo-native frame-
work for decentralized finance,'' 2023.

68

https://eprint.iacr.org/2023/1253

	Introduction
	Preliminaries
	Cryptography
	Game theory
	Game theory in Blockchain; Classical results

	The Cardano blockchain
	Network Layer
	Consensus layer
	Application Layer

	Ledger Models
	The account-based model
	Ethereum Transactions

	The UTxO model
	UTxO Transactions
	Bitcoin Transactions

	The eUTxO model
	eUTxO Transactions
	Concurrency

	eUTxO and account-based comparison

	Decentralized Finance
	Types of Security
	Limit Order Books
	Automatic Market Makers
	Constant Product Automatic Market Makers
	UniSwap

	LOB and CPMM comparison

	Transaction Ordering
	Rational Block Producers
	Transaction Reordering Attacks
	Sandwich Attacks
	Cyclic Arbitrage Opportunities
	Front-running in the eUTxO Model

	Block Producer Surplus
	Off-Chain Agreement

	eUTxO DeFi
	Transaction Batchers
	MuesliSwap
	BPS incidents in MuesliSwap

	MinSwap
	Sandwich attacks in MinSwap

	SundaeSwap
	Fatal front-running SundaeSwap batch transactions

	Conclusion
	Future Work

	Bibliography

