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ABSTRACT

This thesis examines Ordinal One-Sided Matching Mechanisms, that allocate indivisible resources. We focus on
two important mechanisms: Random Priority and Probabilistic Serial. Random Priority is safe from player ma-
nipulation (truthful), but often leads to suboptimal fair and efficient results, while Probabilistic Serial produces
efficient results, but is vulnerable to manipulation.

We study several concepts such as social welfare, efficiency, truthfulness and analyze the performance of these
mechanisms. We study the Approximation Ratio, which quantifies how close the outcome of a mechanism is to
the optimal solution in terms of social welfare; the Price of Anarchy, which measures how the players' strategic
behavior affects the efficiency of the mechanism; the Incentive Ratio, which expresses the maximum benefit a
player can gain by manipulating her preferences compared to her true ones.

Finally, we present experimental results and discuss a new metric to assess how agents' strategic behavior affects
the mechanism's social welfare relative to its outcome if everyone were telling the truth.





ΣΎΝΟΨΗ

Αυτή η διπλωματική εργασία εξετάζει μηχανισμούς μονομερούς αντιστοίχισης με βάση τις διατακτικές προτιμήσεις
παικτών, οι οποίοι κατανέμουν αδιαίρετους πόρους. Επικεντρωνόμαστε σε δύο σημαντικούς μηχανισμούς: τον
Random Priority και τον Probabilistic Serial. Ο Random Priority είναι ασφαλής από χειραγώγιση από τους παίκτες
(truthful), αλλά συχνά οδηγεί σε υποβέλτιστα δίκαια αποτελέσματα, ενώ ο Probabilistic Serial παράγει δίκαια
αποτελέσματα, αλλά είναι ευάλωτος σε χειραγώγηση.

Εξετάζουμε αρκετές έννοιες, όπως την κοινωνική ευημερία, την αποδοτικότητα, την ασφάλεια στην χειραγώγιση
και αναλύουμε την απόδοση αυτών των μηχανισμών. Μελετούμε το Approximation Ratio, το οποίο ποσοτικοποιεί
πόσο κοντά βρίσκεται το αποτέλεσμα ενός μηχανισμού στην ιδανική λύση από την άποψη της κοινωνικής ευημερίας·
το Τίμημα της Αναρχίας (Price of Anarchy), που μετρά πώς η στρατηγική συμπεριφορά των παικτών επηρεάζει την
αποδοτικότητα του μηχανισμού· το Incentive Ratio, το οποίο εκφράζει το μέγιστο όφελος που μπορεί να κερδίσει
ένας παίκτης με την αλλαγή των προτιμήσεων σε σύγκριση με την αληθινή του αναφορά.

Τέλος, παραθέτουμε πειραματικά αποτελέσματα και συζητούμε μια νέα μετρική, για να εκτημηθεί πώς η στρατηγική
συμπεριφορά των πρακτόρων επηρεάζει το κοινωνικό όφελος του μηχανισμού, σε σχέση με την έκβαση του, αν
όλοι έλεγαν την αλήθεια.
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CHAPTER1

INTRODUCTION

1.1 Introduction

Artificial intelligence research fundamentally focuses on the study and design of autonomous agents capable of
making logical decisions. These autonomous agents find applications in a wide range of areas including, but not
limited to, online systems, customer support systems, healthcare, robotics, transportation and traffic control, infor-
mation management and electronic commerce.

The field of multiagent systems research, draws on a wide range of techniques, from mathematics, economics
and computer science to create autonomous agents that can navigate intelligently and achieve specific goals when
interacting with potentially uncertain environments. A key concept in modeling decision-making, particularly in
multiagent systems, is the handling of individual preferences. Agents often find themselves in decision-making
situations and require computational models of preferences to reason over various choices. These preferences may
guide agent behavior when seeking collective decisions in social choice problems such as voting, or when making
rational decisions while competing or cooperating with other intelligent agents.

In the efficient allocation of indivisible resources among self-interested agents who compete for limited resources,
individual preferences are the crucial factor in assessing the quality of the allocation and achieving favourable so-
cial outcomes. Techniques from game theory and economics are used in multi-agent resource allocation to ensure
various desirable properties based on agents' preferences. Mechanism design approaches, such as matching mech-
anisms and auctions, are often used to ensure fairness and efficiency while preventing agents from manipulating
outcomes.

However, in many scenarios, such as assigning student housing, distributing faculty workloads, assigning student
courses, and allocating organs to patients, monetary transactions are prohibited. These systems rely on self-reported
preferences, but agents may not always report their true preferences. For example, parents may misrepresent their
preferences in school placement systems in order to secure better placements for their children. To address this
problem, the fields of mechanism design and matching theory have developed algorithms that encourage truthful
preference reporting.

Truthful reporting of preferences is key to ensuring other desirable properties such as efficiency and fairness. With-
out ensuring truthfulness, a matching mechanism can only guarantee efficient and fair allocations with respect to
the, perhaps untruthful, preferences, and thus fails to satisfy the desirable economic properties with respect to the
true underlying preferences.

It is therefore crucial the construction allocation mechanisms that provide incentives for self-interested agents to
report their preferences truthfully, while ensuring economic efficiency and fairness.
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1.2. OUTLINE OF THE THESIS

1.2 Outline of the Thesis
The focus of this thesis is a review of the literatute of ordinal mechanisms for the One - Sided Matching Problem
- the problem of allocating indivisible items to agents in a way that each agent receives exactly one item. This
problem is central to various applications such as student course allocation, housing assignments, and organ dona-
tion. The central challenge lies in designing mechanisms that respect agents' preferences while ensuring fair and
efficient outcomes without the use of money.

This thesis begins with a bibliographic review of the One - Sided Matching Problem and continues with presenting
existing mechanisms designed for the One - Sided Matching Problem. These mechanisms include well-known
mechanisms such as the Random Priority and Probabilistic Serial.

By further studying these mechanism we encounter economic inefficiencies by them. For example, the Random
Priority mechanism is strategy-proof but can result in suboptimal allocations, while the Probabilistic Serial mech-
anism, which often yields more efficient and fair outcomes, is susceptible to manipulation.

Social Welfare — a prominent measure of collective utility widely used in the literature, captures the overall sat-
isfaction of all agents under an allocation mechanism and as natural, it is desired to be as high as possible. The
inefficiency of these mechanisms, arrising due to strategic behavior or inherent design limitations, can be captured
by Social Welfare. Further in this thesis, we will see work done, providing theretical bounds for these inefficien-
cies, while we will see experiments, showing how these mechanisms behave in the average case.

In the last Chapter of this thesis, we provide possible future directions on this problem. We suggest a new measure
that provides a deeper understanding of how strategic behavior can sometimes yield better outcomes than truthful
reporting. We state some thoughts concerning possible bounds, and an algorithm that produces such examples.

This thesis is structured as follows:

• Chapter 1: Introduction to the thesis.

• Chapter 2: This chapter explains the notation and basic concepts used in the thesis.

• Chapter 3: This chapter reviews the One-Sided Matching Problem..

• Chapter 4: This chapter studies the Approximation Ratio of Ordinal One - Sided Matching Mechanisms.

• Chapter 5: This chapter studies the Price of Anarchy of Ordinal One - Sided Matching Mechanisms.

• Chapter 6: This chapter studies the Incentive Ratio of the Probabilistic Serial Mechanism.

• Chapter 7: This chapter introduces the Price of Truthfulness and its impact.

2



CHAPTER2
PRELIMINARIES

We standardize our notation throughout this thesis based on the work in [8], [10] and [5] ensuring consistency with
the notational conventions established therein.

2.1 Basic Definitions
In this section, we present an overview of the key definitions and fundamental concepts that form the basis of this
thesis. Throught this thesis we let N = {1, . . . , n} to be a finite set of agents and A = {1, . . . ,m} be a finite set
of indivisible items. We assume that n = m, meaning that the number of items are exactly the same as the number
of agents, unless stated otherwise.

2.1.1 Allocations
An allocation is a matching of agents to items, that is, an assignment of items to agents where each agent gets
assigned exactly one item. We can view an allocation µ as a permutation vector (µ1, µ2 . . . , µn) where µi is the
unique item matched with agent i. Let O be the set of all allocations.

2.1.2 Valuation Functions
Each agent i has a (private) valuation function ui : A → Rmapping items to real numbers. The two standard ways
to fix the canonical representation of ui in the literature are unit-range, where maxj ui(j) = 1 and minj ui(j) = 0,
and unit-sum, that is,

∑
j ui(j) = 1 with ui(j) ≥ 0 for all i, j. Equivalently, we can consider valuation functions

as valuation vectors ui = (ui1, ui2, . . . , uin) and let V be the set of all valuation vectors of an agent. Let u =
(u1, u2, . . . , un) denote a typical valuation profile and let V n be the set of all valuation profiles with n agents.

2.1.3 Mechanisms
A direct revelation mechanism without money is a functionM : V n → O mapping reported valuation profiles to
matchings.

2.1.4 Strategies
Weconsider strategic agentswhomight have incentives tomisreport their valuations. We define s = (s1, s2, . . . , sn)
to be a pure strategy profile, where si is the reported valuation vector of agent i. We will use s−i to denote the
strategy profile without the ith coordinate and hence s = (si, s−i) is an alternative way to denote a strategy profile.

2.1.5 Ordinal & Cardinal Preferences
A mechanism M is ordinal if for any i strategy profile s, s′ such that for all agents i and for all items j, ℓ, sij <
siℓ ⇔ s′ij < s′iℓ, it holds that M(s) = M(s′). A mechanism for which the above does not necessarily hold is
cardinal.

3



2.2. CONCEPTS FROM ECONOMICS

Equivalently, the strategy space of ordinal mechanisms is the set of all permutations of n items instead of the
space of valuation functions V n. A strategy si of agent i is a preference ordering of items (a1, a2, . . . , an) where
aℓ ≻ ak for ℓ < k. We will write j ≻i j′ to denote that agent i prefers item j to item j′ according to her true
valuation function and j ≻si j

′ to denote that she prefers item j to item j′ according to her strategy si.
When not confusing, we abuse the notation slightly and let ui denote the truthtelling strategy of agent i, even

when the mechanism is ordinal. Note that agents can be indifferent between items and hence the preference order
can be a weak ordering.

2.1.6 Randomized Mechanisms

For a randomized mechanism, we define M to be a random map M : V n → O. Let Mi(s) denote the restriction
of the outcome of the mechanism to the i'th coordinate, which is the item assigned to agent i by the mechanism.
For randomized mechanisms, we let pM,s

ij = Pr[Mi(s) = j] and pM,s
i = (pM,s

i1 , . . . , pM,s
in ). When it is clear from

the context, we drop one or both of the superscripts from the terms pM,s
ij . The utility of an agent from the outcome

of a deterministic mechanismM on input strategy profile s is simply ui(Mi(s)). For randomized mechanisms, an
agent's utility is E[ui(Mi(s))] =

∑n
j=1 p

M,s
ij uij .

2.2 Concepts from Economics

2.2.1 Efficiency, Truthfulness & Fairness

When giving away resources, two natural goals are to allocate these resources efficiently and fairly. Achieving
these goals requires asking people about their preferences, so a third goal is to allocate in a way that is truthful
(incentivizes people to tell us their true preferences).

Can we achieve all three goals simultaneously? Achieving all three goals - efficiency, fairness and truthfulness
- simultaneously in resource allocation is generally not possible due to fundamental trade-offs in mechanism de-
sign. Theoretical results such as the Gibbard-Satterthwaite theorem and others show that when there are three or
more agents or options, no deterministic mechanism can satisfy all three properties without being dictatorial. This
impossibility forces mechanism designers to make compromises: between efficiency and truthfulness on the one
hand, and fairness on the other; between achieving fairness and truthfulness on the one hand, and some efficiency
on the other. Of course, some randomised mechanisms achieve the right trade-offs by slightly relaxing one or the
other of these goals, but a harmonious solution that achieves all three at once remains elusive. The reader, might
be interested in [22] and [23] for a more inclusive discusion.

Pareto Efficiency and Truthfulness

A deterministic mechanism M is said to be Pareto Efficient (PE) if for every preference profile ≻, there is no
allocation that is as good (according to ≻) as M(≻) for every agent, and strictly better for some agent. In other
words, there is no other allocation of the items that can make at least one agent better off without making any other
agent worse off.

A deterministic mechanism is Truthful (or strategyproof or incentive-compatible) if, for any preference profile
≻ and agent i, the object that i receives from reporting ≻i is at least as good (according to ≻i) as the object that
i receives from reporting any other preference. In, other words, agents do not have incentives to misreport their
valuations - telling the truth is a dominant strategy.

Utility-wise, a mechanism M : V n → O is truthfull, if for every agent i and all u = (ui, u−i) ∈ V n and
u′
i ∈ V it holds that:

ui(Mi(u)) ≥ ui(Mi(u
′
i, u−i))

Where u−i denotes the valuation profile u without the i-th coordinate.

4



CHAPTER 2. PRELIMINARIES

Random Mechanisms & Lotteries

In order to achieve fairness, we often use random mechanisms. Formally defined previously, a random mecha-
nism is a function that maps each preference profile to a distribution over allocations.

One way to construct a random mechanism is to use a lottery over deterministic mechanisms. A lottery, is a
method of randomization used to determine outcomes. It involves assigning probabilities to different possible al-
locations and then using a random process to select one of these allocations based on the assigned probabilities.

For example, suppose there are two agents and two objects a, b. A simple lottery mechanism might allocate a
to agent 1 and a to agent 2 with probability 1/2, and allocate b to agent 1 and a to agent 2 with probability 1/2.
The lottery ensures that each agent has an equal chance of receiving their preferred object if both prefer the same
object.

A random mechanism is truthful-in-expectation (or just truthful) if for each agent i and all u ∈ V n and u′
i ∈ V

it holds that:

E[ui(Mi(u))] ≥ E[ui(Mi(u
′
i, u−i))]

This condition ensures that, in expectation, an agent cannot benefit by misreporting their preferences.

2.2.2 Ex Ante & Ex Post Truthfulness and Efficiency
Things here start to become a bit complicated, as the randomness affects both the truthfulness. There are two natu-
ral approaches to defining what it means for a randommechanismM to satisfy property: it can satisfy this property
ex post (after the randomness of the mechanism is resolved), or ex ante (before the randomness is resolved).

Depending on the property satisfied, the ex ante requirement can be either stronger or weaker than its ex post
counterpart. Bogomolnaia and Moulin in [1] proved that ordinal efficiency - that is, no other feasible allocation
that all agents weakly prefer and at least one agent strictly prefers, based solely on their ordinal preferences, cannot
be achieved at all if we also want truthfulness (either ex ante or ex post) and a weak fairness criteria (equal treatment
of equals).

Ex Ante Efficiency

A mechanism is ex ante efficient if, before the random allocation is resolved, there is no other mechanism that
could provide a better expected outcome for every agent. Formally, a mechanismM is ex ante Pareto efficient if,
for every preference profile ≻, there is no distribution over allocations that is weakly ≻ - preferred by every agent
toM(≻), and strictly ≻ - preferred by some agent.

Ex Ante Truthfulness

A mechanism is ex ante truthful if, before the random allocation is resolved, agents have no incentive to misreport
their preferences to improve their expected outcome. Formally, a mechanism M is ex ante truthful if, for any
preference profile ≻, each agent i weakly ≻ - prefers M(≻)to the distribution over outcomes that would result if
i reported any other preference.

Ex Post Efficiency

A mechanism is ex post efficient if, after the random allocation is resolved, the outcome is Pareto efficient; that
is, no agent can be made better off without making another agent worse off. Formally, a mechanismM is ex post
Pareto efficient if it can be expressed as a lottery over deterministic mechanisms, each of which is Pareto efficient.

Ex Post Truthfulness

A mechanism is ex post truthful if, after the random allocation is resolved, agents have no incentive to misreport
their preferences given the realized outcome. Formally, a mechanism M is ex post truthful if it can be expressed
as a lottery over deterministic mechanisms, each of which is truthful.

5



2.2. CONCEPTS FROM ECONOMICS

Ex Post Truthfulness is Stronger than Ex Ante Truthfulness:

If a mechanism is ex post truthful, it is also ex ante truthful. This is because if agents cannot benefit from misre-
porting their preferences even after knowing the random seed, they certainly cannot benefit if they don't know the
seed. However, the converse is not necessarily true. An ex ante truthful mechanism might not be ex post truthful.

Ex Ante Efficiency is Stronger than Ex Post Efficiency

If a mechanism is ex ante efficient, it is also ex post efficient. This is because an ex ante efficient mechanism
ensures that no better expected allocation exists, which implies that each realized allocationmust be Pareto efficient.
However, the converse is not necessarily true. An ex post efficient mechanism might not be ex ante efficient, as it
may not maximize expected utility.

Ex Post vs. Ex Ante Truthfulness Example:

Consider a mechanism where an agent can receive their first choice with probability 1/2 and their second choice
with probability 1/2.

• Ex Ante: This mechanism is truthful because the agent maximizes their expected utility by reporting their
true preferences.

• Ex Post: To see if it's ex post truthful, we would need to check if the agent would still prefer to report
truthfully even after the random outcome is known. Some ex ante truthful mechanisms do not hold up under
ex post scrutiny.

Ex Post vs. Ex Ante Efficiency Example:

Consider four agents and four objects with specific preference profiles.

• Ex Ante: A mechanism that randomizes in a way that, before the allocation, all agents expect to be as well
off as possible, considering all possible outcomes.

• Ex Post: A mechanism that, after the allocation, no agent can be made better off without making another
agent worse off. Random serial dictatorship (RSD) is an example that is ex post efficient but might not
always be ex ante efficient.

2.2.3 Fairness and Envy-Freeness

Fairness

Fairness in the context of resource allocation generally means that the resources are distributed in a manner that is
equitable and just, considering the preferences and needs of all involved parties. Fairness can be operationalized
in various ways depending on the specific context and the criteria used.

Equal Treatment of Equals

Equal treatment of equals is a fairness criterion. It dictates that agents who have identical preferences should be
treated the same way in the allocation process. This principle ensures that no arbitrary distinctions are made be-
tween agents with the same preferences, thereby promoting fairness and equity.

In formal terms, equal treatment of equals can be defined as follows:

If two agents i and j have the same preference profile, then they should receive allocations that are statistically
indistinguishable. In other words, the allocation mechanism should not favor one agent over another when their
preferences are identical. This principle helps in maintaining fairness by ensuring that the allocation process does
not introduce bias or favoritism.

6



CHAPTER 2. PRELIMINARIES

Envy-Freeness

Envy-freeness is a more stringent criterion for fairness. It ensures that no player prefers another player's share over
their own. The formal definition from the document is:

• Envy relation: Player pi envies player pj (denoted as pi ≻ pj) if the valuation vi of pi for their own share
Xi is less than their valuation for pj 's share Xj , i.e., vi(Xi) < vi(Xj).

• Envy-free relation: Player pj is not envied by player pi (denoted as pi ̸≻ pj) if vi(Xi) ≥ vi(Xj).

An allocation is envy-free if no player envies another player.

There are two types of envy-freeness:

• Ex-Ante Envy-Free: Before the outcomes are determined, each agent's expected allocation is at least as
good as the expected allocation of any other agent.

• Ex-Post Envy-Free: After the outcomes are determined, no agent prefers another agent's allocation to their
own.

2.2.4 Anonymity & Neutrality
An anonymous mechanism has the property that agents with the same valuation functions must have the same
probability of receiving each item.

More formally, a mechanism is anonymous if for any valuation profile (u1, . . . , un), every agent i, and any per-
mutation σ : N → N it holds that:

Mi(u) = Mσ(i)(uσ(1), . . . , uσ(n))

A neutral mechanism, is a mechanism mechanism that is invariant to the indices of the items. Formally, a neu-
tral mechanism has the property that for any valuation profile (u1, . . . , un), every agent i, and any permutation
σ : N → N it holds that:

Mi(u) = σ−1(Mi(σ(u1), . . . , σ(un)))

2.3 Nash Equilibrium
The idea of an equilibrium in strategic interaction is pretty old and goes back to Antoine Augustin Cournot, who
first introduced his version of it in 1838 when he was studying competition in oligopolies. However, it was John
Forbes Nash Jr. who, in the 1950s, extended this concept beyond its initial application to a more general frame-
work, demonstrating that it applies to any strategic situation involving a finite number of players and strategies.
In his Ph.D. thesis ([24]), Nash proved that every finite game, regardless of the number of players, has at least
one equilibrium in which no player has an incentive to unilaterally change their strategy if all others keep theirs
unchanged, now known as a Nash equilibrium. Nash's ingenious work showed that a Nash equilibrium must exist
in mixed strategies for any finite set of strategies, using a difficult-to-conceive function and applying Brouwer's
Fixed-point theorem. His work not only won him a Nobel Prize in 1994 but also cemented the Nash equilibrium
as one of the most important tools for analyzing competitive scenarios in economics.

An equilibrium refers to a strategy profile where no agent has an incentive to unilaterally deviate from their chosen
strategy, as doing so would not increase their payoff.

In this thesis, we address results on several standard equilibrium concepts: pure Nash, mixed Nash, correlated,
coarse correlated, and Bayes-Nash Equilibria. The first four of these concepts correspond to complete information,
meaning all agents are fully informed of the structure of the game and the preferences of all others. The Bayesian
setting generalizes these by considering incomplete information, where the valuations of the agents come from
known distributions, and each agent knows only its own valuation and the distribution of the valuations of the other
agents.

We begin by formally defining these equilibrium concepts:
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Given a mechanism M , a strategy profile s is a pure Nash equilibrium if, for every agent i, the utility ui that
agent i receives from the outcome under strategy s satisfies:

ui(Mi(s)) ≥ ui(Mi(s
′
i, s−i))

for all agents i and all pure deviations s′i.

Now, let q be a distribution over strategies. Also, for any distribution ∆ let ∆−i denote the marginal distribu-
tion without the ith index. Then a strategy profile q is called a:

• In a mixed Nash equilibrium, agents randomize over strategies. Formally,

q = ×iqi, Es∼q[ui(Mi(s))] ≥ Es−i∼q−i [ui(Mi(s
′
i, s−i))],

• In a correlated equilibrium, players coordinate their strategies based on a shared probability distribution.
Formally,

Es∼q[ui(Mi(s))|si] ≥ Es∼q[ui(Mi(s
′
i, s−i))|si],

• In a coarse correlated equilibrium, players follow a recommendation drawn from a shared probability
distribution. Formally,

Es∼q[ui(Mi(s))] ≥ Es∼q[ui(Mi(s
′
i, s−i))],

• ABayes-Nash equilibrium occurs in games with incomplete information, there, agents optimize their strate-
gies based on their private information. Formally, for a distribution ∆u where each (∆u)i is independent,
when u ∼ ∆u, then q(u) = ×iqi(ui) and for all ui in the support of (∆u)i,

Eu−i,s∼q(u)[ui(Mi(s))] ≥ Eu−i,s−i∼q−i(u−i)[ui(Mi(s
′
i, s−i))].

Where the inequalities above hold for all agents i, and (pure) deviating strategies s′i. Note that for randomized
mechanisms, these definitions are with respect to an expectation over the random choices of the mechanism.

It is know that pure Nash equilibria are contained within mixed Nash equilibria, which are contained within cor-
related equilibria, which in turn are contained within coarse correlated equilibria. Similarly, in the context of
incomplete information, pure Nash equilibria are contained within mixed Nash equilibria, which are contained
within Bayes-Nash equilibria.

2.3.1 Price of Anarchy & Price of Stability
Price of Anarchy

The Price of Anarchy (PoA) was introduced to measure the inefficiency in systems due to self-interested strategic
behavior by it's agents. It is a measure that quantifies the loss in Social Welfare that occurs when agents act non-
cooperatively by comparing the worst-case Nash equilibrium (where no individual has an incentive to deviate) with
the socially optimal outcome.

Price of Anarchy, was introduced in the late 1990s by Elias Koutsoupias and Christos Papadimitriou (in [25])
in the context of congestion games, where they sought to understand how the selfish behavior of drivers choosing
their routes in a traffic network could lead to suboptimal traffic flows. This concept has since become a fundamen-
tal tool in analyzing various strategic settings, including allocation problems.

The Price of Anarchy is particularly useful in multiple equilibrium settings, as it quantifies the potential ineffi-
ciency of non-cooperative behaviour by bounding the performance loss. In our case, (as in routing games) in
resource allocation games, PoA measures how close the worst-case Nash equilibrium approximates the optimal
solution. Remarkably, it often shows that even the least efficient equilibrium maintains a predictable level of effi-
ciency, typically bounded by a constant.

Formally, let SM
u denote the set of all pure Nash Equilibria of mechanism M under truthful valuation profile

u. We define the Price of Anarchy to be:

PoA(M) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWM (u, s)

8
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where SWM (u, s) =
∑n

i=1 E[ui(Mi(s))] is the expected Social Welfare of mechanism M on strategy profile
s under true valuation profile u, and SWOPT (u) = maxµ∈O

∑n
i=1 ui(µi) is the Social Welfare of the optimal

matching. LetOPT (u) be the optimalmatching on profileu and letOPTi(u) be the restriction to the ith coordinate.
The Price of Anarchy for other Equilirbium Concepts is defined similarly.

Price of Stability

The Price of Stability (PoS) is another standard measure in the literature that measures the inefficiency of a system
due to strategic behaviour, similar to the Price of Anarchy (PoA). However, while the PoA looks at the worst-case
equilibrium, PoS focuses on the best-case scenario. It is defined as the ratio of the optimal Social Welfare to the
Social Welfare at the most efficient Nash equilibrium.

Historically, the PoS was developed to provide a more optimistic counterpart to the PoA. This concept has been
particularly useful in network design games, where it assesses how close the best stable solution is to the optimal.

For example, in network design problems, the PoS is often bounded, meaning that even under strategic behaviour,
the best equilibrium is not far from the optimal solution. This has important implications for designing systems
that are robust to individual incentives and can still achieve high efficiency.

Formally, let SM
u denote the set of all pure Nash Equilibria of mechanism M under truthful valuation profile

u. We define the Price of Stability to be:

PoS(M) = sup
u∈V n

SWOPT (u)
maxs∈SM

u
SWM (u, s)

2.3.2 Approximation Ratio
The Approximation Ratio is a measure of performance (efficiency) loss that relates the result obtained by a partic-
ular mechanism or algorithm to the optimal solution. Generally, this comparison is made when exact optimisation
is rather impractical or strategically challenging.

The Approximation Ratio has its roots in approximation algorithms, which were developed as a response to the
complexity of solving NP-hard problems exactly. In this setting, algorithms are designed to find solutions close to
the optimum within a provable bound. This idea naturally extended to game theory and mechanism design, where
the goal is often to design strategies or mechanisms that performwell even in the face of selfish behaviour by agents.

The formal definition of the Approximation Ratio for a mechanismM is:

ar(M) = inf
u∈V n

∑n
i=1 ui(Mi(u))

maxµ∈O

∑n
i=1 ui(µi)

= inf
u∈V n

SWM (u)
SWOPT (u)

Here, SWM (u) represents the Social Welfare achieved by the mechanismM on a given valuation profile u, while
SWOPT (u) represents the optimal Social Welfare.

2.3.3 Incentive Ratio
The Incentive Ratio is a measure, in mechanism design, that quantifies the maximum potential gain an agent can
have by deviating from being truthful. Specifically, it evaluates how much an agent's utility can be increased by
strategic manipulation compared to the utility they would receive by reporting truthfully.

Formally, let the utility of agent i when they report truthfully be denoted as ui(Mi(u)) and the utility when they
manipulate their preferences as ui(Mi(u

′)), the Incentive Ratio ri(M) is equal to:

ri(M) = sup
u,u′

ui(Mi(u
′))

ui(Mi(u))
,

where u is the true preference profile and u′ is the "manipulated" preference profile.

The goal is often to minimise this ratio, so that the incentive to manipulate is as small as possible. A lower In-
centive Ratio indicates a mechanism, where agents have little or no benefit from misreporting their preferences.
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CHAPTER3
ONE-SIDED MATCHING

The reader can also read [11] and [17].

3.1 The Stable Marriage Problem
David Gale and Lloyd Shapley's 1962 article, "College Admissions and the Stability of Marriage" in American
Mathematical Monthly (see [18]), introduced the stable marriage problem and the deferred acceptance algorithm,
which have become cornerstone methodologies in matching theory and has significantly influenced economic the-
ory and practical applications in various domains.

The model Gale and Shapley presented is simple. A number of boys and girls have preferences for each other
and would like to be matched. The question Gale and Shapley were especially interested in was whether there is a
“stable” way to match each boy with a girl so that no unmatched pair can later find out that they can both do better
by matching each other. They found that there indeed is such a stable matching, and they presented an algorithm
that achieves this objective. Versions of this algorithm are used today to match hospitals with residents and students
with public schools in New York City and Boston.

While two-sided matching markets, where Gale and Shapley focused, in which two distinct groups of agents (such
as students and schools or residents and hospitals) seek to form mutually beneficial pairings, have been extensively
studied, one-sided matching markets where agents are paired based on individual preferences without the explicit
need for mutual agreement, has gained prominence for its applicability in various real-world scenarios.

3.2 One - Sided Matching
One-sided matching markets often involve scenarios where individuals or items need to be allocated efficiently
without explicit pairing agreements from both sides. The challenge in one-sided matching is to design mechanisms
that respect individual preferences while ensuring overall efficiency and fairness.

Examples include:

• Kidney Exchange Programs: Inspired by the TTC algorithm, kidney exchange programs facilitate organ
transplants by matching donors and recipients based on compatibility, thereby increasing the number of
successful transplants and saving lives.

• Public Housing Allocation: One-sided matching mechanisms are used to allocate public housing to appli-
cants based on their preferences and eligibility, ensuring a fair and efficient distribution of housing resources.

One of the most influential models in one-sided matching is the "housing market" model introduced by Lloyd
Shapley and Herbert Scarf in [15] . In this model, each agent is initially endowed with a single indivisible item
(such as a house) and seeks to trade it for another agents' item, aiming to maximize their utility based on individual
preferences. The core question is whether there exists a stable allocation where no group of agents can collectively
deviate to improve their situation.

11
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3.2.1 The House Allocation Problem
Formally, a house allocation problem (or one-sided matching allocation problem, Hylland & Zeckhauser [16] )
consists of a set I of n agents, a set H of n indivisible items (houses) and preferences of agents over items. In
many cases we consider, an initial endownment for each agent - the items (in this context, houses) that each agent
initially possesses, which is then subject to potential reallocation through the matching.

The problem asks for a matching µ : I → H of each agent to a distinct item so as to ensure desirable norma-
tive properties, such as:

• Pareto efficiency: There is no other matching that makes at least one agent better off without making any
other agent worse off.

• Individual rationality: Each agent gets a house that they consider at least as good as their initial endowment
(the house they initially possess).

• Envy-freeness: No one feels envious because they think someone else got a better house than they did.

In simpler words, the question becomes, whether it is possible to find a matching where no group of agents
can come together, reallocate the houses among themselves, and make at least one member of the group better off
without making any other member worse off.

The core of a housing market, that is, a house allocation problem with initial endownments, are the match-
ings of a housing market, where no group of agents can come together, reallocate houses among themselves, and
make at least one member better off without making any member worse off.

So, an even more minimal question, equivalent to the initial, comes down to wheter there exists an allocation
of houses to agents that is in the core.

Lloyd Shapley and Herbert Scarf in 1974 (see [15]) demonstrated the existence of such an allocation and proposed
the Top Trading Cycles (TTC) algorithm to achieve it.

3.2.2 Gale’s Top Trading Cycles (TTC) Algorithm
The TTC algorithm works by allowing agents to form trading cycles where each agent in a cycle exchanges their
item with another agent's item. The process continues until no more beneficial trades can be made, ensuring that
the final allocation is stable and Pareto efficient. This algorithm has been instrumental in practical applications,
such as kidney exchange programs, where patients and donors are matched to maximize the compatibility of kidney
transplants, saving thousands of lives globally.

• Step 1: Each agent "points" to the owner of his favourite house. Since there is a finite number of agents,
there is at least one cycle of agents pointing to each other. Each agent in a cycle is assigned the house of
the agent he is pointing to and is removed from the market with his assignment. When there is at least one
remaining agent, proceed to the next step.

• Step k: Each remaining agent points to the owner of her favorite house among the remaining houses. Every
agent in a cycle is assigned the house of the agent she is pointing to and removed from the market with his
assignment. If there is at least one remaining agent, proceed with the next step.

Alvin Roth and Andrew Postlewaite later showed that the TTC algorithm has some additional remarkable prop-
erties when preferences are strict.

Theorem 3.1. (Theorem 2 in [12]) The outcome of the TTC algorithm is the unique matching in the core of each
housing market. Moreover, this matching is the unique competitive allocation.

Theorem 3.2. (Theorem 1 in [13]): The core (as a direct mechanism) is strategy-proof.

In housing markets, as opposed to other one-sided matching problems without endowments, there exists a plau-
sible mechanism where truth-telling is a dominant strategy for all agents. Indeed, the core is the only mechanism
that ensures strategy-proofness.

Theorem 3.3. (Theorem 1 in [19]): Core is the only mechanism that is Pareto efficient, individually rational, and
strategy-proof.
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3.2.3 Still Ordinal, but without endowments?
One-sidedmatchingmarkets can be classified along two dimensions: the nature of the utility functions of agents and
whether agents have initial endowments or not. As stated in the previous chapter, utility functions may either have
only an ordinal component, i.e., they aremodeled via preference relations, or theymay have a cardinal component as
well. Thus we get four possibilities, which are summarized below, together with the most well-known mechanisms
for each.

• (Ordinal, No Endowments): Random Priority and Probabilistic Serial

• (Ordinal, Endowments): Top Trading Cycle

• (Cardinal, No Endowments): Hylland-Zeckhauser

• (Cardinal, Endowments): ε-Approximate ADHZ

The two types of utility functions described above have their individual pros and cons, and neither dominates
the other. Whereas the former are easier to elicit, the latter are more expressive, enabling an agent to not only report
if she prefers one item to another but also by how much, thereby producing higher quality allocations.

In this thesis, we are especially interested in the Random Priority and Probabilistic Serial mechanisms, which
each have unique advantages and disadvantages without one being superior. Random Priority is truthful and easy
to implement, ensuring agents have no incentive to misreport their preferences, and it guarantees ex-post Pareto
efficiency, providing efficient allocations after preferences are realized. However, it may not always result in fair
allocations.

On the other hand, Probabilistic Serial ensures ordinal efficiency and envy-freeness, leading to fairer and more
balanced distributions of items, but it is not truthful, meaning agents might benefit from misrepresenting their
preferences. These differing strengths and weaknesses highlight the inherent trade-offs in allocation mechanism
design.

The Priority Mechanism

As a first step towards the Random Priority, the following deterministic mechanism, called Priority (also called
Serial Dictatorship).

The Priority Mechanism: The mechanism, picks an ordering π of the n agents and in the ith iteration, lets the
agent π(i) pick her most preferred item among the currently available items and declares the chosen item unavail-
able, while initially all items are available.

The priority mechanism is obviously not envy-free: if several agents prefer the same item the most, the one earliest
in the ordering π will get it.

Theorem 3.4. The priority mechanism is truthful and the allocation produced by it is Pareto efficient.

Proof. First, for truthfulness: In each iteration, the active agent has the opportunity of obtaining the best available
item, according to her preference list. Therefore, misreporting preferences can only lead to a suboptimal allocation.

Next, for Pareto efficiency: Let µ be the allocation produced by the priority mechanism and assume, for con-
tradiction, assume that µ′ is an allocation that dominates µ formally, µ′(π(i)) ⪰π(i) µ(π(i)) i.e. for each agent
i, ui(µ

′(π(i))) ≥ ui(µ(π(i))). Let i be the first agent that the allocation µ′ dominates µ. Clearly, for all agents
j before i, agent π(j) is assigned the same item under µ and µ′. Therefore, in the ith iteration, agent π(i) has
available item µ′(π(i)). Since π(i) picks the best available item, for agent µ(π(i)) ⪰π(i) µ′(π(i)), leading to a
contradiction.

The priority mechanism suffers from the obvious drawback of not being fair, since agents at the top of the list π
have the opportunity of choosing their favorite items while those at the bottom get the left-overs.

The Random Priority corrects this.

Random Priority: Random Priority, also called Random Serial Dictatorship, iterates over all n! orderings of
the n agents. For each ordering π, it runs the priority mechanism and when an agent chooses an item, it assigns a
1
n! share of the item to the agent.
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Theorem 3.5. Random Priority is truthful and ex-post Pareto efficient.

Proof. As we saw earlier, in the previous Theorem, in each of the n! iterations, truthfulness is the dominant strategy
of an agent. Thus, Random Priority is truthful. We next argue that the random allocation output by RP can be
decomposed into a convex combination of perfect matchings of agents to items such that the allocation made by
each perfect matching is Pareto efficient. This is obvious if we choose the n! perfect matchings corresponding
to the n! orderings of agents. Clearly, two different orderings may yield the same perfect matching, therefore the
convex combination may be over fewer than n! perfect matchings. Therefore, RP is ex post Pareto efficient.

Interestingly, the ex-post Pareto efficiency of the priority mechanism doesn't lead to ordinal efficiency of Random
Priority. Consider the following example:

Example 3.6. Consider agentsA = {A1, A2, A3, A4}, items I = {I1, I2, I3, I4} and the preferences of the agents
as follows:

A1 : I1 ≻ I2 ≻ I3 ≻ I4

A2 : I1 ≻ I2 ≻ I3 ≻ I4

A3 : I2 ≻ I1 ≻ I3 ≻ I4

A4 : I2 ≻ I1 ≻ I3 ≻ I4

Then RP will return the following random allocation:

Agent / Item I1 I2 I3 I4

A1
5
12

1
12

5
12

1
12

A2
5
12

1
12

5
12

1
12

A3
1
12

5
12

1
12

5
12

A4
1
12

5
12

1
12

5
12

Table 3.1: Random allocation produced by RP

However, it is stochastically dominated by the following random allocation:

Agent / Item I1 I2 I3 I4

A1
1
2 0 1

2 0

A2
1
2 0 1

2 0

A3 0 1
2 0 1

2

A4 0 1
2 0 1

2

Table 3.2: Stochastically dominant allocation

Even worse, RP is not envy-free, despite the fact that the reason for generalizing from priority to RP was to
introduce fairness. Consider the following example:

Example 3.7. Consider agents A = {A1, A2, A3}, items I = {I1, I2, I3} and the preferences of the agents as
follows:

A1 : I1 ≻ I2 ≻ I3

A2 : I2 ≻ I1 ≻ I3

A3 : I2 ≻ I3 ≻ I1
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Then RP will return the following allocation:

Agent / Item I1 I2 I3

A1
5
6 0 1

6

A2
1
6

3
6

2
6

A3 0 3
6

3
6

Table 3.3: Random allocation produced by RP

Since the total allocation of the two items I1 and I2 to agents A1 and A2 is 5
6 and 4

6 , respectively, agent A2’s
allocation does not stochastically dominate agent A1’s allocation.

While in the Priority mechanism, agents are assigned items sequentially based on a pre-determined order. In
the Random Priority (RP) mechanism, this order is determined by a single random permutation of the agents. Each
agent, following this random order, selects their most preferred available item.

It's easy to see that RP is efficient, as it does not need to evaluate multiple permutations — only one is randomly
chosen and used for the entire process. However, it sacrifices certain aspects of fairness and ex-ante Pareto effi-
ciency. While truthful, the randomness in the ordering may lead to outcomes that are not always fair or efficient.

For example, suppose we have three agents A1, A2, A3 and three items I1, I2, I3. Suppose it's known that A1

and A2 both prefer I1 the most, while A3 is indefferent between I2 and I3. In Random Priority, depending on the
order, A1 or A2 might end up with I1 and the other might end up with their second or third choice, leading to a
significant difference in their utility.

If the mechanism were designed with knowledge of these preferences in advance, however, it could find a way
of allocating items in such a way, to make both A1 and A2 better off on average, perhaps by giving them partial
shares of I1 and I2, thereby increasing their expected utility.

This discussion, however, highlights the inherent trade-offs between fairness, truthfulness, and Pareto efficiency.
Despite the appeal of RP for its strategy-proofness and potential fairness, it turns out that no mechanism can si-
multaneously satisfy all these properties. The search for a mechanism that is both fair and truthful and also ensures
ex-ante Pareto efficiency is ultimately fruitless.

It turns out that, there is no “fair” mechanism that is strategy-proof and ex-ante Pareto efficient.

Theorem 3.8. (Theorem 2 in [1]) There is no mechanism that satisfies ordinal efficiency, thruthfulness and equal
treatment of equals (i.e. agents with same preferences should receive the same random consumption) for more than
three agents.

This impossibility forces designers to make critical choices, often prioritizing one or two properties at the expense
of the others, depending on the specific needs and constraints of the application at hand.

Probabilistic Serial

With respect to the four properties studied above for RP, PS behaves in exactly the opposite manner. It is time-
efficient, ordinally efficient, and envy-free but not truthful. The Probabilistic Serial (PS)mechanismwas introduced
by Bogomolnaia and Moulin in 2001 (see [1] as an alternative to Random Priority.

Suppose that each good can be divided into probability shares, each share representing a portion of the good.
The PS (Probabilistic Serial) mechanism continuously allocates these shares so that over the course of an hour,
each agent receives exactly one unit of probability share across all goods.

Initially, each agent receives the probability of their most preferred good. If several agents prefer the same good,
the good is consumed faster, at a rate proportional to the number of agents. Once an agent's most preferred good is
fully consumed, they move on to their next preferred good that still has shares available.

Since each agent has a complete ranking of all goods, by the end of the hour each agent will have received exactly
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one unit of allocation and all goods will be fully distributed. This continuous allocation process can be broken
down into discrete steps by calculating the exact moments when each good is fully allocated. The final allocations
are expressed in rational numbers, and the whole process is done in polynomial time.

At this point, we will see an example of how the PS mechanism works.

Example 3.9. Let agents A = {A1, A2, A3} and items I = {I1, I2, I3} and the preferences of the agents as
follows:

A1 : I1 ≻ I2 ≻ I3

A2 : I1 ≻ I3 ≻ I2

A3 : I2 ≻ I1 ≻ I3

PS will return the following allocation.

Agent / Item I1 I2 I3

A1
1
2

1
4

1
4

A2
1
2 0 1

2

A3 0 3
4

1
4

Table 3.4: Allocation produced by PS

Now, regarding truthfulness, fairness and efficiency, we gather the following results:

Lemma 3.10. The allocation computed by PS is envy-free.

Proof. At each point in the algorithm, each agent is obtaining probability share of her most favorite good. There-
fore, at any time in the algorithm, agent i cannot prefer agent j’s current allocation to her own. Hence PS is
envy-free.

For showing that the random allocation computed by PS is ordinally efficient, we will appeal to the following
property of stochastic dominancewhich follows directly from its definition. Assume that x and y are two allocations
made to agent i having equal total probability shares; let t ≤ 1 be this total. Assume x ⪰sd

i y. Let α < t and
remove α amount of the least desirable probability shares from each of x and y to obtain x′ and y′, respectively.
Then x′ ⪰sd

i y′.

Lemma 3.11. The random allocation computed by PS is ordinally efficient.

Proof. During the run of PS on the given instance, let t0 = 0, t1, . . . , tm = 1 be the times at which some agent
exhausts the good she is currently being allocated. By induction on k, we will prove that at time tk, the partial
allocation computed by PS is ordinally efficient among all allocations which give tk amount of probability shares
to each agent.

The induction basis, for k = 0, is obvious since the empty allocation is vacuously ordinally efficient. Let Ak

denote the allocation at time tk and let Ai
k denote the allocation made to agent i under Ak. Assume the induction

hypothesis, namely that the assertion holds for k, i.e., Ak is ordinally efficient.

For the induction step, we need to show that Ak+1 is ordinally efficient. Suppose not and let it be stochastically
dominated by random allocation P . Let α = tk+1 − tk. For each agent i, remove α amount of the least desirable
probability shares from Pi to obtain P ′

i . Since Pi ⪰sd
i Ai

k+1, by the property stated above, P ′
i ⪰sd

i Ai
k. By the

induction hypothesis, Ai
k ⪰sd

i P ′
i as well. Therefore, P ′

i = Ai
k. In the time period between tk and tk+1, each agent

obtains α units of probability shares of her most preferred good remaining. Therefore, Ai
k+1 ⪰sd

i Pi, leading to a
contradiction.
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To prove that a mechanism is strategyproof, we would need to show that xi stochastically dominates x′
i where x and

x′ are the allocations when i reports preferences truthfully and misreports, respectively. The following example
shows that this does not hold for PS.

Example 3.12. Let's consider the agents with their preferences from the previous example and assume that agent
A3 misreports her preference list as I1 ≻ I2 ≻ I3, then PS will return the following allocation.

Agent / Item I1 I2 I3

A1
1
3

1
2

1
6

A2
1
3 0 2

3

A3
1
3

1
2

1
6

Table 3.5: Allocation produced by PS when A1 misreports

Therefore by lying, agent A3 obtains 5
6 units of her two most prefered items, instead of 3

4 units.

Finally, we provide an example in which RP and PS are Pareto incomparable in the sense that different agents
prefer different allocations.

Example 3.13. Consider agents A = {A1, A2, A3, A4}, items I = {I1, I2, I3, I4} and the preferences of the
agents as follows:

A1 : I1 ≻ I2 ≻ I3 ≻ I4

A2 : I1 ≻ I2 ≻ I4 ≻ I3

A3 : I2 ≻ I1 ≻ I3 ≻ I4

A4 : I3 ≻ I4 ≻ I1 ≻ I2

Then RP will return the following random allocation:

Agent / Item I1 I2 I3 I4

A1
1
2

1
6

1
12

1
4

A2
1
2

1
6 0 1

3

A3 0 2
3

1
12

1
4

A4 0 0 5
6

1
6

Table 3.6: Random allocation produced by RP

PS will return the following allocation.

Agent / Item I1 I2 I3 I4

A1
1
2

1
6

1
9

2
9

A2
1
2

1
6 0 1

3

A3 0 2
3

1
9

2
9

A4 0 0 7
9

2
9

Table 3.7: Allocation produced by PS

Agents A1 and A3 prefer the PS allocation, agent A4 prefers the RP allocation and agent A2 is indifferent.
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Even worse, RP is not envy-free, despite the fact that the reason for generalizing from the Priority Mechanism to
RP was to introduce fairness, as discussed in Example 3.7. Although the priority mechanism runs efficiently, RP
would require exponential time to compute the ex-ante random allocation by evaluating all possible permutations
of agents, making it impractical for all but very small values of n. However, if an integral matching of agents to
goods is desired, then picking one ordering of agents at random, as in RP, is clearly time-efficient.

3.3 Summary
We summarize the main points of this chapter.

3.3.1 Probabilistic Serial (PS)
Ordinal Efficiency

• PS is ordinally efficient.

– The PS mechanism simultaneously allocates fractions of goods based on agents' rankings, ensuring that
no other allocation could make someone better off without making someone else worse off according
to their preference order.

Ex-Ante Pareto Efficiency

• PS achieves ex-ante Pareto efficiency.

– Before the randomization is resolved, the expected allocations under PS cannot be improved upon
without harming at least one agent's expected utility.

Ex-Post Pareto Efficiency

• PS does not guarantee ex-post Pareto efficiency.

– After the randomization, the realized allocation may not be Pareto efficient; there might exist another
allocation that could make some agents better off without making others worse off.

Truthfulness

• PS is not strategy-proof (not truthful).

– Agents may have an incentive to misreport their preferences to achieve a more favorable outcome.

Fairness (Stochastic Dominance Envy-Freeness)

• PS satisfies fairness in terms of stochastic dominance envy-freeness (SD-envy-freeness).

– No agent prefers another's allocation over their own when preferences are compared using stochastic
dominance.

3.3.2 Random Priority (RP)
Ordinal Efficiency

• RP is not ordinally efficient.

– RP assigns a random order to agents who then pick their top available choices sequentially. This process
can lead to allocations where a different feasible allocation would be unanimously preferred by all
agents based on their rankings.

Ex-Ante Pareto Efficiency

• RP does not guarantee ex-ante Pareto efficiency.

– Before the randomization, there may exist alternative expected allocations that could make some agents
better off without harming others, based on expected utilities.
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Ex-Post Pareto Efficiency

• RP achieves ex-post Pareto efficiency.

– Once the random order is realized and allocations are made, no agent can be made better off without
making another agent worse off in the realized outcome.

Truthfulness

• RP is strategy-proof (truthful).

– It is in each agent's best interest to report their true preferences because misreporting cannot lead to a
better outcome.

Fairness (Stochastic Dominance Envy-Freeness)

• RP does not satisfy fairness in terms of stochastic dominance envy-freeness (SD-envy-freeness).

– Since the allocation depends on a random priority order, agents may prefer others' allocations over their
own when preferences are compared using stochastic dominance.

Property PS Mechanism RP Mechanism
Ordinal Efficiency Yes No
Ex-Ante Pareto Efficiency Yes No
Ex-Post Pareto Efficiency No Yes
Truthful (Strategy-Proof) No Yes
Fairness (SD Envy-Freeness) Yes No

3.2.4 Conclusion
RP and PS have their obvious advantages and drawbacks, as summarized in the previous table. In the following
chapters wewill seemany, somewould say beautiful, results about these twomechanisms. Wewill try to understand
agents' incentives to manipulate PS, better understand the fairness issues of RP, see experiments on how these
mechanisms behave in real life, while also proposing a new measure of inefficiency and showing that sometimes
letting agents lie might actually be beneficial! Brace yourselves for the journey ahead! :)
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CHAPTER4
APPROXIMATE SOCIAL WELFARE BOUNDS

This chapter is based on the work of Filos-Ratsikas et al. in [10], with some adjustments and clarifications for ease
of reading.

4.1 Synopsis
In this chapter, we follow the work of Filos-Ratsikas et al. in [10] and study the problem of maximizing Social
Welfare in One-Sided Matching mechanisms, where agents have unrestricted preferences over items. Each agent
assigns a value to items, representing their preference (these values can be interpreted as vonNeumann-Morgenstern
utilities).

Our concentration focuses on truthful mechanisms. A typical example is the Random Priority mechanism, in which
agents are chosen randomly and serially choose their most prefered items. As we saw in Chapter 3, while Random
Priority is truthful and ex-post Pareto efficient, it doen't satisfy ex-ante Pareto efficiency - there exists a matching
that makes all agents at least as satisfied, with one strictly better off in expectation. Economic inefficiencies in turn
translate to a lower Social Welfare, which measures the total satisfaction of agents. Previous research has focused
on mechanisms that satisfy some efficiency criteria, rather than mechanisms that try to maximise Social Welfare
while remaining truthful.

In this paper, the authors study Random Priority and prove its Approximation Ratio to be Θ( 1√
n
) - best possible

among all truthful-in-expectationmechanisms for the problem. Furthermore, they show that all ordinal mechanisms
have an upper bound ofO( 1√

n
), and hence making Random Priority is the optimal truthful and ordinal mechanism

for this problem.
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4.2. INTRODUCTION

4.2 Introduction
Mechanism design without money focuses on creating systems that allocate resources or make decisions based on
the preferences of participants, in order to ensure that they are truthful. The great challenge is to design mechanisms
that not only encourage truthful behaviour, but also produce outcomes that are close to the optimal solution.

The Approximation Ratio, as seen in Chapter 2. , originates from approximation algorithms, designed to solve
NP-hard problems approximately. In this context, algorithms aim to find solutions close to the optimum within
a region. This concept extends to game theory and mechanism design, where the goal often includes developing
mechanisms that perform effectively despite agents' selfish behavior.

In "Approximate Mechanism Design without Money", Procaccia and Tennenholtz ([26]) explore the creation of
strategyproof mechanisms for various optimization problems. They focus on achieving favorable Approximation
Ratios while ensuring participants have no incentive to misreport their preferences.

The authors' primary contribution is demonstrating that approximation can be a viable approach to achieve strate-
gyproofness without monetary incentives. They show that it is possible to design mechanisms that ensure truthful
reporting and produce outcomes reasonably close to the optimal.

Most prior work has concentrated on designing mechanisms that achieve efficiency for different Pareto efficiency
notions, with less focus on whether truthful mechanisms achieve high levels of Social Welfare. This question is
crucial, as the Approximation Ratio provides a systematic way to compare mechanisms or demonstrate their limi-
tations.

In this Chapter, we investigate the behavior of the Random Priority mechanism under the lens of Social Wel-
fare, defined as the sum of agents' valuations for the items they receive in the mechanism's outcome. While, the
problem of SW maximazation of RP has been studied before for other variants of SW (see [27]) there is strong
evidence that consider the SW with underlying cardinal preferences of the agents, is a rather natural and widely
embraced, perspective.

We assume the valuation functions are unit-range, meaning agents are not penalized for liking more than one item.
The results can, however, be extended to the unit-sum setting. We evaluate the performance of a mechanism by
its Approximation Ratio—the worst-case ratio between the (expected) Social Welfare of the mechanism and the
welfare of the optimal allocation, across all valuation profiles. The reader can see Chapter 2. for a reminding of
the definition of the Approximation Ratio.
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4.3 Anonymity & Random Priority
Webegin our analysis, by concentrating in the anonymity of themechanisms. The following lemma states that upper
bounds on the Approximation Ratio of mechanisms can be proven by focusing on anonymous mechanisms. An
anonymous mechanism, like RP, treats all agents equally, meaning the outcome depends solely on their preferences,
not their identities. When considering upper bounds on Approximation Ratio, we are typically interested in the
worst-case scenario. Since anonymous mechanisms treat all agents the same, they tend to naturally cover a wide
range of possible scenarios, including the worst-case. This means that if we can prove a bound for an anonymous
mechanism, that bound is valid for non-anonymous mechanisms as well.

Lemma 4.1. For any mechanism M , there exists an anonymous mechanism M ′ such that ar(M ′) ≥ ar(M). In
addition, ifM is truthful (or truthful-in-expectation) then it holds thatM ′ is truthful (or truthful-in-expection) too.

Proof. Let M ′ be a mechanism that takes a valuation profile u as input and performs a uniformly at random per-
mutation on the set of agents, before applying M . By randomizing the order of the agents uniformly, M ′ ensures
that all agents have an equal chance of being in any position in the order. Thus,M ′ is anonymous.

Furthermore, sinceM ′ only permutes the agents randomly before applyingM , the set of possible outputs ofM ′ is
the same as the set of possible outputs ofM , just with permuted agent identities. Thus, the Social Welfare achieved
by M ′ is the same as that of M for any permutation of the agents. Therefore, the Approximation Ratio of M ′

cannot be worse than that ofM .

For the same reason, ifM is truthful (or truthful-in-expectation), the expected utility for any agent reporting truth-
fully is at least as high as if they misreport, given the random permutation is independent of the reports.

Since the permutation step inM ′ is independent of the agents' reports andM is truthful-in-expectation,M ′ main-
tains the truthfulness. The random permutation doesn't provide any additional advantage or disadvantage to any
agent in terms of strategizing their reports, soM ′ remains truthful-in-expectation.

We know that Random Priority fixes an ordering of the agents uniformly at random and then lets them pick
their most preferred items from the set of available items based on this ordering. Random Priority is truthful-in-
expectation, ordinal, anonymous and neutral - the final allocation is invariant to the relabeling or reordering of the
items. The following lemma shows that the RP mechanism, by randomly determining the order in which agents
select items, is capable of producing any allocation, including the optimal.

Lemma 4.2. For any valuation profile u, the optimal allocation on u is a possible outcome of Random Priority.

Proof. Assume that in the optimal allocation, no agent is matched with their most preferred item. Then there must
be a cycle of agents i1, ..., ik such that:

• Agent i1 is matched with an item that is most preferred by agent ik.

• Agent i2 is matched with an item that is most preferred by agent i1.

• Agent ik is matched with an item that is most preferred by agent ik−1.

By swapping items along this cycle, each agent would receive their most preferred item. This makes all agents in
the cycle better off.

Since the initial allocation was assumed to be optimal, it cannot be improved. The existence of such a cycle
implies that the initial allocation was not optimal, which leads to a contradiction.

Thus, there must exist at least one agent j in the optimal allocation who is matched with their most preferred
item j. Consider the valuation profile u. Remove the agent j and their most preferred item from the profile to form
a smaller valuation profile u′.

The optimal allocation for u′ remains optimal for u minus the removed agent and item. By applying the same
argument recursively, we can show that for the reduced profile u′, there must be at least one agent matched with
their most preferred item in the optimal allocation.

By continuously applying this argument, starting from any profile u and reducing it step by step, we demonstrate
that at every step, there exists at least one agent who is matched with their most preferred item. Thus, this holds
for the original profile u as well.
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We consider, for our analysis, a special class of valuation functions Cϵ we refer to as quasi-combinatorial
valuation functions were it captures all valuation functions where the valuations of each agent for every item are
ϵ-close to 1 or close to 0.

Cϵ = {u ∈ V |u(M) ⊂ [0, ϵ) ∪ (1− ϵ, 1]} ⊆ V

where u(M) is the image of the valuation function u. The reason we are interested in Cϵ is that or any valuation
profile u, there exists a valuation profile u′ in Cn

ϵ that achieves an Approximation Ratio at least as good as u.

Lemma 4.3. Let M be an ordinal, anonymous and neutral randomized mechanism for unit-range representation
and let ϵ > 0. Then

ar(M) = inf
u∈Cn

ϵ

E[
∑n

i=1 ui(M(u))]∑n
i=1 ui(µ∗

i )
.

Proof. SinceM is anonymous and neutral, meaning that it's outcome does not depend on the identities of the agents
nor the items. We can assume that the optimalmatching isµ∗ whereµ∗ is thematchingwithµ∗

i = i for every agent i.

We define, for any valuation profile u, g(u) to be:

g(u) =
E[

∑n
i=1 ui(M(u))]∑n
i=1 ui(µ∗

i )
.

Hence, the Approximation Ratio can be written as ar(M) = infu∈V n g(u).

Since, Cn
ϵ ⊆ V n. The lemma is equivalent with the following claim:

For all valuation profiles u ∈ V n, there exists a u′ ∈ Cn
ϵ such that g(u′) ≤ g(u)

This will be done via induction to the number of valuations within the interval [ϵ, 1− ϵ].

• Base Case: When
∑n

i=1 #{ui(M) ∩ [ϵ, 1 − ϵ]} = 0, all valuations ui are either below ϵ or above 1 − ϵ.
Thus, ui ∈ Cn

ϵ for all agents, so u = u′ ∈ Cn
ϵ and trivially, g(u) = g(u′)

• InductiveHypothesis: Assume that the claim is true for any profile u such that
∑n

i=1 #{ui(M)∩[ϵ, 1−ϵ]} ≤
k.

• Inductive Step: Consider a profile u such that
∑n

i=1 #{ui(M)∩ [ϵ, 1− ϵ]} > k. Then, there exists an agent
such that #{ui(M) ∩ [ϵ, 1− ϵ]} > 0. Then, there exist l and r in [ϵ, 1− ϵ] that both are in ui(M).
Let, w.l.o.g. l ≤ r and l̄ be the largest value in [0, ϵ) within ui(M) and r̄ the smallest value in (1 − ϵ, 1]

withing ui(M). Both of this numbers exist since {0, 1} ⊆ ui(M). Let, l̃ = l̄+ϵ
2 and r̃ = r̄+1−ϵ

2 .

For x ∈ [l̃ − l, r̃ − r], define a modiefied valuation ux
i by increasing (or decreasing if x < 0) ui(j) by x for

items j with valuations in [ϵ, 1− ϵ].

We will prove the claim by induction in
∑n

i=1 #{ui(M)∩ [ϵ, 1− ϵ]}. Let (ux
i , u−i) be the valuation profile where

all agents have the same valuation functions as in u except for agent i, who has valuation function ux
i .

Define f(x) = g((ux
i , u−i)). Since our mechanism M is ordinal, by definition of g, f can only be a fractional

linear function, defined in the whole interval [l̃−l, r̃−r]. Thus, it can only be monotonically increasing, decreasing
or constant. Let ũ be:

• ũ = (ul̃−l
i , u−i) if f is monotonically increasing.

• ũ = (ur̃−r
i , u−i), otherwise.

Then g(ũ) ≤ g(u) and
∑n

i=1 #{ũi(M) ∩ [ϵ, 1− ϵ]} <
∑n

i=1 #{ui(M) ∩ [ϵ, 1− ϵ]} ≤ k.

Hence, by applying the induction hypothesis on ũ, there exists a profile u′′ ∈ Cn
ϵ such that g(u′′) ≤ g(~u) ≤ g(u)

meaning that u′′ provides an equal or better Approximation Ratio and this completes the proof.

The lemma implies that the mechanism M behaves optimally over the entire set V n can be captured by its
performance onCn

ϵ , formalizing the intuition that because the mechanism is ordinal, the worst-case Approximation
Ratio is encountered on extreme valuation profiles. Critical for proving the following theorem, in the next page.
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4.4 Lower Bound
In this section, we prove the lower bound of the Approximation Ratio of Random Priority.

Lemma 4.4. For unit-range representation, the Approximation Ratio of Random Priority is Ω
(

1√
n

)
.

Proof. Since RP is a neutral and anonymous mechanism, because of the previous lemma 4.3 it suffices to establish
a lower bound for quasi-combinatorial valuation profiles.

Let w∗(u) denote the Social Welfare of the optimal matching (maximum weight matching) on valuation profile
u, it is true that w∗(u) ≤ n and there exists k ∈ N and ϵ ≤ 1

n3 such that

|k − w∗(u)| ≤ n · ϵ ≤ 1

n2
,

Random Priority can achieve an expected Social Welfare of 1 trivially, since for any permutation the first agent will
be matched to her most preferred item, we can assume that k ≥

√
n, otherwise , if k <

√
n

ar(RP ) = inf
u∈Cn

ϵ

E[
∑n

i=1 ui(M(u))]
w∗(u)

≥ 1√
n

and we are done.

The optimal matching µ∗ assigns k items to agents with ui(µi) ∈ (1 − ϵ, 1]. Without loss of generality, due
to RPs anonymity and neutrality, we can assume that these agents are {1, . . . , k} and that each agent j is as-
signed to the item with their own index in this optimal matching, µ∗

j = j. Thus uj∈{1,...,k}(j) ∈ (1 − ϵ, 1] and
uj∈{k+1,...,n}(j) ∈ [0, ϵ).

Let, l denote a (current) run of RP. Let l ∈ {0, . . . , n − 1} be any of the n rounds. We odefine the following
sets:

Ul = {j ∈ {1, . . . , n} : agent j has not been selected before round l}
Gl = {j ∈ Ul : uj(j) ∈ (1− ϵ, 1] and item j is still unmatched}
Bl = {j ∈ Ul : uj(j) ∈ [0, ϵ) or item j has already been matched to some agent}

• Ul : contains all the agents still waiting to be matched by round l of the RP.

• Gl : the "good" subset of Ul that includes all agents who have high valuations (in (1−ϵ, 1]) for their assigned
items in the optimal matching and which are still available.

• Bl : the "bad" subset of Ul that includes all agents who have low valuations (in [0, ϵ)) for their assigned items
in the optimal matching and which are still available.

The probability that an agent i ∈ Gl is picked in round l of RP is |Gl|
|Gl|+|Bl| , where the probability that an agent

i ∈ Bl is picked is |Bl|
|Gl|+|Bl| . When an agent in Gl is picked, they contribute at least 1 − ϵ to the Social Welfare,

while when an agent from Bl is picked, they contribute less than ϵ.

Thus, round l's expected contribution is |Gl|
|Gl|+|Bl| · (1− ϵ)+ |Bl|

|Gl|+|Bl| · ϵ =
|Gl|

|Gl|+|Bl| − ϵ · |Gl|−|Bl|
|Gl|+|Bl| ≥

|Gl|
|Gl|+|Bl| − ϵ.

We will now see how |Gl| and |Bl| change in each round l. Suppose that an agent i from Gl gets picked and
matched with item j.

• If j ̸= i and agent j ∈ Gl, then in round l + 1 : |Gl+1| = |Gl| − 2 and Bl+1 = |Bl| + 1. This is because
agent j, lost its optimal item and now moves to |Bl+1|.

• If j = i or if agent j ∈ Bl, then in round l + 1 : |Gl+1| = |Gl| − 1 and Bl+1 = |Bl|.

In any case, |Gl+1| ≥ |Gl| + 2 and |Bl+1| ≤ |Bl| + 1. Intuitively, the selected agent might take away some item
from a "good" agent and downgrade it into a bad agent.
In summary, in each round l of RP, we can assume the size ofBl increases by at most 1 and the size ofGl decreases
by at most 2. Assuming that |G0| = k , |B0| = n− k and that |Gl| > 0 for l ≤ ⌊k/2⌋, we get:
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E

[
n∑

i=1

ui(RP (u))

]
≥

n∑
l=0

(
|Gl|

|Gl|+ |Bl|
− ϵ

)

≥
⌊ k

2 ⌋∑
l=0

(
|Gl|

|Gl|+ |Bl|
− ϵ

)

≥

⌊ k
2 ⌋∑

l=0

k − 2l

n− k + l + k − 2l

− nϵ

=

⌊ k
2 ⌋∑

l=0

k − 2l

n− l
− nϵ

Thus,

E [
∑n

i=1 ui(RP (u))]
w∗(u)

≥
∑⌊ k

2 ⌋
l=0

k−2l
n−l − nϵ

k + 1
n2

≥
∑⌊ k

2 ⌋
l=0

k−2l
n−l − nϵ

2k

=

⌊ k
2 ⌋∑

l=0

1− 2l
k

2(n− l)
− nϵ

2k
>

⌊ k
2 ⌋∑

l=0

1− 2l
k

2n
− nϵ

2k
≥ k − 11

8n
− nϵ

2k
.

Since, ar(RP ) = infu∈Cn
ϵ

E[
∑n

i=1 ui(RP (u))]
w∗(u) , we need to minimize k−11

8n − nϵ
2k . Since, k ≥

√
n, the bound is

minimum when k =
√
n. Thus,

ar(RP ) = inf
u∈Cn

ϵ

E[
∑n

i=1 ui(RP (u))]
w∗(u)

≥
√
n− 11

8n
− nϵ

2
√
n
.

We can choose ϵ so that the Approximation Ratio is at least 1
20

√
n
for n ≥ 400 and for n ≤ 400, the bound

holds trivially since Random Priority matches at least one agent with its most preferred item.
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4.5 Upper Bound
In this section, we prove an upper bound of the Approximation Ratio of any ordinal mechanism for the problem,
as well us an upper bound of any truthful-in-expectation mechanism (ordinal or not).

Lemma 4.5. Let M be any ordinal mechanism for unit-range representation. The Approximation Ratio of M is
O
(

1√
n

)
.

Proof. Let n be the number of agents, and k an integer such that k = ⌊
√
n⌋. Consider a valuation profile u =

(u1, u2, . . . , un) where:

ui(j) =

{
1− j−1

n , if 1 ≤ j ≤ i,
n−j
n2 , otherwise,

∀i ∈ {1, . . . , k}

ui(j) =

{
1, if j = 1,
n−j
n2 , otherwise,

∀i ∈ {k + 1, . . . , n}

Without loss of generality, by Lemma 4.1 we can assume thatM is anonymous. Also, by the valuation profile, we
can see that for any agent i, the valuation ui(j) assigned to item i is greater that ui(j

′) for any j < j′.

Hence, u is ordered and thus M on u is anonymous and ordinal. This implies that every agent has an equal
probability of being matched with any given item. Formally, the probability that an agent and therefore, no agent
has an advantage over another, and the mechanism's output is entirely based on randomness with respect to the
agents' preferences. Meaning that the only fair outcome forM is a uniformly random matching.

From the above mentioned, the expected welfare of the mechanism on valuation profile u will be

E[

n∑
i=1

ui(M(u))] =
1

n

n∑
i=1

n∑
j=1

ui(j) ≤
1

n

[
k∑

i=1

(
i+

n− i

n

)
+

n∑
i=k+1

(
1 +

n− 1

n

)]
≤ 4 +

1

2
√
n
≤ 5,

where in the above expression, we upper bound each term n−j
n2 by 1

n and each term 1− j
n by 1.

On the other hand, the Social Welfare of the maximum weight matching is

w∗(u) =
k∑

i=1

(
1− i− 1

n

)
+

n∑
i=k+1

n− i

n2
≥

k∑
i=1

(
1− i− 1

n

)
≥ k − 1 ≥

√
n

4
.

Where the final inequality holds for n ≥ 4, the Approximation Ratio then is at most 20√
n
for n ≥ 4, and the

bound holds trivially for n < 4.
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Lemma4.6. LetM be a truthful-in-expectationmechanism for unit-range representation. Then ar(M) = O
(

1√
n

)
.

Proof. Using Lemma 4.1, we can once again assume that M is anonymous. Consider k ≥ 2 and let u =
(u1, u2, . . . , un) be the valuation profile defined as follows:

For each i ∈ {1, . . . , k + 1}:

ui(j) =


1, if j = i,
2
k − j

n , if 1 ≤ j ≤ k + 1 and j ̸= i,
n−j
n2 , otherwise.

For each i ∈ {k + 2, . . . , n}:

ui(j) =


1, if j = 1,
2
k − j

n , if 2 ≤ j ≤ k + 1,
n−j
n2 , otherwise.

Now let ui = (u′
i, u−i) for all i = 2, . . . , k + 1, be the valuation profile where all agents besides i have the

same valuations as in u and u′
i = uk+2. Notice that when agent i in valuation profile ui, reports ui instead of u′

i,
the resulting valuation profile is u. Since M is anonymous and u′

i = u1 = uk+2 = . . . = un, agent i receives at
most a uniform lottery among these agents on valuation profile ui. Therefore, it follows that

E[u′
i(M(ui))] ≤ 1

n− k + 1
+

k+1∑
j=2

1

n− k + 1

(
2

k
− j

n

)
+

n∑
j=k+2

1

n− k + 1
· n− j

n2

≤ 4

n− k + 1

For i = 2, . . . , k + 1, consider the valuation profile ui = (u′
i, u−i), where all agents except agent i have the

same valuations as in the original profile u, and the valuation function u′
i for agent i is identical to that of agent

k + 2. In this setting, when agent i, under the valuation profile ui, truthfully reports their original valuation ui

instead of misreporting u′
i, the resulting valuation profile will be exactly u.

Now, since the mechanism M is anonymous, it treats all agents equally, irrespective of their identities. The
anonymity of the mechanism implies that the allocation probabilities depend only on the reported preferences and
not on the specific identities of the agents. Given that u′

i = u1 = uk+2 = . . . = un, agent i is indistinguishable
from agents 1, k+2, and up to agent n in terms of their reported preferences. Therefore, in the valuation profile ui,
the mechanism cannot favor agent i over any of these other agents who share the same reported valuation function
u′
i.
As a result, agent i will receive an item through a process that is equivalent to a uniform lottery among all these

agents with identical valuation functions. In other words, agent i has no better chance of obtaining a more preferred
item than any of the other agents with the same reported preferences. Consequently, the expected outcome for agent
i in this scenario is at most as favorable as if they were part of a uniform random draw among these agents.

This uniformity in treatment ensures fairness but also limits the influence of any individual agent on the outcome
when their reported valuation matches that of a large group. Thus, it holds that:

E[u′
i(M(ui)i)] ≤

1

n− k + 1

n−k+1∑
j=1

u′
i(M(ui)j)

where the expectation reflects the uniform lottery's outcome, ensuring that agent i cannot improve their expected
utility by deviating from reporting u′

i truthfully.
For all i = 2, . . . , k + 1, let pi be the probability that (u) = i. Then, it holds that

E[u′
i(M(u))] ≥ pi

(
2

k
− i

n

)
≥ pi

(
2

k
− k + 1

n

)
Hence,

pi

(
2

k
− k + 1

n

)
≤ E[u′

i(M(u))] ≤ E[u′
i(M(ui))] ≤ 4

n− k + 1

Thus, pi ≤
4

n− k + 1
· kn

2n− k(k + 1)
≤ 4

n− k
· kn

2n− (k + 1)2
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Let p = 4
n−k · kn

2n−(k+1)2 . Our goal is to establish an upper bound on the expected Social Welfare achieved by
the mechanismM on the valuation profile u.

First, consider the contribution to Social Welfare from item j = 1. This contribution is trivially upper bounded
by 1. Similarly, for each item j = k + 2, . . . , n, the contribution to Social Welfare is upper bounded by 1

n . Thus,
the total contribution from item j = 1 and items j = k + 2, . . . , n is collectively upper bounded by 2.

Next, we examine the contribution to Social Welfare from items j = 2, . . . , k+1. Define the random variables

Xj =

{
1, ifM(u)j = j,
2
k − j

n , otherwise.

The total contribution from items j = 2, . . . , k + 1 is then given by
∑k+1

j=2 Xj . Therefore, we have:

E

k+1∑
j=2

Xj

 =

k+1∑
j=2

E[Xj ] ≤
k+1∑
j=2

(
p+

2

k
− j

n

)
≤ kp+ 2.

In summary, the expected Social Welfare of the mechanismM is at most 4+pk, while the Social Welfare of the
optimal matching is k+1+

∑n
i=k+2

n−i
n2 , which is at least k. Given that p = 4

n−k ·
kn

2n−(k+1)2 , the Approximation
Ratio ofM is:

ar(M) ≤ 4 + pk

k
=

4

k
+

4

n− k
· kn

2n− (k + 1)2
.

Let k = ⌊
√
n⌋ − 1 and note that

√
n− 2 ≤ k ≤

√
n− 1. Then,

ar(M) ≤ 4

k
+

4

n− k
· kn

2n− (k + 1)2
≤ 4√

n− 2
+

4

n−
√
n+ 1

· (
√
n− 1)n

2n− (
√
n)2

≤ 4√
n− 2

+
4√
n
≤ 12√

n
+

4√
n
=

16√
n
.

The last inequality holds for n ≥ 9, and for n < 9, the bound holds trivially. This completes the proof.

We are now prepared to present the central result of this work:

Theorem 4.7. The approximation ratio of Random Priority is Θ
(

1√
n

)
. Moreover, Random Priority is asymptoti-

cally the best truthful-in-expectation mechanism as well as the best ordinal (not necessarily truthful-in-expectation)
mechanism for this problem.

Proof. By Lemma 4.4 and Lemma 4.5, the approximation ratio of RP is Θ
(

1√
n

)
. Lemma 4.5 shows that no

truthful-in-expectation mechanism can outperform RP in the asymptotic limit.
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4.6 Beyond Unit-range Representation & Extensions

4.6.1 Unit-sum valuation functions
In this section we, prove Theorem 4.5 for the unit-sum representation setting, by the following three lemmas.

As seen in Chapter 2. , in the unit-sum representation, the sum of an agent's valuations for all available items
is normalized to 1. Formally, if an agent i has a valuation function ui : M → R+, whereM is the set of items, the
sum of the valuations over all items satisfies: ∑

j∈M

ui(j) = 1

Additionally, it is required that ui(j) ≥ 0 for all items j. This ensures that the agent's total preference weight is
evenly distributed across all items.

Lower Bound

Lemma 4.8. For unit-sum representation, the Approximation Ratio of RP is Ω
(

1√
n

)
.

Proof. Let n denote the number of agents and consider a valuation profile u such that for each agent i, the sum
of their valuations for all items equals 1 and let c be the constant in the bound from Lemma 4.4. Without loss of
generality, suppose first that w∗(u) < 4

√
n

c .
We see that Random Priority guarantees an expected Social Welfare of 1. First, pick an agent i and notice that

in the lth - round of RP,the probability that the agent gets picked l
n , hence the probability of the agent getting one

of its l-most preferred items is at least l
n .

Let ul
i be agent i's valuation for its l'th most preferred item; agent i's expected utility for the 1st- round is then

at least u1
i

n . For the 2nd - round, in the worst case, agent i's most preferred item has already been matched to a
different agent and so the expected utility of the agent for the first two rounds is at least u1

i

n +
u2
i

n . By the same
argument, agent i's expected utility after n rounds is at least

∑n
i=1

ul
i

n = 1
n . Since this holds for each of the n

agents, the expected Social Welfare is at least 1.
If w∗(u) ≥ 4

√
n

c it suffices to transform the valuation profile u into a unit-range valuation profile u′′. By
Lemma 4.2, the optimal allocation can be achieved by a run of Random Priority, so we know that in the optimal
allocation at most 1 agent will be matched with its least preferred item. Now consider the valuation profile u′ where
each agent i's valuation for its least preferred item is set to 0 and the rest of the valuations are as in u. Since the
ordinal preferences of agents remain unchanged, Random Priority will perform no better on u′ than on u performs
worse on this valuation profile and because of Lemma 4.2, w∗(u′) ≥ w∗(u)− 1

n .
Next, consider the valuation profile u′′, defined as:

u′′ =
(
u′ 1
oT 1

)
where o = (oj)j∈[n] ∈ Rn is a vector where each is given by oj = j−1

n5 .
This, results in a valuation profile u′′ has n + 1 agents and items. Agents 1, . . . , n retain the same valuations

for items 1, . . . , n as in u′. Additionally, every agent assigns a valuation of 1 for item n+ 1 and agent n+ 1 only
has a significant valuation for item n+ 1.

Our constructed u′′ is a unit-range valuation profile.
Furthermore,w∗(u′′) ≥ w∗(u′)+1 andE [

∑n
i=1 ui(RP (u))] ≥ E [

∑n
i=1 ui(RP (u′))] ≥ E [

∑n
i=1 ui(RP (u′′))]−

2 and w∗(u) ≤ w∗(u′) + 1
n ≤ w∗(u′′) + 1

n − 1 ≤ w∗(u′′)
Hence,

E [
∑n

i=1 ui(RP (u))]
w∗(u)

≥
E [

∑n
i=1 ui(RP (u′))]
w∗(u′) + 1

n

≥
E [

∑n
i=1 ui(RP (u′′))]− 2

w∗(u′′) + 1
n − 1

≥
E [

∑n
i=1 ui(RP (u′′))]
w∗(u′′)

− 2

w∗(u′′)
≥ c√

n
− 2

w∗(u)

≥ c√
n
− 2

4
√
n

c

=
c√
n
− c

2
√
n
=

c

2
√
n
.
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CHAPTER 4. APPROXIMATE SOCIAL WELFARE BOUNDS

Thus,

ar(RP ) = inf
u∈Cn

ϵ

E [
∑n

i=1 ui(RP (u))]
w∗(u)

= Ω(
1√
n
)

Upper Bounds

Lemma 4.9. Let M be an ordinal mechanism for unit-sum representation. The Approximation Ratio of M is
O
(

1√
n

)
.

Proof. Let n be the number of agents, such that, without loss of generality,
√
n = k ∈ N. Since, we are trying to

find an upper bound for the Approximation Ratio, from 4.1 we can assume, without loss of generality that M is
anonymous. Consider the following valuation profile u, for all i ∈ {1, . . . ,

√
n}:

ui(j) =

{
1−

∑
j ̸=i ui(j), if j = i, j ≤

√
n

n−j
10n5 , otherwise

ui+l·
√
n(j) =


1−

∑
j ̸=i ui(j), if j = i, j ≤

√
n

1√
n
− j

10n2 , if j ̸= i, j ≤
√
n

n−j
10n5 , otherwise

, l ∈ {1, . . . ,
√
n− 1}

More intuitevely, the valuation profile u is constructed so that for each i ∈ {1, . . . ,
√
n}, the valuation function

of agent i, induces the same ordering as the valuation function of agent i + l ·
√
n for any l ∈ {1, . . . ,

√
n − 1}.

Because of the anonymity of M , each agent i = 1, . . . ,
√
n, can at most expect to get a uniform lottery over

all the items with each of the other
√
n − 1 agents that have the same ordering of valuations. For agents i ∈

{
√
n+1, . . . , n}, the contribution to the Social Welfare from items 1, ...,

√
n is at most 2 since their valuations for

these items are bounded by 2√
n
. Similarly, their contribution to the Social Welfare from items

√
n + 1, . . . , n is

similarly bounded by 1.
Therefore, we get the following upper bound on the expected Social Welfare:

√
n∑

i=1

E [ui(M(u))] +
n∑

i=
√
n+1

E [ui(M(u))] ≤

√
n∑

i=1

1√
n
+ 3 = 4,

while the Social Welfare of the optimal allocation is at least
√
n−1

10n3 . From this, we get ar(M) ≤ 8√
n
= O( 1√

n
).

Finally, the upper bound for any truthful-in-expectation mechanism is given by the following lemma.

Lemma 4.10. Let M be a truthful-in-expectation mechanism for unit-sum representation. The Approximation
Ratio ofM is O

(
1√
n

)
.

Proof. The intuition behind the lemma lies in the fact that the valuation profile used in the proof of Lemma 4.5 can
be adjusted so that the sum of valuations across each row of the valuation matrices equals one. To achieve this,
consider the following modified valuation profile:

ui(j) =


1−

∑
j ̸=i ui(j), for j = i

2
10k − j

10n , for 1 ≤ j ≤ k + 1, j ̸= i
n−j
10n2 , otherwise

∀i ∈ {1, . . . , k + 1}

ui(j) =


1−

∑
j ̸=1 ui(j), for j = 1

2
10k − j

10n , for 1 < j ≤ k + 1
n−j
10n2 , otherwise

∀i ∈ {k + 2, . . . , n}

This profile is a direct adaptation of the one used in Lemma 4.5, with the key difference that all entries are
divided by 10, except those entries where the valuation is 1, which are now equal to 1 minus the sum of the
valuations for the rest of the items. This modification introduces a scaling factor of 1

10 through the calculations.
However, it does not effect the he asymptotic bound established in Lemma 4.5, hence the same proven bound
holds.

31



4.6. BEYOND UNIT-RANGE REPRESENTATION & EXTENSIONS

4.6.2 Allowing ties
The results of this paper, extend even when we have ties, meaning when agents value at least two items the same.
Random Priority though, needs a way to decide which item an agent should pick.

To handle ties, we introduce small perturbations of the agents' valuations. Such perturbations are taken to break
the ties, according to some tie-breaking rule. In such cases, the outcome of the RP mechanism — what items the
agents actually end up with — would still be the same as if we had applied RP directly on the original profile with
the tie-breaking rule put in place.

The reason lies in the fact that, since these perturbations do not change the ranking of an agent over different
items to a great extent, the assignment probabilities (i.e., the probability of any agent receiving a certain item)
stay the same. In this way, the performance and guarantees — like the approximation ratio — given by the RP
mechanism remain unchanged even when ties are present.

4.6.3 Unit - range∗ - valuation functions
All the results apply to the extension of the unit-range representation where 0 is not required to be in the image of
the function, that is, maxj ui(j) = 1 and for all j, ui(j) ∈ [0, 1]. This captures cases where an agent might slightly
prefer one item to another, without having to completely discard some item - no item needs to have its valuation
exactly 0. For example, the agent might value each of the items pretty much similarly and vary the preferences
slightly between the items. This is different from the strict unit-range model, which requires at least one item to be
valued at 0, indicating complete indifference to that particular item.

Since all the unit-range valuation profiles are valid for this representation too, the upper bounds are trivial. The
lower bound is not — the reason a lower bound doesn't hold directly is that the transformation of a [0, 1] profile to
a unit-range profile can reduce the optimal Social Welfare by a factor of up to 1 unit. The following proof adjusts
this by measuring welfare before and after the transformation, so theΩ( 1√

n
) bound still holds with only minor loss.

Corollary 4.11. The Approximation Ratio of Random Priority, for the unit-range∗ valuation functions is Ω
(

1√
n

)
.

Proof. Let u be any [0, 1] valuation profile, where each agent i assigns a value ui(j) ∈ [0, 1] to each item j. Let c
be the constant appearing in the lower bound of Lemma 4.4. We will relate the Approximation Ratio of Random
Priority on this generalized profile u to the established ratio for the unit-range profile.

To achieve this, we transform u into a profile u′. For each agent i, we modify the valuation profile by setting
the valuation of the least-preferred item to 0, if it is not already 0. Formally, let u′ be defined as:

u′
i(j) =

{
0 , if j = argminkui(k)

ui(j) , otherwise

This transformation ensures that u′ is a valid unit-range profile, meaning u′
i(j) ∈ [0, 1] and there exists at least one

item j such that u′
i(j) = 0.

Since the transformation only decreases the valuation of each agent's least-preferred item, the expected Social
Welfare of Random Priority under u′ cannot exceed that under u. Thus:

E

[
n∑

i=1

ui(RP (u′))

]
≤ E

[
n∑

i=1

ui(RP (u))

]
.

Now, since the optimal welfare w∗(u′) for the modified profile u′ is at most 1 unit less than the optimal welfare
w∗(u) for the original profile, as the optimal matching on u may have assigned the least-preferred item to exactly
one agent:

w∗(u′) ≥ w∗(u)− 1.

Given that u′ is a unit-range profile, we apply Lemma 4.4:

E [
∑n

i=1 ui(RP (u′))]
w∗(u′)

≥ c√
n
.
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And since w∗(u′) ≥ w∗(u)− 1:

E [
∑n

i=1 ui(RP (u))]
w∗(u)

≥
E [

∑n
i=1 ui(RP (u′))]
w∗(u′) + 1

.

Since w∗(u′) ≥ w∗(u)− 1, it follows that:

E [
∑n

i=1 ui(RP (u))]
w∗(u)

≥
E [

∑n
i=1 ui(RP (u′))]
2w∗(u′)

.

Combining the above inequalities, we get:

E [
∑n

i=1 ui(RP (u))]
w∗(u)

≥ c

2
√
n
.

Thus, the Approximation Ratio of Random Priority for any unit - range∗ valuation profile u is Ω
(

1√
n

)
.

4.6.4 An Improved Approximation
As we saw, Theorem 4.5 states that RP is the best truthful-in-expectation mechanism for the problem, when only
considering the asymptotic behavior of mechanisms. The authors, consider non-asymptotic behavior by studying
the case when n = 3 and present an non-ordinal mechanism that achieves better bounds than any ordinal mecha-
nism, when the representation of the valuation functions is unit-range.

We begin by looking the Approximation Ratio of RP for n = 3. It is easy to see that the Optimal obtainable
Social Welfare by RP in the unit-range setting is 3 - each agent get's their most desired item, valued at 1. Now, for
the Worst-Case Social Welfare. Consider the following profile:

u =

 1 1− ϵ 0
1 ϵ 0
1 ϵ 0



The best matching that RP can achieve in this profile is for agent 2 to get item 1, agent 1, item 2 and agent 3,
the item 3 the Social Welfare is the 2− ϵ → 2 when ϵ is small.

TheHybridMechanism builds upon the cubic lottery, a non-ordinalmechanism proven to be truthful-in-expectation
(see [28]) which matches each agent with their most prefered item with a certain probability.

The cubic lottery for 1 agent can be explained easily, as they get:

• The most preferred item with probability 6−2α3

8 ,

• The second-most preferred item with probability 1+3α2

8 ,

• The remaining item with probability 1− ( 6−2α3

8 + 1+3α2

8 ).

Where, α is the agent's valuation for their second-most preferred item.

The Hybrid Mechanism is, hence, the following:

Steps in HM

1. Uniformly at random choose a permutation σ of the agents.

2. Agent σ(1) is matched with an item based on the cubic lottery.

3. Agent σ(2) selects their favorite item from the remaining items.
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4. Agent σ(3) is assigned the final remaining item.

The Hybrid Mechanism achieves an Approximation Ratio of 0.699, which is better than the 2
3 achieved by any

ordinal mechanism, including RP. The authors prove that by solving a non-linear optimization problem. The proof
is omited but can by found in [10]. Although for n = 3 this method works well, for larger n we face computational
challenges. But the possible results by Extending the Hybrid Mechanism for larger n's can be valuable.
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CHAPTER5
PRICE OF ANARCHY BOUNDS

This chapter is based on the work of George Christodoulou, Aris Filos-Ratsikas, Soren Kristoffer Stiil Frederiksen,
Paul W. Goldberg, Jie Zhang and Jinshan Zhang, in their paper "Social Welfare in One-Sided Matching Mecha-
nisms" presented at the Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent
Systems, Singapore, May 9-13, 2016, with some adjustments and clarifications for ease of reading.

5.1 Synopsis
In this paper, the authors provide a lower bound of Ω(

√
n) for the Price of Anarchy across all types of mechanisms

for the problem - including both ordinal and cardinal ones.

They focus on the Probabilistic Serial and Random Priority mechanisms, which obtain a matching upper bound.
The analysis is extended to deterministic mechanisms where we will see that they exhibit significantly worse per-
formance in terms of their bounds.

The authors also study how these mechanisms behave when agents have incomplete information. They demon-
strate that even in such cases, the PoA remains within the same bounds.

Finally, the authors examine the Price of Stability, which measures inefficiency at the best possible equilibrium.
They show that the PoS has a similar lower bound of Ω(

√
n) in both ordinal and deterministic mechanisms.

5.2 Introduction
In Chapter 4, we studied the performance of ordinal one-sided matching mechanisms through their Approximation
Ratio under unit-range valuations. We focused on the Random Priority (RP) mechanism due to its truthfulness, but
it is known that the RP does not satisfy ex-ante Pareto efficiency and envy-freeness.

The truthfulness of RP gives a simple route to the analysis of the mechanism's Social Welfare inefficiency. Other
ordinal mechanisms, however, do not offer this property and if they do, this does not necessarily mean that misre-
porting cannot obtain an outcome with higher Social Welfare.

In settings without money, valuations are represented using a canonical way. Common approaches are the unit-
range and unit-sum representantions. While in Chapter 4. we used the unit-range representation mainly, easily
extending the result to the unit-sum representantion. In this chapter, it will be the other way around, fixing our
representation to unit-sum. As we imply cardinal utilities below the ordinal preferences, each agent's allocation
induces a certain utility. Forming a game at hand, by Nash's theorem, every game has a Nash Equilibrium. The
natural question becomes how to measure the mechanism's inefficiency.

In Chapter 5, we shift our focus, from bounding the inneficiency of truthtelling, to studying mechanism's be-
haviour in Equilibria. While the results of Chapter 4 prove to be fundamental, as they establish further results for
studying the, other than truthtelling, equilibria of RP, we also focus on Probabilistic Serial, PS is known for it's
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ex-ante Pareto efficient and envy-free properties, but also because it is not truthful, making it interesting to study
it's performance in equilibria.

The Price of Anarchy (PoA), as seen in Chapter 2. , was introduced by Koutsoupias and Papadimitriou in 1999 and
is a celebrated measure quantifying the efficiency loss at equilibrium due to selfish behavior compared to the opti-
mal outcome. Initially used in network congestion problems, PoA is now widely applied to analyze inefficiencies
from strategic behavior in various settings, including resource allocation and mechanism design. The reader can
see Chapter 2. for a reminding of the definition of the Price of Anarchy.

In this chapter, our analysis moves from the direct comparison of Social Welfare under truthful reporting, to ex-
amining Social Welfare at Nash Equilibria. Hence, the bridge from Chapter 4 to Chapter 5 is guided by incentive
compatibility.

5.3 Upper Bounds
In this section, we establish the (pure) Price of Anarchy upper bound guarantees for the Probabilistic Serial and
Random Priority mechanisms. Together with the results from the next section, we will be able to provide strict
bounds.

5.3.1 Random Priority Bounds
As we have seen in Chapter 4. , Filos-Ratsikas et al. in [10] proved that the Social Welfare in any truthtelling
equilibrium is an Ω( 1√

n
)-fraction of the maximum Social Welfare. Although Random Priority may have other

equilibria, establishing the Price of Anarchy bound relies on the observation that, any non-truthful strategy does
not affect the allocation of other agents and consequently, does not affect Social Welfare.

We assume that valuations are distinct - that is there are no ties. If ties emerge, as seen in Chapter 4. , small
pertubations on the valuation functions can do the trick, with a negliglible cost of Social Welfare.

Lemma 5.1. If valuations are distinct, the Social Welfare is the same in all mixed Nash Equilibria of Random
Priority.

Proof. Let i be an agent andB be a subset of the items. Let s be a mixed Nash equilibrium where there is a positive
probability that agent i will be selected to choose an item when B is the set of remaining items. Since agent i has
distinct valuations for the items, their strategy should always rank their most preferred item in B at the top of the
preference list for that set.

Now, for two items j and j′, suppose that there is no set of itemsB that may be offered to iwith positive probability
where either j or j′ is the optimal choice for i. In this case, agent imay rank j and j′ in any order (can report j ≻i j

′

or j′ ≻i j). However, this report has no impact on the other agents and it does not influence their Social Welfare.

Theorem 4.5 from Chapter 4. , states that the the approximation ratio of Random Priority isΘ
(

1√
n

)
. Together

with Lemma 5.3.1 we can easily see the following result.

Theorem 5.2. For distinct valuations, the Price of Anarchy of Random Priority is Θ(
√
n).

When dealing with ties, the same upper bound holds.

Theorem 5.3. The Price of Anarchy of Random Priority is O(
√
n).

Proof. We know from Theorem 4.5 from Chapter 4. . that the Social Welfare of Random Priority when agents are
truthful is within O(

√
n) of the social optimum. The Social Welfare of a (mixed) Nash equilibrium q cannot be

worse than the worst pure profile from q that occurs with positive probability, so let s be such a pure profile. We
will say that agent i misranks items j and j′ if j ≻i j

′, but j′ ≻si j.

If an agent misranks two items for which she has distinct values, it is because she has 0 probability in s to re-
ceive either item. So we can change s so that no items are misranked, without affecting the Social Welfare or the
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allocation. For items that the agent values equally (which are then not misranked) we can apply arbitrarily small
perturbations to make them distinct.

Profile s is thus consistent with rankings of items according to perturbed values and is truthful with respect to
these values, which, being arbitrarily close to the true ones, have optimum Social Welfare arbitrarily close to the
true optimal Social Welfare.

5.3.2 Probabilistic Serial Bounds
We explain the Probabilistic Serial Mechanism in Chapter 2. , as a reminder, the mechanism works as follows:
Each item can be viewed as an infinitely divisible item that all agents can consume at unit speed during the unit
time interval [0, 1]. Initially each agent consumes her most preferred item (or one of her most preferred items in
case of ties) until the item is entirely consumed. Then, the agent moves on to consume the item on top of her
preference list, among items that have not yet been entirely consumed. The mechanism terminates when all items
have been entirely consumed. The fraction pij of item j consumed by agent i is interpreted as the probability that
agent i will be matched with item j under the mechanism.

Aziz et.al. in [6] prove the the Probabilistic Serial has Pure Nash Equilibria. Since, we are trying to upper bound
the Price of Anarchy of PS, it suffices to consider only Pure Nash Equilibria. We procceed by proving two lemmas,

We start with the following two lemmas.

Let tj(s) be the time when item j is entirely consumed on profile s under PS(s).

Lemma 5.4. Let s be any strategy profile and let s∗i be any strategy where agent i places item j on top of her
preference list. i.e. j ≻s∗i

ℓ for all items ℓ ̸= j. Then it holds that tj(s∗i , s−i) ≥ 1
4 · tj(s).

Proof. Let, for ease of notation, s∗ = (s∗i , s−i) be any strategy where agent i places item j on top of her preference
list. If j ≻si ℓ for all ℓ ̸= j and since all other agents' reports are fixed, tj(s∗) = tj(s) and the statement of the
lemma holds.

Hence, we assume that there exists some item j′ ̸= j such that j′ ≻si j. If agent i is the only one consuming
item j for the duration of the mechanism, then tj(s∗) = 1 and we are done. Hence, assume that at least one other
agent consumes item j at some point, and let τ be the time when the first agent besides agent i starts consuming
item j in s∗. Agent i consumes j for more time, thus, tj(s∗) > τ , therefore if τ ≥ 1

4 · tj(s) then tj(s∗) ≥ 1
4 · tj(s)

and we are done.

Assume that τ < 1
4 · tj(s). Observe that in the interval [τ, tj(s∗)], since there are at least two agents consum-

ing item j, agent i can consume at most half of what remains of it. Overall, agent i's consumption is at most
1
2 + 1

4 tj(s) so at least 1− [ 12 + 1
4 tj(s)] =

1
2 − 1

4 tj(s), of the item j will be consumed by the rest of the agents.

Now consider all agents other than i in profile s and let α ∈ (0, 1] be the the amount of item j that they have
consumed by time tj(s). The total consumption speed of an item is non-decreasing in time which means in partic-
ular that for any 0 ≤ β ≤ 1, agents other than i need at least βtj(s) time to consume α · β in profile s. Since agent
i starts consuming item j at time 0 in s∗ and all other agents' strategies are the same in both profiles, s and s∗, it
holds that every agent k ̸= i starts consuming item j in s∗ no sooner than she does in s. This means that in profile
s∗, agents other than i will need more time to consume β · α and in particular they will need at least βtj(s) time,
so tj(s∗) ≥ βtj(s).

However, we saw earlier that they will consume at least 1
2 − 1

4 tj(s), and thus α · β ≥ 1
2 − 1

4 tj(s). Letting
β ≥ 1

α

(
1
2 − 1

4 · tj(s)
)
we get:

tj(s∗) ≥ βtj(s) ≥
1

α

(
1

2
− 1

4
· tj(s)

)
tj(s) ≥

(
1

2
− 1

4
· tj(s)

)
tj(s) ≥

1

4
· tj(s)

We can now, lower bound the utility of an agent at any Pure Nash Equilibrium (PNE).
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Lemma 5.5. Let u = (u1, . . . , un) be the profile of true agent valuations and let s be a pure Nash equilibrium. For
any agent i and any item j it holds that the utility of agent i at s is at least 1

4 · tj(s) · uij .

Proof. Let s′ = (s′i, s−i) be the strategy profile resulting from agent i deviating from s to a new strategy s′i where
s′i ranks item j above all other items ℓ ̸= j. Since s is a PNE, it holds that ui(PSi(s)) ≥ ui(PSi(s′)) ≥ tj(s′) ·uij ,
where the last inequality holds because the utility of agent i from their deviation to s′i must be at least as much as
the utility they derive from the consumption of item j, since, by deviating to the strategy s′i, agent i ensures that
item j is ranked highest. This guarantees that their utility from s′ is at least her utility from consuming item j alone
for the time tj(s′). By Lemma 5.4, it holds that tj(s′) ≥ 1

4 · tj(s) and hence ui(PSi(s)) ≥ 1
4 · tj(s) · uij .

The intuition behind these proofs is that, in a PNE, an agent’s utility cannot be significantly lower than the utility
they would receive if they were consuming the item matched to them in the optimal allocation from the start, until
the item is fully consumed.

Now, we can upper bound the PoA of PS.

Theorem 5.6. The pure Price of Anarchy of Probabilistic Serial is O(
√
n).

Proof. Let u = (u1, . . . , un) ∈ Rn×n
+ be the profile of true agent valuations and let s be a pure Nash equilibrium.

It's easy to see that in the Probabilistic Serial mechanism, by reporting truthfully, each agent i is assured of a fair
share of the utility, no matter what the other agents do. This fair share translates to at least 1

n of the total available
utility for each agent, making truthfulness a safe strategy and ensuring that the Social Welfare of the mechanism is
at least 1. To see this, first consider time t = 1

n and observe that during the interval [0, 1
n ], agent i is consuming

her favorite item (w.l.o.g. say a1) and hence pia1
≥ 1

n . Next, consider time t
′ = 2

n and observe that during the
interval [0, 2

n ], agent i is consuming one or both of her two favorite items (a1 and a2) and hence pia1 + pia2 ≥ 2
n .

Consequently, for any k, it holds that
∑k

j=1 piaj
≥ k

n . This implies that regardless of other agents' strategies,
agent i can achieve a utility

∑n
j=1 piaj

· uij ≥ 1
n

∑n
j=1 uij . Since s is a pure Nash equilibrium, it holds that

ui(PSi(s)) ≥ 1
n ·

∑n
j=1 uij as well. Thus, for the Social Welfare of the mechanism, summing over all agents, we

get that SWPS(u, s) ≥
∑n

i=1
1
n ·

∑n
j=1 uij = 1. If SWOPT (u) ≤

√
n, we get that:

PoA(PS) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWPS(u, s)

≤
√
n

1
= O(

√
n)

So we are done. Let us assume that SWOPT (u) >
√
n.

Recall that PS is neutral, meaning that it's allocation process does not favor any specific item over others based on
their identity. Thus, we can assume that tj(s) ≤ tj′(s) for j < j′ without loss of generality.

By any time 0 ≤ t ≤ 1, the total fraction of items consumed by all agents combined is exactly t · n. This is
because there are n items, and the consumption rate is uniform. Since tj(s) represents the time at which the jth
item is entirely consumed, the mass of items consumed by this time must be at least j. Thus, tj(s) · n ≥ j, or,
tj(s) ≥ j

n .

For each item j let ij be the agent who receives item j in the optimal allocation and for ease of notation, let
wij denotes the valuation of agent ij for item j, i.e. wij = uijj . Now by Lemma 5.5, since s is a pure Nash
equilibrium, it holds that

uij (PS(s)) ≥ 1

4
·tj(s)·wij ≥ 1

4
· j
n
·wij and SWPS(u, s) =

n∑
i=1

ui(PS(s)) =
n∑

j=1

uij (PS(s)) ≥ 1

4

n∑
j=1

j

n
·wij .

Since, by definition, SWOPT (u) =
∑n

j=1 wij , the Price of Anarchy is then:

PoA(PS) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWPS(u, s)

≤ SWOPT (u)
SWPS(u, s)

=

∑n
j=1 wij

1
4

∑n
j=1

j
n · wij

.
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To establish an upper bound for the quantity

4n ·
∑n

j=1 wij∑n
j=1 j · wij

.

we consider the case when the ratio ∑n
j=1 wij∑n

j=1 j · wij

.

is maximized. Let k be an integer such that k ≤
∑n

j=1 wij ≤ k + 1. Given that wij ∈ [0, 1] (as valuation func-
tions), it follows that wij = 1 for j = 1, . . . , k and wij = 0, for j ≥ k + 2.

Hence,

∑n
j=1 wij∑n

j=1 j · wij

≤
k + wik+1

(k + 1) · wik+1
+
∑k

j=1 j · 1
=

k + wik+1

(k + 1) · wik+1
+ k(k+1)

2

=
k + wik+1

awik+1
+ b

For wik+1
in [0, 1], the above ratio is decreasing. Therefore, the maximum value of (k + wik+1

)/(awik+1
+ b)

is achieved when wik+1
= 0. Consequently, the Price of Anarchy is at most:

4n ·
∑n

j=1 wij∑n
j=1 j · wij

≤ 4n ·
k + wik+1

awik+1
+ b

≤ 4n · k
k(k+1)

2

=
8n

k + 1

Thus, the Price of Anarchy is maximized when k is minimized. Since, SWOPT (u) =
∑n

j=1 wij ≥ k and we
assumed that SWOPT (u) >

√
n, we find that k >

√
n. Hence, the ratio is O(

√
n).
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5.4 Lower Bounds
The following result, bounds the Price of Anarchy of any mechanism. Including, ordinal, cardinal, deterministic
and randomized mechanisms. Since we're interested in mechanisms with good properties, it's natural to focus on
those with pure Nash equilibria, where outcomes are deterministic and no randomness is involved.

Theorem 5.7. The pure Price of Anarchy of any mechanism is Ω(
√
n).

Proof. Let M be a mechanism, n = k2 for some k ∈ N the number of agents and consider the following val-
uation profile u described as follows. There are

√
n sets of agents and let Gj denote the j-th set. For every

j ∈ {1, . . . ,
√
n} and every agent i ∈ Gj , it holds that uij =

1
n + α and uik = 1

n − α
n−1 , for k ̸= j, where α > 0

is sufficiently small. Let s be a pure Nash equilibrium and for every set Gj , let ij = argmini∈Gj
pM,s
ij (break ties

arbitrarily).

Since, the total probability of agents in Gj to get item j is 1 and there are
√
n agents in Gj :

∑
i∈Gj

pM,s
ij =

pM,s
i1j

+ pM,s
i2j

+ . . . + pM,s
i√nj

= 1. Thus, for all j = 1, . . . ,
√
n, it holds that pM,s

ijj
≤ 1√

n
. Observe that for all

j = 1, . . . ,
√
n, it holds that pM,s

ijj
. Now, let I = {i1, i2, . . . , i√n} and consider the valuation profile u′ where:

• For every agent i /∈ I , u′
i = ui.

• For every agent ij ∈ I , let u′
ijj

= 1 and u′
ijk

= 0 for all k ̸= j.

The strategy s is a pure Nash equilibrium under u′ as well:

• For agents i /∈ I: the valuations have not changed and hence they have no incentive to deviate.

• Assume now that some agent i ∈ I whose most preferred item is item j , deviates to some beneficial strategy
s′i. Since agent i only values item j, this would imply that pM,(s′i,s−i)

ij > pM,s
ij . However, since agent i values

all items other than j equally under ui and her most preferred item is item j, such a deviation would also be
beneficial under profile u, contradicting the fact that s is a pure Nash equilibrium in profile u.

Now consider the expected Social Welfare ofM under valuation profile u′ at the pure Nash equilibrium s.

SWM (u′, s) =
∑
i∈I

u′
i +

∑
i ̸∈I

u′
i

• For agents not in I :∑
i ̸∈I

u′
i =

∑
i ̸∈I

ui ≤
∑
i ̸∈I

1

n
+ α = (n−

√
n) · ( 1

n
+ α) < 1 , after letting α <

1

n3
.

• For agents in I:
Under u′ in the expected Social Welfare contribute only the agents that get their most prefered item j.

∑
i∈I

u′
i =

√
n∑

j=1

pM,s
ijj

· u′
ijj ≤

1√
n
·
√
n+ 1 ≤ 2

Hence the expected Social Welfare ofM is at most 3.

As for the optimal Social Welfare, it is achieved when each agent in I gets their most preferred item. Since there
are

√
n such agents and each values their most preferred item at 1, the optimal Social Welfare is at least

√
n.

SWOPT (u′) ≥
∑
ij∈I

u′
ijj =

√
n · 1 =

√
n
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Thus:

PoA(M) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWM (u, s)

≥ SWOPT (u′)
mins∈SM

u
SWM (u, s)

≥ SWOPT (u′)
SWM (u′, s)

≥
√
n

3
= Ω(

√
n).

Below, we see that deterministic mechanisms perform poorly in terms of efficiency at equilibrium.

Theorem 5.8. The Pure Price of Anarchy of any deterministic mechanism is Ω(n2) .

Proof. LetM be a deterministic mechanism, that always has a Pure Nash Equilibrium.
Let u be a valuation profile such that for all agents i, i′, it holds that ui = ui′ , ui1 = 1

n + 1
n3 and uij > uik

for j < k. Let s be a Pure Nash Equilibrium for this profile and assume without loss of generality thatMi(s) = i.

Now fix another true valuation profile u′ such that u′
1 = u1 and for agents i ∈ {2, . . . , n} , u′

i,i−1 = 1− ϵ′i,i−1 and
uij = ϵ′ij for j ̸= i− 1, where 0 ≤ ϵ′ij ≤ 1

n3 ,
∑

j ̸=i−1 ϵ
′
ij = ϵ′

i,i−1
and ϵ′ij > ϵ′ik if j < k when j, k ̸= i− 1.

Intuitively, in profile u′, each agent i ∈ {2, . . . , n} has valuation close to 1 for item i− 1 and small valuations for
all other items. Futhermore, she prefers items with smaller indices, except for item i− 1.

We claim that s is a Pure Nash Equilibrium under true valuation profile u′ as well. Assume that it is not. Meaning
that some agent i has a benefiting deviation, matching her with an item that she prefers more than i. But then,
since the set of items that she prefers more than i in both u and u′ is {1, . . . , i}, the same deviation would match
her with a more preferred item under u as well, contradicting the fact that s is a Pure Nash Equilibrium for profile u.

For the final step, recall the definition of the Price of Anarchy.

PoA(M) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWM (u, s)

It holds that:

PoA(M) = sup
u∈V n

SWOPT (u)
mins∈SM

u
SWM (u, s)

≥ SWOPT (u′)
mins∈SM

u′
SWM (u′, s)

≥ SWOPT (u′)
SWM (u′, s)

It holds that:

SWOPT (u′) ≥
n∑

i=1

n∑
j=1

u′
ij =

n∑
j=1

u1j+

n∑
i=2

n∑
j=1

u′
ij =

n∑
j=1

u1j+

n∑
i=2

u′
i,i−1+

n∑
i=2

∑
j ̸=i−1

ϵ′ij =

n∑
j=1

u1j +

n∑
i=2

u′
i,i−1 +

n∑
i=2

ϵ′i,i−1

SWOPT (u′) ≥ SWM (u′)(?)

??

=

n∑
j=1

u1j +

n∑
i=2

(1− ϵ′i,i−1) +

n∑
i=2

ϵ′i,i−1 =

n∑
j=1

u1j + n− 2−
n∑

i=2

ϵ′i,i−1 +

n∑
i=2

ϵ′i,i−1 ≥ n− 2

Whereas,

SWM (u′, s) ≤
n∑

i=1

n∑
j=1

u′
ij
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The mechanism allocates item i to agent i. Thus,

SWM (u′, s) ≤
n∑

i=1

n∑
j=1

u′
ij =

n∑
i=1

u′
i,i ≤

n∑
i=1

u′
i,1

We have established that:

SWOPT (u′) ≥
n∑

i=1

(
1− ϵ′i,i−1

)
= n− 2,

While for the mechanism's social welfare SWM (u′, s), since the mechanism assigns item i to agent i, it holds
that:

SWM (u′, s) =
n∑

i=1

u′
ii ≤ 1 +

n∑
i=2

ϵ′i,i−1.

Given that ϵ′i,i−1 ≤ 1
n3 :

SWM (u′, s) ≤ 1 + (n− 1) · 1

n3
≤ 2.

Therefore:

PoA(M) ≥ n− 2

2
= Ω(n2).

This completes the proof, showing that the Pure Price of Anarchy for any deterministic mechanism is Ω(n2).
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5.5 Unit-range valuation functions
In this section we extend the above bounds to the unit-range valuation setting, that is, maxj ui(j) = 1 and
minj ui(j) = 0.

For Random Priority, since the results of Chapter 4. ([10]) hold for this normalization as well, we can apply
the same techniques to prove the bounds.

For Probabilistic Serial, observe that Lemma 5.5 holds independently of the representation. Hence, in the proof of
Theorem 5.6, it now holds that:

SWPS(u, s) ≥
1

n

n∑
i=1

n∑
j=1

uij ≥ 1,

which is sufficient for bounding the Price of Anarchy when SWOPT (u) ≤
√
n. Finally, the arguments for the case

when SWOPT (u) ≤
√
n hold for both representations.

Concerning the lower bounds, we can prove the following theorem on the Price of Anarchy of deterministic
mechanisms.

Lemma 5.9. The Price of Anarchy of any deterministic mechanism that always has pure Nash equilibria is Ω(n)
for the unit-range representation.

Proof. (Sketch.) Let u and u′ be valuation profiles with the same preference ordering, and s a pure Nash equilibrium
under u. If s is not a Nash equilibrium under u′, then agent i can deviate to a more preferred item under u′

i. Since
the preference ordering is the same, i would have also deviated under u, contradicting the equilibrium. Thus, s
must be a Nash equilibrium under u′.

Through Lemma 5.9, we can prove the following theorem

Theorem 5.10. The Price of Anarchy of any deterministic mechanism that always has pure Nash equilibria isΩ(n)
for the unit-range representation.

Proof. (Sketch.) Consider a deterministic mechanism M with Pure Nash Equilibria. Let u be a valuation profile
such that all agents have identical preferences, and assume the equilibrium assigns item i to agent i. Construct
a profile where the first half of agents highly value their top item and the second half value the top half of items
slightly less. The optimal social welfare is then at least n

2 , but the mechanism’s welfare is at most 2, leading to a
Price of Anarchy of Ω(n).
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5.6 On More General Equilibrium Concepts
In previous sections, we used pure Nash equilibriua to bound the inefficiency of mechanisms. Here, we extend the
results to broader equilibrium concepts: coarse correlated equilibrium (for games with complete information) and
Bayes-Nash equilibrium (for games with incomplete information). Since concepts like mixed Nash equilibrium
are special cases of these, they suffice for our purposes. One can find a formal definition of these Equilirbium
Concepts in Chapter 2. .

Bellow we state the extensions of our theorems, omitting the proofs, which can be found in [8],
Extensions to Random Priority follow naturally, as agents, even with probabilistic mixtures over strategies,

always choose their most preferred available item when chosen. The order of remaining items does not affect the
distribution.

Theorem 5.11. The coarse correlated Price of Anarchy of Random Priority is O(
√
n). The Bayesian Price of

Anarchy of Random Priority is O(
√
n).

For the Probabilistic Serial mechanism, the results hold for both coarse correlated and Bayes-Nash equilibria.
While tactics like Roughgarden's smoothness framework, are used to establish Price of Anarchy bounds, here the
authors we employ a simpler approach. Instead of analyzing all possible outcomes, they focus on the items an
agent actually receives, which leads to similarly strong results. This makes the analysis more straightforward while
achieving comparable bounds. The full proofs can be found in [8],

Theorem 5.12. The coarse correlated Price of Anarchy of Probabilistic Serial is O(
√
n).

For the incomplete information setting, when valuations are drawn from some publically known distributions,
we can prove the same upper bound on the Bayesian Price of Anarchy of the mechanism.

Theorem 5.13. The Bayesian Price of Anarchy of Probabilistic Serial is O(
√
n).
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5.7 On the Price of Stability
Theorem 5.7 provides a bound the Price of Anarchy of all mechanisms. A more optimistic (and hence stronger
when proving lower bounds) measure of efficiency is the Price of Stability, formally defined in Chapter 2., Price
of Stability is the worst-case ratio over all valuation profiles of the optimal social welfare over the welfare attained
at the best equilibrium.

In this section, we extend Theorem 5.7 to the Price of Stability of all mechanisms, that satisfy a "proportionality"
property.

Definition 5.14 (Stochastic Dominance). Let a1 ≻i a2 ≻i · · · ≻i an be the (possibly weak) preference ordering
of agent i. A random assignment vector pi for agent i stochastically dominates another random assignment vector
qi if

∑k
j=1 piaj

≥
∑k

j=1 qiaj
, for all k = 1, 2, · · · , n. The notation that we will use for this relation is pi ≻sd

i qi.

Definition 5.15 (Safe strategy). LetM be a mechanism. A strategy si is a safe strategy if for any strategy profile
s−i of the other players, it holds thatMi(si, s−i) ≻sd

i

(
1
n ,

1
n , . . . ,

1
n

)
.

We will say that a mechanismM has a safe strategy if every agent i has a safe strategy si inM . Now, we can
state the following theorem:

Theorem 5.16. The pure Price of Stability of any mechanism that has a safe strategy is Ω(
√
n).

Proof. LetM be a mechanism and I = {k + 1, . . . , n} be a subset of agents. We define the valuation profile u as
follows:

• For each agent i ∈ I , the utility for items j = 1, . . . , k is uij =
1
k and for the other items, uij = 0.

• For each agent i /∈ I , we set uii = 1 (i.e., agent i values their own item most) and for all other items, uij = 0
for j ̸= i.

Now, let s be a PNE for the profile u, and let s′i denote a safe strategy for agent i.
At equilibrium s, the expected utility of each agent i ∈ I is given by:

E[ui(s)] =
∑
j∈[n]

pij(si, s−i)vij .

Because s is a Nash equilibrium and s′i a safe strategy, we know that:

E[ui(s)] ≥
∑
j∈[n]

pij(s
′
i, s−i)vij ≥

1

n

∑
j∈[n]

vij =
1

n
.

Additionally, since s is a pure Nash equilibrium, for all agents i ∈ I , the probability that agent i gets one of the
first k items is at least k

n , meaning:

k∑
j=1

pij ≥
k

n
.

For the agents not in I , the total probability that these agents receive one of the first k items is:

∑
i∈N\I

k∑
j=1

pij = k −
∑
i∈I

k∑
j=1

pij .

Since each agent in I has a probability at least k
n of getting one of the first k items, the total contribution from

the agents in I is:

∑
i∈I

k∑
j=1

pij ≥ (n− k)
k

n
.

Thus, the contribution to the social welfare from agents not in I is bounded by:

k − (n− k)
k

n
=

k2

n
.

The total expected social welfare is the sum of the contributions from agents in I and those outside I . For agents
outside I , the maximum contribution is at most k2

n . Therefore, the total expected social welfare of the mechanism
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M is at most 1+ k2

n . The optimal social welfare SWOPT(u) is at least k hence, letting k =
√
n the lower bound of

the Price of Stability follows.

Due to Theorem 5.16, in order to obtain an Ω(
√
n) bound for a mechanismM , it suffices to prove thatM has

a safe strategy. In fact, most reasonable mechanisms, including Random Priority and Probabilistic Serial, as well
as all ordinal envy-free mechanisms satisfy this property.

Lemma 5.17. Let M be an ordinal, envy-free mechanism. Then for any agent i, the truth-telling strategy ui is a
safe strategy.

Proof. Let s = (ui, s−i) be the strategy profile where agent i is truthfully reporting, while the remaining agents
follow strategies s−i. Since the mechanismM is envy-free and ordinal, it holds that

∑ℓ
j=1 p

s
ij ≥

∑ℓ
j=1 p

s
rj for all

agents r ∈ {1, . . . , n} and for all ℓ ∈ {1, . . . , n}. Summing these inequalities over all agents r = 1, 2, . . . , n, we
get:

n

ℓ∑
j=1

psij ≥
ℓ∑

j=1

n∑
r=1

psrj = ℓ,

which implies that
∑ℓ

j=1 p
s
ij ≥ ℓ

n for all i ∈ {1, . . . , n} and for all ℓ ∈ {1, . . . , n}.

Note that since Probabilistic Serial is ordinal and envy-free, by Lemma 5.17, it has a safe strategy and hence
Theorem 5.16 applies. It is not hard to see that Random Priority has a safe strategy too.

Lemma 5.18. Random Priority has a safe strategy.

Proof. Random Priority assigns agents a random order uniformly, each agent i has a probability of 1/n of being
selected first to choose an item, 2/n of being selected within the first two, and so on. If an agent ranks their items
truthfully, then for every ℓ = 1, . . . , n, the probability that they receive one of their top ℓ items is

∑ℓ
i=1 pij ≥

ℓ
n .

The safe strategy property plays a very important role ensuring the bound holds. For example, the randomly
dictatorial mechanism, which selects an agent uniformly at random and assigns them their most preferred item,
while assigning the remaining items based solely on that agent's preferences, achieves a constant Price of Stability.
However, this same mechanism has a Price of Anarchy of Ω(n).
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CHAPTER6
BOUNDING THE INCENTIVES OF PS

This chapter is based on the work of Zihe Wang, Zhide Wei and Jie Zhang, in their paper "Social Welfare in One-
SidedMatchingMechanisms" presented at the Proceedings of the AAAI Conference onArtificial Intelligence 2020,
with some adjustments and clarifications for ease of reading.

6.1 Synopsis
As we have seen in previous chapters, Probabilistic Serial is a celebrated mechanism for the One-Sided Matching
problem. While PS is ex-ante Pareto efficient and envy-free, it is well known that PS is not truthful. In this Chapter,
we present the work of Wang et al. in [5], where they examined the degree to which an agent has an incentive to
manipulate the mechanism.

The textitincentive ratio, formally defined in Chapter 2., is a measure, that quantifies the maximum potential gain
an agent can have by deviating from being truthful. In this work, we will show that no agent can increase their
utility by more than 50% through strategic behavior, in the PS mechanism. This worst-case guarantee holds under
conditions where the agent has complete information about others' reports and can compute the best response, even
if doing so is computationally hard ([6]).

In addition to this worst-case analysis, the authors conduct an experiment to evaluate the incentives of agents to ma-
nipulate PS in the average-case. The results show that the incentive-ratio in the average-case is much smaller than
the worst-case bound, with observed values ranging from 1.02 to 1.06, well below 1.5, which by an example, show
that is tight. These results highlight the resilience of the Probabilistic Serial mechanism to strategic manipulation,
supporting the idea that the PS mechanism is "approximately" truthful in practice, even in small-scale instances.
Future research could focus on developing alternative mechanisms that can better balance fairness, efficiency and
truthfulness.
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6.2 Introduction
In this chapter, we bound the extent to which an agent can increase their utility through strategic manipulation
by reporting preferences, not consistent with their true valuations. Chapter 6 follows naturally from Chapter 5, in
which we studied the inefficiencies caused by strategic behavior system-wide but not at the individual level.

In Chapter 5, we analyzed the Price of Anarchy (PoA) to understand how individual self-interest in one-sided
matching mechanisms can result in inefficiency. We compared mechanism's outcomes under self-interested be-
havior to those which are socially optimal and thereby obtained upper and lower bounds on the Price of Anarchy.
In Chapter 6, we turn attention to the Probabilistic Serial (PS) mechanism, building on the work of Wang et al.
(2020) in [5]. Once again, we investigate how agents may manipulate the system by misreporting their prefer-
ences, but this time, we bound the ratio between an agent's utility when reporting truthfully and when strategizing.

The Incentive Ratio, formally defined in Chapter 2, is a measure in mechanism design that quantifies the max-
imum potential gain an agent can achieve by deviating from truthful behavior. Specifically, it evaluates how much
an agent's utility can be increased through strategic manipulation compared to the utility they would receive by
reporting truthfully. We adopt the incentive ratio notion to quantify agents' incentives to deviate from reporting
their actual private information. Informally, the Incentive Ratio is the factor representing the largest possible utility
gain that an agent can achieve by behaving strategically, assuming all other agents' strategies are fixed.

The main theorem of this work can be stated as follows:

Theorem 6.1. In the Probabilistic Serial mechanism, when the number of agents is no less than the number of
items, no agent is able to unilaterally manipulate and increase their utility to more than 3

2 times the utility they
would receive when reporting truthfully.

There are two scenarios where agents might refrain from manipulation in non-incentive-compatible mechanisms.
First, when computational complexity makes manipulation difficult, agents may act truthfully. Second, if utility
gains from manipulation are minimal and the cost of gathering necessary information is high, agents may prefer
truthfulness.

The incentive ratio is defined in a worst-case sense, representing the strongest approximation guarantee for ma-
nipulation incentives. However, this bound overlooks the likelihood of extreme cases; the probability of an agent
achieving 3/2 times their utility is often negligible, as our tight bound example is artificially constructed.

The results presented here assume complete information and perfect rationality. That is, agents are assumed to
have complete information about other agents' preferences and are able to compute the best response strategy ac-
cordingly. If either of these assumptions is missing, the agents' power to manipulate the mechanism would be much
smaller than the 3

2 bound implies. In fact, computing the best response strategy is intractable in general [6].

The One-SidedMatching problem consists of n agents andm divisible items which we denote as j, j ∈ {1, . . . ,m}.
In general, n and m are not necessarily equal. The results of this paper hold for the case that n ≥ m, but cannot
be extended to the case n < m straightforwardly. W.l.o.g. we can suppose that m is an integer multiple of n, by
adding items of no utility to any agent to achieve this. In the Probabilistic Serial mechanism, agents express strict
ordinal preferences,≻, over items. In other words, they are not indifferent between any two items. The assumption
is to simplify our analysis; otherwise, one needs to equip the Probabilistic Serial mechanism with a tie-breaking
rule, like the ones that we saw earlier in this thesis, that make no significant difference in quantifying the incentive
ratio.

The expected utility of agent i is ui =
∑

j uijpij . Where 0 ≤ uij ≤ 1 denotes the utility derived by agent
i on obtaining a unit of item j and pij , the probability of agent i receiving item j. Since, PS is not truthful.
Agents may misreport their ordinal preferences if that results in a better allocation in their perspective. In that case,
ui(si, s−i) < ui(s

′
i, s−i), where si is agent i's true preference (or true strategy), s−i is other agents' preferences,

and s′i is a misreport by agent i.

The incentive ratio captures the extent to which utilities can be increased by strategic plays of individuals. The
incentive ratio of agent i in mechanismM is:

ri(M) = max
s−i

maxs′i u
′
i(s

′
i, s−i)

ui(s)
.
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Where, s = (si, s−i) , ui(s) denotes the utility of agent i when they truthfully reports their preferences and
maxs′i u

′
i(s

′
i, s−i) denotes the largest possible utility of agent i when she unilaterally misreports her preferences.

The incentive ratio of agent i is then the maximum value of the ratio over all possible inputs of other agents. The
incentive ratio of a mechanismM is then maxi ri(M). Throughout the paper, w.l.o.g., we consider the strategic
manipulation of agent 1.

6.2.1 Probabilistic Serial is not Truthful
We have seen in Section 1 that PS is not truthful. The following example from [1], can serve as a reminder why.

Example 6.2. Let agents A = {A1, A2, A3} and items I = {I1, I2, I3} and the preferences of the agents as
follows:

A1 : I2 ≻ I1 ≻ I3

A2 : I1 ≻ I2 ≻ I3

A3 : I1 ≻ I3 ≻ I2

PS will return the following allocation.

Agent / Item I1 I2 I3

A1 0 3
4

1
4

A2
1
2

1
4

1
4

A3
1
2 0 1

2

Table 6.1: Allocation produced by PS

Assume that agent A1 misreport as follows:

A1 : I1 ≻ I2 ≻ I3

A2 : I1 ≻ I2 ≻ I3

A3 : I1 ≻ I3 ≻ I2

PS will return the following allocation.

Agent / Item I1 I2 I3

A1
1
3

1
2

1
6

A2
1
3

1
2

1
6

A3
1
3 0 2

3

Table 6.2: Allocation produced by PS

For some underlying cardinal utilities compatible with agentA1's true ordinal preferences, for example, uA1
(I1) =

0.9, uA1
(I2) = 1, uA1

(I3) = 0, uA1
= 3

4 in the truthful profile and u′A1
= 0.8 when A1 misreports. The intuition

behind this is that, both items I1 and I2 are important to agent A1, but item I1 is more competitive than I2 as the
other two agents place it as their most preferred item.Sso, instead of start eating a less-competitive item I2, it is
better for agent A1 to start eating item I1.
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6.3 Bounding the Incentive Ratio
In this section we prove the main theorem of this paper, Theorem 6.3. To prove the 3

2 incentive ratio upper bound we
will need to prove some lemmas, begining by a reduction on the instances we need to consider. We will prove that it
is sufficient to consider the instances in which agents' utilities are dichotomous. That is, each agent's preferences are
either close to 1, or close to 0. This approach is similar to the concept of quasi-combinatorial valuation functions
we saw in Chapter 3, where agents’ valuations are restricted to being ϵ-close to 0 or 1.

Lemma 6.3. Given an agent's truthful valuations of a preference ordering ui, define the ratio c =
u′
i

ui
where u′

i

represents the maximum utility that agent i by strategizing. Then, it is always possible to construct a corresponding
dichotomous valuation vi, consistent with the truthful preference ordering, such that c′ =

v′
i

vi
≥ c.

Proof. Assume, without loss of generality, that agent 1 prefers item j more than item j+1 for all items {1, . . .m}.
Denote as lj , the length of time that agent 1 spends on eating item j in the truthful profile and l′j the length of time
that agent 1 spends on eating item j in another strategy. By definition,

c(u1j) =
u′
1

u1
=

u11l
′
1 + u12l

′
2 + · · ·+ u1ml′m

u11l1 + u12l2 + · · ·+ u1mlm
.

Note that u1j , ∀j is not necessarily either close to 1, or close to 0. We will show that by carefully pushing u1j 's
towards 1 and 0, the ratio c is non-decreasing. Let,

k =j

l′1 + l′2 + · · ·+ l′j
l1 + l2 + · · ·+ lj

, cmax =

∑k
j=1 l

′
j∑k

j=1 lj
.

Where k The index j (from the list of items) where this cumulative ratio is the highest - the point in the sequence
of items where agent 1's relative gain from manipulating their preferences reaches it's peak.

cmax is the ratio of the total manipulated utility to the total truthful utility up to the item k, where k is the index
that maximizes this ratio - it quantifies the maximum relative benefit that agent 1 can obtain through strategizing,
considering the cumulative impact up to item k.

We can rewrite c as

c(u1j) =

∑m
j=1(u1j − u1,j+1)

∑j
h=1 l

′
h∑m

j=1(u1j − u1,j+1)
∑j

h=1 lh
, where u1(m+1) = 0.

Now we construct a new preference profile:

b1j =

{
1− (j − 1)ϵ, for j = 1, . . . , k,

(m− j)ϵ, for j = k + 1, . . . ,m.

This new profile is still consistent with the original preference order u1. As a result, the allocations based on
truthful preferences, lj , remain unchanged. Similarly, using the same strategy, the allocations resulting from any
manipulations, l′j , also stay the same.

Moreover,

c(b1j) =

∑m
j=1(b1j − b1(j+1))

∑j
h=1 l

′
h∑m

j=1(b1j − b1(j+1))
∑j

h=1 lh

=
ϵ
∑

j ̸=k

∑j
h=1 l

′
h + (1− (m− 2)ϵ)

∑k
h=1 l

′
h

ϵ
∑

j ̸=k

∑j
h=1 lh + (1− (m− 2)ϵ)

∑k
h=1 lh

ϵ→0−−−→ cmax

Intuitively, this lemma shows that due to the ordinal nature of the mechanism, the worst-case incentive ratio arises
in scenarios with extreme valuation profiles.
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By Lemma 6.3, we can categorize the items ij∈[m] into two groups:

• I = {ij | u1j is close to 1} - those that agent 1 is interested in.

• I = {ij | u1j is close to 0} - those that agent 1 is not interested in.

Without loss of generality, assume that agent 1 is interested in the first k items, so I = {i1, . . . , ik}. In the truthful
profile, if agent 1 spends time pj consuming item j, then their utility is approximately u1 ≈

∑k
j=1 pj . It’s im-

portant to note that agent 1 may not obtain a positive fraction of each item in I , so some pj values may be zero.
Although agent 1 might also consume some items from I , their contribution to the total utility is negligible.

Given agents' ordinal preferences, at any moment t, the following lemma compares the amount of each item that
is not eaten up yet in two scenarios.

• In the normal scenario, all agents eat items according to their reported ordinal preferences as normal.

• In the pause scenario, a set of agents is paused from time t for some time while the other agents continue
eating normally.

Lemma 6.4. For any item, at any time from moment t until it gets fully consumed, the amount remaining in the
pause scenario is always at least as large as the amount remaining in the normal scenario.

Proof. We will prove this by contradiction. Let tinf be the earliest time at which there exists an item j∗ such that
the remaining amount of j∗ in the pause scenario is less than its remaining amount in the normal scenario.

Consider a small tδ > 0. At time tinf + tδ , for the amount of j∗ to be less in the pause scenario, the number
of agents consuming j∗ in the pause scenario, must be greater than the number of agents consuming j∗ in the nor-
mal scenario. If this were not the case, the amount of j∗ in the pause scenario could not be less than in the normal
scenario at this time.

Now, w.l.o.g. let agent 2 be one of the agents who is consuming j∗ in the pause scenario but not in the nor-
mal scenario at time tinf + tδ . Since agents consume items according to their preferences, starting with their most
preferred items, the fact that agent 2 is eating j∗ in the pause scenario but not in the normal scenario implies that
there exists another item j′, which is more preferred than j∗ in the preference list of agent 2 .

For agent 2 to switch from eating j′ to eating j∗ in the pause scenario by time tinf + tδ , j′ must be completely
consumed in the pause scenario but still available in the normal scenario at this time. However, this situation con-
tradicts our assumption that tinf is the earliest moment when the remaining amount of any item j∗ in the pause
scenario is less than in the normal scenario.

Thus, our assumption that such a tinf exists must be incorrect, proving that at no time does the amount of any
item j∗ in the pause scenario fall below the amount in the normal scenario.

This lemma holds true regardless of how many agents are paused or for how long they are paused. Furthermore, it
applies to any input of the PS mechanism, whether the agents are truthful or not.

Now, w.l.o.g. for agent 1, denote T and T ′ the moment by which all items in I are eaten up in the truthful profile
u1 and the strategic profile u′

1 respectively and denote as T̃ and T̃ ′ the moment by which all items in I are eaten
up while agent 1 is paused all the time - or say, agent 1 is eliminated from the eating process in the truthful profile
u1 and the strategic profile u′

1 respectively.

Ignoring the ϵ terms maintaining a strict preference ordering , it's clear that u1 = T ≤ T ′ = u′
1. By Lemma 6.4,

we have T ′ ≤ T̃ ′. Additionally, since agent 1's reports do not affect the eating process once he's is removed, we
observe that T̃ = T̃ ′.

Therefore, to establish our main result u′
1 ≤ 3

2u1, it suffices to show that T̃ ≤ 3
2T . This approach allows us

to avoid the need to determine agent 1's best response strategies and instead focus on the additional time required
for the other agents to consume the items in the absence of agent 1. This method is used in proving Theorem 6.5 and
Case 1 of Theorem 6.6. We prove that our main theorem holds in all of the three possible cases when the number
of agents is less or equal to the number of items, according to T .

1. 0 < T < 1
2 2. 1

2 ≤ T < 2
3 3. 2

3 ≤ T ≤ 1

51



6.3. BOUNDING THE INCENTIVE RATIO

Theorem 6.5. 1.When 0 < T < 1
2 , the Incentive Ratio is upper bounded by

3
2 .

Proof. We define the set I∗ ⊆ I to be the set of items that agent 1 gets a positive fraction of in the truthful profile.
W.l.o.g. let I∗ = {ij∈1,...,k∗}.Let,lj be the time agent 1 spends eating the item ij . Then, ij is completely eaten by
time

∑j
h=1 lh. The total time agent 1 spends is T =

∑k∗

j=1 lj , where 0 < T < 1
2 .

It takes at least time 1
2 for two agents to finish and item. At time

∑j
h=1 lh, there are at least three agents eat-

ing ij , j = 1, . . . , k∗. So, there must be at least three agents eating each item ij at the moment it is fully consumed.

Consider now the following process for agent 1:

• At time l1, all agents but those eating item i1 are paused. Without agent 1, the remaining agents take extra
time δ1 to finish item i1, where δ1 ≤ l1

2 .

• Repeat this process for all items ij ∈ Ī∗

The total time for the other agents to finish the items after agent 1 is eliminated is:

T̃ ≤
k∗∑
j=1

(lj + δj) ≤
k∗∑
j=1

(lj +
lj
2
) ≤ 3

2
T

Therefore, T̃ ≤ 3
2 · T , meaning the time increases by at most a factor of 3

2 when agent 1 is eliminated.

Thereforw, we have that T̃ ≤
∑k∗

j=1(lj + δj) ≤
∑k∗

j=1(lj +
lj
2 ) ≤

3
2T .

The proof of 2. requires a stricter investigation. We state the following theorem, followed by three lemmata, which
will constitute the final piece of the proof.

Theorem 6.6. 2.When 1
2 ≤ T < 2

3 , the Incentive Ratio is upper bounded by
3
2 .

Consider any item ij ∈ I
∗. If there are at least two other agents consuming the item at the same time as agent 1 at

the moment
∑j

h=1 lh, the theorem follows directly from the proof of Theorem 6.5.

However, we assume the existence of an item for which only one other agent is consuming it simultaneously with
agent 1 when it is completely eaten. Such a scenario can occur for only one item, given that it takes a minimum
of time 1

2 for two agents to eat up one item. Therefore, assume that there exists an item that only one other agent
is eating it with agent 1 at the moment it is eaten up. Note that there could only exist one such item, as it takes at
least time 1

2 for two agents to eat up one item. Denote this item by ik′ and the other agent by agent 2. For ease of
notation, let t1 = l1 + · · ·+ lk′−1, t2 = lk′ , and t3 = lk′+1 + · · ·+ lk∗ . Then t1 + t2 + t3 = T .

Lemma 6.7. t1 + t2 ≥ 1
2 , t3 < 1

6 , t1 < 1
3 , and t2 > 2t3.

Proof. Since agents 1 and 2 are the only ones consuming item ik′ , it takes them at least 1
2 time for them to finish

it. Therefore, t1 + t2 ≥ 1
2 . Additionally, since T < 2

3 , we have t3 = T − (t1 + t2) <
1
6 .

Agent 1 has been consuming item ik′ for t2 time and even if agent 2 started from the beginning, they have consumed
it for t1+ t2 time. This implies t2+(t1+ t2) ≥ 1. Given that t1+ t2 ≤ T < 2

3 , it follows that t2 > 1
3 and t1 < 1

3 .
Thus, t2 > 1

3 ≥ 2t3.

Let I1 be the set of items that are consumed by time t1 in the truthful profile, I2 the set of items consumed during
the interval (t1, t1 + t2], and I3 the set of items consumed during the interval (t1 + t2, T ]. These three sets include
all the items that agent 1 is interested in, i.e., I ⊆ I1 ∪ I2 ∪ I3.

Since t1 < 1
3 , there are at least three agents consuming any item that agent 1 was eating during the interval [0, t1].

Thus, the analysis for this interval is similar to that in Theorem 6.5.

We can conclude that if agent 1 were removed, all items in I1 would be eaten up within time 3
2 t1.
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For the set I3, although we do not obtain the same 3
2 bound straightforwardly, we can derive a slightly looser

bound. This bound, combined with other methods for handling I2, will allow us to establish an overall 3
2 bound.

To proceed, we first show the following lemma.

For the set I3, we would not obtain the same 3
2 bound straightforwardly, but are able to obtain a slightly looser

bound, which will be used together with some other approaches for handling I2 to obtain an overall 3
2 bound. We

first show the following lemma.

Lemma 6.8. In the normal scenario, for each item in I3, at the moment that it is finished, there will be at least two
agents other than agents 1 and 2 who will be eating the item.

Proof. For each item ij ∈ I3, we distinguish three possible cases:

1. Case 1.: At the moment t1+ t2, no agent is eating item ij . Yet, since t3 < 1
6 and ij is fully consumed within

the interval [t1+ t2, t1+ t2+ t3], there must be at least six agents eating the item. Amongst these six agents,
even if agents 1 and 2 are among them, there are another four agents.

2. Case 2.: At the moment t1 + t2, one agent is eating item ij . In this case, even if this agent is eating item ij
from the beginning, there are is at least 1− (t1 + t2) amount of this item remaining, and it will be eaten up
before time t1 + t2 + t3, by 1−(t1+t2)

t3
= 1 + 1−t

t3
> 1 + 1−2/3

1/6 = 3,we know that there are at least four
agents eating the item. Amongst these agents, even if agents 1 and 2 are among them, there are another two
agents.

3. Case 3.: At the moment t1 + t2, at least two agents are eating item ij . Since agents 1 and 2 are eating item
ik′ , there must be two different agents, each contributing to the consumption of ij .

If two agents are absent for some time, it will take another two agents the same amount of time to consume the
amount of items left over due to their absence. Thus, the following bound, arises from the previous lemma.

Corollary 6.9. After eliminating agent 1 from eating items in I1, if we eliminate agents 1 and 2 from the moment
3
2 t1 + t2, all items in I3 will be eaten up by at most an extra t3 time.

Corollary 6.10. After removing agent 1 from consuming the items in I1, if agents 1 and 2 are both removed starting
from time 3

2 t1 + t2, then all items in I3 will be fully consumed within an additional t3 time.

We now prove Theorem 6.6 by integrating these intermediate results and analyzing item ik′ and the set I3. As
outlined in our earlier discussion, we will begin by removing agent 1 from eating item ik′ . This will delay the time
that item ik′ will be fully consumed and it will lead to two possible outcomes.

Proof. Case 1: Extended Eating Process of Item ik′ :

We consider a case, where the process of eating the item ik′ is extended - in the sense where, some agents who
were initially eating items in I3, may start eating ik′ before time 3

2 t1 + t2 + 2t3. We will focus on agents 1 and
2 who have a positive fraction of items in I3. We define {s1, · · · , sj} ⊆ I3, in the truthful profile to be the set of
items that either agent 1 or 2 get a positive fraction of. Let ch and dh, for h = 1, · · · , j be the fraction of item sh
that agents 1 and 2 get, respectively. In the strategic profile, agent 1 is eliminated and agent 2 is eating ik′ . Define
zh as the time when item sh is fully consumed and let agent 3 to be the first agent who starts eating ik′ before time
3
2 t1 + t2 + 2t3. Suppose that at time 3

2 t1 + t2 + x, where 0 ≤ x ≤ 2t3, agent 3 starts eating item ik′ and this time
3
2 t1 + t2 + x ∈ (zw−1, zw] for some w ≤ j. In the truthful profile, both agents 1 and 2 have not yet started eating
items in I3 by the time 3

2 t1 + t2 leading to a delay.

The delay incured is 1
2 t1 +

∑w−1
j=1 cj+

∑w−1
j=1 dj

2 , where the factor 1
2 comes from Lemma 6.8, that implies two agents

take longer to eat without the third agent.

Now, let agents 2 and 3 will now eat item ik′ and pause others. This, will take an adittional time of t2−x
2 where
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t2 is due to the absence of agent 1, x is how much agent 2 has eaten, the 1
2 is again, due to Lemma 6.8. At time

3t1
2 + t2 + x+ t2−x

2 all agents, except 1, continue eating.

We calculate the amount of time after this moment when the items in I3 will be fully consumed in the manipu-
lation profile. We categorize this time into three categories.

1. First Category: The remaining time for the items in I3 after the pause is
t3−

∑w−1
h=1 dh

2 .

2. Second Category: If agent 2 starts eating another item iq ∈ I3, it adds an additional delay, bounded by
x
2 − 3

∑w−1
h=1 ch+

∑w−1
h=1 dh

4

3. Third Category: After the items in I3 are fully eaten, the time taken for any remaining items is t3 − (x −
1
2 ·

∑w−1
j=1 cj + dj

Summing up the time from all categories, we find that the total time T̃ for all items I1 ∪ I2 ∪ I3 to be eaten is
bounded by:

T̃ ≤ 3

2
· (t1 + t2 + t3)−

∑w−1
h=1 ch +

∑w−1
h=1 dh

4
≤ 1

This shows that the total time in the strategic profile is at most 3
2 the total time in the truthful profile.

Case 2: No Agent switches back to ik′ Before time 3
2 t1 + t2 + 2t3, we assume that agents who where eating

items in I3 continue eating their next items in I3 instead of switching back to item ik′ . Agent 1's utility is parti-
tioned into two parts, before and after time 3

2 t1 + t2 + 2t3.

It's known that u′
1|≤ 3

2 t1+t2+2t3 ≤ 3
2 t1 + t2 + 2t3

Next, we upper bound u′
1|> 3

2 t1+t2+2t3 . After this time, most items are eaten except from, possibly, ik′ . Due
to agent 1's absence, item ik′ has t2 time left but has already been partially eaten by agent 2 for 2t3 time. This
leaves t2 − 2t3 of ik′ .

Agent 1's best strategy is to eat the remaining portion of ik′ alongside agent 2, giving agent 1 an adittional utility
of at most t2−2t3

2 .

Thus,

u′
1 ≤ u′

1|≤ 3
2 t1+t2+2t3 + u′

1|> 3
2 t1+t2+2t3 =

3

2
t1 +

3

2
t2 + t3 ≤ T

Thus, agent 1's total utility from strategizing doesn't exceed 3
2 times the utility when truthful and the proof is

complete.

About the third and final case, the following claim is trivial:

Theorem 6.11. 3.When 2
3 ≤ T ≤ 1, the Incentive Ratio is upper bounded by 3

2 .

Since the optimal utility u′
1 is upper bound by m

n ≤ 1. Hence the utility achieved in truthful profile is quite
large compared to u′

1. Formally, rPS = max u′
1

u1
≤ 1

2
3

≤ 3
2 .

Combining Theorems 6.5, 6.6, 6.11, we complete the proof of our main Theorem.
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6.4 A Tight Bound Example
The authors of [5], also provide an example where the Incentive Ratio of an agent (w.l.o.g. agent 1) is exactly 3

2 .
Therefore, making the 3

2 upper bound tight. [5]

Example 6.12. Let agents A = {A1, A2, A3, . . . , An} and items I = {i1, i2, i3, . . . , in} and the preferences of
the agents as follows:

A1 : i1 ≻ i2 ≻ i3 ≻ . . . ≻ in−1 ≻ in

A2 : i1 ≻ i2 ≻ i3 ≻ . . . ≻ in−1 ≻ in

A3 : i2 ≻ i3 ≻ i4 ≻ . . . ≻ in ≻ i1

...
...

...
...

...
...

...
An : i2 ≻ i3 ≻ i4 ≻ . . . ≻ in ≻ i1

Agent A1 is interested in the first n
2 − 1 items, i.e., I = {i1, · · · , in

2 −1}. Then in the truthful profile, u1 = 1
2 .

Agent 1 will only get half fraction of item 1. By using the strategy i2 ≻ i3 ≻ · · · ≻ in
2 −1 ≻ i1 ≻ in

2
≻ · · · ≻ in.

Agent A1 will get 1
n−1 fraction of item i2 to n

2 − 1 and 1
4 fraction of item A1. Agent A1's utility becomes u′

1 = 3
4 .

So the ratio is 3
2 .

6.5 In the Average - Case
The following section is an analysis of an experiment conducted by the authors of [5], which evaluates the perfor-
mance of Probabilistic Serial, complementing the analysis of the worst-case bound.

The authors look into the symmetric setting of PS - that is, when the number of agents is equal to the number
of items, varying this number from 8 to 20. For each value of n, they generated 10, 000 instances, giving a total of
120, 000 instances. In each instance, the agents' ordinal preferences were generated uniformly at random, and the
manipulator's cardinal preferences were made dichotomous to maximise the potential utility gain, as suggested by
Lemma 6.3.

They varied the number of items the manipulator was interested in, denoted as k, from 2 to 6. For each instance,
they enumerate the manipulator's all k! strategies, in order to find out the largest possible utility the agent can ob-
tain. By dividing the largest attained utility by the utility obtained in the truthful profile, we get a ratio to evaluate
the agent's utility increment.

The figure 6.1, reveals the following: as the number of items in O (the number of items the manipulator is
interested in) increases from 2 to 6, the average-case incentive ratio decreases across all values of n, indicating that
as an agent becomes interested in more items, the potential for manipulation decreases. The figure also shows that
for a fixed number of items in O, the ratio increases slightly with the number of agents/items n. For example, the
ratio is generally higher for n = 20 compared to n = 8, suggesting a slightly higher potential for manipulation
with more agents/items. However, the average-case incentive ratio remains close to 1, ranging from about 1.02 to
1.06, implying that the overall benefit of manipulation is small compared to the theoretical bound of 50%. These
results suggest that while there is some potential for manipulation, it is limited, and the PS mechanism is close to
being truthful in practical scenarios.
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6.5. IN THE AVERAGE - CASE

Figure 6.1: Average-case incentive ratio as a function of the number of items O that a manipulating agent is
interested in. The graph displays different lines for varying numbers of agents/items n (where n = 8, 12, 16, 20),
image from [5].
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CHAPTER7
THE PRICE OF BEING TRUTHFUL

As we have discussed throughout this thesis, the Probabilistic Serial (PS) mechanism plays an important role in
addressing the one-sided matching problem. In Chapter 2, we established that PS is not a truthful mechanism. In
Chapter 4, we proved a tight bound of Θ(

√
n) for the Price of Anarchy of PS. In Chapter 6, we derived a bound of

3
2 for the Incentive Ratio. However, we demonstrated that cases where PS reaches this

3
2 bound are highly unusual.

In typical scenarios, the Incentive Ratio ranges between 1.02 and 1.06, which is very close to one.

From early on in [8], the authors identify a non-constant lower bound on the Price of Anarchy for the well-known
ordinal mechanisms for the problem. However, these findings are crucial for understanding the challenges faced
by a social-welfare maximizer.

An interesting direction for future research, as suggested by the authors, would be to explore conditions on the
valuation space that could lead to constant Price of Anarchy values, or to apply distributional assumptions to
quantify the average welfare loss due to selfish behavior.

A key point of interest is understanding how PS performs in terms of Social Welfare when agents report truth-
fully, especially compared to its performance under equilibrium conditions. Computationally, determining this,
seems to be highly complex and appears to be intractable.
Aziz et al. (2015) [6] conducted a series of detailed experiments to better understand the nature and quality of equi-
libria under the Probabilistic Serial (PS) rule. Given the computational complexity inherent in this analysis, the
experiments were limited to scenarios involving small numbers of agents (n = 2, 3, 4) and houses (m = 2, 3, 4).
This is because the size of the search space, which scales as m!n, grows exponentially with the number of agents
and houses. For each combination of agents, houses, and preference models, 1000 samples were generated. In
total, the experiments required over 40 days of compute time for each model. Due to the need of my PC to write
this thesis, we present their results. However, we provide an algorithm providing such "good" Equilibria examples,
see in subsection 8.1 and in appendix.

The experiments drew on a variety of preference generation models, including Impartial Culture (IC), Single-
Peaked Impartial Culture (SP-IC), the Mallows model, and the Polya-Eggenberger Urn model. These models
capture different levels of correlation between agent preferences, from random preferences in IC to correlated pref-
erences in the Urn model. Additionally, real-world data from the PREFLIB AGH Course Selection dataset was
used, with students’ preferences for courses modeled as agent preferences in the experiments. Each agent's pref-
erences were also associated with a utility value for each house, generated using the Random model. This model
assigns a random real number between 0 and 1 to each house for each agent, and these values are then normalized
to sum to a constant, representing each agent’s total utility for the houses. The Random model was found to be the
most manipulable and often led to the worst equilibria.

In the experiments, equilibria were classified into three categories based on social welfare: those where SW
remained the same as in the truthful profile, those where SW decreased, and those where SW increased. The
percentage change between the social welfare of two profiles, SW1 and SW2, was calculated using the formula
|SW1−SW2|

SW1
× 100%. The results revealed several important trends. First, the vast majority of equilibria produced

the same social welfare as the truthful profile, with only slight variations. There were generally more equilibria that
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increased social welfare compared to those that decreased it, though the changes were small, capped at less than
23%. Furthermore, the number of equilibria observed was relatively low, particularly in models with correlated
preferences (such as the Urn and AGH models) compared to models with less correlation (such as IC and SP-IC).

From these experiments, the authors suggest, that manipulation under the PS, rarely leads to significant welfare
loss. Even when agents strategically misreported their preferences, the resulting equilibria tended to either main-
tain or slightly improve social welfare compared to the truthful profile. This provides strong empirical support for
the robustness of the PS rule in terms of social welfare, even in the presence of strategic behavior. This robustness
was observed across all combinations of agents and houses tested, and the trends appeared consistent regardless
of the preference models used. The fact that the PS rule performed well in terms of social welfare, even when
manipulation was possible, suggests that it is well-suited for use in strategic environments.

The experiments also highlighted the computational challenges involved in computing and verifying equilibria
under PS. The large search space required for analyzing all possible misreports and preference profiles makes it
computationally difficult to compute pure Nash equilibria (PNE) in general. In fact, the problem of computing a
PNE is known to be NP-hard, and verifying whether a given profile is a PNE is coNP-complete. Such computa-
tional barriers discourage strategic manipulation: it is hard to find equilibria, so agents do not engage in complex
manipulations, particularly in large settings.

The analysis of Aziz et. al. [6] revealed that while the PS rule is not strategy-proof, it offers a level of resistance to
manipulation that is both empirically and theoretically significant. The fact that manipulation rarely results in sig-
nificant welfare loss, combined with the computational difficulty of finding equilibria, makes the PS rule a strong
candidate for use in real-world applications involving resource allocation. Despite these positive findings, the study
also points to several avenues for future research. One potential direction is to extend the current analysis to cases
where indifferences exist in agents' preferences. Additionally, investigating strong Nash equilibria, where groups
of agents rather than individual agents deviate from their truthful preferences, could provide further insights into
the strategic properties of the PS rule. Another interesting direction would be to explore the dynamics of Nash
equilibria in more detail, potentially leading to a deeper understanding of how equilibria evolve over time under
the PS rule.
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CHAPTER 7. THE PRICE OF BEING TRUTHFUL

Figure 7.1: Result from the experiment in [6]
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7.1. AN EXAMPLE & FURTHER QUESTIONS

7.1 An Example & Further Questions

The analysis of social welfare gain and loss under the Probabilistic Serial Mechanism raises several interesting
questions. A measure, similar to the price of anarchy, that could quantify of how the social welfare under truthful
strategies compares with the worst-case equilibria. Could be of interest, in understandig incentives in PS.

sup
u∈V n

SW (utruthful)
mins∈SM

u
SWM (u, s)

Where, SW (utruthful) represents the social welfare under the truthful ordinal preferences derived from valua-
tions, while mins∈SM

u
SWM (u, s) denotes the worst-case social welfare among all pure Nash equilibria SM

u under
the same valuation profile u. The closer it is to 1, it indicates that strategic manipulation does not degrade social
welfare at all, meaning the mechanism is robust against strategic behavior.

The experiments in [6] suggest that the number of equilibria with significantly different social welfare values is
limited. This opens up the possibility that the bounds of this quatnity could be relatively tight. It is known [22]
that Probabilistic Serial and Random Priority converge in large economies. That is as the number of agents and
objects increases. Meaning that Probabilistic Serial tends to become truthful. As we saw [5] the incentive ratio
for PS is upper bounded by 1.5 when the number of agents is no less than the number of items, while very recent
research published earlier this year [30], show that when the items are more than the agents, the upper bound is
2. All these come as a strong indicator that a constant bound on this measure might not be surprising, given the
limited deviation in outcomes observed in experiments. Another question could be if there are any specific types
of valuation profiles or distributions of preferences that lead to a higher disparity between truthful and strategic
behavior.

7.1.1 Example

Let agents A = {A1, A2, A3} and items I = {I1, I2, I3}. The preferences of the agents are as follows:

A1 : I2 ≻ I1 ≻ I3

A2 : I3 ≻ I2 ≻ I1

A3 : I3 ≻ I2 ≻ I1

The utilities of the agents for each item are:

A1 : u(I1) = 0.51599, u(I2) = 0.56056, u(I3) = 0.24756

A2 : u(I1) = 0.03775, u(I2) = 0.42752, u(I3) = 0.45960

A3 : u(I1) = 0.58086, u(I2) = 0.59542, u(I3) = 0.79550

The Probabilistic Serial (PS) mechanism returns the following allocation for truthful reporting:

Agent / Item I1 I2 I3

A1
1
3

2
3 0

A2
1
3

1
6

1
2

A3
1
3

1
6

1
2

Table 7.1: Allocation produced by PS for truthful reporting

The resulting utilities for each agent in the truthful reporting scenario are:
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u(A1) = 0.51599× 1

3
+ 0.56056× 2

3
+ 0.24756× 0 = 0.54570

u(A2) = 0.03775× 1

3
+ 0.42752× 1

6
+ 0.45960× 1

2
= 0.31364

u(A3) = 0.58086× 1

3
+ 0.59542× 1

6
+ 0.79550× 1

2
= 0.69061

The social welfare by truthful reporting is thus SWTr. = 0.54570 + 0.31364 + 0.69061 = 1.54995.

Assume that agents misreport their preferences as follows:

A1 : I2 ≻ I1 ≻ I3

A2 : I2 ≻ I3 ≻ I1

A3 : I3 ≻ I2 ≻ I1

This strategy profile is a Pure Nash Equilibrium. The PS mechanism returns the following allocation:

Agent / Item I1 I2 I3

A1
1
2

1
2 0

A2
1
4

1
2

1
4

A3
1
4 0 3

4

Table 7.2: Allocation produced by PS for the Pure Nash Equilibrium

The resulting utilities for each agent in the Pure Nash Equilibrium scenario are:

u(A1) = 0.51599× 1

2
+ 0.56056× 1

2
+ 0.24756× 0 = 0.53828

u(A2) = 0.03775× 1

4
+ 0.42752× 1

2
+ 0.45960× 1

4
= 0.33810

u(A3) = 0.58086× 1

4
+ 0.59542× 0 + 0.79550× 3

4
= 0.74184

The social welfare for the Pure Nash Equilibrium is SWPNE = 0.53828 + 0.33810 + 0.74184 = 1.61822.

Comparing the social welfare, we observe that SWPNE = 1.61822 is higher than SWTr. = 1.54995, indicat-
ing that the misreporting strategy leads to a higher overall social welfare.

The example above was constructed by the following algorithm:
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7.1. AN EXAMPLE & FURTHER QUESTIONS

Algorithm 1 PS : Be Truthful or not to Be

1. Generate Random Preference Profiles

• Generate uniformly at random, ordinal preference profiles for each player, where each player receives
a random permutation of the items. Call this profile Truthful.

2. Generate Random Valuation Profiles

• Based on the ordinal preferences, generate random cardinal preferences, according to the ordinal ones.
No ties, are allowed, all must add to the same number.

3. Apply the Probabilistic Serial (PS) Rule

• Use the PS rule to allocate fractions of items to players. Players consume fractions of their most pre-
ferred available item until the items are fully allocated. The code for PS was writen by Dominik Peters
and is available in Github: [29]

4. Calculate Social Welfare

• Compute the social welfare by summing the products of each player’s valuation and their allocated
share of the items.

5. Generate Permutations of Preferences

• Generate all possible permutations of the item preferences to explore all possible strategies for each
player. The space is now (m!)n big, wherem = # items and n = # agents.

6. Generate Payoff Matrix

• For each combination of strategies (preference profiles), calculate the corresponding allocation using
the PS rule, then compute the utilities for all players.

7. Find Pure Nash Equilibria (PNE)

• Check the payoff matrix for combinations where each player is playing a best response. If no player
can improve their utility by switching strategies, mark the combination as a PNE.

8. Compare Social Welfare of PNE and Truthful Strategies

• Compare the social welfare of PNE strategies with that of the truthful strategy. If any PNE improves
the social welfare, it is identified as a better outcome.

9. Repeat Process

• Repeat the entire process for a fixed number of attempts to explore different random preference profiles
and search for better PNE profiles.
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1 Algorithm 1 in Python

1 from fractions import Fraction

2 import numpy as np

3 import random

4 import itertools

5

6 # Set a random seed for reproducibility (optional)

7 # random.seed (42)

8 # np.random.seed (42)

9

10 # Step 1: Generate Random Preference Profiles

11 def generate_random_preference_profiles(num_players , num_items):

12 """

13 Generates random preference profiles for each player.

14 Each player has a random permutation of the items.

15 """

16 preferences = [random.sample(range(num_items), num_items) for _ in range(num_players

)]

17 return preferences

18

19 # Generate Random Valuation Profiles from Preferences

20 def generate_random_valuation_profiles(preference_profiles):

21 """

22 Generates valuation profiles based on preference profiles.

23 Values are random numbers between 0 and 1, decreasing according to the preference

ranking.

24 """

25 num_players = len(preference_profiles)

26 num_items = len(preference_profiles [0])

27

28 valuation_profiles = np.zeros(( num_players , num_items))

29

30 for i in range(num_players):

31 # Generate random values between 0 and 1

32 values = np.random.rand(num_items)

33 # Sort them in decreasing order

34 values.sort()

35 values = values [::-1]

36

37 # Assign valuations according to the preference order

38 for rank , item in enumerate(preference_profiles[i]):

39 valuation_profiles[i][item] = values[rank]

40

41 return valuation_profiles

42

43 # Probabilistic Serial Rule Algorithm

44 def probabilistic_serial(profile):

45 """

46 Implements the probabilistic serial mechanism for the given preference profile.

47 Returns the allocation matrix.

48 """

49 N = range(len(profile))

50 O = range(len(profile [0]))

51 supply = {o: Fraction(1, 1) for o in O}

52 allocation = {(i, o): Fraction(0, 1) for i in N for o in O}

53

54 # Initialize the current rank for each player

55 current_rank = [0] * len(N)

56

57 while any(supply.values ()):

58 # Determine the set of items each player is currently "eating"

59 eating = {}

60 eaters = {o: 0 for o in O}

61 for i in N:

62 # Skip if the player has finished consuming all items

63 if current_rank[i] >= len(O):

64 continue

65 # Find the next available item in the player ’s preference list

66 while current_rank[i] < len(O) and supply[profile[i][ current_rank[i]]] == 0:

67 current_rank[i] += 1

68 if current_rank[i] < len(O):

69 o = profile[i][ current_rank[i]]

1



70 eating[i] = o

71 eaters[o] += 1

72 if not eating:

73 break

74 # Find the minimum time until the next supply runs out

75 min_time = min(

76 supply[o] / eaters[o]

77 for o in O if eaters[o] > 0

78 )

79 # Update allocations and supply

80 for i in eating:

81 o = eating[i]

82 allocation[i, o] += min_time

83 supply[o] -= min_time

84 if supply[o] == 0:

85 current_rank[i] += 1 # Move to the next item if the current one is

depleted

86

87 allocation_matrix = np.array ([[ float(allocation [(i, o)]) for o in O] for i in N])

88 return allocation_matrix

89

90 # Calculate Social Welfare

91 def calculate_social_welfare(valuation_profiles , allocation):

92 """

93 Calculates the social welfare as the sum of valuations multiplied by allocations.

94 """

95 social_welfare = np.sum(np.multiply(valuation_profiles , allocation))

96 return social_welfare

97

98 # Generate all possible permutations of preferences for items

99 def generate_permutations(num_items):

100 """

101 Generates all possible permutations of item indices.

102 """

103 items = list(range(num_items))

104 permutations = list(itertools.permutations(items))

105 return permutations

106

107 # Calculate utilities for each agent

108 def calculate_utilities(valuation_profiles , allocation):

109 """

110 Calculates the utility for each player based on their valuations and the allocation.

111 """

112 utilities = np.sum(np.multiply(valuation_profiles , allocation), axis =1)

113 return utilities

114

115 # Generate the payoff matrix for n players , ensuring all combinations are explored

116 def generate_payoff_matrix(permutations , num_players , valuation_profiles):

117 """

118 Generates the payoff matrix for all possible strategy combinations.

119 Returns the payoff matrix and the list of strategy combinations.

120 """

121 strategy_combinations = list(itertools.product(permutations , repeat=num_players))

122 payoff_matrix = []

123

124 # Create a mapping from strategy profiles to indices for quick lookup

125 strategy_to_index = {}

126 for idx , strategies in enumerate(strategy_combinations):

127 strategy_to_index[strategies] = idx

128

129 # Initialize the payoff matrix

130 for strategies in strategy_combinations:

131 allocation = probabilistic_serial(strategies)

132 utilities = calculate_utilities(valuation_profiles , allocation)

133 indices = [permutations.index(strategy) for strategy in strategies]

134 # Unpack utilities so each utility is a separate element in the tuple

135 payoff_matrix.append ((* indices , *utilities))

136

137 return payoff_matrix , strategy_combinations

138

139 # Revised function to find Pure Nash Equilibria for n-player game

140 def find_pure_nash_equilibria(payoff_matrix , num_players , num_strategies):

141 """
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142 Identifies all pure Nash equilibria in the game.

143 """

144 equilibria = []

145

146 # Create a mapping from strategy profiles to utilities

147 strategy_profile_dict = {}

148 for entry in payoff_matrix:

149 # First num_players elements are indices , next num_players elements are

utilities

150 strategies_indices = entry[: num_players]

151 utilities = entry[num_players :]

152 strategy_profile_dict[tuple(strategies_indices)] = utilities

153

154 for entry in payoff_matrix:

155 indices = entry [: num_players]

156 utilities = entry[num_players :]

157 is_equilibrium = True

158

159 for p in range(num_players):

160 u_p = utilities[p]

161 # Generate other indices for the current player

162 other_indices = indices [:p] + indices[p+1:]

163

164 # Check all possible deviations for player p

165 for s in range(num_strategies):

166 if s != indices[p]:

167 deviated_indices = indices [:p] + (s,) + indices[p+1:]

168 deviated_utilities = strategy_profile_dict.get(deviated_indices)

169 if deviated_utilities is not None and deviated_utilities[p] > u_p:

170 is_equilibrium = False

171 break

172

173 if not is_equilibrium:

174 break

175

176 if is_equilibrium:

177 equilibria.append ((* indices , *utilities))

178

179 return equilibria

180

181 # Main function to find profiles with the specified condition

182 def find_better_pne_profiles(num_attempts , num_players , num_items):

183 """

184 Attempts to find pure Nash equilibria with higher social welfare than truthful

strategies.

185 """

186 permutations = generate_permutations(num_items)

187 num_strategies = len(permutations)

188

189 for attempt in range(num_attempts):

190 print(f"\nAttempt {attempt + 1}:\n{’-’ * 20}")

191 preference_profiles = generate_random_preference_profiles(num_players , num_items

)

192

193 valuation_profiles = generate_random_valuation_profiles(preference_profiles)

194 print("Valuation Profiles :\n", valuation_profiles)

195

196 allocation_truthful = probabilistic_serial(preference_profiles)

197 social_welfare_truthful = calculate_social_welfare(valuation_profiles ,

allocation_truthful)

198

199 print("Truthful Preference Profiles:")

200 for i, prefs in enumerate(preference_profiles):

201 print(f"Player {i + 1}: {prefs}")

202

203 print("\nTruthful Allocation :\n", allocation_truthful)

204 print("Social Welfare (Truthful):", social_welfare_truthful)

205

206 payoff_matrix , strategy_combinations = generate_payoff_matrix(permutations ,

num_players , valuation_profiles)

207

208 pure_nash_equilibria = find_pure_nash_equilibria(payoff_matrix , num_players ,

num_strategies)
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209

210 found_better = False

211 for equilibrium in pure_nash_equilibria:

212 indices = equilibrium [: num_players]

213 utilities = equilibrium[num_players :]

214 strategies = [permutations[i] for i in indices]

215 allocation_pne = probabilistic_serial(strategies)

216 social_welfare_pne = calculate_social_welfare(valuation_profiles ,

allocation_pne)

217

218 print("\nPotential Nash Equilibrium:")

219 for i, strategy in enumerate(strategies):

220 print(f"Player {i + 1} Strategy: {strategy}")

221 print("Allocation for PNE:\n", allocation_pne)

222 print("Utilities for PNE:", calculate_utilities(valuation_profiles ,

allocation_pne))

223 print("Social Welfare (PNE):", social_welfare_pne)

224

225 if social_welfare_pne > social_welfare_truthful:

226 print("\nFound Pure Nash Equilibrium with higher social welfare!")

227 print("Pure Nash Equilibrium Strategies:")

228 for i, strategy in enumerate(strategies):

229 print(f"Player {i + 1}: {strategy}")

230 print("Social Welfare (PNE):", social_welfare_pne)

231 found_better = True

232 return True # You can modify this to return the equilibrium strategies

if needed

233

234 if not found_better:

235 print("No better Pure Nash Equilibrium found in this attempt.")

236

237 print("\nNo Pure Nash Equilibria found with higher social welfare than truthful

valuations after", num_attempts , "attempts.")

238 return False

239

240 # Example usage

241 if __name__ == "__main__":

242 num_attempts = 30

243 num_players = 3

244 num_items = 3

245 find_better_pne_profiles(num_attempts , num_players , num_items)

Listing 1: Python code of Algorithm 1 computing an example
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