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ABSTRACT

This thesis explores the problem of influence maximization in social networks, with a
focus on algorithms that take into account the existence of vulnerable users. We begin
by modeling social networks and examining foundational properties, such as submodu-
larity of the spread function. Various algorithms, including Naïve Greedy, subsampling
and sandwich approximation, are reviewed for their efficiency and applicability. The
core of our study examines some classic as well as innovative strategies like Differ-
ence Maximization, Ratio Maximization and Additive Smoothing Ratio Maximization,
alongside a PageRank-inspired method to balance influence spread and protection of
vulnerable users. Our findings aim to provide solutions that optimize influence while
adopting a more socially responsible approach.





ΣΎΝΟΨΗ

Αυτή η διπλωματική εργασία διερευνά το πρόβλημα της μεγιστοποίησης επιρροής σε
κοινωνικά δίκτυα, με έμφαση στους αλγορίθμους που λαμβάνουν υπόψη την ύπαρξη
ευάλωτων χρηστών. Ξεκινάμε με τη μοντελοποίηση των κοινωνικών δικτύων και την
εξέταση βασικών ιδιοτήτων. Διάφορες άπληστες τεχνικές, σε συνδυασμό με τη δειγμα-
τοληψία και την παρεμβολή, εξετάζονται ως προς την αποτελεσματικότητα και την
εφαρμοσιμότητά τους. Ο πυρήνας της μελέτης μας εξετάζει κλασικές καθώς και καινο-
τόμες στρατηγικές όπως η Μεγιστοποίηση Διαφοράς, η Μεγιστοποίηση Λόγου και
η Μεγιστοποίηση του Λόγου Προσθετικής Εξομάλυνσης (Additive Smoothing Ra-
tio), μαζί με μια μέθοδο εμπνευσμένη από τον PageRank για την εξισορρόπηση της
διάδοσης επιρροής και της προστασίας των ευάλωτων χρηστών. Τα ευρήματά μας
στοχεύουν στο να δώσουν λύσεις που βελτιστοποιούν την επιρροή, ενώ ταυτόχρονα
υιοθετούν μια κοινωνικά πιο υπεύθυνη προσέγγιση.
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INTRODUCTION

Social network and social media sites, where people are connected through heteroge-
neous social relationships, are gaining an increasing popularity to a degree that has
rendered them an omnipresent integrated part of daily life. Therefore, social networks
play a crucial role as a means for the dissemination of information among their mem-
bers, by providing the most suitable platforms for the powerful word-of-mouth effect
[9, 30]. The constant flow of information, ideas and behaviors along the social rela-
tionships lays the ground for marketing campaigns and especially for what we call viral
marketing, a highly successful strategy based on the interpersonal influence [29]. Most
organizations nowadays use this approach of promoting their products, ideas or innova-
tions, with the premise that by initially selecting a few keymembers of the network who
will recommend the adoption of the desirable behavior to their social circle of friends,
a large cascade of influence can be triggered through a series of recommendations from
these friends to their respective social circles and so on. In this way, most companies
practicing viral marketing target the most influential users, for instance by giving them
free samples, gifts or discounts of their products, hoping that eventually many users will
buy them. Obviously, the initial set of influencers must also be as small as possible,
as to avoid unnecessary costs [20]. Another aspect to take into account is the social
responsibility factor, in the sense that the choice of the initial seed set must not only
affect as many users as possible, but also avoid affecting users for whom the campaign
might be harmful [4, 12].

In order to understand towhich extend behaviors are adopted, we need to understand
the manner in which the dynamics of influence play out within the network; in other
words how likely it is that the users will actually be affected. Provided that we have
the corresponding data with estimates of these probabilities from the network, we can
model its members as nodes of a graph of relationships and interactions. Hence, given a
social networkG, a probabilisticmodelM describing how the nodes inGmay influence
each other and a small constant k, the influence maximization problem is to find k or
less nodes in G that can (directly or indirectly) influence the largest number of nodes,
that is, maximize the spread of influence.

In Chapter 1, we lay the groundwork for our study by formulating the problem of
influencemaximization, describing themodel under which it is studied and highlighting
key aspects such as the submodularity of our objective function.

Chapter 2 presents a comprehensive overview of some standard algorithms and
well-established techniques designed to solve the influence maximization problem.
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CONTENTS

The main focus of this thesis, Chapter 3, investigates the influence maximization
problem under the additional constraint of the existence of vulnerable nodes. Here, we
introduce proposed strategies like Difference and Ratio Maximization, alongside the
ASRMaximization (Additive SmoothingRatio) approach. We also explore a PageRank-
inspired method, adapting this well-known algorithm to address the unique challenges
posed by vulnerable users within the network.

Finally, this thesis ends with three appendices. Appendix A gives us a small glimpse
of the premises andmethodologies required to evaluate the spread. Appendix B outlines
the mathematical properties of submodular functions, which are central to the theoreti-
cal underpinnings of our analysis. Appendix C includes the proofs of Chapter 2 as well
as some proofs from Chapter 3 that were not as crucial for the understanding of the
concepts but still worth demonstrating.
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CHAPTER1
PRELIMINARIES

We begin by setting the foundation for our study of influence maximization. This chap-
ter formulates the problem and describes the model under which it is studied, highlight-
ing key aspects such as the probabilistic nature of influence spread and the submodular
property of the spread function. This foundational understanding is crucial for the de-
tailed algorithmic discussions in later chapters.

To start with, a social network is modeled as a digraphG = (U,E), where each edge
(u, v) describes the fact that v follows u. G is associated with a stochastic model M
of the probabilities of influence between all pairs of nodes, and the spread of influence
is described by a set function σ : 2U → R parameterized byM (see Appendix A). For
a subset S ⊆ U , σ(S) denotes the number of nodes (or any other metric representing
gain) that are influenced by some node in S. Given a cardinality constraint k < |U |
determined by budgetary controls, our goal is to find an initial seed set S∗ of size at most
k that maximizes σ. A concise formulation of the INFLUENCE MAXIMIZATION PROBLEM
(IMP) is given below [27]:

INFLUENCE MAXIMIZATION PROBLEM (IMP)
Input: Set of nodes U = {u1, . . . , un}, spread function σ : 2U → R, integer
k < |U | .
Output: S∗ ⊆ U, |S∗| ≤ k such that

σ(S∗) = max
S⊆U
{σ(S) : |S| ≤ k}. (1.1)

In order to deal with this problem, we will consider the approach of the Independent
Cascade Model.

1.1 Independent Cascade Model
The Independent Cascade Model (ICM) is the simplest dynamic cascade model for
diffusion processes. Let G = (U,E) be a social network. Starting with an initial set
of active nodes S ⊆ U , the spread occurs in discrete steps independent of previous
ones. That is, in step 1 the seed set S is activated, while all other nodes remain inactive.
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1.1. INDEPENDENT CASCADE MODEL

If a node u becomes active in step t, it can activate any of its inactive out-neighbors
in step t + 1 solely. The probability pu,v of the activation of an out-neighbor v is a
given parameter from the system’s probabilistic model M . Once a node is activated it
remains active for the rest of the process, which converges when no further activations
are possible.

In order to ensure that ICM process is well-defined, we need to demonstrate that
it yields the same distribution over outcomes, independent of the way we arrange the
activations, i.e., regardless of the order in which active nodes attempt to activate their
neighbors. For this, we consider a step in the process where node u is activated and
tries to activate its out-neighbor v with probability pu,v , and we parallel this event with
the flipping of a biased coin. In this sense, the coin can be flipped at the very beginning
of the process and not necessarily at the moment of u’s activation, meaning that we
can assume from the start and for every pair u, v if node v does actually get activated
by u. If this event takes place, we say that edge (u, v) is live. Hence, by flipping all
the coins in advance, we get an outcome X (a |U |-vector with 0’s and 1’s) and we can
know exactly which nodes end up ultimately active [17].
Theorem 1.1 ([17]). The IMP is NP-hard under the ICM.
Proof. Consider an instance ISC of the SET COVER (SC) problem, consisting of a
ground set U = {u1, . . . , un} and a collection of m subsets S1, . . . , Sm and let k
be the number of subsets we wish to select, whose union equals U (we can assume that
k < n < m). We now construct a bipartite digraph G with n + m nodes as follows:
for every subset Si, we create a node i, for every element uj we create a node j and
for every pair i, j such that uj ∈ Si we create an edge (i, j) with activation probabil-
ity pi,j = 1. Then, deciding whether we can select k subsets whose union gives U is
equivalent to deciding whether there exist k nodes u1, . . . , uk in G such that

σ({ui1, . . . , uik}) ≥ k + n.

Indeed, σ({ui1, . . . , uik}) denotes the number of nodes reachable from ui1, . . . , uik

and, by construction of G, these are the elements in the selected subsets Si1, . . . , Sik

which should be at least n (some elements may appear more than once), plus k for the
seed set {ui1, . . . , uik}. Therefore, if we can find such a seed set, we can also find a
selection of subsets for the SC problem, which implies that IMP is NP-hard.

1.1.1 Linear Threshold Model
Another equivalent model under which IMP is frequently studied is the Linear Thresh-
old Model (LTM). We briefly present LTM here, but we will not need it until Section
3.6.

According to LTM, a node v is activated by an in-neighbor u with probability pu,v
such that

∑
u∈n−(v)

pu,v ≤ 1, allowing the possibility that v remains ultimately inactive.

In addition, v is associated with a threshold pv ∈ [0, 1], which represents the fraction of
v’s neighbors that is needed to activate v. Let S ⊆ U be an initial set of active nodes.
A node v is activated in step t if p(v) =

∑
u∈n−

t−1(v)

pu,v ≥ pv , where n−
t−1(v) is the set

of v’s in-neighbors that are active in step t− 1. In addition, if p = max
v∈S
{pv}, for some

S ⊆ U , then S is activated if
∑
v∈S

p(v) ≥ |S| · p.

The LTM is equivalent to ICM, which means that IMP is NP-hard under the LTM
as well. For more details see [17, 7].
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CHAPTER 1. PRELIMINARIES

1.2 The Spread Function
A set function f : 2U → R is said to be submodular if and only if f satisfies the
diminishing returns property, i.e., for every A,B such that A ⊆ B ⊆ U and for every
ui /∈ B, f(B | ui) ≤ f(A | ui), where f(X | ui) = f(X ∪ {ui}) − f(X) is the
marginal gain of node ui to X (see Appendix B). Intuitively, this means that adding
an element to a smaller set yields a larger increase in function value than adding it to
a larger set, which is true for our spread function: if a node is added later on to the
seed set, it cannot bring a larger gain than if added earlier, since some of its neighbors
might be already activated anyway. To demonstrate this formally, we have the following
theorem.

Theorem 1.2 ([17]). The spread function σ : 2U → R is submodular under the ICM.

Proof. Firstly, we claim that a node v ends up active if and only if there is a live path
from some node in the seed set S to v, i.e, a path consisting only of live edges. Now
we consider the probability space X of all possible outcomes for the coin flips and we
denote byσX(S) the number of nodes that get activatedwhenS is the initial seed set and
X is the outcome of the coin flips. Also, we let R(v,X) be the set of nodes reachable

from v via some live path, so that σX(S) =

∣∣∣∣ ⋃
v∈S

R(v,X)

∣∣∣∣. After having established
this terminology and notation, we show that, for everyX , σX is submodular.

LetX ∈ X be an outcome and letA,B be two subsets of U such thatA ⊆ B. Then

σX(A | v) = σX(A ∪ {v})− σX(A) =

∣∣∣∣∣R(v,X) \
⋃
u∈A

R(u,X)

∣∣∣∣∣ .
Since A ⊆ B it holds that

σX(A) ≤ σX(B)⇒

∣∣∣∣∣ ⋃
v∈A

R(v,X)

∣∣∣∣∣ ≤
∣∣∣∣∣ ⋃
v∈B

R(v,X)

∣∣∣∣∣
⇒

∣∣∣∣∣R(v,X) \
⋃
u∈A

R(u,X)

∣∣∣∣∣ ≥
∣∣∣∣∣R(v,X) \

⋃
u∈B

R(u,X)

∣∣∣∣∣ ,
so σX(A | v) ≥ σX(B | v), which means that σX is submodular. Since

σ(A) =
∑
X∈X

Pr(X) · σX(A),

σ is submodular as a non-negative linear combination of submodular functions (see
B.4).

As one would expect, σ is also submodular under the LTM [7].
Theorem 1.2 allows us to deal with the IMP in terms of the submodular function

maximization problem. More precisely, our goal is to find a solution to the OPTI-
MAL SUBSET PROBLEM (OSP), i.e., to determine a subset S∗ ⊆ U such that σ(S∗) =
max
S⊆U
{σ(S)}, where σ is a submodular function. Plus, since σ is also non-decreasing, it

is essential that we set a cardinality constraint on S∗, therefore we summarize OSP as
follows [23]:
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1.2. THE SPREAD FUNCTION

OPTIMAL SUBSET PROBLEM
Input:U = {u1, . . . , un}, σ : 2U → R, integer k < |U | .
Output: S∗ ⊆ U, |S∗| ≤ k such that

σ(S∗) = max
S⊆U
{σ(S) : |S| ≤ k, σ(S) submodular}. (1.2)

From now on, we will refer to IMP and OSP interchangeably, according to context.
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CHAPTER2
INFLUENCE MAXIMIZATION ALGORITHMS

This chapter provides a comprehensive overview of themost widely adopted algorithms
designed to solve the influence maximization problem. Starting with the Naïve Greedy
algorithm, a straightforward yet powerful approach, we then explore more advanced
techniques such as subsampling and sandwich approximation.

2.1 Naïve Greedy
The simplest way to solve OSP is to begin with the empty set and select at each step
the element that increases the marginal gain the most (see [27, 17, 23]).

Algorithm 1 NAÏVEGREEDY
Require: U = {u1, . . . , un}, σ : 2U → R, integer k < |U | .
1: S0 ← ∅, U0 ← U, t← 1
2: while t ≤ k do
3: Select ut ∈ U t−1 s.t. σ(St−1 | ut) = max

u∈Ut−1
{σ(St−1 | u)}.

4: dt−1 ← σ(St−1 | ut)
5: if dt−1 ≤ 0 then
6: return SG ← St−1

7: else St ← St−1 ∪ {ut}, U t ← U t−1 \ {ut}
8: if t = k then
9: return SG ← Sk

10: else t← t+ 1

Note that, if more elements give the exact same increase, one is chosen arbitrarily
(line 3) so that the greedy solution is not necessarily unique. Let S∗ be an optimal
solution to OSP and let SG be a solution given by NAÏVEGREEDY. Then

σ(SG) = σ(∅) +
ℓ∑

i=1

di−1, ℓ ≤ k,

where ℓ denotes the number of iterations of the algorithm (Sℓ = SG).
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2.2. SUBSAMPLE GREEDY

Now, for some real parameter θ ≥ 0, let C(θ) denote the class of submodular
functions satisfying the property f(A | u) ≥ −θ for all A ⊂ U and u ∈ U \ A (see
Appendix B). Suppose that σ ∈ C(θ). From [27] we have the next result:

Proposition 2.1. The greedy solution is optimal, i.e., σ(S∗) ≤ σ(SG).

Proof. See Appendix C.

Theorem 2.2 ([18]). Let {St}t≥0 be the greedily selected sets constructed by the
NAÏVEGREEDY. Then

σ(Sℓ) ≥
(
1− e−ℓ/k

)
σ(S∗),

where S∗ is an optimal solution of size k.

Proof. See Appendix C.

Corollary 2.3. If the NAÏVEGREEDY algorithm terminates at exactly k steps, then

σ(SG) ≥
(
1− e−1

)
σ(S∗).

In reality, it is quite unlikely that the algorithm will terminate before k steps, given
that the k constant represents a restriction on our budget, so we can claim that the ap-
proximation factor of NAÏVEGREEDY is simply 1− e−1. Additionally, in the following
algorithms we will omit to check whether further propagation is useful (lines 4-6), as-
suming that it always is but the algorithm does not proceed due to budget constraints.

We now discuss the evaluations of the spread function σ. As we can easily see,
NAÏVEGREEDY performsO(|U | ·k) evaluations of σ. So far, we have assumed the value
query model according to which our algorithm has access to σ in a black-box manner,
making queries to an oracle which returns the value σ(S), for a queried set S (line 3).
In practice, these evaluations are actually approximations performed via Monte Carlo
methods, dynamic programming or sampling-based algorithms as well as heuristics
[17, 8]. In fact, any of these methods introduce some approximation error ε > 0, so
that the approximation factor of our greedy algorithm eventually becomes 1− e−1− ε.

At this point we must explicitly state that whenever we refer to the spread function
σ as input, it should be understood that we also refer to the parameters needed to ap-
proximate σ: the graph G and the probabilistic diffusion model M , i.e., the activation
probabilities between G’s nodes. These are employed by the aforementioned approxi-
mation algorithms that estimate σ. Even though we will not bother with the details of
evaluating σ in the following analysis, it is important to bear in mind that these eval-
uations are costly and therefore keeping their number low is crucial for performance
[8, 19, 13, 31, 6]. For more details on simulation methods see Appendix A.

2.2 Subsample Greedy
Among the various settings that further improve NAÏVEGREEDY, the notion of random-
ized sampling appears to be one of the most efficient in practice [31, 3, 24]. In this
section, we have chosen to demonstrate SUBSAMPLEGREEDY, an algorithm that uses the
technique of subsampling at each iteration in order to decrease the number of evalua-
tions of the spread function.

To start with, we give the following definition.
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CHAPTER 2. INFLUENCE MAXIMIZATION ALGORITHMS

Definition 2.4. An element u is dummy if for every subset S ⊆ U it holds that

σ(S ∪ {u}) = σ(S),

that is, it offers zero marginal gain to any subset S ⊆ U with respect to σ.

Next, we present the SUBSAMPLEGREEDY algorithm introduced in [25].

Algorithm 2 SUBSAMPLEGREEDY
Require: U = {u1, . . . , un}, σ : 2U → R, integer k < |U |. ▷ Phase I
1: D ← {v1, . . . , vk}, where vi is a dummy element ∀i ∈ [k]
2: while |U |/k /∈ N do
3: U ← U ∪ {u}, where u /∈ D is a dummy element

▷ Phase II
4: S0 ← ∅, t← 1
5: while t ≤ k do
6: Rt ← uniform random sample of U with |U |/k elements.
7: Select a random element vt ∈ D, Rt ← Rt ∪ {vt}
8: Select ut ∈ Rt s.t. σ(St−1 | ut) = max

u∈Rt

{
σ(St−1 | u)

}
9: St ← St−1 ∪ {ut}
10: t← t+ 1

▷ Phase III
11: Sk ← Sk \ {v | v is dummy}
12: return SG ← Sk

The algorithm operates in three phases:

Phase I k dummy elements are created in a set D. Then, dummy elements not in D are
created and added to U , until |U | is a multiple of k.

Phase II A random sample of |U |/k elements of U is created and a dummy element from
D is added. From this sample, the algorithm selects the element u that most
increases the largest marginal gain w.r.t. σ and adds it to S (initially empty). The
process repeats k times, until S has k such elements.

Phase III All dummy elements are removed and the set is returned.

Observe that, since the algorithm randomly samples only |U |/k elements at each
iteration, after k iterations the number of evaluations of the spread function is O(|U |),
an obvious improvement.

Theorem 2.5. SUBSAMPLEGREEDY returns a solution SG with

E[σ(SG)] ≥
(
1− e−(1−1/e)

)
σ(S∗),

where E[σ(SG)] is the expected value of the greedy solution and S∗ is an optimal so-
lution of size at most k.

Proof. See Appendix C.
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2.3. SANDWICH APPROXIMATION

2.3 Sandwich Approximation
Another technique that proves very useful is the Sandwich Approximation (SA). Sup-
pose we have a non-negative non-submodular function σ : 2U → R and two non-
negative monotone submodular bound functions σL, σU : 2U → R s.t.

σL(S) ≤ σ(S) ≤ σU (S), ∀S ⊆ U.

Given a parameter k < |U |, the SA strategy [22] deals with OSP by applying some
greedy optimization algorithm (such as NAÏVEGREEDY) to all three functions σ, σL, σU .
From the corresponding constructed setsSO, SL, SU SA selects the one with the largest
value in σ.

The advantage of SA is that it can approximately maximize a non-submodular func-
tion by simultaneously optimizing its submodular bounds, which results in an approx-
imation guarantee not generally provided in the non-submodular case. More precisely,
by applying NAÏVEGREEDY, or any other greedy alternative with approximation factor
1− e−1, we get the subsequent theorem:

Theorem 2.6 ([22]). It holds that

σ(SG) ≥ max
{

σ(SU )

σU (SU )
,
σL(S∗)

σ(S∗)

}(
1− 1

e

)
σ(S∗),

where SG is the greedy solution, SU is the greedily selected set maximizing σU and
S∗ is the optimal solution w.r.t σ.

Proof. See Appendix C.

It is important to notice that the bound functions should be as tight as possible, lest
the fractions inmax become arbitrarily small, leading to a trivial approximation factor.

10



CHAPTER3
INFLUENCE MAXIMIZATION UNDER

VULNERABILITY

In this chapter, we examine the IMP in a social network with the presence of vulnerable
nodes, i.e., nodes that we want to avoid influencing. More precisely, let U = N ∪ V
be the disjoint union of two sets of non-vulnerable (N ) and vulnerable (V ) nodes. We
again consider the submodular spread function σ, but now we take its two restrictions
σN : 2N → R and σV : 2N → R on the aforementioned sets, in the sense that σN (S)
only returns the nodes ofN that are activated by S and σV (S) the corresponding nodes
of V . Our goal would be to select a seed set to maximize σN while minimizing σV .
The most direct approaches we can consider in this setting are to maximize either the
difference σN − σV or the ratio σN/σV .

In a more general context, let σ : 2U → R≥0 and ρ : 2U → R≥0 be non-decreasing
submodular set functions, such that σ(∅) ≥ 0, ρ(∅) > 0 and σ(u) > 0, ρ(u) > 0, ∀u ∈
U . Hence, since σ, ρ are monotone we have that σ(S) > 0, ρ(S) > 0, ∀S, ∅ ⊂ S ⊆ U .
Our two problems are described below [28]:

DIFFERENCE OF SUBMODULAR MAXIMIZATION (DS MAX)
Input:U = {u1, . . . , un}, σ : 2U → R≥0, ρ : 2U → R≥0.
Output: ∅ ⊂ S∗ ⊂ U such that

σ(S∗)− ρ(S∗) = max
∅⊂S⊆U

{σ(S)− ρ(S)} . (3.1)

RATIO OF SUBMODULAR MAXIMIZATION (RS MAX)
Input:U = {u1, . . . , un}, σ : 2U → R≥0, ρ : 2U → R≥0.
Output: ∅ ⊂ S∗ ⊂ U such that

σ(S∗)

ρ(S∗)
= max

∅⊂S⊆U

{
σ(S)

ρ(S)

}
. (3.2)

In the sections that follow, we present some of the basic algorithms for the above
problems.
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3.1. MODULAR BOUNDS

3.1 Modular Bounds
Before delving into the algorithms, we must define notion of modular bounds [1, 5, 15]
which we are going to use in our analysis (see Appendix B).

Let f : 2U → R≥0 be a submodular function. For any parameter Y ⊆ U , we define
the modular upper bounds as the (modular) functions

f̂Y,1(X) = f(Y ) +
∑

u∈X\Y

(f(u)− f(∅))−
∑

u∈Y \X

(f(Y )− f(Y \ {u})),

f̂Y,2(X) = f(Y ) +
∑

u∈X\Y

f(Y ∪ {u})− f(Y ))−
∑

u∈Y \X

(f(U)− f(U \ {u})).

We will be using f̂Y,1 unless explicitly stated otherwise. For simplicity, we will just
denote it by f̂Y . We observe that f̂Y (X) is not computed forX , but for Y while adding
the maximum possible contributions to f(X) of each element inX \Y and subtracting
the minimum possible contributions to f(Y ) of every element in Y \ X . Indeed,
since f is submodular, if u ∈ X then f(u) − f(∅) does represent an overestimation
of u’s marginal gain to X , while f(Y ) − f(Y \ {u}) being the minimum marginal
gain u ∈ Y can contribute to f(Y ) indicates an underestimation of the contribution of
Y \X . Obviously, the equality holds when Y = X , so that X \ Y = Y \X = ∅.

Similarly, we define the modular lower bound with parameter Y ⊆ U as the (mod-
ular) function ̂

fY,σY (X) =
∑
u∈X

fY,σY (u),

where σY is a random permutation of the elements of Y and

fY,σY (u) =

{
f(σY

u )− f(σY
u−), if u ∈ Y

0, otherwise ,

where σY
u− denotes the prefix of all elements in σY that come before u and σY

u is σY
u−

along with u.
Here we observe that the computation of

̂
fY,σY (X) takes into account the marginal

gain of u to its corresponding prefix σY
u− in permutation σ, but only for u ∈ X ∩

Y , providing a value at most equal to f(X). The equality again holds for Y = X
(telescoping sum).

Example 3.1. We consider the network below, and let X = {u2, u3}, Y = {u2, u6}.

u1 u4

u2 u5

u3 u6

We will compute σ’s bounds onX with parameter Y . For the
upper bound, we have

σ̂Y (X) = σ(Y ) + (σ(u3)− σ(∅))− (σ(Y )− σ(Y \ {u6}))
= 4 + (3− 0)− (4− 3) = 6.

Also, if we consider the permutation πY = (u6, u2) of Y ,
then σY,πY (u2) = σ(Y )−σ(u6) = 4−1 = 3, σY,πY (u3) =
0 and

̂
σY,πY (X) = σY,πY (u2) + σY,πY (u3) = 3.

Since σ(X) = 5, it holds that
̂
σY,πY (X) < σ(X) < σ̂Y (X).

12
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3.2 Difference of Submodular Maximization
In this section, we seek to approximate DS MAX with two greedy algorithms, one
that is direct and the other one that uses our functions’ modular bounds, deploying
a Minorization-Maximization technique. To begin with, we will denote the difference
σ − ρ by d:

d(S) := σ(S)− ρ(S), ∀S ∈ 2U .

Theorem3.2. The difference between twomonotone submodular functions is notmono-
tone neither is submodular.

Proof. For now we will prove this using a counterexample, but later in Lemma 3.4 we
will see an even stronger result. In Example 3.1, consider u5 and u6 to be vulnerable
and set d := σN − σV . Then, if we set S = {u1, u4} and T = {u1, u3, u4}, we have

d(S) = σN (S)− σV (S) = 2− 0 = 2

and
d(T ) = σN (T )− σV (T ) = 3− 2 = 1 < d(S)

while S ⊂ T , which means that d is not monotone. On the other hand,

d(S | u2) = d(S∪{u2})−d(S) = σN (S∪{u2})−σV (S∪{u2})−d(S) = 3−1−2 = 0

and

d(T | u2) = d(T∪{u2})−d(T ) = σN (S∪{u2})−σV (S∪{u2})−d(T ) = 4−2−1 = 1,

i.e., S ⊂ T and d(S | u2) < d(T | u2), which means that d is not submodular.

The standard greedy method to maximize the difference of two submodular func-
tions is given by the following algorithm:

Algorithm 3 GREEDDIFFERENCE
Require: U = N ∪ V , σ, ρ : 2N → R≥0.
1: Select S0 ← ∅, N0 ← N, t← 1
2: while N t ̸= ∅ do
3: Select ut ∈ N t−1 s.t. d(St−1 | ut) = max

u∈Nt−1

{
d(St−1 | u)

}
.

4: St ← St−1 ∪ {ut}
5: N t ← {u ∈ N t−1 | d(St | u) > 0}
6: t← t+ 1

7: return SG ← St

The above naïve approach can be further improved using the functions’ modular
bounds we mentioned earlier. Among the variations proposed by [26, 15], we present
the most comprehensive case of greedily optimizing at each step some instance of the
difference of the modular bounds of both σ, ρ instead of the actual difference. Specifi-
cally, we will consider the function

dY,πY (X) = max
i∈{1,2}

{̂
σY,πY (X)− ρ̂Y,i(X)

}
13



3.2. DIFFERENCE OF SUBMODULAR MAXIMIZATION

describing such an instance depending on parameter Y ⊆ U . As described in Section
3.1, πY denotes a random permutation of Y . Also note that dSt−1,πt−1 minorizes the
objective function d. We modify the following algorithm from [15] to correspond to
our maximization criteria.

Algorithm 4MMAXDIFF
Require: U = N ∪ V , σ, ρ : 2N → R≥0.
1: Select S0 ← ∅, t← 1
2: while St ̸= St−1 do
3: Select a permutation πt−1 := πSt−1 of St−1.
4: Select St ⊆ N s.t. dSt−1,πt−1(St) = max

S⊆N

{
dSt−1,πt−1(S)

}
.

5: t← t+ 1

6: return SG ← St

This algorithm chooses a permutation of the current set and performs maximization
on the difference of the bounds with parameter the current set. The choice of permuta-
tion is essential for the algorithm’s quality, and we may employ some heuristic such as
choosing πt−1 ∈ argmax

π
max
X
{dSt−1,π(X)} or choosing an ordering of St−1 accord-

ing to greatest gains of σ.

Theorem 3.3. If the objective value does not decrease on checking O(n) different
permutations with different elements at adjacent positions, then the algorithm has con-
verged to a local maximum of d.

Proof. Firstly, we show that MMAXDIFF indeed monotonically increases the value of
difference at every iteration:

σ(St+1)− ρ(St+1) ≥ max
i∈{1,2}

{ ̂
σ
St,πSt

t
(St+1)− ρ̂St,i(S

t+1)
}

≥ max
i∈{1,2}

{ ̂
σ
St,πSt

t
(St)− ρ̂St,i(S

t)
}

= σ(St)− ρ(St).

Furthermore, suppose that in some iteration, say t+ 1, where we either add or remove
an element from St, the objective value of dSt,πt does not increase. Then St is a local
optimum for all modular bounds and therefore

̂
σSt,πt(St)− ρSt,1(S

t) ≥
̂
σSt,πt(St \ {v})− ρSt,1(S

t \ {v}), ∀v ∈ St

and
̂
σSt,πt(St)− ρSt,2(S

t) ≥
̂
σSt,πt(St ∪ {v})− ρSt,1(S

t ∪ {v}), ∀v /∈ St,

which means that dSt,πt is also at a local optimum.
Since

̂
σSt,πt(St \ {v}) = σ(St \ {v}) and ρSt,1(S

t \ {v}) = ρ(St \ {v}) we have

σ(St)− ρ(St) ≥ σ(St \ {v})− ρ(St \ {v})

and similarly, since
̂
σSt,πt(St ∪ {v}) = σ(St) and ρSt,2(S

t ∪ {v}) = ρ(St ∪ {v}) we
also have

σ(St)− ρ(St) ≥ σ(St ∪ {v})− ρ(St ∪ {v}).

14
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So in every case d(St) is a local optimum. Notice that this observation allows us to
consider only O(n) permutations of St+1, each with a different element at position
|St| − 1 or |St|+ 1.

At this point, it is noteworthy to comment on the nature of the difference of sub-
modular functions.

Lemma 3.4 ([15]). Let f : 2U → R be a set function. Then there exist submodular
functions σ, ρ : 2U → R such that f(S) = σ(S)− ρ(S), ∀S ⊆ U .

Proof. See Appendix C.

In essence, even though the optimization of difference is conceptually straightfor-
ward, in the case of DS maximization we observe that the problem in question is very
general and encompasses the strictly larger class of set function optimization problems.
Moreover, as discussed above, an important factor in our case would be to maximize
DS under cardinality constraints. It is becoming clear that the problem is NP-hard and
also hard to approximate.

3.3 Ratio of Submodular Maximization
Here, we focus on the more interesting problem of RSMAX, by presenting the standard
GREEDRATIO algorithm as well as a Minorization-Maximization technique. Similarly
to submodular difference, we have the next theorem.

Theorem 3.5. The ratio between two monotone submodular functions is not monotone
neither is submodular.

Proof. We will again use the counterexample of 3.1, where u5 and u6 are vulnerable.
If we set S = {u2} and T = {u2, u3}, we have

σN (S)

σV (S)
=

2

1
= 2

and
σN (T )

σV (T )
=

3

2
<

σN (S)

σV (S)

while S ⊂ T , which means that the ratio is not monotone. On the other hand, let
S = {u4} and T = {u2, u4}. Then

σN (S | u3)

σV (S | u3)
=

σN (S ∪ {u3})− σN (S)

σV (S ∪ {u3})− σV (S)
=

2− 1

2− 0
=

1

2

and
σN (T | u3)

σV (T | u3)
=

σN (T ∪ {u3})− σN (T )

σV (T ∪ {u3})− σV (T )
=

3− 2

2− 1
= 1

i.e., S ⊂ T and σN (S|u3)
σV (S|u3)

< σN (T |u3)
σV (T |u3)

, which means that the ratio is not submodular.

15



3.3. RATIO OF SUBMODULAR MAXIMIZATION

The first greedy approach to RS MAX is given by the following algorithm [1]:

Algorithm 5 GREEDRATIO
Require: U = N ∪ V , σ, ρ : 2N → R≥0.
1: Select S0 ← ∅, N0 ← N, t← 1
2: while N t ̸= ∅ do
3: Select ut ∈ N t−1 s.t. σ(St−1|ut)

ρ(St−1|ut)
= max

u∈Nt−1

{
σ(St−1|u)
ρ(St−1|u)

}
.

4: St ← St−1 ∪ {ut}
5: N t ← {u ∈ N t−1 | ρ(St | u) > 0}
6: t← t+ 1

7: return SG ← St

Theorem 3.6. GREEDRATIO is guaranteed to yield a solution SG such that

σ(SG)

ρ(SG)
≥
(
1− eκρ−1

) σ(S∗)

ρ(S∗)
,

whereS∗ is the optimal solution andκρ = 1−minu∈U
ρ(U)−ρ(U\{u})

ρ(u) is the submodular
curvature of ρ (see Appendix B).

Before proving Theorem 3.6, we will present an extended version of a useful lemma
from [16].

Lemma 3.7 ([16]). Let f : 2U → R≥0 be submodular, and suppose that the super-
modular curvature of f , κf = 1− min

u∈U

f(u)
f(U)−f(U\{u}) is defined (see Appendix B). It

holds that ∑
u∈X

f(u) ≤ |X|
1 + (|X| − 1)(1− κf )

f(X)

and ∑
u∈X

f(X \ {u} | u) ≥ |X|
1 + (|X| − 1)(1− κf )

f(X).

Proof. For the first claim, we observe that

(1− κf (X))
∑
u∈X

f(u) =
∑
u∈X

f(X \ {u} | u) (3.3)

f(X)− f(x) ≥
∑

u∈X\{x}

f(X \ {u} | u), ∀x ∈ X, (3.4)

where 3.3 is the definition of κf (X) and 3.4 derives from submodularity. If we sum

16
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3.4 over x ∈ X , we obtain

|X|f(X)−
∑
x∈X

f(x) ≥
∑
x∈X

∑
u∈X\{x}

f(X \ {u} | u)

=
∑
x∈X

∑
u∈X

f(X \ {u} | u)−
∑
x∈X

f(X \ {x} | x)

= (|X| − 1)
∑
u∈X

f(X \ {u} | u)

= (|X| − 1)(1− κf (X))
∑
u∈X

f(u) (from 3.3)

≥ (|X| − 1)(1− κf )
∑
u∈X

f(u) (κf (X) ≤ κf , ∀X)

Hence, ∑
u∈X

f(u) ≤ |X|
1 + (|X| − 1)(1− κf )

f(X).

Similarly, we have

(1− κf (X))
∑
u∈X

f(X \ {u} | u) =
∑
u∈X

f(u)

f(X)− f(X \ {x} | x) ≤
∑

u∈X\{x}

f(u), ∀x ∈ X.

Again by summing the second inequality over x we get

|X|f(X)−
∑
x∈X

f(X \ {x} | x) ≤
∑
x∈X

∑
u∈X\{x}

f(u)

=
∑
x∈X

∑
u∈X

f(u)−
∑
x∈X

f(x)

= (|X| − 1)
∑
u∈X

f(u)

= (|X| − 1)(1− κf (X))
∑
u∈X

f(X \ {u} | u)

≤ (|X| − 1)(1− κf )
∑
u∈X

f(X \ {u} | u)

and therefore ∑
u∈X

f(X \ {u} | u) ≥ |X|
1 + (|X| − 1)(1− κf )

f(X).

Now, we alter the proof of [1] for our maximization purposes.

Proof of Theorem 3.6. Let {St}t≥0 be the greedily selected sets constructed by the
GREEDRATIO and u1, . . . , uℓ be the greedily selected elements. Now let k ≤ ℓ be the

17
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largest index such that ρ(Sk) ≤ ρ(S∗). For 1 ≤ t ≤ k, according to the algorithm we
have that

σ(St−1 | ut)

ρ(St−1 | ut)
≥ σ(St−1 | v)

ρ(St−1 | v)
, ∀v /∈ St−1 ⇒

σ(St−1 | v) ≤ σ(St−1 | ut)

ρ(St−1 | ut)
ρ(St−1 | v), ∀v /∈ St−1.

Therefore, since σ is submodular, it holds that

σ(S∗) ≤ σ(St−1) +
∑

v∈S∗\St−1

σ(St−1 | v)

≤ σ(St−1) +
∑

v∈S∗\St−1

σ(St−1 | ut)

ρ(St−1 | ut)
ρ(St−1 | v).

Also from the above lemma and B.7,

(1− κρ)
∑
v∈S∗

ρ(v) ≤ (1− κρ(S
∗))

∑
v∈S∗

ρ(v) =
∑
v∈S∗

ρ(S∗ \ {v} | v) ≤ ρ(S∗).

Hence,

σ(S∗)− σ(St−1) ≤ σ(St−1 | ut)

ρ(St−1 | ut)

∑
v∈S∗\St−1

ρ(St−1 | v) ≤ σ(St−1 | ut)

ρ(St−1 | ut)

∑
v∈S∗

ρ(v)

≤ σ(St−1 | ut)

ρ(St−1 | ut)

1

1− κρ
ρ(S∗).

In addition, we observe that

σ(St−1 | ut) = σ(St)− σ(St−1) = σ(S∗)− σ(St−1)− (σ(S∗)− σ(St)),

so the previous inequality yields

σ(S∗)− σ(St)

σ(S∗)− σ(St−1)
≤
[
1− (1− κρ)ρ(S

t−1 | ut)

ρ(S∗)

]
.

Multiplying all k inequalities we get

σ(S∗)− σ(Sk) ≤
k∏

t=1

[
1− (1− κρ)ρ(S

t−1 | ut)

ρ(S∗)

]
σ(S∗)

≤
k∏

t=1

e−
(1−κρ)ρ(St−1|ut)

ρ(S∗) σ(S∗)

≤ e−
(1−κρ)ρ(Sk)

ρ(S∗ ⇒

σ(Sk) ≥
[
1− e−

(1−κρ)ρ(Sk)

ρ(S∗)

]
σ(S∗)⇒

σ(Sk)

ρ(Sk)
≥
[
1− e−

(1−κρ)ρ(Sk)

ρ(S∗)

]
σ(S∗)

ρ(S∗)

ρ(S∗)

ρ(Sk)
.

18
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But ρ(Sk)
ρ(S∗) ≤ 1 and f(x) = 1−e−(1−κ)x

x is monotonically decreasing for 0 < κ < 1, i.e.,

f

(
ρ(Sk)

ρ(S∗)

)
≥ f(1)⇒

[
1− e−

(1−κρ)ρ(Sk)

ρ(S∗)

]
σ(S∗)

ρ(S∗)

ρ(S∗)

ρ(Sk)
≥
[
1− e−(1−κρ)

] σ(S∗)

ρ(S∗)
⇒

σ(Sk)

ρ(Sk)
≥
[
1− e−(1−κρ)

] σ(S∗)

ρ(S∗)
,

which concludes the proof.

It is clear that, if we set σ := σN and ρ := σV , GREEDRATIO approximates a seed
set with a factor of 1 − eκσV

−1. Observe that, in the ideal case where σV is modular,
i.e., the number of vulnerable nodes activated by a seed node is constant, then κσV

= 0
and the approximation factor equals 1 − e−1, as in NAÏVEGREEDY. On the other hand,
in the worst case where σV is fully curved, then we get a trivial, zero factor.

Another framework proposed by [1] is a Minorization-Maximization scheme de-
scribed below.

Algorithm 6MMAXRATIO
Require: U = N ∪ V, σ, ρ : 2N → R≥0.
1: S0 ←arbitrary subset of N , t← 0
2: repeat
3: Select a permutation πt := πSt of St.
4: Select S1 ⊆ N s.t. σ̂t(S1)

ρ(S1)
= max

S⊆N
{ σ̂t(S)

ρ(S) }. ▷ Algorithm B

5: Select S2 ⊆ N s.t. σ(S2)
ρ̂t(S2)

= max
S⊆N
{ σ(S)
ρ̂t(S)}. ▷ GREEDRATIO

6: St+1 ← arg max
S∈{S1,S2}

{σ(S)
ρ(S) }.

7: t← t+ 1
8: until St = St−1

9: return SG ← St

At every iteration, MMAXRATIO constructs σ̂ and ρ̂ using as parameter the current
seed set, and minimizes the ratio in two stages:

• Firstly, it uses the ratio of (modular) σ̂ and (submodular) ρ, which, as we will
discuss in the next section, can be approximated byAlgorithmB. For now, simply
observe that the function λρ − σ̂, λ > 0 is submodular and therefore can be
minimized by a polynomial algorithm [14].

• Secondly, it uses the ratio of (submodular) σ and (modular) ρ̂, which can be ap-
proximated by GREEDRATIO. Since ρ̂ is modular, we have that κρ̂ = 0 and there-
fore GREEDRATIO obtains a solution of approximation factor 1− e−1.

Then, the algorithm selects the optimal solution between the two and continues until
convergence is reached. Note that MMAXRATIO maximizes ratios that minorize the
objective ratio, i.e., that represent lower bounds of the objective ratio.
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Next, suppose that there exists at least one element u ∈ U with non-zero marginal
gain to the ground set U , i.e., σ(U) − σ(U \ {u}) > 0. Analogously to the result of
[1], we have the next theorem.
Theorem 3.8. MMAXRATIO outputs a greedy solution with a worst-case approximation
factor of

O

(
max

{
n

1 + (n− 1)(1− κσ)
,
1 + (n− 1)(1− κρ)

n

})
,

where n = |U |, κσ is the supermodular curvature of σ and κρ is the submodular cur-
vature of ρ.
Proof. Lemma 3.7 states that the simple lower bound of σ and the simple upper bound
of ρ assume approximation factors of

α(X) =
|X|

1 + (|X| − 1)(1− κσ)
and β(X) =

|X|
1 + (|X| − 1)(1− κρ)

,

respectively. Thus,
̂
σY,πY (X) ≥

∑
u∈X

σ(X \ {u} | u) ≥ α(X)σ(X)⇒

̂
σY,πY (X)

ρ(X)
≥ α(X)

σ(X)

ρ(X)

ρ̂Y (X) ≤
∑
u∈X

ρ(u) ≤ β(X)ρ(X)⇒ σ(X)

ρ̂Y (X)
≥ 1

β(X)

σ(X)

ρ(X)
.

We set α := α(U) = n
1+(n−1)(1−κσ) and β := β(U) = n

1+(n−1)(1−κρ)
. Since

α(X) is a monotone-decreasing function and β(X) is monotone-increasing it holds that
α(X) ≥ α and 1

β(X) ≥
1
β and the approximation factor is in O

(
max

{
α, 1

β

})
.

3.4 Comparison and weak equivalence
DSMAX and RSMAX are two related problems, as demonstrated in [1]. We will attempt
to showcase this relation here. If we consider the slightly different λ-DSMaximization,
same as before but with the objective function σ−λρ, where λ ≥ 0, then the following
lemma holds.
Lemma 3.9. Let ϵ > 0 and A be an exact algorithm for DS Maximization. Then, there
exists a 1/(1 + ϵ)-approximation algorithm B for RS Maximization .
Proof. B can be constructed using A as follows.

Algorithm B
Require: U, σ, ρ, 0 ≤ ϵ < 1, A.
1: λmin ← 0, λmax ←

maxX⊆U σ(X)

minX⊆U ρ(X)

2: while λmax > (1 + ϵ)λmin do
3: λmid ← λmax+λmin

2
4: S ←A(σ, λmidρ)
5: if σ(S)

ρ(S) ≤ λmid then
6: λmax ← λmid
7: else
8: λmin ← λmid
9: return SG ← S
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In line 1, max
X⊆U

σ(X) and min
X⊆U

ρ(X) can be approximated by some other algorithm,
such as NAÏVEGREEDY. In line 4, A(σ, λmidρ) denotes that algorithm A is being called
to maximize the objective σ−λmidρ. As we can see, B employs a binary search scheme
to restrict the interval

[
0,

maxX⊆U σ(X)

minX⊆U ρ(X)

]
. Since

max
S⊆U
{σ(S)− λmaxρ(S)} ≤ 0⇒ λmax ≥

σ(S)

ρ(S)
, ∀S ⊆ U.

σ(SG)

ρ(SG)
≥ λmin ≥

1

1 + ϵ
λmax

≥ 1

1 + ϵ
max
S⊆U

σ(S)

ρ(S)

Thus, we have shown that DS can be used to approximate RS, but as one would
suspect from the previous section, the same does not hold the other way around. Indeed,
according to [1], there exists a DS function instance that cannot be expressed as an RS
function. This verifies what we have already discussed about the inherent difficulty in
the approximation of DS Maximization, as well as the fact that the two problems are
not equivalent.

Next, we show that there can be a “weak” equivalence from one problem to the
other. Firstly, we assume that some approximation algorithm exists for either problem.
Let α ∈ [0, 1]. Given two set functions σ : 2U → R, σ(S) ≥ 0, ∀S ⊆ U and ρ : 2U →
R, ρ(S) > 0, ∀S ⊆ U , we consider the following approximation problems:

α-APPROXIMATION OF DIFFERENCE
Input: U = {u1, . . . , un}, functions σ, ρ.
Output: S∗ ⊆ U such that

σ(S∗)− ρ(S∗) = max
S⊆U
{ασ(S)− ρ(S)}. (3.5)

and

α-APPROXIMATION OF RATIO
Input: U = {u1, . . . , un}, functions σ, ρ.
Output: S∗ ⊆ U such that

σ(S∗)

ρ(S∗)
= max

S⊆U

{
α
σ(S)

ρ(S)

}
. (3.6)

Now, we present a fully polynomial-time approximations scheme (FPTAS) for re-
ducing each problem to the other, proposed by [28].

Theorem 3.10. α-APPROXIMATION OF DIFFERENCE and α-APPROXIMATION OF RATIO are
equivalent.
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Proof. Firstly, we show that α-APPROXIMATION OF DIFFERENCE can be reduced to α-
APPROXIMATION OF RATIO. Suppose that we have an algorithm A for α-APPROXIMATION
OF RATIO. Also, assume that we have run some optimization algorithm, such as NAÏVE-
GREEDY, and found Sσ = argmaxX⊆U σX and Sρ = argminX⊆U ρX . Then we can
use the algorithm below to solve α-APPROXIMATION OF DIFFERENCE:

Require: U, σ, ρ, ϵ > 0, A.
1: λmin ← σ(Sρ)− ρ(Sρ), λmax ← ασ(Sσ)− ρ(Sρ), S ← Sρ.
2: while λmax − λmin > ϵ do
3: λmid ← λmax+λmin

2
4: T ←A(σ, λmid + ρ)
5: if σ(T )− ρ(T ) ≤ λmid then
6: λmax ← λmid
7: else
8: λmin ← λmid
9: S ← T
10: return S

Indeed, at every iteration we have λmin ≤ σ(S)− ρ(S). Additionally,

σ(T )− ρ(T ) ≤ λmax ⇒
σ(T )

λmax + ρ(T )
≤ 1

and, by definition of A for all S′ ∈ 2U ,

α
σ(S′)

λmax + ρ(S′)
≤ σ(T )

λmax + ρ(T )
≤ 1⇒ λmax ≥ ασ(S′)− ρ(S′).

Thus, for all S′ ∈ 2U ,

ασ(S′)− ρ(S′) ≤ λmax ≤ λmin + ϵ ≤ σ(S)− ρ(S) + ϵ.

Conversely, let A be an algorithm for α-APPROXIMATION OF DIFFERENCE and consider
the following algorithm:

Require: U, σ, ρ, ϵ > 0, A.
1: λmin ← σ(Sρ)/ρ(Sρ), λmax ← ασ(Sσ)/ρ(Sρ), S ← Sρ.
2: while λmax − λmin > ϵ do
3: λmid ← λmax+λmin

2
4: T ←A(σ, λmidρ)
5: if σ(T )/ρ(T ) ≤ λmid then
6: λmax ← λmid
7: else
8: λmin ← λmid
9: S ← T
10: return S

By similar arguments, for all S′ ∈ 2U we get that

α
σ(S′)

ρ(S′)
≤ λmax ≤ λmin + ϵ ≤ σ(S)

ρ(S) + ϵ
,

which concludes our proof.
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3.5 Additive Smoothing Ratio Maximization
Although the ratio σN/σV considers what fraction of all affected nodes are vulnera-
ble (note that σN/σV = σ/σV − 1), it is undefined for every seed set S such that
σV (S) = 0, thus it cannot distinguish between two seed sets withS1, S2 withσV (S1) =
σV (S2) = 0 and σN (S1) > σN (S2), let alone that RS MAX is not concerned with pro-
viding a seed set of bound size.

Such issues that make our algorithms fail may arise even in the smallest of networks.
For instance in Example 3.1, if we mark u5 and u6 as vulnerable, GREEDRATIO outputs
the seed set SG = {u2, u3} which gives the value σN (SG)

σV (SG)
= 3

2 . In the meantime there
is another optimal solution σN ({u1,u2})

σV ({u1,u2}) = 3 that the algorithm does not consider due
to the fact that σV (u1) = 0.

In order to avoid these inconveniences while keeping all the benefits of the ratio
σN/σV , Chen et al. [5] suggested applying additive smoothing to the ratio, resulting
in the additive smoothing ratio (ASR),

ASR(S, c) =
σN (S) + c

σV (S) + c
,

where c > 0 is a selected constant. We redefine RSmaximization asASRMaximization
(ASR MAX):

ASR MAXIMIZATION (ASR MAX)
Input:G = (U,E), partition N,V of U , σN , σV : 2N → R, parameters k ∈ N
and c > 0.
Output: ∅ ⊂ S∗ ⊂ N, |S∗| ≤ k such that

ASR(S∗, c) = max
∅⊂S⊆N

{ASR(S, c) | |S| ≤ k} . (3.7)

Theorem 3.11. The ASR MAX problem is NP-hard.

Proof. As we have already shown, IMP is NP-hard under ICM. We will show that the
same holds for ASR MAX by restriction. Suppose that we have an instance IIM of
IMP. Then we can create a corresponding instance IASR−MAX with no vulnerable
nodes (N = U, V = ∅) for ASR MAX in polynomial time. Since all nodes are non-
vulnerable, a solution for IASR_MAX also gives the maximum spread σ = σN and is of
size at most k, i.e., it also constitutes a solution for IIM. The inverse can be proved by
a similar argument.

Theorem 3.12. ASR is non-monotone and neither is submodular.

Proof. We will prove this claim using a counterexample. Consider the network from
Example 3.1, where u5 and u6 are vulnerable, and let c = 1. Also, let S = {u1} and
T = {u1, u2}. Then

ASR(S, 1) =
σN (S) + 1

σV (S) + 1
=

2 + 1

0 + 1
= 3

and

ASR(T, 1) =
σN (T ) + 1

σV (T ) + 1
=

3 + 1

1 + 1
= 2.
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Thus, we have S ⊂ T and ASR(S, 1) > ASR(T, 1) which means that ASR is non-
monotone.

Moreover,

ASR(S | u3, 1) = ASR({u1, u3}, 1)− ASR({u1}, 1)

=
σN ({u1, u3}) + 1

σV ({u1, u3}) + 1
− σN (u1) + 1

σV (u1) + 1
=

3 + 1

2 + 1
− 2 + 1

0 + 1

=
4

3
− 3 = −5

3

and

ASR(T | u3, 1) = ASR({u1, u2, u3}, 1)− ASR({u1, u2}, 1)

=
σN ({u1, u2, u3}) + 1

σV ({u1, u2, u3}) + 1
− σN ({u1, u2}) + 1

σV ({u1, u2}) + 1
=

4 + 1

2 + 1
− 3 + 1

1 + 1

=
5

3
− 2 = −1

3
,

i.e., S ⊂ T and ASR(S | u3, 1) < ASR(T | u3, 1). Hence, ASR is not submodular.

By the previous theorem, it is clear that IMP and ASR MAX are two fundamentally
different problems. Next, we present three algorithms for maximizing ASR, where we
use the notation

ASR(S | u, c) := ASR(S ∪ {u}, c)− ASR(S, c).

3.5.1 ASR Greedy
We once again start with the most basic greedy approach for maximizing ASR.

Algorithm 8 ASRGREEDY
Require: U = N ∪ V , σN , σV , parameter k, constant c.
1: S0 ← ∅, N0 ← N, t← 1
2: while t ≤ k do
3: Select ut ∈ N t−1 s.t. ASR(St−1 | ut, c) = max

u∈Nt−1

{
ASR(St−1 | u, c)

}
.

4: St ← St−1 ∪ {ut}, N t ← N t−1 \ {ut}
5: t← t+ 1

6: return SG ← arg max
S∈{S1,...,Sk}

ASR(S, c)

ASRGREEDY is a natural heuristic similar to GREEDRATIO that limits the influence
maximization to vulnerable nodes, with the difference that it creates a seed set of bounded
size k. Indeed, the algorithm performs k iterations, selecting each time the node u that
maximizes the additive smoothing ratio of the marginal gains in σN and σV . Nonethe-
less, since ASR is non-monotone, a larger ASR can be obtained at any intermediate
step, i.e., it is possible that ASR(St, c) > ASR(St+n, c), for some natural n ≤ k − t.
For this, the algorithm stores every computed seed set from all iterations and returns the
one which provides the maximum ASR. ASRGREEDY performs O(|N | · k) evaluations
of the spread function.
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3.5.2 Sandwich Approximation Algorithm with Spread Bounds

Before presenting Sandwich Approximation Algorithm with Spread Bounds (SAS), we
introduce the bound functions of ASR that the algorithm utilizes.

Lower and Upper Bounds of ASR

We define the lower and upper bound functions of ASR as follows:

ASRL(S, c) =
σN (S) + c

|V |+ c
, ASRU (S, c) =

σN (S) + c

c
.

It is trivial to see that both functions are non-negative and also that they indeed con-
stitute bound functions of ASR: ASRL(S, c) ≤ ASR(S, c) ≤ ASRU (S, c), since 0 ≤
σV (S) ≤ |V |, ∀S.

Lemma 3.13. ASRL and ASRU are monotone submodular for any parameter c > 0.

Proof. First, we show the monotonicity and submodularity of ASRL. Consider two
subsets S ⊆ T ⊆ N . Then, since σN is monotone, we have that σN (S) ≤ σN (T ) ⇒
ASRL(S, c) ≤ ASRL(T, c), i.e., ASRL is monotone. Furthermore, since σN is sub-
modular, we also have that for any u ∈ N \ T ,

σN (S ∪ {u})− σN (S) ≥ σN (T ∪ {u})− σN (T ).

With some manipulation (adding and subtracting c, dividing by |V |+ c > 0), we get

σN (S ∪ {u}) + c

|V |+ c
− σN (S) + c

|V |+ c
≥ σN (T ∪ {u}) + c

|V |+ c
− σN (T ) + c

|V |+ c
⇒

ASRL(S ∪ {u}, c)− ASRL(S, c) ≥ ASRL(T ∪ {u}, c− ASRL(T, c)⇒

ASRL(S | u, c) ≥ ASRL(T | u, c),

which means that ASRL is submodular.
The proof for ASRU is similar.

As we have shown, ASR,ASRL and ASRU meet the criteria allowing us to apply
the SA strategy (2.3). Before doing so, we need to also re-define the notion of dummy
elements: an element u is considered dummy if for every subset S ⊆ N it holds that
σN (S∪{u}) = σN (S) and σV (S∪{u}) = σV (S), that is, it offers zero marginal gain
to any subset S ⊆ N , w.r.t. both spread functions σN , σV . Now, we will apply the SA
strategy to SUBSAMPLEGREEDY (2.2).
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Algorithm 9 SAS
Require: U = N ∪ V , σN , σV , parameter k, constant c.
1: S ← N ▷ Phase I
2: D ← {v1, . . . , vk}, where vi is a dummy element ∀i ∈ [k]
3: N ← N
4: while |N |/k /∈ N do
5: N ← N ∪ {u}, where u /∈ D is a dummy element

▷ Phase II
6: t← 1, SO ← ∅, SL ← ∅, SU ← ∅
7: while t ≤ k do
8: R← uniform random sample of N with |N |/k elements.
9: Select a random element v ∈ D, R← R ∪ {v}
10: Select uO ∈ R s.t. ASR(SO | uO, c) = max

u∈R

{
ASR(SO | u, c)

}
11: SO ← SO ∪ {uO}
12: Select uL ∈ R s.t. ASRL(SL | uL, c) = max

u∈R

{
ASRL(SL | u, c)

}
13: SL ← SL ∪ {uL}
14: Select uU ∈ R s.t. ASRU (SU | uU , c) = max

u∈R

{
ASRU (SU | u, c)

}
15: SU ← SU ∪ {uU}
16: t← t+ 1

▷ Phase III
17: S ← arg max

S∈{SO,SL,SU}
{ASR(S, c)}

18: S ← S \ {v | v is dummy}
19: return SG ← S

The algorithm operates in three phases:

Phase I A setD of k dummy elements is created. Then additional dummy elements (not
from D) are added to N , initially set to contain all non-vulnerable nodes, until
|N | is a multiple of k.

Phase II A random sample of |N |/k elements of N is created and a dummy element
from D is chosen. From these, the algorithm selects the elements uO, uL, uU

that contribute the largest marginal gain w.r.t. ASR,ASRL,ASRU , respectively.
uO, uL, uU are added to SO, SL, SU (initially empty) and the process repeats k
times.

Phase III ASR is computed with all three sets SO, SL, SU , the best one is selected and its
dummy elements are removed. The algorithm returns this set.

Theorem 3.14. SAS returns a set SG such that

E[ASR(SG, c)] ≥ c

|V |+ c

(
1− e−(1−1/e)

)
· ASR(S∗, c),

where S∗ is an optimal solution of size at most k w.r.t. ASR and E[ASR(S, c)] is the
expected value of ASR over all possible outputs of SAS.

Proof. See Appendix C.

Proposition 3.15. SAS performs O(|N |) evaluations of the spread function.
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Proof. Since SUBSAMPLEGREEDY performs O(|N |) evaluations of the spread function
σ, ASR needs two evaluations of σ and SAS basically executes the algorithm three
times, the total number of evaluations stays linear.

It is worth mentioning that, in the same sense that SAS applies SUBSAMPLEGREEDY
to ASR and its bound functions, it can also apply ASRGREEDY (3.5.1) using the SA
strategy. We will call this variation SAS-GREEDY:

Algorithm 10 SAS-GREEDY
Require: U = N ∪ V , σN , σV , parameter k, constant c.
1: t← 0, SO ← ∅, SL ← ∅, SU ← ∅,NO ← N,NL ← N,NU ← N
2: while t < k do
3: Select uO ∈ NO s.t. ASR(SO | uO, c) = max

u∈NO

{
ASR(SO | u, c)

}
4: SO ← SO ∪ {uO},NO ← NO \ {uO}
5: Select uL ∈ NL s.t. ASRL(SL | uL, c) = max

u∈NL

{
ASRL(SL | u, c)

}
6: SL ← SL ∪ {uL}, UL ← UL \ {uL}
7: Select uU ∈ NU s.t. ASRU (SU | uU , c) = max

u∈NU

{
ASRU (SU | u, c)

}
8: SU ← SU ∪ {uU},NU ← NU \ {uU}
9: t← t+ 1

10: S ← arg max
S∈{SO,SL,SU}

{ASR(S, c)}

11: return SG ← S

Lemma 3.16. SAS-GREEDY outputs a solution SG such that

ASR(SG, c) ≥ max
{

c

σV (SU , c) + c
,
σV (S

∗, c) + c

|V |+ c

}(
1− 1

e

)
ASR(S∗, c),

where S∗ is an optimal solution of size at most k w.r.t. ASR.

Proof. From 2.3, we have that

ASR(SG, c) ≥ max

{
ASR(SU , c)

ASRU (SU , c)
,
ASRL(S∗, c)

ASR(S∗, c)

}(
1− 1

e

)
ASR(S∗, c).

Replacing ASRL and ASRU with their definitions, we obtain the desired approximation
guarantee.

SAS-GREEDY performsO(|N | · k) evaluations of the spread function, which makes
it considerably slower than SAS for large values of k.

3.5.3 Iterative Subsample Algorithm with Spread Bounds
Iterative Subsample with Spread Bounds (ISS), like SAS, combines the sandwich ap-
proximation technique along with subsampling, but it employs a little more sophisti-
cated bound functions.

The lower-bound function with parameter Y ⊆ N is defined as follows:

ÃSRL(S, c, Y ) =
σN (S) + c

σ̂V,Y (S) + c
,
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much like ASR, but instead of σV in the denominator, it uses σV ’s modular upper bound
with parameter Y :

σ̂V,Y (S) = σV (Y ) +
∑

u∈S\Y

σV (u)−
∑

u∈Y \S

(σV (Y )− σV (Y \ {u})).

For ASR’s upper-bound ÃSRU with parameter Y ⊆ N , wewill use σV ’s lowermodular
bound with the same parameter Y , i.e.,

ÃSRU (S, c, Y ) =
σN (S) + ĉ

σV,Y,πY (S) + c
,

where ̂
σV,Y,πY (S) =

∑
u∈S

σV,Y,πY (u)

and πY is a random permutation of Y . As stated in 3.1,

σV,Y,πY (u) =

{
σV (π

Y
u )− σV (π

Y
u−), if u ∈ Y

0, otherwise ,

where πY
u is a prefix of πY up to u and πY

u− is the same prefix without u.

Lemma 3.17. ÃSRL and ÃSRU are non-monotone and non-submodular.

Proof. Wewill show this again using 3.1 as a means of counterexample with u5, u6 be-
ing vulnerable. LetY = {u2, u3}, πY = (u3, u2), S = {u1, u2} andT = {u1, u2, u3}.
Then

ÃSRL(S, 1, Y ) =
σN (S) + 1

σV (u1) + σV (u2) + 1
= 2

and
ÃSRL(T, 1, Y ) =

σN (T ) + 1

σV (Y ) + σV (u1) + 1
=

5

3
.

Hence, since S ⊂ T and ÃSRL(S, 1, Y ) > ÃSRL(T, 1, Y ), ÃSRL is non-monotone.
Similarly,

ÃSRU (S, 1, Y ) =
σN (S) + 1

σV ({u2, u3})− σV (u3) + 1
= 4

and
ÃSRU (T, 1, Y ) =

σN (T ) + 1

σV ({u2, u3}) + 1
=

5

3
< ÃSRU (S, 1, Y ),

so ÃSRU is also non-monotone.
Furthermore, if we set S = {u3, u4} ⊂ {u1, u3, u4} = T , then

ÃSRL(S | u2, 1, Y ) = . . . = −1

6

and
ÃSRL(T | u2, 1, Y ) = . . . =

1

3
> ÃSRL(S | u2, 1, Y ),

so ÃSRL is not submodular. Similarly ÃSRU is proven to be non-submodular as well.

28



CHAPTER 3. INFLUENCE MAXIMIZATION UNDER VULNERABILITY

Algorithm 11 ISS
Require: U = N ∪ V , σN , σV , parameter k, constant c.
1: S ← N,Sp ← ∅
2: while true do ▷ Phase I
3: D ← {v1, . . . , vk}, where vi is a dummy element ∀i ∈ [k]
4: N ← N
5: while |N |/k /∈ N do
6: N ← N ∪ {u}, where u /∈ D is a dummy element

▷ Phase II
7: t← 1, SO ← ∅, SL ← ∅, SU ← ∅
8: while t ≤ k do
9: R← uniform random sample of N with |N |/k elements.
10: Select a random element v ∈ D, R← R ∪ {v}
11: uO ∈ R s.t. ASR(SO | uO, c) = max

u∈R

{
ASR(SO | u, c)

}
12: SO ← SO ∪ {uO}

13: uL ∈ R s.t. ÃSRL(SL | uL, c, Sp) = max
u∈R

{
ÃSRL(SL | u, c, Sp)

}
14: SL ← SL ∪ {uL}

15: uU ∈ R s.t. ÃSRU (SU | uU , c, πSp

) = max
u∈R

{
ÃSRU (SU | u, c, πSp

)

}
16: SU ← SU ∪ {uU}
17: t← t+ 1

▷ Phase III
18: S ← arg max

S∈{SO,SL,SU}
{ASR(S, c)}

19: S ← S \ {v | v is dummy}
20: if ASR(S, c) ≤ ASR(Sp, c) then
21: break
22: Sp ← S
23: return SG ← S

ISS too works in three phases:

Phase I As in SAS, this is the phase of dummy element creation, as well asN ’s expansion
to N with enough dummy elements so that it’s size becomes divisible by k.

Phase II A random sample of |N |/k elements ofN is created and a dummy element from
D is chosen. From these, the algorithm selects the elements uO, uL, uU that
contribute the largest marginal gain w.r.t. ASR, ÃSRL, ÃSRU , respectively, and
adds them to SO, SL, SU (initially empty), for k iterations. Throughout these
iterations, the bound functions are evaluated using as parameter the same set Sp

(and some random permutation πSp of it), which is actually the seed set con-
structed in the previous round (initially empty).

Phase III ASR is computed with all three sets SO, SL, SU , the best one is selected and
its dummy elements are removed. If this current seed set provides an ASR no
bigger than Sp, the algorithms returns it, otherwise it makes it the parameter set
and keeps looking for another seed set with better ASR.

Hence, we see that another fundamental difference between SAS and ISS is that the
latter uses parameter-dependent bounds that get better at every round by making use of
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an improved parameter, one that had been constructed in the previous round as the best
solution up to that point.

If ISS terminates in I iterations, then it will perform O(|N | · I) evaluations of the
spread function.

Other variations of ISS have been proposed, such as ISSU that applies SUBSAM-
PLEGREEDY only to ÃSRU instead of all three functions, as well as ISS-GREEDY that
applies ASRGREEDY instead of SUBSAMPLEGREEDY. Whilst the latter does not provide
any approximation guarantees and the first one doesn’t improve complexity in theory,
in practice both seem to be quite effective [5].

3.6 A PageRank approach

In this section, we will deviate a little bit from our previous analysis in order to inves-
tigate an alternative approach that operates under the LTM.

PageRank [2] is a link analysis algorithm by Google that ranks pages in terms of
relevance in order to sort search results. The World Wide Web is modeled as a network
G = (U,E) whose edges represent hyperlinks and each page is represented by a node
u, whose PageRank score PRG(u) indicates the likelihood (limiting probability) that u
is ultimately reached through random surfing:

PRG(u) =
1− d

|U |
+ d ·

∑
v∈n−(u)

PRG(v)

|n+(v)|
,

where d is a damping factor usually set to 0.85 and n+(v) is the set of the out-neighbors
of v. Note that PRG(u) is computed recursively.

In this section we study a direction introduced in [21], where our problem and the
greedy approach are reformulated to optimize a measure inspired by the PageRank
model. In this setting, hyperlinks are directed edges and pages are users. The PageRank
score of a user is the probability that the user gets activated, in the same manner that
a page is reached through a series of hyperlinks from any other page. The goal is to
prevent the diffusion of information to vulnerable nodes through edge deletion but at
the same time to avoid deteriorating the network’s ability to propagate information. In
other words, we aim to preserve (as much as possible) the PageRank distribution for all
non-vulnerable while minimizing the activation probability of vulnerable nodes.

The measure used in [21] is called PageRank Harm (PRH). The PRH of an edge
e = (u, v) is defined as

PRH(e) = d · PRG(u)

|n+(u)|
,

which is basically the contribution of u to the PageRank score of v. We also define
PRH(F ) =

∑
e∈F

PRH(e), ∀F ⊆ E. Deleting e would have an impact to the PageRank

score of all nodes. More precisely, if we denote by δ(u′) = PRG(u
′) − PRG\e(u

′),
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then

δ(u′) =



PRH(e) + d ·
∑

w∈n−(u′)
w ̸=u′

d(w)
|n+(w)| , if u′ = v

PRH(e)− d · PRG\e(u)

|n+(u)|−1 + d ·
∑

w∈n−(u′)
w ̸=u′

d(w)
|n+(w)| , if u′ ∈ n+(u), u′ ̸= v

d ·
∑

w∈n−(u′)

d(w)
|n+(w)| , if u′ /∈ n+(u)

Note that d(u′) is also computed recursively, which means that it decreases expo-
nentially with the length of the path from u to w. Indeed, let

Pu,w := u→ v → u1 → . . .→ uν−2 → w

be a simple path of length ν = |Pu,w| from u to w, starting with edge e. Then

δ(w) = dν−1 δ(v)

|n+(v)| ·
∏ν−2

i=1 |n+(ui)|

and d < 1.
Before formulating the problem, we list some properties of the LTM from [11] that

we are going to need next. The path probability of a path Pu,v := u0 → u1 → . . . →

uν−1, where u0 := u and uν−1 = v is defined as Pr[Pu,v] =
ν−2∏
i=0

pui,ui+1
. Also, let

PS,v be the set of all simple paths from all nodes in S to v that do not contain any other
node from S, and let Gv be the activation graph of v induced by PS,v . We also define
GT =

⋃
v∈T

Gv, ∀T ⊆ U , as the activation graph of T . Furthermore,

Pr[v,PS,v, F ] =
∑

P∈PS,v

P∩F ̸=∅

Pr[P]

denotes the activation probability of v by the paths in PS,v that contain edges in F .
Finally, the aggregate path probability for nodes in a subset T ⊆ U and some F ⊆ E
is defined as

gT (F ) = Pr

[
T,
⋃
v∈T

PS,v, F

]
=
∑
v∈T

min{Pr[v,PS,v, F ], Pr[v,PS,v, E]− p},

where p ∈ [0, 1] is the threshold and the aggregate path probability gain of e to F as

gT (F | e) = gT (F ∪ {e})− gT (F ).

Proposition 3.18. The function gT : 2E → R is monotone non-decreasing submodular.

Proof. See Appendix C.

We now define the problem using this terminology [21]:
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PAGERANK EDGE DELETION (PED)
Input: Graph G = (U,E), N,V such that N ∪ V = U and N ∩ V = ∅, seed
set S ⊆ N , GV = (UV , EV ), PRH(e) for all e ∈ EV , threshold p ∈ [0, 1].
Output: F ∗ ⊆ EV such that

PRH(F ∗) = min
F⊆EV

{PRH(F )}

and

Pr

[
V,
⋃
v∈V

PS,v, F
∗

]
=
∑
v∈V

(Pr[v,PS,v, EV ]− p).

(3.8)

PED is NP-hard [21, 33]. Among other algorithms, the authors of [21] suggest
AGGREGATE GREEDY EDGE DELETION (AGED).

Algorithm 12 AGED
Require: G = (N ∪ V,E), seed set S, activation graph GV = (UV , EV ), threshold

p ∈ [0, 1], damping factor d, PageRank distribution PRG.
1: for e = (u, v) ∈ EV do
2: PRH(e)← d · PRG(u)

|n+(u)|

3: F 0 ← ∅, t← 1
4: while Pr

[
V,
⋃

v∈V PS,v, F
t−1
]
<
∑

v∈V (Pr[v,PS,v, E]− p) do
5: Reconstruct GV,t = (UV,t, EV,t)

6: Select et ∈ EV,t s.t. PRH(et)
gV (F t−1|et) = mine∈EV,t

{
PRH(e)

gV (F t−1|e)

}
7: F t ← F t−1 ∪ {et}
8: t← t+ 1

9: Delete F t from G
10: return FG ← F t

Theorem 3.19 ([21, 33]). AGED returns a solution FG such that

PRH(FG) ≤ (1 + ln(µD))PRH(F ∗),

where F ∗ is the optimal solution and

µD = min

max
e∈FG

e ̸=e1

{
gV (e1)

gV (e)

}
,
PRH(eT )
gV (eT )

/PRH(e1)
gV (e1)

,
Pr[V,

⋃
v∈V PS,v, F

G]

gV (eT )

 ,

where e1 is the first edge and eT is the last edge added to FG.

For the proof of this theorem, the following lemma will be of use:

Lemma 3.20. Let 0 < y1 ≤ y2 ≤ . . . ≤ yn and x1 ≥ x2 ≥ . . . ≥ xn > 0. If
S =

∑n−1
i=1 yi(xi − xi+1) + ynxn, then

S ≤ max
i∈[n]
{yixi}

[
1 + ln

(
min

{
x1

xn
,
yn
y1

})]
.
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Proof. See Appendix C.

Next, we construct the proof of Theorem 3.19 based on the proof of [33].

Proof of Theorem 3.19. First we give an equivalent definition of PED in terms of a
linear integer problem PEDI :

PRH = min
F∗⊆EV

{PRH(F ∗)}

such that ∑
e∈F∗

gV (F | e) ≥ gV (E)− gV (F ), ∀F ⊆ EV .

To see the equivalence, note that since gV (F | e) represents the probability that some
path to V contains e, then

∑
e∈F∗

gV (F | e) denotes the probability that V is activated

by paths containing edges of F ∗ and therefore it should hold that∑
e∈F∗

gV (F | e) ≥ |V | · p. (3.9)

On the other hand, the condition of PED is equivalent to

Pr[v,PS,v, EV ]− p ≤ Pr[v,PS,v, F ]⇒ p ≥ Pr[v,PS,v, EV ]− Pr[v,PS,v, F ],

for all v ∈ V . By adding these inequalities and combining with 3.9 we get the desired
condition.

Now we consider the following relaxation PEDL of PEDI :

PRH = min
F∗⊆EV

{PRH(F ∗)}

such that ∑
e∈F∗

gV (F
t | e) ≥ gV (EV )− gV (F

t), t ∈ [T − 1],

where T is the last iteration of the algorithm. Furthermore, we set

µ1 = max
e∈FG

e ̸=e1

{
gV (e1)

gV (e)

}
, µ2 =

PRH(et)
gV (et)

/PRH(e1)
gV (e1)

and µ3 =
Pr[V,

⋃
v∈V PS,v, F

G]

gV (eT )
.

Let x∗ = (x1, x2−x1, . . . , xT−xT−1), where xt = PRH(et)
gV (et)

. For a given e, there exists
a t ≤ T such that gV (St−1 | e) > 0 and gV (St | e) = 0. Given that 0 < x1 ≤ . . . ≤ xt

and gV (F 0 | e) ≥ . . . ≥ gV (F
t−1 | e) > 0, if we set

S = x1 · gV (F 0 | e) +
t−1∑
i=1

(xi+1 − xi) · gV (F i | e),

then from Lemma 3.20 we obtain

S ≤ max
i=[t]
{xigV (F

i−1 | e)
[
1 + ln

(
min

{
gV (F

0 | e)
gV (F t−1 | e)

,
xt

x1

})]
≤ PRH(e)[1 + ln(min{µ1, µ2})].
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Hence (1 + ln(min{µ1, µ2})−1x∗ is dual feasible for PEDL and therefore, if

S′ = x1
(
gV (E)− gV (F

0)
)
+

T−1∑
i=1

(xi+1−xi)
(
gV (E)− gV (F

i)
)
−xT (gV (E)−gV (FT )),

we have
(1 + ln(min{µ1, µ2}))−1S′ ≤ PRH(FL) ≤ PRH(F ∗),

where FL is an optimal solution for PEDL. But

PRH(FG) =

T∑
t=1

PRH(et) =
T∑

t=1

xtgV (S
t−1 | et) = S′,

which implies that

PRH(FG) ≤ (1 + ln(min{µ1, µ2})PRH(F ∗). (3.10)

Now we define a T -vector ut that has all zeros except for its t-th coordinate which is
xt. Then

ut · (gV (F 0 | e), . . . , gV (fT−1 | e)) = xtgV (F
t−1 | e) ≤ PRH(e),

so ut, t = 1, . . . , T − 1 is dual feasible for PEDL. Then,

max
t∈[T ]

ut(gV (E)− gV (F
0), . . . , gV (E)− gV (F

T−1)) = max
t∈[T ]

θt(gV (E)− gV (F
t−1)

≤ PRH(FL) ≤ PRH(F ∗).

Since 1 < x1 ≤ . . . ≤ xT and gV (E) − gV (F
0) ≥ . . . ≥ gV (E) − gV (F

T−1) > 0,
we can again apply the previous lemma and obtain

PRH(FG) = S′ ≤ max
t
{xt(gV (E)− gV (F

t−1))}
[
1 + ln

(
gV (E)− gV (F

0)

gV (E)− gV (FT−1)

)]
.

Hence,
PRH(FG) ≤ (1 + lnµ3)PRH(F ∗) (3.11)

and 3.10 and 3.11 conclude the proof.
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CHAPTER4
CONCLUSION & FUTURE WORK

In this study, we explored various algorithms for influence maximization in social net-
works, focusing on the challenge of protecting vulnerable users while maximizing the
spread of influence. The analysis covered both classical and innovative strategies, pro-
viding insights into their effectiveness and computational efficiency.

We began with DSMAX, introducing an intuitive algorithm and a more sophisticated
method that leverages modular bounds. This approach provided a foundation for under-
standing the dynamics of influence maximization in the presence of vulnerable nodes.
Next, we examined RSMAX by deploying GREEDRATIO and MMAXRATIO algorithms.
GREEDRATIO stands out for its simplicity and efficiency, offering a curvature-dependent
approximation factor that makes it a more than satisfactory choice for general influence
maximization tasks. In comparison, MMAXRATIO uses a more intricate Minorization-
Maximization approach, achieving a more complex approximation factor than GREE-
DRATIO, but potentially more refined solutions.

The introduction of ASR aimed to enhance the evaluation metric for our problem.
SAS and ISS both aim to refine the approach to influence maximization under the con-
straints of vulnerable users. SAS offers a practical balance of efficiency and accuracy,
its approximation factor and complexity making it a strong choice for many applica-
tions. ISS, however, takes SAS’s main idea a step further by iteratively improving
the parameter bounds used in each round. Although it does not provide a straightfor-
ward approximation guarantee, it is a potentially more powerful algorithm for achieving
higher accuracy through iterative refinement.

Comparatively, while GREEDRATIO may initially appear more straightforward and
robust, its reliance on a simpler measure underscores its potential limitations compared
to the more nuanced methodologies of SAS and ISS. On the other hand, SAS might not
do as well in terms of approximation, but appears to be more efficient. Likewise, ISS’s
use of tighter bounds may seem to provide more accurate solutions, but not an approxi-
mation guarantee. In conclusion, all algorithms have their weaknesses but nevertheless
contribute their particular value to our repertoire, and their selection should depend on
the specific requirements of the problem instance we are addressing.

Future research should empirically validate the proposed algorithms in real-world,
large social networks to understand their practical performance and scalability. Con-
ducting experiments with diverse datasets would offer valuable insights and bench-
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marks for these methods, possibly allowing for a more individualized design based on
the specific characteristic of particular datasets. Naturally, further refinement of the
algorithms in a more general sense to enhance scalability and efficiency, especially for
large-scale social networks, represents another critical direction in developing more so-
phisticated approximation methods. Yet another apparent direction is to develop more
advanced behavioral analysis and prediction techniques leveraging deep learning and
machine learning approaches, in order to understand how users behave within the net-
work or to even explore new networks.

Moreover, exploring dynamic social networks, where the structure and relation-
ships between users evolve over time, presents an important challenge. Several social
and environmental factors can change a user’s state at any time, so incorporating tempo-
ral changes through interactive strategies into the influence maximization model could
lead to more accurate and effective strategies for long-term influence propagation. In
addition to accuracy and efficiency, the social and ethical implications of influence
maximization are also crucial to reinforcing the social responsibility factor, especially
in protecting vulnerable users. Future research should focus on developing frameworks
that integrate ethical considerations into algorithm design, preventing misuse and en-
suring fair treatment for all network participants.

Lastly, further exploration of the PageRank-inspired approach under different influ-
ence diffusion models and varying network structures could offer new insights. Inves-
tigating how adaptive strategies can be integrated into the PageRank framework may
lead to more effective and dynamic influence maximization methods.

In summary, this thesis addresses the significant contributions to the field of in-
fluence maximization in social networks by emphasizing the protection of vulnerable
users. Future research is necessary to advance the field, offering more robust, scalable,
and ethically sound solutions for influence spread in an increasingly connected world.
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APPENDIXA
EVALUATING THE SPREAD FUNCTION

In the context of influence maximization in social networks, it is essential to define the
key concepts and models used. We start by defining a directed graph (digraph) and its
components.

Definition A.1. A digraph G is an ordered pair G = (U,E) where U is a set of nodes
(vertices) and E is a set of directed edges. Each edge (u, v) in E represents a directed
connection from node u to node v. Additionally, u is called an in-neighbor of v while
v is an out-neighbor of u.

A social network can be represented as such a digraph G = (U,E). Here, the
nodes U represent individuals or entities, and the directed edges E represent the in-
fluence relationships between these entities. Specifically, an edge (u, v) indicates that
node v follows or is influenced by node u. A stochastic model M defines the proba-
bilities associated with the edges in the social network G [17, 22, 31]. Each directed
edge (u, v) inE has an associated probability pu,v , which represents the likelihood that
node u will influence node v. The modelM can be represented in different ways. One
common representation of M is a probability matrix P , where P [u, v] = pu,v . Each
entry in this matrix corresponds to the influence probability of an edge in the network.
Alternatively,M could be a probabilistic graphical model that captures more complex
dependencies and conditional probabilities between nodes. Examples of such models
include Bayesian networks or Markov random fields, which can model joint distribu-
tions over sets of nodes [32, 34].

Definition A.2. The spread function σ is a set function σ : 2U → R parameterized by
the stochastic modelM .

Evaluating the spread function σ typically involves approximations due to the com-
plexity of exact computation. Several methods can be used, including Monte Carlo
simulations, which repeatedly simulate the diffusion process to estimate the expected
spread, dynamic programming techniques to approximate the spread, various sam-
pling methods to estimate the spread, and heuristic methods for faster approximations
[17, 6, 8]. Here, we focus on approximations performed via Monte Carlo methods.
Specifically, we have two basic techniques:
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• Simulations, where we directly simulate the random process of diffusion on a
given seed set S. Let Ar be the set of nodes activated in the r-th round of the
simulation algorithm, with A0 = S. During the (r+1)-th round, a node u ∈ Ar

tries to activate all of its inactive neighbors with a certain probability, that is,
neighbor v /∈ Ar gets activated with probability pu,v . For all successful activa-
tions, the corresponding nodes are added toAr+1 and the process continues until
no activation is possible. The algorithm then returns the number of activated
nodes and is repeated for a sufficient number of times; σ(S) is estimated as the
average of all outcomes.

• Snapshots that we produce in advance. As we have already discussed (1.1), ac-
tivation of a node v from a node u with probability pu,v can be viewed as the
flipping of a biased coin. In this sense, if we flip all coins in advance to see
which activations will actually occur, we can create a snapshot graph by deleting
all edges that were not selected for propagation, i.e., that do not provide an acti-
vation. After having created a sufficient number of snapshots, we run on all of
them some algorithm that returns the number of nodes reachable from S; σ(S)
is again estimated as the average of all outcomes.

Both of these Monte Carlo methods need a large “sufficient number” of repetitions
when employed for large, complex networks and NAÏVEGREEDY will have to run the
selected techniqueO(|U | ·k) times, rendering our greedy algorithm inefficient for real-
life problems [8]. We will take a look at a couple of the most basic algorithms proposed
to ameliorate time complexity of the naïve approach by reducing the number of esti-
mations of the spread functions. CELF and STATICGREEDY preserve NAÏVEGREEDY’s
approximation factor of 1− e−1, while significantly reducing the Monte Carlo simula-
tions needed.

First, we present the Cost-Effective Lazy Forward selection (CELF) from [19].

Algorithm CELF
Require: U = {u1, . . . , un}, σ : 2U → R, integer k < |U |, R .
1: S0 ← ∅, U0 ← U, t← 1
2: for u ∈ U do
3: du ← +∞
4: while t ≤ k do
5: for u ∈ U t−1 do
6: curu ←false
7: while true do
8: Select ut ∈ U t−1 s.t. dut

= max
u∈Ut−1

{du}.
9: if curut then
10: St ← St−1 ∪ {ut}, U t ← U t−1 \ {ut}, t← t+ 1
11: break
12: else
13: sut

← 0
14: for j = 1, . . . , R do
15: sut+ = σ(St−1 | ut)

16: dut
← sut

/R
17: curut ←true
18: return SG ← Sk
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The logic behind CELF is that the marginal gain of node v in the current iteration
cannot exceed its marginal gain in the previous iterations. That is, suppose that S is the
current seed set, and dv = σ(S | v) is the marginal gain of v. Since σ is submodular,
we know that for any other S′ ⊃ S, i.e., for any other seed set from a subsequent
iteration, σ(S | v) ≥ σ(S′ | v). Therefore, after having estimated σ(∅ | v) = σ(v)
and added the node with maximum gain (first execution of inner while), the algorithm
at each iteration re-estimates σ(S | v) for nodes v ∈ U \ S that had the highest dv in
the previous iteration, until it finds the one that stays on top and adds it to the seed set.
The Monte Carlo simulations are taking place in lines 14 and 15.

Even though CELF does not improve the worst-case time complexity of NAÏVEG-
REEDY, in practice it can improve efficiency to 700 times [19].

Next, we look over the STATICGREEDY algorithm proposed in [8].

Algorithm STATICGREEDY
Require: U = {u1, . . . , un}, σ : 2U → R, integer k < |U |, R.
1: S0 ← ∅, U0 ← U, t← 1
2: for r = 1, . . . , R do
3: Generate snapshot G′

r by removing each edge (u, v) with probability 1− pu,v

4: while t ≤ k do
5: for u ∈ U t−1 do
6: su ← 0

7: for j = 1, . . . , R do
8: for u ∈ U t−1 do
9: su+ = σj(S

t−1 | u)
10: Select ut ∈ U t−1 s.t. sut

/R = max
u∈Ut−1

{su/R}.

11: St ← St−1 ∪ {ut}, U t ← U t−1 \ {ut}
12: t← t+ 1

13: return SG ← Sk

STATICGREEDY generates a sufficient (not very large) number R of Monte Carlo
snapshotsG′

1, . . . , G
′
R at the very beginning, instead of a large number of Monte Carlo

simulations in every iteration. Then it uses this same set of static snapshots in all it-
erations, performing R evaluations for each node’s marginal gain w.r.t. each static
snapshot and greedily selecting the node with the maximum average. The Monte Carlo
snapshot method is described in lines 7 - 9; in line 9, σj denotes the restriction of the
spread function on G′

j , ∀j ∈ [R]. STATICGREEDY can accelerate NAÏVEGREEDY up to
100 times [8].

We can easily see that these algorithms can be used to improve the greedy selection pro-
cess of every algorithm involving evaluations of σ, so their contribution becomes very
valuable in a general context. They significantly reduce the computational overhead,
making them very practical for real-world applications.
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APPENDIXB
SUBMODULAR FUNCTIONS

LetU = {u1, . . . , un} be a finite set with n elements and f : 2U → R be a real function
on 2U , the power set of U . Such a function will be called a set function. We simply
write f(u) instead of f({u}).

A set function f : 2U → R is said to be submodular if and only if, for every
S ⊆ U, T ⊆ U :

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

Another more intuitive characterization of submodular set functions in terms of the
marginal gains :

f(S | ui) = f(S ∪ {ui})− f(S)

is given by the next theorem:

Theorem B.1 ([27]). The following properties are equivalent:

- function f : 2U → R is submodular

- f satisfies the diminishing returns property, i.e., for every S, T such that S ⊆
T ⊆ U and for every ui /∈ T , f(T | ui) ≤ f(S | ui).

Proof. Consider S ⊆ T ⊆ U and uj /∈ T . Since f is submodular, it holds that
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for any two sets S, T ⊆ U . We set S :=
S ∪ {uj}, T := T . Then

f(S ∪ {uj}) + f(T ) ≥ f((S ∪ {uj}) ∪ T ) + f((S ∪ {uj}) ∩ T )⇒
f(S ∪ {uj}) + f(T ) ≥ f(T ∪ {uj}) + f(S)⇒
f(S ∪ {uj})− f(S) ≥ f(T ∪ {uj})− f(T )

For the other direction, let T \ S = {ui1 , . . . , uik}. Since T ∩ S ⊆ S and therefore
(T ∩ S) ∪ {ui1 , . . . , uij−1} ⊆ S ∪ {ui1 , . . . , uij−1} for all j = 1 . . . , k (where for
k = 1 we consider {ui0} = ∅), we have that

f(S ∪ {ui1 , . . . , uij−1
} | uj) ≤ f((T ∩ S)∪ {ui1 , . . . , uij−1

} | uj) ∀j = 1, . . . , k ⇒

f(S ∪ {ui1 , . . . , uij})− f(S ∪ {ui1 , . . . , uij−1
}) ≤ f(T ∩ S ∪ {ui1 , . . . , uij})

−f(T ∩ S ∪ {ui1 , . . . , uij−1
}) ∀j = 1, . . . , k.

If we add these k inequalities we get f(T ∪ S)− f(S) ≤ f(T )− f(T ∩ S).
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If the inverse inequality of the diminishing returns property holds, then f is said to
be supermodular, otherwise if the equality holds then the function is modular.

Next, we present some other useful equivalent definitions of submodular functions.

Proposition B.2 ([27]). The following statements are equivalent:

(i) f : 2U → R is submodular.

(ii) f(T ) ≤ f(S) +
∑

u∈T\S
f(S | u)−

∑
u∈S\T

f(S ∪ T \ {u} | u)

Proof. Let S, T ⊆ U such that T \S = {u1, . . . , un} and S \T = {v1, . . . , vm}. Then

f(S ∪ T )− f(S) =

n∑
i=1

f(S ∪ {u1, . . . , ui})− f(S ∪ {u1, . . . , ui−1})

=

n∑
i=1

f(S ∪ {u1, . . . , ui−1} | ui)

≤
n∑

i=1

f(S | ui) =
∑

u∈T\S

f(S | u).

Similarly,

f(S ∪ T )− f(T ) =

m∑
i=1

f(T ∪ {v1, . . . , vi})− f(T ∪ {v1, . . . , vi−1})

=

m∑
i=1

f(T ∪ {v1, . . . , vi} \ {vi} | vi)

≥
m∑
i=1

f(T ∪ S \ {vi} | vi) =
∑

u∈S\T

f(S ∪ T \ {u} | u).

For some real parameter θ ≥ 0, let C(θ) denote the class of submodular functions
satisfying the property f(A | u) ≥ −θ for all A ⊂ U and u ∈ U \A.

Proposition B.3 ([27]). Let f : 2U → R be a submodular function in C(θ). Then

f(T ) ≤ f(S) +
∑

u∈T\S

f(S | u) + |S \ T |θ, ∀S, T ⊆ U.

Proof. Immediate result from the previous proposition.

The following proposition states that submodularity is preserved under non-negative
linear combinations.

Proposition B.4. Let f1, . . . , fn : 2U → R be submodular functions andα1, . . . , αn ≥
0. Then f =

∑n
i=1 αifi is also submodular.

Proof. Let S, T ⊆ U such that S ⊆ T and u ∈ U \ T . Then. since f1, . . . , fn are
submodular, we have that

fi(S | u) ≤ fi(T | u), ∀i ∈ [n]
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and, since αi ≥ 0, ∀i ∈ [n], it holds that

αifi(S | u) ≤ αifi(T | u), ∀i ∈ [n].

Therefore,

f(S | u) = α1f1(S | u) + . . . αnfn(S | u)
≥ α1f1(T | u) + . . . αnfn(T | u)
= f(T | u),

which means that f is also submodular.

Next, we define [1, 15] the modular lower bound of a submodular function f :
2U → R, using the subdifferential ∂f (Y ), Y ⊆ U :

∂f (Y ) = {y ∈ RU | f(X)− y(X) ≥ f(Y )− y(Y ), ∀X ⊆ U}, Y ⊆ U

where y(X) =
∑

j∈X y(j). The extreme points of ∂f (Y ) can be easily obtained using
a greedy algorithm. Let σ be a permutation of U , with |U | = n, such that σ assigns the
elements of Y in the first |Y | positions. That is, σ defines a chain with elements

Sσ
0 = ∅, Sσ

i = {σ(1), . . . , σ(i)}, ∀i ∈ [n],

and Y = Sσ
|Y |. We say that σ’s chain contains Y . Then this chain defines an extreme

point hY,σ
f , i.e., a subgradient corresponding to f , as follows:

hf
σ,Y (σ(1)) = f(Sσ

1 ), h
f
σ,Y (σ(i)) = f(Sσ

i )− f(Sσ
i−1), ∀i > 1

and
hf
σ,Y (S) =

∑
u∈S

hf
σ,Y (S).

Observe that hf
σ,Y (S

σ
i ) = f(Sσ

i ). With a slight change in notation, hf
σ,Y represents a

modular lower bound of f with parameter Y (tight at Y ) which we will denote by
̂
fY,σY (X) =

∑
u∈X

fY,σY (u),

where σY is a random permutation of the elements of Y and

fY,σY (u) =

{
f(σY

u )− f(σY
u−), if u ∈ Y

0, otherwise ,

where σY
u− denotes the prefix of all elements in σY that come before u and σY

u is σY
u−

along with u. Here, instead of a permutation of U whose chain contains Y , we have
considered a permutation only on Y and have set the values of all other elements to 0.
As a result, we have

̂
fY,σY (X) = f(Y ), for every X ⊇ Y .

We proceed with the definition of the modular upper bound of f , similarly as before
but with the use of the superdifferential of f :

∂f (Y ) = {y ∈ RU | f(X)− y(X) ≤ f(Y )− y(Y ), ∀X ⊆ U}, Y ⊆ U.
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Computing the extreme points of ∂f (Y ) yields two supergradients:

mf
X,1(Y ) = f(X) +

∑
u∈Y \X

f(u)− f(∅))−
∑

u∈X\Y

(f(X)− f(X \ {u}))

and

mf
X,2(Y ) = f(X) +

∑
u∈Y \X

f(X ∪ {u})− f(X))−
∑

u∈X\Y

(f(U)− f(U \ {u})).

These represent modular upper bounds of f with parameter X (tight at X). We de-
note them by f̂X,1(Y ) and f̂X,2(Y ), respectively. Obviously, f̂X,1(X) = f̂X,2(X) =
f(X). It is also easy to see that

f̂X,1(X \ {v}) = f(X \ {v}) and f̂X,2(X ∪ {v}) = f(X ∪ {v}).

We now define the submodular and supermodular curvature [1, 16].

Definition B.5. Let f : 2U → R≥0 be a non-negative set function. The submodular
curvature of f is defined as

κf = 1− min
u∈U

f(U)− f(U \ {u})
f(u)

.

The submodular curvatureκf indicates how close tomodular f is, withκf = 0meaning
that f is modular and κf = 1 meaning f is fully curved.

We also define the submodular curvature of f with respect to X ⊆ U as

κf (X) = 1−
∑

u∈X(f(X)− f(X \ {u}))∑
u∈X f(u)

.

Note that f(X) − f(X \ {u}) represents the smallest contribution of each element u
ofX to the total contribution ofX , while f(u) represents the largest such contribution,
i.e.,

f(X) ≥
∑
u∈X

(f(X)− f(X \ {u})) and f(X) ≤
∑
u∈X

f(u).

We refer to the quantity
∑

u∈X(f(X) − f(X \ {u})) as the simple lower bound of f
and to

∑
u∈X f(u) as the simple upper bound of f .

Similarly, we have the supermodular curvatures:

Definition B.6. Let f : 2U → R≥0 be a non-negative set function. The supermodular
curvature of f is defined as

κf = 1− min
u∈U

f(u)

f(U)− f(U \ {u})

and the supermodular curvature of f with respect to X ⊆ U as

κf (X) = 1−
∑

u∈X f(u)∑
u∈X(f(X)− f(X \ {u}))

.
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Note that κf = 0 also means that f is modular, while if f is submodular we have
κf < 0 or κf is undefined (if no u exists such that f(U)− f(U \ {u}) > 0).

Proposition B.7. Let f : 2U → R≥0 be a non-negative submodular function. It holds
that κf ≥ κf (X), ∀X ⊆ U and κf ≤ κf (X), ∀X ⊆ U .

Proof. We define the auxiliary function kf : 2U → R,

kf (X) = 1− min
u∈X

f(X)− f(X \ {u})
f(u)

and consider S ⊆ T ⊆ U . For any u ∈ S it holds that

f(S \ {u} | u)
f(u)

≥ f(T \ {u} | u)
f(u)

due to the submodularity of f . If min
u∈S

f(S\{u}|u)
f(u) = f(S\{v}|v)

f(v) for some v ∈ S, then

min
u∈S

f(S \ {u} | u)
f(u)

≥ f(T \ {v} | v)
f(v)

≥ min
u∈T

f(T \ {u} | u)
f(u)

⇒ kf (S) ≤ kf (T ).

This means that kf is monotone increasing and kf (X) ≤ kf (U) = κf , ∀X ⊆ U . On
the other hand,

1− kf (X) = min
u∈X

f(X \ {u} | u)
f(u)

≤ f(X \ {u} | u)
f(u)

, ∀u ∈ X

and

1− κf (X) =

∑
u∈X f(X \ {u} | u)∑

u∈X f(u)

≥
∑

u∈X(1− kf (X))f(u)∑
u∈X f(u)

= 1− kf (X),

i.e., kf (X) ≥ κf (X). Finally we get

κf (X) ≤ κf , ∀X ⊆ U.

With a very similar argument we can also prove that

κf (X) ≥ κf , ∀X ⊆ U.

We close this appendix with two probabilistic properties of submodular functions.

TheoremB.8 ([10]). Let f : 2U → R be submodular. Denote byA(p) a random subset
of A where each element appears with probability p, not necessarily independently.
Then

E[f(A(p))] ≥ (1− p) · f(∅) + p · f(A).

Proof. We will use induction on the size of A:
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• For A = ∅, we have E[f(∅)] = f(∅)

• Assume A = A′ ∪ {u} and that the property holds for A′, i.e.,

E[f(A′(p))] ≥ (1− p) · f(∅) + p · f(A′).

• We observe that A′(p) = A(p) ∩A′, so

E[f(A(p))] = E[f(A′(p))] + E[f(A(p))− f(A′(p))]

= E[f(A′(p))] + E[f(A(p))− f(A(p) ∩A′)]

≥ E[f(A′(p))] + E[f(A′ ∪A(p))− f(A′)]. (by submodularity)

We also observe that, when u ∈ A(p), which occurs with probability p, then
A′ ∪A(p) = A, otherwise A′ ∪A(p) = A′. Thus,

E[f(A(p))] ≥ E[f(A′(p))] + p · (f(A)− f(A′))

≥ (1− p) · f(∅) + p · f(A′) + p · (f(A)− f(A′)) (by the inductive
hypothesis)

= (1− p) · f(∅) + p · f(A).

Theorem B.9 ([3]). Let f : 2U → R be submodular. Denote by A(p) a random
subset of A where each element appears with probability at most p, not necessarily
independently. Then

E[f(A(p))] ≥ (1− p) · f(∅).

Proof. We sort A = {u1, u2 . . . , un} in a decreasing order of probability, i.e., if Ei

is and indicator for the event ui ∈ A(p), and pi = Pr[ui ∈ A(p)] = E[Ei], then
p1 ≥ p2 ≥ . . . ≥ pn. Let Ai = {u1, u2, . . . , ui}. Then

E[f(A(p))] = E

[
f(∅) +

n∑
i=1

Ei · f(Ai−1 ∩A(p) | ui)

]

≥ E

[
f(∅) +

n∑
i=1

Ei · f(Ai−1 | ui)

]
(by submodularity)

= f(∅) +
n∑

i=1

E[Ei] · f(Ai−1 | ui)

= f(∅) +
n∑

i=1

pi · (f(Ai)− f(Ai−1))

= (1− p1) · f(∅) +
n−1∑
i=1

(pi − pi+1) · f(Ai) + pn · f(A)

≥ (1− p) · f(∅) (pi − pi+1 ≥ 0 and p1 ≤ p)
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APPENDIXC
PROOFS OF CHAPTERS 2&3

C.1 Chapter 2

Naïve Greedy

Proof of Proposition 2.1. From Proposition B.3, we have that

σ(T ) ≤ σ(S) +
∑

u∈T\S

σ(S | u) + |S \ T |θ, ∀S, T ⊆ U.

Let ℓ < k be the number of iterations of the algorithm. Then

σ(Sℓ | u) ≤ dℓ ≤ 0, |S∗ \ Sℓ| ≤ k ⇒
∑

u∈S∗\Sℓ

σ(Sℓ | u) ≤ kdℓ ≤ 0.

By setting T := S∗, S = Sℓ and since |Sℓ \ S∗| ≤ ℓ we get

σ(S∗) ≤ σ(Sℓ) +
∑

u∈S∗\Sℓ

σ(Sℓ | u) + |Sℓ \ S∗|θ

≤ σ(∅) +
ℓ∑

i=1

di−1 + ℓθ ⇒

σ(S∗) ≤ σ(SG) + ℓθ.

For θ = 0we get σ(S∗) ≤ σ(SG), whichmeans that the greedy solution is optimal.

Proof of Theorem 2.2. Let S∗ ∈ argmax{σ(S) : |S| ≤ k} be an optimal solution of
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size k and enumerate S∗ = {u∗
1, . . . , u

∗
k}. Then for 0 ≤ t < ℓ we have

σ(S∗) ≤ σ(S∗ ∪ St) (σ is monotone)

= σ(St) +

k∑
i=1

σ(St ∪ {u∗
1, . . . , u

∗
i−1} | u∗

i ) (telescoping sum)

≤ σ(St) +
∑
u∈S∗

σ(St | u) (σ is submodular)

≤ σ(St) +
∑
u∈S∗

σ(St+1)− σ(St) (greedy selection)

≤ σ(St) + k(σ(St+1)− σ(St)) (|S∗| ≤ k).

We set σt := σ(S∗)− σ(St), so the previous inequality is written as

σt ≤ k(σt − σt+1)⇒ σt+1 ≤
(
1− 1

k

)
σt ⇒

σℓ ≤
(
1− 1

k

)ℓ

σ0 ≤
(
1− 1

k

)ℓ

σ(S∗) ≤ e−ℓ/kσ(S∗)⇒

σ(S∗)− σ(St) ≤ e−ℓ/kσ(S∗)⇒ σ(St) ≥ (1− e−ℓ/k)σ(S∗).

Subsample Greedy
We will show a lemma that is going to be useful for the proof of Theorem 2.5. When
referring to the ground set U , we will mean the set we obtain after Phase I completes,
i.e., |U | = m = Nk for some N ∈ N.

Lemma C.1 ([25]). It holds that

E[σ(St−1 | ut)] ≥
(
1− 1

e

)
·
(
E[σ(S∗)]− E[σ(St−1)]

k

)
− α

for some parameter α > 0.

Proof. Fix t and let M ⊆ U ∪D be the set that maximizes
∑

v∈M σ(St−1 | v). Also
denote by A the event Rt ∪ {vt} ∩M ̸= ∅.

Now, if we sort U ∪D = {v(1), . . . , v(m), v(m+1), . . . , v(m+k)} with the criterion
σ(St−1 | v(i)) ≥ σ(St−1 | v(i+1)), ∀i ∈ [m+k−1], thenM = {v(1), . . . , v(k)}, since
M consists of the k elements that give the largest marginal gain to St−1. In addition,
consider that dummy elements come after the actual ones inM , and let µ be the index
such that v(µ) ∈ U and v(µ+1) ∈ D.

Let Ai be the event that i is the smallest index such that v(i) ∈ Rt ∪ {vt}, then
A1, . . . , Am+k are mutually exclusive and A =

⋃k
i=1 Ai, which means that Pr[A] =∑k

i=1 Pr[Ai]. We observe that

Pr[A1] =
1

k
, Pr[Ai] =

(
m−i

m/k−1

)(
m

m/k

) , i = 2, . . . , µ,
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Pr[Ai] =

(
m−µ
m/k

)(
m

m/k

) · 1
k
·
(
1− 1

k

)i−µ−1

, i = µ+ 1, . . . , k

and that Pr[Ai] is a decreasing function, and so is Pr[Ai | A]. Therefore,

E[σ(St−1 | ut) | A] =

k∑
i=1

E[σ(St−1 | ut) | Ai] · Pr[Ai | A]

≥ 1

k

k∑
i=1

(
σ(St−1 | v(i))− α

)
(Chebyshev’s sum inequality)

=
1

k

∑
v∈M

σ(St−1 | v)− α

Moreover,

Pr[A] = 1− Pr[M ∩ (Rt ∪ {vt}) = ∅] = 1−

(
m−µ
m/k

)(
m

m/k

) µ

k

= . . .

≥ 1−
(
1− 1

k

)µ
µ

k
≥ 1− µe−µ/k

k

≥ 1− 1

e
.

Finally, let M ′ be a set such that S∗ \ St−1 ⊆ M ′ and M ′ is completed with dummy
elements so that |M ′| = k. Then,

E[σ(St−1 | ut)] = E[σ(St−1 | ut) | A]Pr[A] + E[σ(St−1 | ut) | A](1− Pr[A])

≥
(
1− 1

e

)(
1

k

∑
v∈M

σ(St−1 | v)− α

)
− 1

e
α

≥
(
1− 1

e

)(
1

k

∑
v∈M ′

σ(St−1 | v)

)
− α (by definition ofM ′)

≥
(
1− 1

e

)
σ(S∗ ∪ St−1)− σ(St−1)

k
− α (by submodularity)

≥
(
1− 1

e

)
σ(S∗)− σ(St−1)

k
− α. (by monotonicity)

Taking the expectation over t concludes our proof.

Proof of Theorem 2.5. From the previous lemma we have

E[σ(St−1 | ut)] ≥
(
1− 1

e

)
σ(S∗)− σ(St−1)

k
− α,

53



C.1. CHAPTER 2

which yields

σ(S∗)− E[σ(St)] ≤
(
1− 1− 1/e

k

)
· (σ(S∗)− E[σ(St−1)]) + α

≤
(
1− 1− 1/e

k

)t

· (σ(S∗)− E[σ(S0)]) +

t−1∑
i=0

(
1− 1

k

)i

α

≤
(
1− 1− 1/e

k

)t

σ(S∗) + ta

and for t = k we obtain

E[σ(SG)] ≥

[
1−

(
1− 1− 1/e

k

)k
]
σ(S∗)− kα

≥
(
1− e−(1−1/e)

)
σ(S∗)− kα

Next, we should mention that parameter α represents a differential-privacy related term
that can be omitted in our case (see [25] for more details), giving us the desired approx-
imation guarantee

E[σ(SG)] ≥
(
1− e−(1−1/e)

)
σ(S∗).

Sandwich Approximation
Proof of Theorem 2.6. We denote by SL,∗, SU,∗ the optimal solutions w.r.t. σL, σU ,
respectively, and SL is the greedily selected set maximizing σL. Since σL, σU are
submodular, it holds (from NAÏVEGREEDY) that

σL(SL) ≥
(
1− 1

e

)
σL(SL,∗), σU (SU ) ≥

(
1− 1

e

)
σU (SU,∗).

Thus

σ(SG) ≥ σ(SL) ≥ σL(SL) (by definitions of SG, lower bound)

≥
(
1− 1

e

)
σL(SL,∗) (σL is submodular)

≥
(
1− 1

e

)
σL(S∗) (by definition of SL,∗)

=
σL(S∗)

σ(S∗)

(
1− 1

e

)
σ(S∗)

and

σ(SG) ≥ σ(SU ) =
σ(SU )

σU (SU )
· σU (SU ) (by definition of SG)

≥ σ(SU )

σU (SU )
·
(
1− 1

e

)
σU (SU,∗) (σU is submodular)

≥ σ(SU )

σU (SU )
·
(
1− 1

e

)
σU (S∗) (by definition of SU,∗)

≥ σ(SU )

σU (SU )
·
(
1− 1

e

)
σ(S∗) (by definition of upper bound)
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By combining the above results we get the required inequality.

C.2 Chapter 3
Proof of Lemma 3.4. If f is submodular the proof is trivial. We suppose that f is not
submodular and we define αf = min

S⊂T⊆U
u/∈T

{f(S | u) − f(T | v)} < 0. Let ρ be

a submodular set function with αρ = min
S⊂T⊆U
u/∈T

{ρ(S | u) − ρ(T | v)} > 0 and set

σ = f + |α|
αρ

ρ, for some α ∈ R. If we choose α ≤ αf < 0, we get

ασ = min
S⊂T⊆U
u/∈T

{σ(S | u)− σ(T | v)}

= min
S⊂T⊆U
u/∈T

{f(S | u)− f(T | v)}+ |α|
αρ

min
S⊂T⊆U
u/∈T

{ρ(S | u)− ρ(T | v)}

= αf + |α| ≥ 0,

which means that σ is submodular and therefore f = σ − |α|
αρ

ρ can be expressed as the
difference of two submodular functions.

Proof of Theorem 3.14. Let SL ⊆ N . Since ASR(SL, c) ≥ ASRL(SL, c) and the
expected value is monotone, we have that

E[ASR(SL, c)] ≥ E[ASRL(SL, c)].

Now, let SL,∗ be an optimal solution of size at most k w.r.t. ASRL. We observe that
SL is constructed by the SUBSAMPLEGREEDY algorithm (see 2.2) and ASRL is monotone
submodular, therefore

E[ASRL(SL, c)] ≥
(
1− e−(1−1/e)

)
· ASRL(SL,∗, c).

Hence,

E[ASR(SL, c)] ≥ E[ASRL(SL, c)]

≥
(
1− e−(1−1/e)

)
· ASRL(SL,∗, c)

≥
(
1− e−(1−1/e)

)
· ASRL(S∗, c)

≥ ASRL(S∗, c)

ASR(S∗, c)

(
1− e−(1−1/e)

)
· ASR(S∗, c)

≥ σV (S
∗) + c

|V |+ c

(
1− e−(1−1/e)

)
· ASR(S∗, c)

≥ c

|V |+ c

(
1− e−(1−1/e)

)
· ASR(S∗, c)

In addition, since we also have

E[ASRU (SU , c)] ≥
(
1− e−(1−1/e)

)
· ASRU (SU,∗, c)
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for any solution SU,∗ optimal w.r.t. ASRU (from 2.5), it holds that

ASR(SU , c) =
σN (SU ) + c

σV (SU ) + c
=

ASRU (SU ) · c
σV (SU ) + c

≥ ASRU (SU , c) · c

|V |+ c
⇒

E[ASR(SU , c)] ≥ E
[
ASRU (SU , c) · c

|V |+ c

]
≥ c

|V |+ c
· E
[
ASRU (SU , c)

]
≥ c

|V |+ c
·
(
1− e−(1−1/e)

)
· ASRU (SU,∗, c)

≥ c

|V |+ c
·
(
1− e−(1−1/e)

)
· ASRU (S∗, c)

≥ c

|V |+ c
·
(
1− e−(1−1/e)

)
· ASR(S∗, c).

Finally, again from SUBSAMPLEGREEDY,

E[ASR(SO, c)] ≥
(
1− e−(1−1/e)

)
· ASR(S∗, c)

≥ c

|V |+ c
·
(
1− e−(1−1/e)

)
· ASR(S∗, c)

and after removing the dummy elements, SG ∈ {SO′
, SL′

, SU ′}, which concludes the
proof.

Proof of Proposition 3.18. It suffices to show that the function fv(E) = Pr[v,PS,v, E],
v ∈ T ismonotone non-decreasing submodular, and then the samewill hold for gT (E) =∑
v∈T

fv(E) by B.4.

First of all, let EV be the edge set of Gv, E1 ⊆ E2 ⊆ EV and e /∈ E2. In addition,
let PF

S,v be the set of paths from S to v containing edges in F ⊆ EV . We distinguish
three cases:

Case I Pe
S,v ⊆ P

E1

S,v .

Then adding e will not affect neither PE1

S,v nor PE2

S,v , i.e., fv(E1 | e) = 0 and
fv(E2 | e) = 0, so the submodularity property holds in a trivial manner.

Case II Pe
S,v ⊆ P

E2

S,v but Pe
S,v ( PE1

S,v .

Then adding e will only add paths to PE1

S,v , i.e., fv(E1 | e) ≥ 0 = fv(E2 | e).

Case III Pe
S,v ( PE2

S,v .

Then adding e will add to PE1

S,v all the paths that it will add to P
E2

S,v plus all those
other paths of Pe

S,v contained in P
E2

S,v \ P
E1

S,v , i.e., fv(E1 | e) ≥ fv(E2 | e).

Hence, fv is submodular.
Moreover, fv is monotone since for every e /∈ F it holds that fv(F ∪{e}) ≥ fv(F )

and non-decreasing since fv(E2) ≥ fv(E1), for the aforementioned E1, E2.
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APPENDIX C. PROOFS OF CHAPTERS 2&3

Proof of Lemma 3.20. Since yi ≤ maxi∈[n]{yixi}/xi, we get

S ≤ max
i∈[n]
{yixi}

[
n−1∑
i=1

(
1− xi+1

xi

)
+ 1

]

≤ max
i∈[n]
{yixi}

[
1 +

n−1∑
i=1

ln
(
xi+1

xi

)]

= max
i∈[n]
{yixi}

[
1 + ln

(
x1

xn

)]
,

where the second inequality holds because 1 − 1/x ≤ lnx, ∀x ≥ 1. Additionally,
S = y1x1 +

∑n−1
i=1 (yi+1 − yi)xi+1 and since xi ≤ maxi∈[n]{yixi}/yi we get by a

very similar argument that

S ≤ max
i∈[n]
{yixi}

[
1 + ln

(
yn
x1

)]
,

which completes our proof.
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