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ABSTRACT

It is awell-known result that Datalog, with the added assumption that the input databases
are ordered, can express exactly those queries that belong in class PTIME. Recently,
this result was extended for higher-order Datalog that does not contain negation. It ap-
pears that an increase in the order allowed in the programs results in a direct increase
in expressiveness. This thesis studies the expressiveness of higher-order Datalog when
we introduce negation. More specifically, we present a study of the expressiveness
of different higher-order Datalog language fragments where each time a subset of fea-
tures is allowed from negation, partially-applied expressions as predicate arguments,
and higher-order existential variables. For each such choice of features, we investi-
gate the resulting expressiveness as we increase the order for the types we allow in our
programs.

It follows that the original expressiveness result is not changed when we just intro-
duce negation. However, in the case that we restrict partial application from our syntax,
there is a big difference. Partially-applied expressions can alone give the maximum ex-
pressiveness achieved by higher-order Datalog while in their absence only negation
paired with higher-order existential variables can achieve the same result. Finally, all
other choices of features result in a collapse in PTIME for the problems the language
fragments can express regardless of the order we allow in our programs.





ΣΎΝΟΨΗ

Είναι γνωστό αποτέλεσμα στη βιβλιογραφία ότι η Datalog με την υπόθεση ότι οι βάσεις
δεδομένων εισόδου είναι διατεταγμένες, μπορεί να εκφράσει όλα εκείνα τα ερωτήματα
που ανήκουν στην κλάση πολυπλοκότητας PTIME. Πρόσφατα, αυτό το αποτέλεσμα
επεκτάθηκε και σε προγράμματα Datalog υψηλής τάξης που δεν περιέχουν άρνηση και
αποδείχτηκε οτι η εκφραστικότητα αυξάνεται αυστηρά καθώς αυξάνεται και η τάξη
των προγραμμάτων. Αυτή η διπλωματική μελετάει την εκφραστικότητα προγραμμά-
των υψηλής τάξης Datalog όταν επιτρέπουμε άρνηση. Πιο συγκεκριμένα παρουσιάζε-
ται μια ανάλυση της εκφραστικότητας διαφόρων εκδόσεων της υψηλής τάξης Datalog
όπου κάθε φορά επιτρέπουμε ένα υποσύνολο από χαρακτηριστικά όπως η άρνηση, με-
ρικώς εφαρμοσμένες εκφράσεις ως ορίσματα και υπαρξιακές μεταβλητές υψηλής τά-
ξης. Σε κάθε επιλογή τέτοιων χαρακτηριστικών μελετάμε την επίδραση της αύξησης
της επιτρεπόμενης τάξης των προγραμμάτων στην εκφραστικότητα της γλώσσας.

Προκύπτει ότι η εκφραστικότητα δεν αυξάνεται περαιτέρω όταν εισάγουμε τον τε-
λεστή της άρνησης. Αν όμως δεν επιτρέψουμε μερικώς εφαρμοσμένες εκφράσεις στα
προγράμματά μας τότε υπάρχει σημαντική διαφορά. Οι μερικώς εφαρμοσμένες εκ-
φράσεις στα προγράμματα δίνουν από μόνες τους την μέγιστη εκφραστικότητα της
γλώσσας, ενώ αν απουσιάζουν χρειαζόμαστε άρνηση με υπαρξιακές μεταβλητές για να
πετύχουμε την ίδια εκφραστικότητα. Σε όλες τις άλλες περιπτώσεις η εκφραστικότητα
της γλώσσας πέφτει στην κλάση PTIME ανεξαρτήτως της τάξης που επιτρέπουμε να
έχουν οι τύποι στα προγράμματά μας.
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CHAPTER1
INTRODUCTION

In the functional programming paradigm the use of first-class functions that are passed
as arguments and returned as results have unlocked significant advantages in the ver-
satility and compactness of writing code. Furthermore, it has been demonstrated in
([7]) that when we restrict the language to only accept read-only programs, where cre-
ating new data structures is not possible, the use of higher-order functions increases the
complexity class of the problems that can be expressed.

In the logic programming paradigm, while these languages are generally expected
to be first-order, there has been extensive work to define and develop general-purpose
higher-order languages. In such cases, even the first-order variant is Turing-Complete.
However, this is not the case with Datalog, which does not allow the use of function
symbols in its syntax [5]. Datalog is a declarative logic programming language that
syntactically serves as a subset of Prolog. Datalog employs a bottom-up evaluation
model, as opposed to the top-down evaluationmodel of Prolog, resulting in significantly
different behavior and properties. It is often employed as a query language for deductive
databases.

Example 1.1. An example of a Datalog program using a slightly different syntax than
standard Datalog.

edge a b.
edge b c.
path X Y ← (edge X Y).
path X Y ← (edge X Z),(path Z Y).

It is shown that Datalog captures only PTIME ([8]) or in other words it can ex-
press all such queries that belong to this complexity class. However, this capability is
achieved under the assumption that the input database provided to the query program is
ordered. An ordered database is one that includes a predicate implying a total ordering
relation among its elements. Without this assumption, Datalog is incapable of deciding
problems even within PTIME such as deciding whether the total number of elements
of the database is odd or even.

Example 1.2. A predicate like next needs to be present in the input database.
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next a b.
next b c.
next c d
...

In this thesis we study the higher-order version of Datalog in the form that is intro-
duced in [1]. The syntax of this language is similar to classic Datalog but the formal
parameters of a program rule can also be distinct predicate variables. Furthermore, we
can use partially applied predicates as new predicates.
Example 1.3. A program of higher-order Datalog.

edge a b.
edge b c.
closure R X Y ← (R X Y).
closure R X Y ← (R X Z),(closure R Z Y).
path X Y ← (closure edge X Y ).
reverse R X Y ← (R Y X).
reversed_path X Y ← (closure (reverse edge) X Y).

The classical result of the expressiveness of Datalog is extended for the higher-order
setting in [1]. In an analogous sense to the work done in [7] for the read-only functional
languages, an increase in the program order gives an increase in expressiveness allow-
ing for a broader class of problems to be expressed. For example, second-order Datalog
is shown to capture exactly EXPTIME, third-order Datalog captures 2−EXPTIME and
so on. However a version of positive Datalog is considered in that work. Specifically
the syntax of the language does not allow a negation operator. It also does not allow
higher-order existential variables. These are variables that appear only in the body of a
program rule and not in the head.
Example 1.4. A program of higher-order Datalog that contains existential higher-order
variables. Variable M is existential and is used to retrieve the "previous" first-order
relation.

last X.
recursive_p N ← (predecessor N M), (recursive_p M).
recursive_p N ← (edge_condition N).
test ← (recursive_p last).

This raises questions about what happens when we introduce additional features,
such as existential higher-order variables and negation. Do these features enhance ex-
pressiveness? Furthermore, a second question emerges regarding the significance of
having partial application in a higher-order language. Could a predicate like 'predecessor',
as in the previous example, be defined and function in the intuitive manner we expect,
effectively simulating a counting of an exponential number of elements in positive Dat-
alog? Such predicates have already been defined in [1] but they rely on partial applica-
tion and not existential variables.
Example 1.5. Simulating counting by using partially applied predicates.

last X.
recursive_p N ← (recursive_p (predecessor N)).
recursive_p N ← (edge_condition N).
test ← (recursive_p last).

predecessor N X V ← ...

2



CHAPTER 1. INTRODUCTION

partial
application negation

h.o.
existential
variables

order 1 order 2 order 3 · · · order∞

YES X X PTIME EXPTIME 2−EXPTIME · · · ELEM.
NO YES YES PTIME EXPTIME 2−EXPTIME · · · ELEM.
NO YES NO PTIME PTIME PTIME · · · PTIME
NO NO X PTIME PTIME PTIME · · · PTIME

It turns out that partial application is not only necessary but also sufficiently pow-
erful to maintain the established level of expressiveness. The addition of the other two
features does not lead to any further increase in expressiveness. Furthermore, if we
wish to restrict partial application, both higher-order existential variables and negation
must be permitted to preserve this level of expressiveness. Any other alternatives result
in a return to PTIME 1, regardless of the order of the programs, which aligns precisely
with classic first-order positive Datalog.

The results of this thesis are summarized in a concise table here. In the table, "YES"
and "NO" indicate the inclusion and exclusion, respectively, of the mentioned feature,
while "X" signifies that inclusion or exclusion is irrelevant. We use "X" to condense
multiple rows into one for brevity. Sincewe introduce negation, it necessitates the adop-
tion of a different, more general semantics for our language known as Well-Founded
semantics. This semantics is based on a three-valued truth model (true, false, undef).
The extension of such a semantics model to a higher-order setting is a recent develop-
ment presented in [2].

The thesis is organized as follows.

• Chapter 2 is dedicated to establishing the syntax of higher-order Datalog, follow-
ing the steps outlined in [1]. In this chapter, we introduce the negation operator
and remove the restriction of using only formal variables in the body of program
rules. This syntax serves as the foundation, and we subsequently restrict it to
create various fragments. Additionally, we define the concept of order for the
types in the language.

• In Chapter 3, we provide the semantics for our language, which is based on the ex-
tension of Well-Founded semantics for a higher-order language. We draw upon
the work in [2], presenting or extending relevant definitions and theorems as
needed. Furthermore, we define what we mean when we state that Datalog de-
cides a problem, specifically whether a string belongs to a formal language L.

• Chapter 4 presents the expressiveness of all higher-order Datalog variants with
partial application in a concise manner, as they are all equivalent, as shown in the
first row of Table 1.

• Chapter 5 is dedicated to proving the result corresponding to row 2 of the table,
which is the only combination without partial application that restores the hierar-
chy. To demonstrate this result, we need to establish two necessary statements:

– Firstly, we aim to show that any languageL that can be decided by a (k−1)-
exponential-time Turing machine can also be decided by a k-order Datalog
program belonging to the specified language fragment. To achieve this, we

1The third row is not shown in this work.
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present a simulation of the Turing Machine. The key challenge lies in effi-
ciently encoding exponentially large numbers using higher-order predicates
while abiding to the rules of the restricted syntax.

– Secondly, we demonstrate that for every k-order Datalog program from
the designated fragment set, the computation of its minimal Well-Founded
model can be accomplished by a (k− 1)-exponential-time bounded Turing
machine. We provide a high-level description of a multi-tape Turing Ma-
chine capable of calculating the model within the required time bounds. In
fact, we had to provide such a machine in Chapter 4 for the most general
version of the higher-order Datalog we study.

These two facts together imply that k-order Datalog can decide any language that
falls within (k − 1)− EXPTIME and no language that falls outside.

• Chapter 6 is dedicated to demonstrating that the fragments mentioned in row 4 of
the table precisely capture PTIME and that no further gains can be achieved by
increasing the program order. This endeavor will involve a multi-step approach,
with a crucial component being the influential result presented in [3]. This result
enables us to adopt a more syntactical approach to our semantics, particularly for
programs that do not incorporate the negation operator.

• Chapter 7 is dedicated to a discussion of future work in this field. A significant
portion of this discussion is about the fragments in the third row of the table,
specifically the ones that allows negation without existential higher-order vari-
ables. While it is expected that these fragments, for any program order, should
fall within PTIME, a more intricate approach was required to formally establish
this. In this chapter, we briefly describe an approach one can take to demonstrate
this, along with the challenges that arise from it. While we do not include detailed
proof in this work, we leave it for a future article.
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CHAPTER2
SYNTAX AND ORDER

The language we will use is a function-free subset language used in [2]. In this chapter,
we will present the syntax for the language in its most general version (e.g negation,
existential higher-order variables, partial application).

2.1 The Syntax
The syntax follows from the classical syntax of Datalog with an important restriction
that every higher-order iteration of Datalog must abide by.
Every argument of predicate type in the head of a rule must be a variable. Fur-
thermore, all such variables must be distinct.
Without this restriction, monotonicity in positive higher-order Datalog is not preserved.
More importantly removing the restriction can lead to non-extensional models for a
given program in the higher-order setting.

Example 2.1. Consider the following example program that does not follow this rule.

r a.
q a.
p q.
p R ← R b

In the minimum model, it is q = r = {a} which makes both predicates equivalent
or in other words they have the same extensional meaning as they represent the same
relation. The problem arises from the fact that we also get (p q) = true and (p r) =
false. In an extensional model the predicate p should behave the same when given
inputs that are equivalently extensionaly.

Following in the steps of [1] we present the simple type system of the language first.
There are only two base types: owhich corresponds to the boolean domain and ι which
corresponds to the domain of individuals. The composite types are divided into two
categories. The predicate types π and the argument types ρ. Only an argument-type
variable can appear as an argument of a predicate in the body of a program rule.

5



2.1. THE SYNTAX

Definition 2.1. Predicate and argument types are defined to be:

π := o | (ρ→ π)

ρ := ι | (ρ→ π)

Notice that we don't allow type o to appear as an argument type. This is to comply
with the classical results for first-order Datalog where predicates are not allowed to
have as arguments, expressions that are other fully applied predicates. It can be shown
that the inclusion of o to the argument type does not add to the expressive capabilities
in any of the cases we consider.

Next, we define the alphabet of the language. We will use a subset of the language
described in [2] since we will need to also define a negation operator and later the Well-
Founded semantics for our language.

Definition 2.2. The alphabet consists of:

1. Predicate variables of every predicate type π (denoted by capital letters such as
P and Q).

2. Predicate constants of every predicate type π (denoted by lowercase letters such
as p and q).

3. Individual variables of type ι (denoted by capital letters such as X and Y).

4. Individual constants of type ι (denoted by lowercase letters such as a and b).

5. The following logical constant symbols: the equality constant ≈ for comparing
expressions of type ι; the conjuction symbol ∧; the inverse implication constant
←; the negation constant operator ∼.

6. The parentheses "(" and ")".

Definition 2.3. The set of terms is defined as follows:

• Every predicate variable (respectively predicate constant) of type π is a term of
type π; every individual variable (respectively individual constant) of type ι is a
term of type ι;

• if E1 is a term of type ρ→ π and E2 a term of type ρ then (E1 E2) is a term of type
π. In the case of applying multiple arguments, we will use the left associativity
rule to omit parenthesis when possible.

Next, we define the set of expressions for our language.

Definition 2.4. The set of expressions of Higher-Order Datalog is defined as follows:

• A term of type ρ is an expression of type ρ;

• If E1 and E2 are terms of type ι, then (E1 ≈ E2) is an expression of type o.

• If E is an expression of type o then ∼ E is an expression of type o.

Expressions (respectively terms) that have no variables will often be referred to as
ground expressions (respectively ground terms). Expressions of type o that are either
terms or have the form E1 ≈ E2 where E1,E2 terms of type ι, will often be referred to
as atoms. Additionally, we will call literals all expressions that are atoms or negated
atoms. To denote that an expression E has type ρ we will often write E : ρ.

6



CHAPTER 2. SYNTAX AND ORDER

Definition 2.5. A rule of Higher-Order Datalog is a formula p V1 · · ·Vn ← L1 ∧
· · · ∧ Lm, where p is a predicate constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn,
n ≥ 0, are distinct 1 argument variables of types ρ1, . . . , ρn respectively, and for every
i ∈ {1, · · · ,m}, Li is a literal. More specifically

Li =

{
Ei

∼Ei

where Ei is an atom.

The term p V1 · · ·Vn is called the head of the rule, the variables V1, . . . ,Vn are the
formal parameters of the rule and the conjunction L1 ∧ · · · ∧ Lm is its body.

Notice how the definitions of the terms and atoms do not include the negation con-
stant and literals can have at most one negation at the top level of their expression.
Therefore, the rule definition restricts nested negations to appear or negation at a deeper
level of an expression. Finally, a program rule will be called a positive rule if the nega-
tion constant does not appear in its body. A positive higher-order Datalog program is
one where every one of its rules is positive.

It is easy to see that this syntax is a subset of the higher order language "HOL"
defined in [2] which is the work we will also use to define the semantics.

We will borrow some features of Prolog's syntax while writing examples and when
presenting the code for the simulations in subsequent chapters for readability and fa-
miliarity reasons. Specifically, instead of the conjunction symbol, we will use commas
to separate each expression in the body and end it with a full stop.

Example 2.2. For example, we will write

predk+1 N M ← (non_zerok+1 N),(hpred1 N M lastk).

Now, we define the order that a type has.

Definition 2.6. The order of a type is recursively defined as follows:

order(ι) = 0
order(o) = 0

order(ρ1 → · · · → ρn → o) = 1 + max({order(ρi) | 1 ≤ i ≤ n})

The order of a predicate constant (or variable) is the order of its type.

Thenwewill define fragments of the general language based on the order as follows.

Definition 2.7. For all k ≥ 1, k-order Datalog is the fragment of Higher-Order Datalog
in which all predicate constants have order less than or equal to k and all predicate
variables have order less than or equal to k − 1.

This is one of the directions we restrict each fragment. The other kind of restriction
is based on restricting the syntax presented in this section. The next section establishes
that.

1All the formal parameters are distinct variables (i.e., for all i, j such that 1 ≤ i, j ≤ n and i ̸= j,
Vi ̸= Vj ).
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2.2. HIGHER-ORDER DATALOG FRAGMENTS

2.2 Higher-Order Datalog fragments
There are three syntactical restrictions considered in this work. We choose between
allowing our programs to have:

• The negation ∼ constant e.g.

p Q ← ∼ (Q a).

• Partially applied predicates in an argument position of a term e.g.

r X ← (q (p r) z).
p R Z ← (R a), (Z b).

Partial application allows our terms to have syntactic trees of arbitrary height. Re-
moving this option forces every term to have a syntactic tree of restricted height.

• Higher order existential variables in the body of rules. These are variables of at
least type order 1 that appear only in the body of a rule and not also in the head
e.g.

p X ← (R X).

For each combination of choice for these restrictions, we create a fragment of higher-
order Datalog. By also choosing the program order k for k ≥ 1 on top of the previous
restrictions we get a language fragment of k-order Datalog.

In the case of restricting partial application, we formally consider a modified defi-
nition of the notions of atoms and literals. More formally we have:

Definition 2.8. A simple atom is an expression of type o and of either the form (E1 ≈
E2) or of the form

(E0 E1 . . .En−1)

where each Ei is either a variable or a constant.

Definition 2.9. A simple literal is either a simple atom or the negation of a simple atom.

Definition 2.10. A simple rule of Higher-Order Datalog is a formula p V1 · · ·Vn ←
L1∧· · ·∧Lm, where p is a predicate constant of type ρ1 → · · · → ρn → o, V1, . . . ,Vn,
n ≥ 0, are argument variables of types ρ1, . . . , ρn respectively, and for every i ∈
{1, · · · ,m}, Li is a simple literal.

Definition 2.11. A simple program or otherwise a program devoid of partial application
is one that consists of only simple rules.

Definition 2.12. Let C a subset of the symbols {λ,¬, ∃}. ThenHC
k is the fragment of

k-order Datalog that syntactically restricts what does not appear in C. Specifically, in
the superscript

• If λ does not appear then only simple programs are allowed.

• If ¬ does not appear then the negation constant is not allowed.

• If ∃ does not appear then higher-order existential variables are not allowed.

For example Hλ,¬
k is the fragment of k-order Datalog where existential variables

are not allowed but negation and partial application are.

8



CHAPTER3
SEMANTICS AND DECISION PROBLEMS

In this chapter, we will provide the semantics of our source language. The semantics
will be drawn from [2] which describes a more general higher-order language that has a
richer syntax and also allows function symbols therefore it is Turing complete. This se-
mantics is calledWell-Founded semantics (WFS) and is a generalization of the classical
WFS model to the higher-order setting.

Because we will also consider language fragments that don't contain the negation
operator we will present a semantics for positive higher-order Datalog as well, like
shown in [1]. Changing semantics for higher-order Datalog is not a part of investi-
gating language expressiveness. In fact, we only consider different fragments based
on syntactical restrictions and the type order. The reason for also introducing positive
higher-order semantics is to simplify the process of handling higher-order Datalog frag-
ments that restrict the negation operator. As we will show later the WFS model of a
positive program and the minimum model under classical positive semantics coincide
in a more general sense even though they are defined in different truth domains. It
follows as well that all ground terms of type o in positive under both semantics get as-
signed the same truth values (false, true) despite the fact that Well-Founded semantics
introduces a new third truth value called undef. We will exploit this fact to simplify the
proofs for those fragments and use the pre-existing work done for positive higher-order
Datalog.

Finally, we will define the notion of deciding a language through Datalog and estab-
lish the background that will be used to distinguish the expressive capabilities of each
Datalog fragment we investigate.

3.1 Positive Higher-Order Datalog Semantics
The semantics of positive Higher-Order Datalog, which is based on the ideas initially
proposed in [10] and [4] is an extensional model of semantics where we treat program
predicates asmonotone relations or otherwisemonotone functions to the set {false, true}.

For the types, we define recursively the semantics JρK of a type ρ and we also define
at the same time a corresponding partial order≤ρ on the elements of JρK. We adopt the
usual ordering of the truth values false and true, i.e. false < true. Let A and B be

9



3.1. POSITIVE HIGHER-ORDER DATALOG SEMANTICS

partial orders, we write [A m→ B] to denote the set of all monotone functions from A to
B. For a function f in this set it must hold that ∀a, b ∈ A if a ≤ b then f(a) ≤ f(b).

Definition 3.1. Let P be a program. The Herbrand universe UP of P is the set of all
constant elements that appear in it. Then:

• JιK = UP and ≤ι is the trivial partial order that relates every element of UP to
itself

• JoK = {false, true} and ≤o is the partial order ≤ on truth values

• Jρ → πK = [JρK m→ JπK] and ≤ρ→π is the partial order defined as follows: for
all f, g ∈ Jρ→ πK, f ≤ρ→π g iff f(d) ≤π g(d) for all d ∈ JρK.

We proceed to define Herbrand interpretations and states.

Definition 3.2. A Herbrand interpretation I of a program P is a function that assigns:

• to each individual constant c that appears in P, the element I(c) = c;

• to each predicate constant p : π that appears in P, an element I(p) ∈ JπK;
Definition 3.3. A Herbrand state s of a program P is a function that assigns to each
argument variable V of type ρ, an element s(V) ∈ JρK.

In the following, s[V1/d1, . . . ,Vn/dn] is used to denote a state that is identical to s
the only difference being that the new state assigns to each Vi the corresponding value
di.

Definition 3.4. Let P be a program, I a Herbrand interpretation, and s a Herbrand state
of P. Then, the semantics of expressions is defined as follows:

• JVKs(I) = s(V);

• JcKs(I) = I(c);

• JpKs(I) = I(p);

• J(E1 E2)Ks(I) = JE1Ks(I)(JE2Ks(I));
• J(E1 ≈ E2)Ks(I) = true if JE1Ks(I) = JE2Ks(I) and false otherwise.
For ground expressions E we will often write JEK(I) instead of JEKs(I) since in

this case the meaning of E is independent of s. The model of the program is defined as
follows:

Definition 3.5. Let P be a program andM a Herbrand interpretation of P. Then,M is
aHerbrand model of P iff for every rule p V1 · · ·Vn ← E1∧· · ·∧Em in P and for every
Herbrand state s, if for all i ∈ {1, . . . ,m}, JEiKs(M) = true then Jp V1 · · ·VnKs(M) =
true or equivalently:∧

{JE1Ks(M), · · · , JEmKs(M)} ≤o Jp V1 · · ·VnKs(M)

where
∧
is the maximum lower bound operator and in this case, it operates on type o.

10
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We denote the set of Herbrand interpretations of a program P with IP, and define
a partial order on IP as follows: for all I, J ∈ IP, I ≤IP J iff for every predicate
constant p : π that appears in P, I(p) ≤π J(p). We denote by

∨
the least upper bound

operation and by ⊥IP the least element of the lattice, with respect to ≤ IP. Intuitively,
⊥IP assigns to every program predicate in P the empty relation or the function which
always points to false for input.

We will need to define the immediate consequence operator for Higher-Order Dat-
alog programs, which generalizes the corresponding operator for classical Datalog.

Definition 3.6. LetP be a program. ThemappingTP : IP → IP is called the immediate
consequence operator for P and is defined for every predicate constant p : ρ1 → · · · →
ρn → o and di ∈ JρiK as:
TP(I)(p) d1 · · · dn =


true, if there exists a clause p V1 · · ·Vn ← E1 ∧ · · · ∧ Em in P and

a Herbrand state s, such that JEiKs[V1/d1,...,Vn/dn](I) = true
for all i ∈ {1, . . . ,m}

false, otherwise.

Define now the following sequence of interpretations:

TP ↑ 0 = ⊥IP

TP ↑ (n+ 1) = TP(TP ↑ n)
TP ↑ ω =

∨
{TP ↑ n | n < ω}

We then have the following theorem:

Theorem 3.1. Let P be a program and let MP = TP ↑ ω. Then, MP is the least
Herbrand model of P and the least fixpoint of TP (with respect to the ordering relation
≤IP ).

This definition concludes the presentation of the semantics for positive Higher-
Order Datalog. Next, we will proceed with the semantics with negation under the Well-
Founded model of semantics.

3.2 Well-Founded Semantics forNegativeHigher-Order
Datalog

We present now the semantics for the version of higher-order we consider in this work
and which contains a negation constant. The first and only work to our knowledge that
extends the Well-Founded model of logic programming to a higher-order language set-
ting is [2]. This is the work used here to define the semantics for our (subset) language
and is strongly recommended that the reader studies that work for a deeper understand-
ing of the following definitions. In the context of this thesis, we require a constructive
way to produce the minimal now model, like the immediate consequence operator TP
in positive Datalog, in order to argue about the complexity of an algorithm that finds it.

3.2.1 The three-valued truth model
The boolean domain in contrast to the positive case is now three-valued. Predicates
can't have the meaning of monotone functions and the previously defined immediate

11
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consequence operator does not always lead to a fix-point. In this new setting, predicates
get the meaning of Fitting-monotone functions and a new partial order is introduced
alongside the classic one, by the relation ⪯ which represents information or Fitting
ordering as it is known.

Definition 3.7. LetD be a nonempty set. We define recursively for every type ρ the set
of possible values-meaning that elements of this type can take by JρKD. The recursive
definition is the following:

• [[o]]D = {false, true, undef}. The partial order≤o is the usual one induced by the
ordering false <o undef <o true; the partial order ⪯o is the one induced by the
ordering undef ≺o false and undef ≺o true.

• [[ι]]D = D. The partial order ≤ι is defined as d ≤ι d for all d ∈ D. The partial
order ⪯ι is also defined as d ⪯ι d for all d ∈ D.

• [[ι → π]]D = D → [[π]]D. The partial order ≤ι→π is defined as follows: for all
f, g ∈ [[ι → π]]D, f ≤ι→π g iff f(d) ≤π g(d) for all d ∈ D. The partial order
⪯ι→π is defined as follows: for all f, g ∈ [[ι→ π]]D, f ⪯ι→π g iff f(d) ⪯π g(d)
for all d ∈ D.

• [[π1 → π2]]D = [[[π1]]D
F.m−−−→ [[π2]]D], namely the ⪯- monotonic functions from

[[π1]]D to [[π2]]D. These are the functions that it holds for all d1, d2 ∈ [[π1]]D,
d1 ⪯π1

d2 then f(d1) ⪯π2
f(d2).

The partial order ≤π1→π2 is defined as follows: for all f, g ∈ [[π1 → π2]]D,
f ≤π1→π2 g iff f(d) ≤π2 g(d) for all d ∈ [[π1]]D. The partial order ⪯π1→π2 is
defined as follows: for all f, g ∈ [[π1 → π2]]D, f ⪯π1→π2

g iff f(d) ⪯π2
g(d)

for all d ∈ [[π1]]D.

Next, we have to define what an interpretation and a state are in this setting. The
definitions are similar to the positive case.

Definition 3.8. An interpretation I consists of:

1. a nonempty finite set D called the domain of I;

2. an assignment to each individual constant symbol c, of an element I(c) ∈ D;

3. an assignment to each predicate constant p : π, of an element I(p) ∈ [[π]]D;

Definition 3.9. LetD be a nonempty set. A state s overD is a function that assigns to
each argument variable V of type ρ to an element s(V) ∈ [[ρ]]D.

We define: true−1 = false, false−1 = true and undef−1 = undef. Finally, we
define the semantics of the expressions of our language. We also define under which
case an interpretation will be called a model of a program in the language.

Definition 3.10. Let D be a nonempty set, let I be an interpretation over D, and let s
be a state over D. The semantics of expressions are then defined as:

1. [[c]]s(I) = I(c), for every individual constant c

2. [[p]]s(I) = I(p), for every predicate constant p

3. [[V]]s(I) = s(V), for every argument variable R

12
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4. [[(E1E2)]]s(I) = [[E1]]s(I)([[E2]]s(I))

5. [[(E1≈E2)]]s(I) =
{

true, if [[E1]]s(I) = [[E2]]s(I)
false, otherwise

6. [[(∼E)]]s(I) = ([[E]]s(I))−1 in the case of a negated expression

Definition 3.11. Let P be a program and letM be an interpretation of P. ThenM will
be called amodel of P iff for every rule p V1 · · ·Vn ← L1∧· · ·∧Lm in P and for every
state s ∧

{JL1Ks(M), · · · , JLmKs(M)} ≤o Jp V1 · · ·VnKs(M)

3.2.2 Monotone-antimonotone and antimonotone-monotone func-
tions

Before proceeding with a way to find the minimal WFS model of a program we need
to present an alternative way to view Fitting-monotonic functions. Specifically, it is
shown that every Fitting-monotonic function can be equivalently represented as a pair of
functions (f1, f2), where f1 is monotone-antimonotone, f2 is antimonotone-monotone
and f1 ≤ f2. This section is required since the definition of the consequence operator
we need is constructed in such a way so as to operate on pairs of such functions instead
of their Fitting-monotonic function counterpart (see [2]).

Firstly, at the base one can view the truth values as pairs of truth values of the 2-
valued model where true corresponds to (true, true), false corresponds to (false, false),
and undef corresponds to (false, true). A function f can also equivalently be seen as
a function f ′ that returns pairs. We can then break f ′ into two components f1 and f2
where f1 returns the first element of the pair that f ′ returns while f2 returns the second.
The input of the function is also changed to be a pair of functions if the argument is of
higher order. The monotone-antimonotone and antimonotone-monotone requirements
ensure that the pair (f1, f2) retains the property of Fitting-monotonicity of the original
function f . These ideas can be generalized to arbitrary types. The formal details of this
equivalence are described below.

Definition 3.12. Let L1, L2 be sets and let≤ be a partial order on L1 ∪L2. We define:
L1 ⊗ L2 = {(x, y) ∈ L1 × L2 : x ≤ y}.

Definition 3.13. Let L1, L2 be sets and let ≤ be a partial order on L1 ∪ L2. Also,
let (A,≤A) be a partially ordered set. A function f : (L1 ⊗ L2) → A will be called
monotone-antimonotone (respectively antimonotone-monotone) if for all (x, y), (x′, y′) ∈
L1 ⊗ L2 with x ≤ x′ and y′ ≤ y, it holds that f(x, y) ≤A f(x′, y′) (respectively
f(x′, y′) ≤A f(x, y)). We denote by [(L1 ⊗ L2)

ma→ A] the set of functions that
are monotone-antimonotone and by [(L1 ⊗ L2)

am→ A] those that are antimonotone-
monotone.

With this new view, we will interpret the predicate types of our language as pairs of
monotone-antimonotone and antimonotone-monotone functions defined recursively as
follows.

Definition 3.14. Let D be a nonempty set. For every type τ we define the monotone-
antimonotone and the antimonotone-monotone meanings of the elements of type τ with
respect to D, denoted respectively by [[ρ]]

ma
D and [[ρ]]

am
D . At the same time we define a

partial order ≤τ between the elements of [[ρ]]ma
D ∪ [[ρ]]

am
D .

13
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• [[o]]
ma
D = [[o]]

am
D = {false, true}. The partial order ≤o is the usual one induced by

the ordering false ≤o true.

• [[ι]]
ma

= [[ι]]
am

= D. The partial order ≤ι is defined as d ≤ι d, for all d ∈ D.

• [[ι → π]]
ma
D = D → [[π]]

ma
D and [[ι → π]]

am
D = D → [[π]]

am
D . The partial order

≤ι→π is defined as follows: for all f, g ∈ [[ι → π]]
ma
D ∪ [[ι → π]]

am
D , f ≤ι→π g

iff f(d) ≤π g(d) for all d ∈ D.

• [[π1 → π2]]
ma
D = [([[π1]]

ma
D ⊗[[π1]]

am
D )

ma→ [[π2]]
ma
D ], and [[π1 → π2]]

am
D = [([[π1]]

ma
D ⊗

[[π1]]
am
D )

am→ [[π2]]
am
D ]. The relation≤π1→π2

is the partial order defined as follows:
for all f, g ∈ [[π1 → π2]]

ma
D ∪ [[π1 → π2]]

am
D , f ≤π1→π2

g iff f(d1, d2) ≤π2

g(d1, d2) for all (d1, d2) ∈ [[π1]]
ma
D ⊗ [[π1]]

am
D .

For every π, the bottom and top elements of [[π]]ma
D and [[π]]

am
D can be defined in

the obvious way. We present the following propositions where proofs for them can be
found in [2].

Proposition 3.2 ([2]). LetD be a nonempty set. For every predicate type π, ([[π]]ma
D ,≤π

) and ([[π]]am
D ,≤π) are complete lattices.

We extend, in a pointwise way, our orderings to apply to pairs.

Definition 3.15. LetD be a nonempty set and let π be a predicate type. We define the
relations ≤π and ⪯π , so that for all (x, y), (x′, y′) ∈ [[π]]

ma
D ⊗ [[π]]

am
D :

• (x, y) ≤π (x′, y′) iff x ≤π x′ and y ≤π y′.

• (x, y) ⪯π (x′, y′) iff x ≤π x′ and y′ ≤π y.

Proposition 3.3 ([2]). Let D be a nonempty set. For each predicate type π, [[π]]ma
D ⊗

[[π]]
am
D is a complete lattice with respect to ≤π and a chain-complete poset with respect

to ⪯π .

We will denote the first and second selection functions on pairs with the more com-
pact notation [·]1 and [·]2: given any pair (x, y), it is [(x, y)]1 = x and [(x, y)]2 = y.
Then we define functions that move us from one representation to the other.

Definition 3.16. Let D be a nonempty set. For every predicate type π, we define
recursively the functions τπ : [[π]]D → ([[π]]

ma
D ⊗ [[π]]

am
D ) and τ−1

π : ([[π]]
ma
D ⊗ [[π]]

am
D )→

[[π]]D, as follows.

• τo(false) = (false, false), τo(true) = (true, true), τo(undef) = (false, true)

• τι→π(f) = (λd.[τπ(f(d))]1, λd.[τπ(f(d))]2)

• τπ1→π2
(f) = (λ(d1, d2).[τπ2

(f(τ−1
π1

(d1, d2)))]1, λ(d1, d2).[τπ2
(f(τ−1

π1
(d1, d2)))]2)

and

• τ−1
o (false, false) = false, τ−1

o (true, true) = true, τ−1
o (false, true) = undef

• τ−1
ι→π(f1, f2) = λd.τ−1

π (f1(d), f2(d))

• τ−1
π1→π2

(f1, f2) = λd.τ−1
π2

(f1(τπ1
(d)), f2(τπ1

(d))).
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We can now establish the bijection between [[π]]D and [[π]]ma
D ⊗ [[π]]

am
D with the fol-

lowing propositions. Again proofs for these can be found in [2].

Proposition 3.4 ([2]). Let D be a nonempty set and let π be a predicate type. Then,
for every f, g ∈ [[π]]D and for every (f1, f2), (g1, g2) ∈ [[π]]

ma
D ⊗ [[π]]

am
D , the following

statements hold:

1. τπ(f) ∈ ([[π]]
ma
D ⊗ [[π]]

am
D ) and τ−1

π (f1, f2) ∈ [[π]]D.

2. If f ⪯π g then τπ(f) ⪯π τπ(g).

3. If f ≤π g then τπ(f) ≤π τπ(g).

4. If (f1, f2) ⪯π (g1, g2) then τ−1
π (f1, f2) ⪯π τ−1

π (g1, g2).

5. If (f1, f2) ≤π (g1, g2) then τ−1
π (f1, f2) ≤π τ−1

π (g1, g2).

Proposition 3.5 ([2]). Let D be a nonempty set and let π be a predicate type. Then,
for every f ∈ [[π]]D, τ−1

π (τπ(f)) = f , and for every (f1, f2) ∈ [[π]]
ma
D ⊗ [[π]]

am
D ,

τπ(τ
−1
π (f1, f2)) = (f1, f2).

3.2.3 Well-Founded Semantics
Wewill now fully define what a Herbrand interpretation is for the language and how the
bijection of Fittingmonotone elements and pairsmonotone-antimonotone and antimonotone-
monotone functions extends to interpretations. Every program has a distinguishedmin-
imal Herbrand model which can be obtained by an iterative procedure we will present
here by defining a new immediate consequence operator. The results are drawn from
[2] which extends the approximation fix-point theory found in [6].

Definition 3.17. Let P be a program. The Herbrand universe UP of P is the set of all
the individual constants that appear in the program.

No function symbols are allowed in our language.

Definition 3.18. A (three-valued) Herbrand interpretation I of a program P is an in-
terpretation such that:

1. the domain of I is the Herbrand universe UP of P;

2. for every individual constant c of P, I(c) = c;

3. for every predicate constant p : π of P, I(p) ∈ [[π]]UP
;

We denote the set of all three-valued Herbrand interpretations of a program P by
HP. A Herbrand state of P is a state whose underlying domain is UP. A Herbrand
model of P is a Herbrand interpretation that is a model of P.

We extend the truth and the information orderings to Herbrand interpretations:

Definition 3.19. Let P be a program. We define the partial orders ≤ and ⪯ on HP as
follows: for all I,J ∈ HP, I ≤ J (respectively, I ⪯ J ) iff for every predicate type
π and for every predicate constant p : π of P, I(p) ≤π J (p) (respectively, I(p) ⪯π

J (p)).

We will also need the following propositions which we present without proof here.
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Proposition 3.6 ([2]). Let P be a program. Then, (HP,≤) is a complete lattice and
(HP,⪯) is a chain complete poset.

Proposition 3.7 ([2]). Let P be a program, let I,J ∈ HP, and let s be a Herbrand
state of P. For every expression E, if I ⪯ J then [[E]]s(I) ⪯ [[E]]s(J ).

Nowwe will use the bijection established in section 3.2.1 to redefine interpretations
this way. More specifically, every three-valued Herbrand interpretation I of a program
P can be mapped by (an extension of) τ to a pair of interpretations (I, J) such that:

• for every individual constant c of P, I(c) = J(c) = c;

• for every predicate constant p : π of P, I(p) ∈ [[π]]
ma
UP

and J(p) ∈ [[π]]
am
UP
;

We will denote byHma
P the set of functions of the former type and byHam

P those of
the latter type. We can define a partial order≤ onHma

P ∪Ham
P . Similarly we can define

partial orders ≤ and ⪯ onHma
P ⊗Ham

P .

Proposition 3.8 ([2]). LetP be a program. Then, (Hma
P ,≤) and (Ham

P ,≤) are complete
lattices having the same ⊥ and ⊤ elements. Moreover, (Hma

P ⊗Ham
P ,≤) is a complete

lattice and (Hma
P ⊗Ham

P ,⪯) is a chain-complete poset.

The bijection betweenHP andHma
P ⊗Ham

P can be explained more formally as fol-
lows. Given I ∈ HP, we define τ(I) = (I, J), where for every predicate constant
p : π it holds I(p) = [τπ(I(p))]1 and J(p) = [τπ(I(p))]2. Conversely, given a pair
(I, J) ∈ Hma

P ⊗Ham
P , we define the three-valued Herbrand interpretation I as follows:

I(p) = τ−1
π (I(p), J(p)).

For (mostly computational) convenience in later algorithms, we will give an equiva-
lent definition for the semantics of expressions by using only themonotone-antimonotone
and the antimonotone-monotone meanings of the elements for our types directly and
without the use of τ function.

Definition 3.20. A pair Herbrand state s over UP is a function that assigns to each
argument variable V of type ρ to an element s(V) ∈ [[π]]

ma
UP
⊗ [[π]]

am
UP
.

We define: (true, true)−1 = (false, false), (false, true)−1 = (false, true) and fi-
nally (false, false)−1 = (true, true). For the semantics of the expressions we have:

Definition 3.21. Let (I, J) ∈ Hma
P ⊗ Ham

P be a pair of interpretations such that I =
τ−1(I, J) where I is a three-valued Herbrand interpretation of P. Also, let s be a
two-valued state over UP. The semantics of expressions then are defined recursively
as:

1. [[c]]s(I, J) = c, for every individual constant c

2. [[p]]s(I, J) = (I(p), J(p)), for every predicate constant

3. [[V]]s(I, J) = s(V), for every variable

4. [[(E1E2)]]s(I, J) = ([[[E1]]s(I, J)]1([[E2]]s(I, J)), [[[E1]]s(I, J)]2([[E2]]s(I, J)))

5. [[(E1≈E2)]]s(I, J) =

{
(true, true), if [[E1]]s(I, J) = [[E2]]s(I, J)
(false, false), otherwise

6. [[(∼E)]]s(I, J) = ([[E]]s(I, J))−1 for the negation of an expression
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We will use the brackets "[[", and"]]" when we refer to evaluation of an expression
under both three-valued and two-valued pair interpretations. It is always clear from the
context which one we refer to.

We have the following lemma that binds the two equivalent semantic views for
expressions.

Lemma 3.9. Let P be a program. Let s be a two-valued state over UP and s′ be a
three-valued state over UP such as for every variable V it holds:

s(V) = τ(s′(V))

Then it is:
[[E]]s(I, J) = τ([[E]]s′τ−1(I, J))

Proof. The proof of this lemma is an induction on the way expressions are constructed.
In the case of program constants and variables, it follows directly from the definitions.
For the case of equality and negation, it is also trivial to show. In the case of the appli-
cation rule, we will have to use the fact that

τ(f(g)) = ([τ(f)]1(τ(g)), [τ(f)]2(τ(g))) (1)

which can be derived from the third bullet of the definition 3.16. Specifically, we have
that

τ([[(E1E2)]]s′τ
−1(I, J))

def 3.10
= τ

(
[[(E1)]]s′τ

−1(I, J)([[E1]]s′τ
−1(I, J))

)
(1)
=

[
τ([[E1]]s′τ

−1(I, J))
]
1

(
τ([[E1]]s′τ

−1(I, J))
)
,[

τ([[E1]]s′τ
−1(I, J))

]
2

(
τ([[E1]]s′τ

−1(I, J))
)

i.h.
= [[[E1]]s(I, J)]1 ([[E2]]s(I, J)),

[[[E1]]s(I, J)]2 ([[E2]]s(I, J))

def 3.21
= [[(E1E2)]]s(I, J)

Notice that the function τ is an isomorphism between the set of Fitting-monotonic
functions on a domainD and the set of valid pairs ofmonotone-antimonotone, antimonotone-
monotone functions defined on the same domainD. In this work, in later chapters, we
work almost exclusively with the two-valued domain and function pairs.

We now define the three-valued and two-valued immediate consequence operators:

Definition 3.22. Let P be a program. The three-valued immediate consequence opera-
torΨP : HP → HP ofP is defined for every predicate constant p : ρ1 → · · · → ρn → o
and di ∈ JρiK as:

ΨP(I)(p)d1 · · · dn =∨
{
∧JLiKs[V1/d1,...,Vn/dn](I) | (p V1 · · ·Vn ← L1∧· · ·∧Lm) ∈ P, s a Herbrand state}

Definition 3.23. LetP be a program. The two-valued immediate consequence operator
TP : (Hma

P ⊗Ham
P )→ (Hma

P ⊗Ham
P ) of P is defined as:

TP(I, J) = τ(ΨP(τ
−1(I, J)))
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We will also give an equivalent definition for the two-valued consequence operator
that is easier to handle since it does not depend on ΨP. The equivalence of the two
definitions is a consequence of Lemma 3.9.

Definition 3.24. [Alternative] Let P be a program. The two-valued immediate conse-
quence operator TP : (Hma

P ⊗Ham
P )→ (Hma

P ⊗Ham
P ) ofP is defined for every predicate

constant p : ρ1 → · · · → ρn → o and di ∈ [[ρi]]
ma ⊗ [[ρi]]

am as:

Tp(I, J)(p)d1 · · · dn =∨
{
∧JLiKs[V1/d1,...,Vn/dn](I, J) | (p V1 · · ·Vn ← L1∧· · ·∧Lm) ∈ P, s a pair Herbrand state}

It follows thatTP is well-defined. Moreover, it is Fitting-monotonic as the following
lemma demonstrates:

Lemma 3.10 ([2]). Let P be a program and let (I1, J1), (I2, J2) ∈ Hma
P ⊗ Ham

P . If
(I1, J1) ⪯ (I2, J2) then TP(I1, J1) ⪯ TP(I2, J2).

The TP operator is used to construct the well-founded model of program P but in a
bit more involved process than what we used in the positive case.

Definition 3.25. LetP be a program and let (I, J) ∈ Hma
P ⊗Ham

P . Assume that (I, J) ⪯
TP(I, J). We define I↑ = lfp([TP(I, ·)]2) and J↓ = lfp([TP(·, J)]1), where by TP(·, J)
we denote the function f(x) = TP(x, J) and by TP(I, ·) the function g(x) = TP(I, x).

It can be shown that I↑ and J↓ are well-defined, and this is due to the crucial as-
sumption (I, J) ⪯ TP(I, J). Finally, we need to define one more operator, namely the
stable revision operator which we will denote as CTP .

Definition 3.26. Let P be a program. We define the function CTP which for every pair
(I, J) ∈ Hma

P ⊗Ham
P with (I, J) ⪯ TP(I, J), returns the pair (J↓, I↑):

CTP(I, J) = (J↓, I↑) = (lfp([TP(·, J)]1), lfp([TP(I, ·)]2))

The function CTP will be called the stable revision operator for TP.

The following theorem gives us the iterative process we seek:

Theorem 3.11 ([2]). Let P be a program. We define the following sequence of pairs of
interpretations:

(I0, J0) = (⊥,⊤)
(Iλ+1, Jλ+1) = CTP(Iλ, Jλ)

Then, the above sequence of pairs of interpretations is well-defined. Moreover, there
exists a a natural number δ such that (Iδ, Jδ) = CTP(Iδ, Jδ) and (Iδ, Jδ) ∈ Hma

P ⊗Ham
P .

In the following, we will denote withMP the interpretation τ−1(Iδ, Jδ). The fol-
lowing two lemmas demonstrate that the pre-fixpoints of TP correspond exactly to the
three-valued models of P.

Lemma 3.12 ([2]). Let P be a program. If (I, J) ∈ Hma
P ⊗Ham

P is a pre-fixpoint of TP
then τ−1(I, J) is a model of P.

Lemma 3.13 ([2]). LetM∈ HP be a model of P. Then, τ(M) is a pre-fixpoint of TP.

Finally, we have the following two lemmas:
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Theorem 3.14 ([2]). Let P be a program. Then,MP is a ≤-minimal model of P.
Theorem 3.15 ([2]). For every propositional program P,MP coincides with the well-
founded model of P.

To argue about complexitywe also need to give away to calculate both lfp([TP(·, Jn)]1)
and lfp([TP(In, ·)]2) through an iterative process.
For lfp([TP(·, Jn)]1) it is the least upper bound of the following sequence:

I1n+1 = [TP(⊥, Jn)]1
I2n+1 = [TP(I1n+1, Jn)]1

· · ·
Iα+1
n+1 = [TP(Iαn+1, Jn)]1

· · ·

and for lfp([TP(In, ·)]2) the least upper bound of the sequence:

J1
n+1 = [TP(In, I∗n)]2

J2
n+1 = [TP(In, J1

n+1)]2
· · ·

Jα+1
n+1 = [TP(In, Jα

n+1)]2
· · ·

where I∗n is the least interpretation in Ham
P such that In ≤ I∗n, namely the bottom

antimonotone-monotone element of the interval [In,⊤].
This is the core loop of the algorithm we will describe that produces the minimal

WFS model we will present in a following chapter. The sequence of the interpretations
in each loop are non-decreasing since it holds Ik+1

n+1 ≥ Ikn+1 and Jk+1
n+1 ≥ Jk

n+1 by
the properties of the operator. With the former assumptions, the sequences stop at finite
steps for our function-less language operating on finite domains of constants. They stop
in the sense that there will be a natural number N big enough such that IN+1

n+1 = INn+1

and JN+1
n+1 = JN

n+1 which means that the fix-point element belongs to the sequences.
To verify this one has to notice that since the base domain for type individual is finite
since it is the constants of the program and the input database, for every predicate type
that we have in the program the total number of elements we can create of such type
has to be finite as well. If no constant predicate of the program changes in one iteration
of an inner loop or after a step of the outer loop this signals convergence. Therefore,
the number of iterations of the nested loops must be finite.

3.3 An equivalence of WFS and Positive semantics on
positive programs

The following proposition restricts any ground atom from getting the value undef in the
WFSmodel when negation is not used in the program and also forces it to have the same
evaluation as if it was calculated under classic positive semantics. Notice however that
the Fitting-monotone functions that the higher-order predicate constants are assigned to
in the three-valued model are defined over a different domain than that of the monotone
functions of the two-valued model under positive semantics.

Proposition 3.16. Let P be a positive program of higher-order Datalog. LetMwfs be
the model under Well-founded semantics andMc be the model under classic positive
semantics. Then for every ground atom g it isMwfs(g) =Mc(g).
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PROGRAMS

We will only prove formally the proposition for any language fragmentH∃
k , k ≥ 1

since it is enough for the purpose of this thesis 1, essentially ignoring the possibility
of having partial application in the body of the rules. We will denote with [[ρ]]

wfs the
set of elements for type ρ under Well-founded model of semantics and [[ρ]]

c the set of
elements under classic positive semantics. First, we consider the following definitions.

Definition 3.27. A d ∈ [[ρ]]
wfs will be called well-behaved iff

• ρ = o

• ρ = ι

• ρ = ρ1 → ρ2 → . . . → ρt → o and for any set of indices S ⊆ {1, . . . , t} and
for any two elements d̄ = (d1, . . . , dt), d̄′ = (d′1, . . . , d

′
t) such that:

– if i ∈ S and ρi has a top element for the ordering ≤, then di is that top
element and d′i is an arbitrary element in [[ρi]]

wfs .

– if i /∈ S or ρi does not have a top element then di = d′i and di, d′i ∈ [[ρi]]
wfs

are well-behaved.

Then it must hold that d(d̄) ≥ d(d̄′).

Intuitively consider S to be the set of indices of some non-fixed arguments and the
rest of the fixed arguments are all well-behaved elements. Then the maximum truth
value for the head element when fully applied is taken by choosing every non-fixed
argument in S to be the top element of that type. This is analogous to the monotonicity
of the positive semantics case. Only that there, it holds for the whole domain for each
type and we can always swap an argument with a top element without reducing the
output value. In this case, we just require this to hold while the fixed arguments are all
well-behaved.

Definition 3.28. A dw ∈ [[ρ]]
wfs will be called an "I-extension" of a dc ∈ [[ρ]]

c iff

• ρ = ι and dw = dc

• ρ = o and [d]1 = dc

• ρ = ρ1 → ρ2, dw is well-behaved and ∀dwin, dcin where dwin ∈ [[ρ1]]
wfs, dcin ∈

[[ρ1]]
c and dwin is an I-extension of dcin we have that dw(dwin) is an I-extension of

dc(dcin).

Furthermore, we will call a pair interpretation (I, J) an I-extension of a positive inter-
pretation I iff for every constant predicate p, (I, J)(p) is an I-extension of I(p).

Lemma 3.17. Let P be a positive higher-order Datalog program in H∃
k , k ≥ 1 and

consider the following sequence that produces the WFS model of the program.

(I0, J0) = (⊥,⊤)
(I1, J1) = CTP(I0, J0)
. . .

Let I be the minimum model of the program P under positive semantics. Then (I1, J0)
is an I-extension of I.

1We use this result for the fragments of chapter 6.
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Proof. Let I01 , I11 , I21 , . . . be the sequence that converges to I1 by the algorithm of pro-
ducing the WFS model.

I11 = [TP(I01 =⊥, J0)]1
I21 = [TP(I11 , J0)]1

. . .

Also let I0, I1, I2, . . . be the convergence sequence of minimum model I under posi-
tive semantics.

I1 = T c
P(I0)

I2 = T c
P(I1)

. . .

where we denote as T c
P the immediate sequence operator for the positive semantics to

avoid confusion. We can show that for any k ≥ 0, (Ik1 , J0) is an I-extension of Ik. We
will use induction to prove it. For the base case, it is easy to show that (I01 , J0) is an
I-extension of I0.

Assume that it holds for k ≥ 0. Then we have that (Ik1 , J0) is well-behaved. We
show that (Ik+1

1 , J0) is also well-behaved. For any constant predicate p pick an arbi-
trary S ⊆ {1, . . . , t} and any d̄, d̄′ that fit the requirements of the definition 3.27. We
compare the two output values of (Ik+1

1 )(p) at d̄ and d̄′. Consider only one rule in the
program with p in its head and no existential zero-order variables in the body for an
easier analysis 2. The generalisation to many rules is straightforward. Let V1, . . . ,Vt

be the set of formal variables and Vt+1, . . . ,Vt′ the higher-order existential variables.
Then we have:

Ik+1
1 (p)d̄ =

∨
s

{∧
l

JElKs(Ik1 , J0) | s(Vi) = di, i ≤ t

}
(1)

Ik+1
1 (p)d̄′ =

∨
s

{∧
l

JElKs(Ik1 , J0) | s(Vi) = d′i, i ≤ t

}
(2)

where each El is an atom and
∨
s
is taken over every s such that if i ≤ t it is s(Vi) = di

in the first case and s(Vi) = d′i in the second case. Let so be the optimal state which
maximizes the right-hand side of (1). We get that

Ik+1(p)d̄ =
∧
l

JElKso(Ik1 , J0)
Because every di as well as the interpretation (Ik1 , J0) is well-behaved we can safely
argue that for every i ≥ t, so(Vi) can be set to the top element of the corresponding
type of the existential variableVi. Also let s′o be the state that maximizes the right-hand
side of (2) so we have that:

Ik+1(p)d̄′ =
∧
l

JElKs′o(Ik1 , J0)
It is easy by case analysis to show that for every atom El it holds

JElKso(Ik1 , J0) ≥ JElKs′o(Ik1 , J0)
2Instantiate all zero-order existential variables and produce multiple rules out of one original rule thus

producing an equivalent program.
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which proves that Ik+1(p)d̄ ≥ Ik+1(p)d̄′ and therefore

(Ik+1, J0)(p)d̄ ≥ (Ik+1, J0)(p)d̄′

Since this holds for any d̄, d̄′ that fit the requirements of the definition 3.27 we get that
(Ik+1, J0)(p) is well-behaved. Indeed we have:

• Ei =="(Vi . . .)" for i ∈ S or i > t then it trivially holds since so(Vi) is the top
element.

• Ei =="(Vi arg1 arg2 . . .)" for i /∈ S and i ≤ t. Then so(Vi) = s′o(Vi) = di
which is also a well-behaved element. It remains to notice that for every argu-
ment argj it is either JargjKso(Ik1 , J0) = JargjKs′o(Ik1 , J0) and is a well-behaved
element or JargjKso(Ik1 , J0) is the top element.

• Ei =="(qi . . .)" for a constant predicate q. Same as the previous case since
(Ik1 , J0)(q) is well-behaved.

Now it is left to show that for any d̄ = (d1, . . . , dt) and d̄′ = (d′1, . . . , d
′
t) where

each di is an I-extension of d′i we have that:

[(Ik+1
1 , J0)(p)d̄]1 = Ik+1(p)d̄′

which implies that (Ik+1
1 , J0)(p) is an I- extension of Ik+1(p). Assume again one rule

per predicate and no existential zero-order variables. In positive semantics, by using
the monotonicity condition, we can set every higher-order existential variable to the
corresponding top element. Then we have:

Ik+1(p)d̄′ =
∧
l

JElKsc(Ik)
where sc(Vi) = d′i for i ≤ t and sc(Vi) = ⊤c

ρi
for i > t.

Due to the well-behavedness condition we also have:

Ik+1(p)d̄ =
∧
l

JElKs(Ik1 , J0)
where where s(Vi) = di for i ≤ t and s(Vi) = ⊤ρi

for i > t since if every di is an
extension it is also well-behaved. Notice also that naturally the top element ⊤ρi

is an
I- extension of the top element ⊤c

ρi
. Finally, it must be that for each El

JElKs(Ik1 , J0) = JElKsc(Ik)
and therefore

Ik+1
1 (p)d̄ = Ik+1(p)d̄′

This fact follows by noticing by per case analysis that each expression evaluation JElKs(Ik1 , J0)
is an I- extension of the corresponding evaluation JElKsc(Ik). The critical step was the
ability to swap every higher-order existential variable to their top element in the truth
ordering in the calculation of Ik+1(p)d̄. Finally, in the limit we get

[(I1, J0)(p)d̄]1 = I(p)d̄′
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Now we proceed with the definition of J-extension.

Definition 3.29. A dw ∈ [[ρ]]
wfs will be called an "J-extension" of a dc ∈ [[ρ]]

c iff

• ρ = ι and dw = dc

• ρ = o and [d]2 = dc

• ρ = ρ1 → ρ2, dw is well-behaved and ∀dwin, dcin where dwin ∈ [[ρ1]]
wfs, dcin ∈

[[ρ1]]
c and dwin an J-extension of dcin we have that dw(dwin) is an J-extension of

dc(dcin).

Furthermore, we will call a pair interpretation (I, J) an J-extension of a positive inter-
pretation I iff for every constant predicate p, (I, J)(p) is an J-extension of I(p).

We have the corresponding Lemma to the previous one:

Lemma 3.18. Let P be a positive higher-order Datalog program in H∃
k , k ≥ 1 and

consider the sequence that produces the WFS model of the program.

(I0, J0) = (⊥,⊤)
(I1, J1) = CTP(I0, J0)
. . .

Let I be the model of P with positive semantics. Then (I0, J1) is an J-extension of I.

Proof. The proof is similar to Lemma 3.17. Notice that J0
1 = ⊥ = I0 which means

that (I0, J0
1 ) is a J-extension of I0.

Now we can show the main theorem of this section.

Theorem 3.19. Let P be a positive program that belongs inH∃
k and letMwfs = (I, J)

be the model under Well-Founded-Semantics andMc = I be the model under classic
positive semantics. Then for every ground atom g,Mwfs(g) = 3Mc(g)

Proof. Let g be a ground atom.

• By Lemma 3.17 we have that [[g]](I1, J0) is an I- extension of [[g]](I). Therefore,
if [[g]](I) = true then [[[g]](I1, J0)]1 = true and by the Fitting-monotonicity
condition [[[g]](I, J)]1 = true. This enforces [[g]](I, J) = (true, true).

• By Lemma 3.18 we have that [[g]](I0, J1) is a J- extension of [[g]](I). Therefore,
if [[g]](I) = false then [[[g]](I0, J1)]2 = false and by the Fitting-monotonicity
condition [[[g]](I, J)]2 = false. This enforces [[g]](I, J) = (false, false) .

3Mwfs(g) when viewed in the three-valued model is the same as the value ofMc(g).

23



3.4. DECISION PROBLEMS WITH DATALOG

3.4 Decision problems with Datalog
In this section, we will give a formal definition of deciding a language through Datalog.
This will establish the context in which we will see the expressive capabilities of each
fragment of higher-order Datalog we consider.

3.4.1 Relevant complexity classes
We will need the following family of functions [9]:

exp0(x) = x
expn+1(x) = 2expn(x)

For all k ≥ 0, the complexity class k − EXPTIME is defined as follows:

k − EXPTIME =
∪
r∈N

TIME(expk(nr))

For the limit of k going to ∞ the class is called ELEMENTARY. Notice also that 0 −
EXPTIME is PTIME.

3.4.2 Decision problems and propositional predicates
Let Σ be an alphabet and without loss of generality, we fix Σ = {a, b}. We will as-
sume that finite strings over Σ will always be encoded by an input relation such as the
following which corresponds to the string "abba".

input 0 a 1.
input 1 b 2.
input 2 b 3.
input 3 a end.

More generally for an input string of n > 0 length, we can derive an input relation as we
did above. There will be two constants "a" and "b" and another n constants (presented
as "0", "1" etc) as well as the constant "end". Notice how the input is given ordered.
All constant individual elements apart from "a", "b", and "end" are ordered by an order
implicitly given by the input relation. For the input of length n = 0, namely for the
empty string, we use:

input 0 empty end.

where empty is a constant that denotes the empty string.
Given string w ∈ Σ∗, we will write Dw to denote the set of facts that represent w

through the input relation. This encoding of input strings is usually also referred to as
the ordered database assumption.

Next, we will need a way for Datalog to decide if an input of the mentioned form
is accepted or not. We will assume that every program defines a propositional accept
predicate which, intuitively, signals whether a particular input string is accepted by our
program.

Definition 3.30. Let Σ be an alphabet. We will say that a Higher-Order Datalog pro-
gram P decides a language L ⊆ Σ∗ if for any w ∈ Σ∗, w ∈ L iff accept is true in the
Well-Founded semantics model of P ∪ Dw.
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Definition 3.31. We will say that a fragment Q of Higher-Order Datalog captures the
complexity class C, if the set of formal languages decided by programs that belong in
Q coincides with C.
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CHAPTER4
DATALOG WITH PARTIAL APPLICATION

In this chapter, we studyDatalog fragmentswhere partial application is allowed. Namely,
the fragments that belong to the first row of the table.

partial
application negation

h.o.
existential
variables

order 1 order 2 order 3 · · · order∞

YES X X PTIME EXPTIME 2−EXPTIME · · · ELEM.

This row essentially represents four fragment sets, depending on the selection of
'YES' and 'NO' for the X's. However, we will demonstrate that allowing partial appli-
cation alone is sufficient to maintain the hierarchy, regardless of the other two choices.
For any k ≥ 1, each of these four fragments is equivalent in expressiveness. To maintain
brevity, we will not delve deeply into the separate analysis of these fragment sets since
their distinctions ultimately do not hold significance. Toward the end of this chapter,
we will provide a high-level description of a Turing machine (an algorithm) capable of
performing the bottom-up calculation to find the WFS model of a program.

4.1 Theorems
First, we consider the following theorem.

Theorem 4.1 ([1]). For every k ≥ 1, the set of k-order positive Datalog programs
captures (k − 1)− EXPTIME.

Notice that the simulation of a Turing Machine that decides L in [1] is given by a
datalog program that ultimately belongs to every fragment considered in this section.
That is because neither negation nor existential variables are used. This observation
about the simulation gives us the following corollary by reusing it for our purpose.

Corollary 4.2. For any k ≥ 1 each language fragment ofHλ
k ,H

λ,∃
k ,Hλ,¬

k andHλ,∃,¬
k

can express at least (k − 1)− EXPTIME.

What remains in order to prove the expressiveness is to give an upper bound of it.
That is by bounding the running time we need to implement such versions of Datalog.
We have the following lemma.
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Lemma 4.3. Let P be a k-order Datalog program with program order k ≥ 1. Then
there exists a Turing machine that for any set of input database Din, given Din as
encoded input 1, it can calculate the WFS modelMP∪Din

within time O(expk−1(n
q)),

where n is the size of the representation of Din and q is a constant that depends only
on the program P.

Proof. The existence of said Turing Machine and an argument of its running time-
complexity are shown in section 4.2 of this chapter. This machine is tailored to perform
the bottom-up calculation under WFS in contrast to the machine given in [1] which
works for positive semantics and a language without the negation operator.

This Lemma gives us the following corollary result.

Corollary 4.4. Let P be a higher-order Datalog program with program order k ≥
1 that decides L. There exists a Turing machine that decides L and runs in time
O(expk−1(n

q)), where n is the length of the input string and q is a constant that de-
pends only on P.

Proof. This stems from 4.3 as follows. Let P be a program higher-order Datalog pro-
gram that decides L. There exists a Turing machine that for every string w and cor-
responding input relation Dw finds the model of P ∪ Dw. Furthermore, the machine
does that in time O(expk−1(n

q)) where n = |Dw| and by the assumed form of Dw we
know that |Dw| is proportional to the size of string w. A machine that transforms w
to an encoded Dw, followed by a machine that finds the model of P ∪ Dw and finally
a machine that reads and accepts based on the value of predicate "accept", give us the
Turing Machine that decides L in the required running time.

4.2 Calculating the WFS model of a higher-order Dat-
alog program

In this section, we will describe a Turing Machine with multiple tapes that is created
from a fixed Datalog program P and which given any set of input first-order relations
Din, calculates the WFS model of P ∪ Din. Furthermore, with the added assumption
that the predicates ofP are of order up to k+1 and the variables of order up to k, we will
argue that the running time of said machine is O(expk(poly(N))), where N = |Din|
and with poly(N) we will denote some fixed and controlled by P polynomial of N .
For reasons of brevity, we will hide constants under poly(N) and will avoid describing
low-level operations such as parsing and decoding the input that obviously don't affect
the final run-time complexity.

The general idea and intuition behind the bound in the run-time stems from the
following observations.

• We can view predicates as functions of some arity that take as input other func-
tions andwhen fully applied they output an element from the set {false, undef, true}.
For the purpose of this algorith, we will view predicates in the equivalent way
of pairs of monotone-antimonotone, antimonotone-monotone functions. Each
function of such pair accepts as input other function pairs and when fully applied
it outputs an element from {false, true}. Therefore each such a function can be
represented in memory as a series of entries, one for each possible combination

1under some encoding that can be produced in polynomial time w.r.t. |Din|.
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of elements that the arguments can take. Each entry ends with a truth value which
is the evaluation of the fully applied function. Partial application is handled by
creating a new function representation by the old one after fixing some of the
initial arguments and collecting a new set of entries.

• For every type ρ of a variable where order(ρ) = j, the cardinality of the set [[ρ]]
is bounded byO(expj(poly(N))) and it is alsoj ≤ k. Therefore it is bounded by
O(expk(poly(N))). This bounds the set we draw from to instantiate the variables
of a rule and intuitively is exactly what bounds the expressiveness. For example,
a first-order predicate that handles arguments of type individual has a represen-
tation of polynomial size with respect to N , which is produced by the cartesian
product of the sets that correspond to its multiple arguments. Furthermore, the
different functions/predicates of such type are exponential (one of three choices
for the truth values without considering Fitting-monotonicity restriction). Obvi-
ously, this argument is preserved when viewing the meanings of predicates as
pairs of functions.

• For each constant predicate p with order up to k + 1 we create its meaning or in
other words the function (pair of functions) it is assigned to at the current step of
the algorithm. Such a function's size can reach up to O(expk(poly(N))) entries
again by considering the cardinalities of the sets for the arguments and taking
the cartesian product. Notice how we do not need to create all possible such
meanings for these types since they never appear as arguments.

• Any polynomial algorithm that acts on O(expk(poly(N))) number of elements
will have a final complexity (w.r.t N ) of O(expk(poly(N))). We will hide the
change of the constants in the resulting polynomial of N using the "poly()" no-
tation. This is a straightforward property of the function expk(x).

• The immediate consequence operators can run at most a number of steps propor-
tional to the size that the functions of the constant predicates. That is because the
operators produce a monotonically increasing sequence or Fitting-monotonically
in the case of CTP . No change in the representation of all constant predicates af-
ter an iteration signals the convergence of the loop. In other words, after each
iteration at least one entry at the function representation of at least one predicate
must change in an increasing fashion.

We will divide the algorithm into several steps. At the start of the execution assume
that the machine has parsed the input Din as a string and has augmented the set of rules
of P with the facts in Din. This can obviously be done in polynomial time to |Din| and
is omitted. As stated we will not delve into details about how such a representation is
done in the machine since it does not alter the complexity. We divide the algorithm
in steps which we describe and argue that each one of them can be performed within
O(expk(poly(N))).

4.2.1 Calculate the set of possible elements for each type
We will appoint a separate machine tape for each possible type that an expression that
appears in P. This includes every possible sub-expression. Obviously, there is a fixed
number of such expressions and it depends only on the fixed program P. We will also
not consider expressions of type o since they can't appear as arguments. Finally, we
also appoint a separate tape for each constant predicate in P.
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For every type ρ and order(ρ) = j and j ≤ k that appears in an expression in P,
we will calculate and write in its appointed tape the following.

• The set [[ρ]]ma ofmonotone-antimonote functions for this type. This is represented
in memory as a series of elements each one represented by a function identifier
(an increasing integer number) followed by the actual function representation as
described below. We will denote the identifier of the function f for the type ρ as
idρ(f).

• The set [[ρ]]am of antimonotone-monotone functions for this type. Solely for con-
venience, we will label the new functions reusing the same counter we used for
the [[ρ]]ma set. This results in identifiers bigger than those corresponding to the
previous set.

• The set of tuples of function identifiers (idρ(a), idρ(b)) such that a, b ∈ [[ρ]]
ma ∪

[[ρ]]
am and a ≤ b, fully describing the partial order of the elements of the set

[[ρ]]
ma ∪ [[ρ]]

am. We will assume that each tuple (idρ(a), idρ(b)) has a flag next
to it telling us whether it also holds a ∈ [[ρ]]

ma and b ∈ [[ρ]]
am, thus making it a

valid element of [[ρ]]ma ⊗ [[ρ]]
am. It is convenient to store the partial order for the

whole [[ρ]]ma ∪ [[ρ]]
am domain as will be seen later.

Given a type ρ = ρ1 → · · · → ρt → o of arity t we have that ∀i ∈ {1, · · · , t}
order(ρi) = j′ < j = order(ρ). We will assume that the tape of each ρi is already
filled out which means that we have already calculated the set of elements and their
ordering for every sub-type of ρ. This dictates an order of calculation for each type in
a recursive fashion defined by the way each type is constructed.

We will also operate under the assumption that the total size of the tape for ρi is
bounded by O(expj′(poly(N))) bits and given the bound in the order for the subtypes,
bounded by expj−1(poly(N)) bits. We show that if this bound (which is controlled
by the type's order) holds for each sub-type's tape then it also holds for the tape of the
constructed type ρ. It is easy to verify that the case holds for the base type case of ι.
Specifically, the number of elements of this type is bounded by the size of the Hebrand
Universe which is bounded by N = |Din| plus a fixed number for the set of constants
appearing in P. In other words, the cardinality of the set and of the trivial ordering is
proportional to N .

Calculate the elements of [[ρ]]ma

We have that (ma→ is right associative)

[[ρ]]
ma

= [([[ρ1]]
ma ⊗ [[ρ1]]

am
)

ma→ ([[ρ2]]
ma ⊗ [[ρ2]]

am
)

ma→ · · · ma→ o]

We can ignore the case of ρi being the type ι to simplify the analysis since it doesn't
affect the following arguments. We can work on a separate tape for each set [[ρi]]ma ⊗
[[ρi]]

am.
For each set [[ρi]]ma ⊗ [[ρi]]

am we collect each possible element (ai, a′i) that belongs
to it as a tuple of function identifiers (idρi

(ai), idρi
(a′i)) from the tape appointed to

the type ρi. That means we collect every (idρi(ai), idρi(a
′
i)) where ai ∈ [[ρi]]

ma and
a′i ∈ [[ρi]]

am and also ai ≤ a′i. This takes time polynomial to the size of the tape for ρi
so given the bound in the order of ρi it is O(poly(expj−1(poly(N)))) or equivalently
O(expj−1(poly(N))).
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We proceed by creating every possible function that evaluates to {false, true}. To
create one such function we use the cartesian product of the sets collected above to
create every possible instantiation of the arguments.

([[ρ1]]
ma ⊗ [[ρ1]]

am
)× ([[ρ2]]

ma ⊗ [[ρ2]]
am
)× · · · × ([[ρt]]

ma ⊗ [[ρt]]
am
)

Since we have retrieved all elements that can be slotted as arguments then it is a matter
of combining them in every possible way, which can be done within polynomial time
w.r.t. the total size of the elements. Assume that the arity for the type ρ is t. Then for
each such instantiation such as

(idρ1
(a1), idρ1

(a′1)), (idρ2
(a2), idρ2

(a′2)), · · · , (idρt
(at), idρt

(a′t))

we write down the entry

(idρ1(a1), idρ1(a
′
1)), · · · , (idρt(at), idρt(a

′
t)), T

where T ∈ {false, true}. The number of possible different instantiations of the argu-
ments is the product of the cardinalities of the sets of elements for each subtype ρi there-
fore bounded by [expj−1(poly(N))]t. This bound can be written as expj−1(poly(N))
by increasing the constants of the polynomial of N . The time needed to write them
down for one function is also polynomial to the size of this product. This leads to a
running time of

O(poly([expj−1(poly(N))]t)) ∼ O(expj−1(poly(N)))

Notice that the size of its function written is also bounded by O(expj−1(poly(N)))
since any identifier for a subtype has size at most O(expj−2(poly(N))) since it is al-
ways logarithmic to the number of possible functions for that type.

We proceed with doing this for every possible function. We can use a separate
tape to store the set of truth values appointed to the entries as a binary string and thus
generate them in increasing order so we do not produce the same function. The number
of possible such functions is:

2|[[ρ1]]
ma

⊗[[ρ1]]
am

|×|[[ρ2]]
ma

⊗[[ρ2]]
am

|×···×|[[ρt]]
ma

⊗[[ρt]]
am

| < 2exp
t
j−1(poly(N)) ∼ expj(poly(N))

Writing all of them down takes time at most

O(expj(poly(N)))× expj−1(poly(N)) ∼ O(expj(poly(N)))

and so is the space we need since each function takes space O(expj−1(poly(N))). As
we see the current size of the tape we filled so far is totally dominated by the number
of possible functions and each function size is irrelevant to the space complexity bound
since it is exponentially lower.

Now that we have written every possible function in the form described we need
to filter those functions that are actually monotone-antimonotone. Remember that we
already have the ordering for each sub-type in its tape. For every function written before
we perform the following test.
For every entry in the function's representation:

(idρ1
(a1), idρ1

(a′1)), · · · , (idρt
(at), idρt

(a′t)), T
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we check it against every other entry in it

(idρ1
(b1), idρ1

(b′1)), · · · , (idρt
(bt), idρt

(b′t)), T
′

If ∀i ∈ {1, · · · , t} it is ai ≤ bi, a′i ≥ b′i and also it is T ′ < T (false < true) the test fails
and we skip to the next function. If the test passes for all combinations of entries we
assign an identifier for the function (increasing positive integer number) since it repre-
sents an actual monotone-antimonotone function and we save both the function and the
identifier on the tape for the type ρ. If the test fails for at least one pair of entries then we
move to the next function. The number of tuple pairs we will compare is bounded by
the square of the size of the function so [expj−1(poly(N))]2 ∼ expj−1(poly(N)) and
we can collect them in time proportional to the size of the function's representation. For
every pair of entries, each point-wise comparison of the elements requires parsing the
corresponding tape of the sub-type to check if said pair is included in the partial ordering
by searching for it in the appropriate tape. This takes time at mostO(expj−1(poly(N)))
when implemented in the simplest way possible. Thus the total time of testing per func-
tion isO(exp2j−1(poly(N)))×O(expj−1(poly(N))) ∼ O(expj−1(poly(N))) and do-
ing it for all expj(poly(N)) at most functions gives total running time:

expj(poly(N))×O(expj−1(poly(N))) ∼ O(expj(poly(N)))

Calculate the elements of [[ρ]]am

We have that

[[ρ]]
am

= [([[ρ1]]
ma ⊗ [[ρ1]]

am
)

am→ ([[ρ2]]
ma ⊗ [[ρ2]]

am
)

am→ · · · am→ o]

The process is completely analogous to the one we used to create the set [[ρ]]ma and so
is the running time. The identifier we give each function picks up from where we were
left when calculating the [[ρ]]ma set. We need to change the test to accommodate testing
if a function is antimonotone-monotone now.
For every entry in the function's representation:

(idρ1
(a1), idρ1

(a′1)), · · · , (idρt
(at), idρt

(a′t)), T

check it against every other entry:

(idρ1
(b1), idρ1

(b′1)), · · · , (idρt
(bt), idρt

(b′t)), T
′

If ∀i ∈ {1, · · · , t} it is ai ≤ bi, a′i ≥ b′i and also it is T < T ′ the test fails and we skip
to the next function.

Create the partial ordering of [[ρ]]ma ∪ [[ρ]]
am

The tape for type ρ should at this point already contain each element of [[ρ]]ma ∪ [[ρ]]am.
The ordering will be represented as a set of tuples (idρ(f), idρ(g)) where f ≤ g.

For that we need to compare each pair of functions f, g ∈ [[ρ]]
ma ∪ [[ρ]]

am. Given a
pair of f, g for every entry in the representation of f

(idρ1(a1), idρ1(a
′
1)), · · · , (idρt(at), idρt(a

′
t)), Tfa

we check it against the corresponding entry (same arguments) in g

(idρ1
(a1), idρ1

(a′1)), · · · , (idρt
(at), idρt

(a′t)), Tga
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If it holds Tfa ≤ Tfb for all entry pairs then we add (idρ(f), idρ(g)) to the end of the
tape.

The number of functionswe have to compare to each other is bounded by the product
of the elements that passed the previous filtering. They are at most [expj(poly(N))]2

pairs and we can collect them at a proportional to their number, running time. Each pair
comparison takes time bounded by a polynomial of the size of the functions which is at
most expj−1(poly(N)). This gives us a total running time to create the ordering of

O([expj(poly(N))]2) + [expj(poly(N))]2 ×O(poly(expj−1(poly(N))))

which once again is equivalent to

O(expj(poly(N)))

for a polynomial ofN of an appropriately high enough order. Marking the pairs (idρ(f), idρ(g))
in the ordering where it also holds that f ∈ [[ρ]]

ma and g ∈ [[ρ]]
am can be done during

the previous process with no relevant addition to the running time.

4.2.2 Initialization of the constant predicates

For every constant predicate p with type ρ and order at most k + 1 on a dedicated tape
for the said predicate, we create its initial meaning which is a pair of functions (fp, gp)
where fp ∈ [[ρ]]

ma and gp ∈ [[ρ]]
am. As per usual the type's ρπ elements are pairs of

functions of the form:

[[ρπ]]
ma

= [([[ρ1]]
ma ⊗ [[ρ1]]

am
)

ma→ ([[ρ2]]
ma ⊗ [[ρ2]]

am
)

ma→ · · · ma→ o]

and:
[[ρπ]]

am
= [([[ρ1]]

ma ⊗ [[ρ1]]
am
)

am→ ([[ρ2]]
ma ⊗ [[ρ2]]

am
)

am→ · · · am→ o]

We repeat the previous process for the type ρp with a crucial difference. We do not
create every possible function by allowing the truth values in the entries to be of of any
choice. We only create exactly two elements.

• We set fp to be the bottom element for the typewhich is amonotone-antimonotone
function where each entry ends with false in its representation.

• We set gp to be the top element which is an antimonotone-monotone function
where each entry ends with true in its representation.

With a similar analysis as before and given that the size of the functions created for
any constant predicate of order at most k + 1 is at most O(expk(poly(N))), we get a
total running time for all predicates at O(expk(poly(N))). There is a fixed number of
constant predicates 2 and we create two elements for each one of them. Notice that if
we were to instantiate every possible element of a type of order k+1 we would require
time of O(expk+1(poly(N))).

2In the case where we allow new predicate definitions in the input database Din we can still argue that
there are polynomially many of them w.r.t the total combined size of the program and the database.
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4.2.3 Perform the bottom-up iterative procedure
We have for the stable revision operator that

CTP(I, J) = (J↓, I↑) = (lfp([TP(·, J)]1), lfp([TP(I, ·)]2))

and we get the sequence

(I0, J0) = (⊥,⊤)
(Iλ+1, Jλ+1) = CTP(Iλ, Jλ)

For our functionless language, we can assume that there is a point in the sequence where
(In, Jn) = CTP(In, Jn). We will describe the process of applying CTP to a (In, Jn) and
argue about the running time of each application step.

a) Calculate In+1 = lfp([TP(·, Jn)]1):

Assume that we have already (In, Jn) and we need to calculate In+1. We have to
calculate the following sequence.

I1n+1 = [TP(⊥, Jn)]1
I2n+1 = [TP(I1n+1, Jn)]1
I3n+1 = [TP(I2n+1, Jn)]1

· · ·

For each constant predicate p, we create a copy of its current meaning (In(p), Jn(p))
for safekeeping before we proceed. Remember that after we produce In+1 we still need
In to create Jn+1. We also create another copy of every In(p) which we initialize to
the bottom element by setting the truth values of the entries to false. In other words, we
create I0n+1(p) before we initiate the main loop.

We then describe the general iteration step and its complexity:

Ik+1
n+1 = [TP(Ikn+1, Jn)]1

For the immediate two-valued operator TP we have:

Tp(I, J)(p)d1 · · · dt =∨
{
∧JLiKs[V1/d1,...,Vn/dt](I, J) | (p V1 · · ·Vt ← L1∧· · ·∧Lm) ∈ P, s a pair Herbrand state}

We create the following loop to implement this single step of applying the operator.
For each constant p make a copy of Ikn+1(p) to alter.
For each constant predicate p:
For every rule in P with p on the head such as:

p V1 · · ·Vt ← L1 ∧ · · · ∧ Lm

and
Li =

{
Ei

∼Ei

with {E1, · · · ,Em} atoms and V1, · · · , Vt′ , t′ ≥ t being the set of the different vari-
ables appearing in the rule (formal or existential) with corresponding types ρ1, · · · , ρt′ :
For every possible instantiation for the set of variables so as each variable Vi is as-
signed to a tuple of function identifiers (idρi(vi), idρi(v

′
i)) where (vi, v′i) ∈ [[ρi]]

ma ⊗
[[ρi]]

am do:
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• For every constant predicate q in the body of the rule with order(q) ≤ k match
the current meaning of q against the list of functions in the tape of ρq to find a
matching pair of identifiers of an element in [[ρq]]. If order(q) = k + 1 assign
a fixed set of special identifiers which signal that we will find the corresponding
pair of functions in the tape of q (remember we didn't create all instantiations for
types with order k+1). This is done so we can treat constant predicates appearing
in argument positions in a unifying way with what we do for the instantiated
variables.

• For every Ei calculate its value under the current instantiation of the variables.
We allow partial application so the syntactical tree of Ei can have arbitrary height
but that is purely program dependent. In general, we can calculate the value of
an expressions recursively as follows:

– For a fully applied expression of the form "e a1 . . . at" assume each ar-
gument expression ai is already calculated which means we have a pair of
function identifiers for every ai as (li, ri). We also have a pair of identifiers
(f, g) for e. We use f to locate the monotone-antimonotone function in the
appropriate tape and after reaching its function representation we use the
pairs-identifiers of the arguments to locate the corresponding entry and re-
trieve the truth value (false, true). This essentially calculates fully applied
f(l1, r1) . . . (lt, rt). We do the same for f2 and then we combine the two
results to get

(f (l1, r1) . . . (lt, rt), g (l1, r1) . . . (lt, rt))

We can then convert the result to the 3-valued domain using the function τ
for type o.

τ−1
o (false, false) = false, τ−1

o (true, true) = true, τ−1
o (false, true) = undef

– For a partially applied expression "e a1 . . . at′" with t′ < t = arity(e)
instead of a pair of truth values we have to return a pair of function identi-
fiers. We again assume each expression ai is already calculated (recursive
approach) so we have a pair of function identifiers (li, ri) for every ai and
also a pair of identifiers (f, g) for e.
We use f to locate the monotone-antimonotone function in the appropriate
tape. Then using the identifiers for the first t′ arguments we collect a set
of all the entries in f that start with those elements. Deleting the fixed first
t′ from each entry in the set gives us a new function representation. We
use the type of e a1 . . . at′ to parse the appropriate tape and match the new
function representation we found to an identifier f ′. Since e a1 . . . at′ is an
expression of the program we know that we have created all elements of
this type in the earlier stages. We then use g to locate the antimonotone-
monotone function in the appropriate tape. By a similar process, we get the
second function identifier g′.
We return the identifiers pair (f ′, g′).

– For an expression of the form (E1 ≈ E2) since our language lack functions,
each one of E1,E2 is either a variable or a constant of type ι. The mean-
ing of the expression under current instantiation is the same regardless of
interpretations and can be calculated easily. We can then convert the result
again to the 3-valued domain using the function τ for type o.
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• Calculate every Li under this instantiation by using Ei and the inverse rules
true−1 = false, false−1 = true and undef−1 = undef. We choose to convert
the final result in the 3-valued truth domain for convenience but it is not neces-
sary.

• Calculate and return Tnew = [τo(
∧

Li)]1 by taking the minimum truth value
(false < undef < true) from those calculated in the previous step for each Li,
transforming it with τ function and projecting the first element.

• Go at the copy of I ′i(p) and locate the entry

(idρ1
(v1), idρ1

(v′1)), · · · , (idρVt
(vt), idρVt

(v′t)), Told

which match for the current instantiation (that is s(Vi) = (idρi
(vi), idρi

(v′i))).
If Tnew > Told then replace the truth value with Tnew. This implements the

∨
over all rules as we consider them one by one.

After this nested loop is done, for every constant predicate p set Ik+1
n+1(p) to be the copy

of Ikn+1(p) we have been altering.

For the running time of one step, we can argue about the following. The number
of constant predicates is fixed and depends on P. The number of rules is O(N) if
we take into account the variable number of facts that appear in Din. The number of
possible combinations we have for an instantiation of any of the variablesV1, · · · ,Vt is
bounded by expk(poly(N)) and the time to collect them is polynomial to that, therefore

O(poly([expk(poly(N))]t))

The time it takes to calculate an expression like e a1 . . . at′ given the size of the func-
tions we manipulate and the fact we implement polynomial algorithms in regard to their
size, is also bounded by O(expk(poly(N))). There is also a fixed number of such ex-
pressions we need to calculate to find each atom Ei and therefore a fixed total number
of them per rule. Finally the act of updating a truth value in a copy of Ikn+1(p) takes
also time bounded by O(expk(poly(N))). Putting all this together, the total running
time of the loop is

O(poly([expk(poly(N))]m))+O(N)×O([expk(poly(N))]m)×(O(expk(poly(N)))

∼ O(expk(poly(N))

for a large enough fixed polynomial of N.
For the total running time of finding In+1 = lfp([TP(·, Jn)]1) we need to argue

about how many steps we will need to take till convergence. Each step as shown above
takes O(expk(poly(N)) time. The sequence I0n+1, I

1
n+1, I

2
n+1, · · · is increasing. That

means that each time we perform a step for at least one constant predicate p it must
hold that Ik+1

n+1(p) > Ikn+1(p) or equivalently at least one entry in the representation of
the current altered Ik+1

n+1(p) has its truth value increased compared to the same entry in
Ikn+1(p). Taking into account that the number of constant predicates is fixed, let's say
C, and that the bound of their function representation is expk(poly(N)) entries we get
that at C × expk(poly(N)) ∼ O(expk(poly(N))) steps every one of them must have
stopped increasing. So at most O(expk(poly(N))) steps we have converged. Thus the
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total running time of finding In+1 = lfp([TP(·, Jn)]1) is the number of steps× running
time of one step.

O(expk(poly(N))×O(expk(poly(N)) ∼ O(expk(poly(N))

Once again for a polynomial of N of high enough order, the time bound for the whole
process is O(expk(poly(N)) which means we are still within k − EXPTIME class.

b) Calculate Jn+1 = lfp([TP(In, ·)]2):

The fixed point is now given by the following sequence

J1
n+1 = [TP(I, I∗n)]2

J2
n+1 = [TP(I, J1

n+1]2
· · ·

Jα+1
n+1 = [TP(I, Jα

n+1)]2
· · ·

The procedure of finding it out is the same as described for finding In+1 = lfp([TP(·, Jn)]1)
and gives the same running time. For this reason, it will be omitted. There is a differ-
ence in the initialization that we have to consider. In the sequence, we take as a starting
point

J0
n+1 = I∗n

where I∗n is the least interpretation belonging in Ham
P , such that I∗n ≥ In. For every

constant predicate p we need to calculate I∗(p) as the least antimonotone-monotone
function such that I∗(p) > In(p). This can be done in O(expk(poly(N)) by simply
applying the following iterative procedure. For every constant predicate p of arity t.

• Set initially I∗n(p) = In(p)

• For every pair of entries in I∗n(p)

(idρ1
(a1), idρ1

(a′1)), · · · , (idρt
(at), idρt

(a′t)), T1

(idρ1
(b1), idρ1

(b′1)), · · · , (idρt
(bt), idρt

(b′t)), T2

If ∀i holds ai ≤ bi and a′i ≥ b′i and also T1 < T2 then change T1 to T2 in the
first entry.

With similar arguments and using the space-bound in the representation of the functions,
we get a running time of O(expk(poly(N)) for this procedure. The calculation of the
fixed point is then done in the same way as before.

Final complexity of bottom-up procedure

We have shown that the step

(In+1, Jn+1) = CTP(In, Jn)

takes time O(expk(poly(N)) for a fixed polynomial of N . We need to argue about
how many iterations of performing this "outer" step we will need to apply till the in-
terpretations pair converges to a fix-point. The bound follows from the fact that CTP is
Fitting-monotonic for the pairs (In, Jn) we consider. It specifically holds that:

(In, Jn) ⪯ (In+1, Jn+1)
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That means after each step for at least one constant predicate p it is (In, Jn)(p) ⪯
(In+1, Jn+1)(p). By the bound O(expk(poly(N)) in the representation of each con-
stant predicate and the fact that the number of them is a fixed number we have that we
will apply CTP at most expk(poly(N)) times. Taking into account the complexity of
performing one step we have a total running time:

expk(poly(N))×O(expk(poly(N))) ∼ O(expk(poly(N)))

Once again for a polynomial ofN of high enough order, we are still within k−EXPTIME
class for the whole calculation.
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CHAPTER5
NEGATIVE DATALOG WITHOUT PARTIAL

APPLICATION

In this chapter, we prove the second row of the table in 1. This row contains the results
for the language fragmentsH¬,∃

k for k = 1, 2, . . ..

partial
application negation

h.o.
existential
variables

order 1 order 2 order 3 · · · order∞

NO YES YES PTIME EXPTIME 2−EXPTIME · · · ELEM.

5.1 Theorems
The main theorem is the following.

Theorem 5.1. For every k ≥ 1H¬,∃
k captures exactly (k − 1)− EXPTIME.

Proof. Lemma 5.2 shows that for every k ≥ 1 H¬,∃
k expresses at least (k − 1) −

EXPTIME. Corollary 5.4 that is derived from Lemma 5.3 proves thatH¬,∃
k can express

at most (k − 1)− EXPTIME.

We present now the two necessary lemmas that we need to prove the main theorem.

Lemma 5.2. Let there be a deterministic Turing Machine that decides a language L in
(k− 1)− EXPTIME, k ≥ 1. Then, there exists a program P that belongs inH¬,∃

k that
decides L.

Proof. For k = 1 this has been shown numerous times since even standard Datalog ex-
presses PTIME on ordered Databases. Also, notice that the Well-Founded model of se-
mantics for higher-order Datalog presented here reduces to the classical Well- Founded
semantics in the literature for first-order Datalog which is also shown in the literature
to fully coincide with positive semantics in the absence of negation in the program.

For k ≥ 2 the Lemma is proven by a simulation of a general Turing Machine that
decides a language L in (k − 1)− EXPTIME through a Datalog program that belongs
inH¬,∃

k . The simulation is given in the following section.
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Lemma 5.3. Let P be a Datalog program in H¬,∃
k with k ≥ 2. Then there exists a

Turing machine that for any set of input (first-order) relations Din, given Din as input,
it can calculate the WFS model of P ∪Din within time O(expk−1(n

q)), where n is the
size of Din and q is a constant that depends only on P.

We can show it by reusing the more general (includes partial application) Turing
machine described in section 4.2 since it has the running time complexity that the lemma
requires. This lemma gives us the following corollary result.

Corollary 5.4. Let P in H¬,∃
k be a program that decides L. There exists a Turing

machine that decides L and runs in time O(expk−1(n
q)), where n is the length of the

input string and q is a constant that depends only on P.

Let P in H¬,∃
k be a program that decides L. There exists a Turing machine that

for every string w and corresponding input relation Dw finds the model of P ∪ Dw.
Furthermore, the machine does that in time O(expk−1(n

q)) where n = |Dw| and by
the imposed form of Dw we know that |Dw| is proportional to the size of string w.
A machine that transforms w to Dw (encoded), followed by a machine that finds the
model of P ∪ Dw and finally a machine that reads and accepts based on the value of
predicate "accept", give us the Turing Machine that decides L in the required running
time.

In the next section, we provide a simulation of a Turing machine with programs in
H¬,∃.

5.2 Simulation withH¬,∃ Datalog
Assume a Turing machine M that decides L in O(expknq) (n the size of the input
string). Then there exists an integer d such that for every input string w with n = |w|,
M terminates at most expknd steps. The datalog program we will present gives the
correct result in its "accept" predicate by simulating expknd steps of M. For that, we
first need to find a way to simulate counting from 0 to expknd. This will be done in the
following steps.

5.2.1 Counting to nd

We define the predicate base_zero which is true for the constant 0 which by our con-
vention is always the starting number and the first argument of the first in order tuple
in the input relation. Then we define base_last which is true for the number n− 1
which is the first argument of the last in order tuple in the input relation. Then we
have base_succ which takes two arguments of type ι and succeeds only if the sec-
ond argument is the successor of the first in the ordering. From base_succ we can
define base_pred which succeeds if its second argument is the predecessor of its first
argument:

base_zero 0.
base_last I ← (input I X end).
base_succ I J ← (input I X J),(input J,A,K).
base_pred I J ← (base_succ J I).

Given the above predicates, we can simulate counting from 0 up to n− 1. We can
extend the range of the numbers we can support up to nd − 1. This will be done by
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introducing predicates that take d distinct arguments. We will view for convenience
these arguments as d-tuples. We use the notation X̄ to represent the sequence of d ar-
guments X1, . . . , Xd. The number representation comes naturally in the sense that tuple
X̄ = X1, . . . , Xd represents number Xd + Xd−1 × n+ · · ·+ X1 × nd−1.

We define the predicate tuple_zero that succeeds for 0 in this new tuple represen-
tation, tuple_last which succeeds for the tuple representing nd − 1 and
tuple_base_last that succeeds on the tuple that represents n− 1. These definitions
use the previously defined predicates.

tuple_zero X ← (base_zero X1),. . .,(base_zero Xd).
tuple_last X ← (base_last X1),. . .,(base_last Xd).
tuple_base_last X ← (base_zero X1),. . .,(base_zero Xd−1),

(base_last Xd).

Thenwe have to define the new successor predicate for the new representation. This
tuple_succ predicate takes as arguments two tuples and succeeds if the second is the
successor of the first. We will use the equality over individual types to define it and we
will need d rules that have as arguments two tuples with d elements each:

tuple_succ X Y ← (X1 ≈ Y1),...,(Xd−1 ≈ Yd−1),
(base_succ Xd Yd).

tuple_succ X Y ← (X1 ≈ Y1),...,(Xd−2 ≈ Yd−2),
(base_succ Xd−1 Yd−1),
(base_last Xd),
(base_zero Yd).

· · ·
tuple_succ X Y ← (base_succ X1 Y1),

(base_last X2),...,(base_last Xd),
(base_zero Y2),...,(base_zero Yd).

Then tuple_pred can be defined as follows:

tuple_pred X Y ← tuple_succ Y X.

It is convenient we define some auxiliary predicates to reduce code repetition. The
less_than predicate is defined as follows:

less_than X Y ← (tuple_succ X Y).
less_than X Y ← (tuple_succ X Z),(less_than Z Y).

The predicate tuple_non_zero that succeeds if its argument is not equal to zero:

tuple_non_zero X ← (tuple_zero Z),(less_than Z X).

We will also require another helper predicate that will distinguish which X are valid
representations of numbers. This is an artificial issue that only arises from the fact that
the universe besides 0, . . . , N− 1 also contains the constants "a", "b" and "end" which
do not belong in the ordering.

valid_tuple X ← (tuple_zero X).
valid_tuple X ← (tuple_pred X Y),(valid_tuple Y).

These predicates are enough to get us up to the natural number nd − 1. We now
move to the next step of defining our counting scheme.
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5.2.2 Counting to 2nd

To go even higher we will need second-order predicates which handle first-order predi-
cates as "numbers". Like in [1] we use the idea drawn from [7] that represents numbers
by a function f : {0, . . . , nd − 1} → {0, 1}. The function can be seen as a binary
string and thus it is straightforward to see which is the represented number and the
range that can be represented this way (we assume that f(0) is the least significant bit
of the number).

To do this with Datalog we will use a first-order predicate that takes as an argument
a tuple as described previously. In contrast to [1] we can use negation to our advantage.
Let's say a number n is represented by the predicate p_n . We want that (p_n X)
succeeds iff in the binary representation of n the bit at position indicated by the number
that X represents, is equal to 1. Similarly ∼ (p_n X) succeeds iff the bit at position
indicated by the number that X represents is equal to 0.

We will now proceed with defining the relevant predicates we are going to use. We
start with last1 which represents the last number which is 2n

d − 1.

last1 X ← (valid_tuple X).

The predicate last1 must succeed for every argument that represents a valid zero-
order number. To discard second-order functions that do not represent numbers we use
we use the following constant predicates.

non_number1 N ← (N X),∼(valid_tuple X).
is_number1 N ← ∼(non_number1 N).

Notice however that the predicate is_number1 in the three-valued WFS model
should also succeed for predicates such as ones that do not "contain" non-number zero
order tuples (output false with them as arguments) but output undef when given as
argument a valid tuple. This can happen since we will use variable instantiation and
higher-order existential variables but is not a problem since those instantiations should
fail to make the predicates for the predecessor and successor succeed.

We now define the second-order predicate is_zero1. This essentially checks if
its argument which is a first-order predicate is the one that represents the number 0.
The predicate non_zero1 accordingly succeeds if its argument does not represent the
number zero.

is_zero1 N ← (is_number1 N),∼(non_zero1 N).

non_zero1 N ← (is_number1 N),(valid_tuple X),(N X).

Now we define the predicate is_last1 that will succeed if its argument is the re-
lation that represents the last number. The predicate non_last1 tells us the opposite,
that its argument does not represent the last number.

is_last1 N ← (is_number1 N),∼(non_last1 N).

non_last1 N ← (is_number1 N),(valid_tuple X),∼(N X).

Finally, we need the auxiliary predicate (exists_one_to_right1 N X) which we
will use later. It succeeds if there is a bit equal to 1 in the binary representation of the
represented number, in the current or a following position, that X represents.
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exists_one_to_right1 N X ← (N X).
exists_one_to_right1 N X ← (tuple_pred X Y),

(exists_one_to_right1 N Y).

Now we have what we need to define the predecessor of a number. The case we
study is very similar to the first-order case. Intuitively for the number M to be the pre-
decessor of N, starting from the left of the binary representation, M has to be equal in bit
value with N in the current position if in N there is at least one "1" to the right. Otherwise,
it needs to have the inverse bit value.

pred1 N M ← (is_number1 M),(non_zero1 N),(tuple_last X),
(hpred1 N M X).

hpred1 N M X ← (tuple_zero X),(bit_unequal1 N M X).
hpred1 N M X ← (tuple_pred X Y),(exists_one_to_right1 N Y),

(bit_equal1 N M X), (hpred1 N M Y).
hpred1 N M X ← (tuple_pred X Y),∼(exists_one_to_right1 N Y),

(bit_unequal1 N M X), (hpred1 N M Y).

bit_equal1 N M X ← (N X),(M X).
bit_equal1 N M X ← ∼(N X),∼(M X).

bit_unequal1 N M X ← (N X),∼(M X).
bit_unequal1 N M X ← ∼(N X),(M X).

We can define succ1 which gives the successor of a given number like this:

succ1 N M ← (is_number1 M),(non_last1 N), (pred1 M N).

We need to test for equality of two numbers N and M. Intuitively we compare them
bit by bit, starting from the leftmost possible position and moving to the right.

equal1 N M ← (tuple_last X),(equal_test1 N M X).

equal_test1 N M X ← (tuple_zero X),(bit_equal1 N M X).
equal_test1 N M X ← (bit_equal1 N M X),(tuple_pred X Y),

(equal_test1 N M Y).

Finally, we will need the "less-than" relation, defined as follows:

less_than1 N M ← (is_zero1 N),(non_zero1 M).
less_than1 N M ← (non_zero1 N),(non_zero1 M),

(pred1 N N'), (pred1 M M'), (less_than1 N' M').

Notice how the order of predicates like pred1 is 2. That is because they manipulate
first-order predicates. As a rule of thumb, the number plus one in the index of the
predicate name will signal their order. The predicate last1 is an exception since the
index is equal to its order. Finally, this concludes the counting module for the second-
order case. We can now present the framework for arbitrary order.
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5.2.3 Counting to expk+1n
d, k > 1

We assume that all predicate definitions relevant to counting numbers up to expknd

already have been added to the program. We build on top of them to reach expk+1n
d.

We start again with the predicate representing the last number.

lastk+1 X ← (is_numberk X).

To test if a (k+ 1)-order relation represents a number we use we use the following
constant predicates.

non_numberk+1 N ← (N X),(non_numberk X).
non_numberk+1 N ← (equalk X Y),(N X),∼(N Y).
non_numberk+1 N ← (equalk X Y),∼(N X),(N Y).
is_numberk+1 N ← ∼(non_number1 N).

We now define the predicate is_zerok+1. This again checks if its argument, which
is now a higher-order predicate is the one that represents the number 0.

is_zerok+1 N ← (is_numberk+1 N),∼(non_zerok+1 N).
non_zerok+1 N ← (is_number1 N),(is_numberk X),(N X).

We define the predicates that check if the argument is the last number.

is_lastk+1 N ← (is_numberk+1 N),∼(non_lastk+1 N).
non_lastk+1 N ← (is_number1 N,(is_numberk X),∼(N X).

Then we need exists_one_to_rightk+1 which intuitively behaves like the one
we demonstrated in the second-order case. It succeeds if there is a bit equal to 1 in the
binary representation of the represented number, in a position at and after the number
that X represents.

exists_one_to_rightk+1 N X ← (N X).
exists_one_to_rightk+1 N X ← (predk X Y),

(exists_one_to_rightk+1 N Y).

We proceed with the predecessor predicate for this order.

predk+1 N M ← (is_numberk+1 M),(non_zerok+1 N),
(hpredk+1 N M lastk).

hpredk+1 N M X ← (is_zerok X),(bit_unequalk+1 N M X).
hpredk+1 N M X ← (predk X Y),(exists_one_to_rightk+1 N Y),

(bit_equalk+1 N M X),(hpredk+1 N M Y).
hpredk+1 N M X ← (predk X Y),∼(exists_one_to_rightk+1 N Y),

(bit_unequalk+1 N M X), (hpredk+1 N M Y).

bit_equalk+1 N M X ← (N X),(M X).
bit_equalk+1 N M X ← ∼(N X),∼(M X).

bit_unequalk+1 N M X ← (N X),∼(M X).
bit_unequalk+1 N M X ← ∼(N X),(M X).
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We can define the successor of a given number like this:

succk+1 N M ← (is_numberk+1 M),(non_lastk+1 N), (predk+1 M N).

To test for equality we need:

equalk+1 N M ← (is_numberk+1 N),(is_numberk+1 M),
(equal_testk+1 N M lastk).

equal_testk+1 N M X ← (is_zerok+1 X),(bit_equalk+1 N M X).
equal_testk+1 N M X ← (predk X Y),(bit_equalk+1 N M X),

(equal_testk+1 N M Y).

Finally, we show the "less-than'' relation:

less_thank+1 N M ← (is_zerok+1 N),(non_zerok+1 M).
less_thank+1 N M ← (non_zerok+1 N),(non_zerok+1 M),

(predk+1 N N'), (predk+1 M M'),
(less_thank+1 N' M').

This concludes the countingmodule where numbers are represented by higher-order
predicates. For any finite k we can build a finite program like shown that can simulate
the "counting" up to expknd.

5.2.4 Simulating the Turing Machine
In this session, we will use this framework developed previously to do the actual simu-
lation of the Turing machine. Specifically, we can use an k+1-order Datalog program
to simulate a k-exponential-time-bounded Turing machine. The program is similar to
the one given in [1] with the notable exception that now any instance of partial applica-
tion is removed and instead, existential higher-order variables are used. Both negation
and higher-order existential variables are needed to be able to fully remove partial ap-
plication from the simulation program of such a Turing machine unless k = 0.

Firstly, we require a predicate that transforms the numbers that appear in the in-
put relation and are of type ι, to their k-order relation counterpart. The predicate
base_to_higherk M X succeeds if the second argument is a predicate that repre-
sents the number M. When k = 2 we have to replace all the occurrences of X by X
in base_to_higher2.

base_to_higherk 0 X ← (is_zerok X).
base_to_higherk M X ← (input J σ M),

(base_to_higherk J Y),(succk Y X).

For the actual simulation, we take the following assumptions about the way the
Turing machine operates. At the start of the operation, the first squares on the tape hold
the input and the rest are blank. The starting state is s0 and the machine accepts the
input if it goes to state syes in which case it remains there for the rest of the operation.
We will give a brief explanation of each predicate.

We have the predicate symbolσ T X. This succeeds if during the operation of the
machine at the time indicated by T, the tape at the position indicated by X contains the
symbol σ. We will have to create one such predicate for each possible symbol. The
predicate states T succeeds if the machine is at state s at the time indicated by T.
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Finally the predicate cursor T X succeeds if the cursor of the machine at "time" T is
at "position" X. The following program rules are required for the meaning of predicates
to be consistent with the initialization of the machine.

symbolσ T X ← (is_zerok T),(input Y σ W),
(base_to_higherk Y X).

symbol� T X ← (is_zerok T),(base_last Y),
(base_to_higherk Y Yk), (less_thank Yk X).

states0 T ← (is_zerok T).
cursor T X ← (is_zerok T), (is_zerok X).

We proceed with the transition rules of the Turing machine. The following program
rules are created for each possible transition of the Turing Machine. For example the
transition: "if the head is in symbol σ and in state s then write symbol σ′ and go to state
s′" gives us:

symbolσ′ T X ← (non_zerok T), (predk T T'), (cursor T' X),
(states T'),(symbolσ T' X).

states′ T ← (non_zerok T),(predk T T'), (cursor T' X),
(states T'),(symbolσ T' X).

cursor T X ← (non_zerok T),(predk T T'), (cursor T' X),
(states T'),(symbolσ T' X).

The transition: "If the head is in symbol σ and in state s then go to state s′ and move
the head right'' gives us:

symbolσ T X ← (non_zerok T),(predk T T'),(cursor T' X),
(states T'),(symbolσ T' X).

states′ T ← (non_zerok T),(predk T T'),(cursor T' X'),
(states T'),(symbolσ T' X').

cursor T X ← (non_zerok T),(predk T T'),(cursor T' X'),
(states T'),(symbolσ T' X'),(succk X' X).

The transition: "If the head is in symbol σ and in state s then go to state s′ and move
the head left'' is similarly to the above:

symbolσ T X ← (non_zerok T), (predk T T'), (cursor T' X),
(states T'), (symbolσ T' X').

states′ T ← (non_zerok T), (predk T T'), (cursor T' X'),
(states T'), (symbolσ T' X').

cursor T X ← (non_zerok T), (predk T T'), (cursor T' X'),
(states T'), (symbolσ T' X'), (predk X' X).

Now one would assume that these sets of Datalog rules are enough. We still haven't
considered what happens to the symbol predicates for the pairs of "time" and "position"
that the cursor does not succeed or from the machine's perspective, the cursor is not in
that position. The machine leaves those symbols unaltered and we simulate this fact
with Datalog as follows. The following rules are called "inertia rules" in literature.

symbolσ T X ← (predk T T'),(cursor T' X'),
(symbolσ T' X),(less_thank X X').

symbolσ T X ← (predk T T'),(cursor T' X'),
(symbolσ T' X),(less_thank X' X).
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We end the program with the rule that gives the "accept" predicate its value.

accept ← (statesyes lastk).

If we carefully inspect the program given above we can see that there are no cycli-
cal dependencies of the predicates that pass through negation. When an expression is
negated in the body it is either a predicate with a type of a lower order than the head
predicate, or a predicate of the same order in a few select cases that it is easy to see they
don't create cyclical dependencies at all.

However, in contrast to the first-order case in the WFS model of semantics, this
does not mean that ground terms will only be evaluated to {false, true}. If the Turing
machine does not accept the input string then the accept predicate cannot take the
value true but it can get the value undef due to the higher-order existential variables we
allowed. To see this consider the following case.
Assume the following transition exists in the Turing machine: "if the head is in symbol
σ and in state S∗ then write symbol σ′ and go to state Syes". Furthermore, assume
that with input string w the machine does indeed reach state S∗ at one point during its
execution. Then the datalog simulation in the model should evaluate [[stateS∗ T ]]s =
true for some Herbrand state s. Consider a new Herbrand state s′ such as s′(T) = BF

whereBF the least element in the Fitting-ordering for the type of the variable T. It must
be [[stateS∗ T ]]s′ = undef since outputing the value false would be a violation of the
Fitting-monotonicity condition since there exists at least one more defined element than
BF that it outputs true. Outputing the value true would completely nullify any validity
of the simulation as then any other element should also force the expression to be true
again due to Fitting-monotonicity condition. By the same argument, since there exists
a state where s where [[predk lastk T' ]]s′ = true then an s′ where s′(T′) = BF

should output undef for that expression as well. By extending the argument for the rest
of the body of the following rule:

stateSyes T ← (non_zerok T),(predk T T'),(states T'),. . .

Checking the value of [[stateS∗ T ]]s where s(T) = [[lastk]] it has to be at least
undef since the higher-order variable T' is allowed to take the valueBF forcing the right
hand side to evalute to undef. This forces the evaluation of the expression "stateSyes

lastk" and thus the evaluation of the accept predicate to be undef.
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CHAPTER6
POSITIVE DATALOG WITHOUT PARTIAL

APPLICATION

This chapter is devoted to the fourth row of the results table.

partial
application negation

h.o.
existential
variables

order 1 order 2 order 3 · · · order∞

NO NO X PTIME PTIME PTIME · · · PTIME

This row describes two sets of Datalog fragments depending on whether X="YES"
or X="NO". For k = 1, these fragments coincide, and therefore they have the same ex-
pressiveness. Furthermore, demonstrating that PTIME is the upper bound for any k > 1
for programs allowing higher-order existential variables also bounds the expressiveness
of programs without those variables. In Section 6.2, we present Lemma 6.5, which also
implies the equivalence of these fragment sets. For this reason, for the remainder of
this chapter, we will focus on the more general fragment where X="YES," essentially
proving the following row.

partial
application negation

h.o.
existential
variables

order 1 order 2 order 3 · · · order∞

NO NO YES PTIME PTIME PTIME · · · PTIME

6.1 Theorems
In this section, we present the main theorem for this set of language fragments and the
necessary lemmas that we use to prove it.

Theorem 6.1. For every k ≥ 1H∃
k captures exactly PTIME.

Proof. Lemma 6.2 shows that for every k ≥ 1,H∃
k expresses at leastPTIME. Corollary

6.4 shows thatH∃
k can express at most PTIME.

We present now the necessary lemmas that we need to prove the main theorem.

Lemma 6.2. Let M be a deterministic Turing machine that decides a language L in
PTIME. Then for any k, there exists a program P that belongs inH∃

k that decides L.
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Proof. It follows from the fact that for k = 1 which is simple first-order Datalog (first-
order Datalog can't have partial application), we already know that it captures exactly
PTIME as it is also shown in [1]. Now the semantics used in that paper are positive
but we have seen that they are equivalent for the ground terms, to the WFS model with
theorem 3.19. Therefore, for any k ≥ 1we have thatH∃

k expresses at least PTIME.

Lemma 6.3. Let P be a Datalog program in H∃
k with k ≥ 1. LetMP∪Din be the WFS

model of P ∪ Din for a set of input (first-order) relations Din. Then there exists an
algorithm (or a Turing machine) that when given Din as its input, for any proposi-
tional or first-order predicate p in P, it calculatesMP∪Din(p). Furthermore, it runs in
polynomial time with respect to |Din|.

The rest of the chapter is ultimately devoted to the proof of this Lemma which gives
us the following corollary result.

Corollary 6.4. Let P be a program in H∃
k , k ≥ 1 that decides a language L. There

exists an algorithm (or a Turing machine) that decidesL and runs in timeO(nq), where
n is the length of the input string and q is a constant that depends only on P.

Proof. It follows by considering that we can decide L by transforming any string w
to Dw in polynomial time and then run the polynomial algorithm that is given from
Lemma 6.3 to findMP∪Din(accept).

From now on in this chapter, we will use the positive Datalog semantics for the fol-
lowing analysis of the expressiveness of the language fragments. In chapter 3 we have
shown that we can calculate the full meaning of propositional and first-order predicates
by using positive semantics since any ground query evaluates to the same truth value
under both semantics.

The sections that follow will show the proof of Lemma 6.3 divided into steps. First,
given a program P inH∃

k we provide a transformation that produces an equivalent pro-
gram with no higher-order existential variable in the rules. In the positive case we
can remove higher-order existential variables by leveraging the monotonicity condi-
tion. Then we briefly introduce Bezem semantics and their equivalence to the classical
positive semantics that we use in this chapter. We exploit this equivalence to calcu-
late the minimum model under Bezem semantics instead and argue about how we can
achieve that in polynomial time for this specific language fragment set and only in the
case of calculating the meaning of propositional and first-order predicates.

6.2 A transformation to remove higher-order existen-
tial variables from positive Datalog

Consider the following transformation:
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Set P′ to be a copy of P. Then perform the following changes in P′:

• For every type ρV where V : ρV is a higher order existential variable in P′ add a
new constant predicate topρV and the following rule in the program.

topρV(X).

• In every rule of P′ replace every instance of an existential variable V : ρV with
the constant predicate topρV.

Example 6.1. For example the program

p ← r(Q),Q(a).

becomes

topρQ(X).
p ← r(topρQ),topρQ(a).

It is easy to see that the transformation is a polynomial time transformation with
respect to the size of the original program P. We will show the following lemma.

Lemma 6.5. Let P in H∃
k for k ≥ 2 and P′ the program produced by applying the

previous transformation to P. The following hold:

• P′ contains no existential higher-order variables.

• For any input relations Din letMP∪Din
be the minimum model of P ∪ Din and

MP′∪Din
the minimum model of P′ ∪ Din. Then for every constant predicate p

in P it holds thatMP∪Din
(p) =MP′∪Din

(p).

Before proceeding with the proof we assume for convenience that P also includes
these top predicates without them replacing any existential higher-order variables in the
rules. That is just so we can consider every interpretation of P also as an interpretation
of P′ without having to extend it. We show that the models of both programs are the
same therefore they share the same minimum (positive semantics) model.

Lemma 6.6. For every Herbrand interpretation I, I is a model of P if and only if I is
a model of P′.

Proof. We show that if an interpretation I is not a model of P it is not a model of P′

and vice versa. We will consider only interpretations that give these new top predicates
the meaning of the correct type top element, or else it is trivial that the considered
interpretation is not a model for both programs.

Let I be an interpretation that is not a model of P. Then there exists a rule in P

p V1 · · ·Vn ← E1 ∧ · · · ∧ Em

and a Herbrand interpretation s such that for all i ∈ {1, . . . ,m}, JEiKs(I) = true andJp V1 · · ·VnKs(I) = false. The set {V1, · · · ,Vn} is the set of formal parameters of
the rule and assume {Vn+1, . . . ,Vn+k} is the set of existential variables that appear
in the body. Now in P′, by considering the former transformation there has to be a
corresponding rule:
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p V1 · · ·Vn ← E′
1 ∧ · · · ∧ E′

m

We show that there exists aHerbrand state s′ such that for all i ∈ {1, . . . ,m}, JE′
iKs(I) =

true and Jp V1 · · ·VnKs(I) = false. Consider s′ to be one that s′(Vi) = s(Vi) = di for
i ∈ {1, . . . , n}. Then obviously Jp V1 · · ·VnKs′(I) = false by the choice of the inter-
pretation I. For a E′

i we consider cases based on the syntactic form of the expression.

• E′
i == "(topρV′

i
. . .)" for some topρV′

i
we added. Then it is JE′

iKs′(I) = true
since we consider I where top predicates get the meaning of the corresponding
top element.

• E′
i == "(q arg′1 . . . arg

′
k)" for some constant predicate q. The corresponding Ei

in program P is of the form Ei == "(q arg1 . . . argk)" . For every k ∈ 1, · · · , t
we have

– If arg′k == "Vi" with 0 < i ≤ n which makes Vi a formal variable of the
rule then

Jarg′kKs′(I) = s′(Vi) = di = s(Vi) = JargkKs(I)
– If arg′k == "topρVi" where i > n. This means that the argument is a
replaced higher-order variable with a top predicate. Since we consider only
interpretations that give these predicates the meaning of top elements we
have: Jarg′kKs′(I) = topρV′

i
≥ρV′

i
s(ρV′

i
) = JargkKs(I)

– If arg′k == "r" for some constant predicate r then again we have that

Jarg′kKs′(I) = JrKs′(I) = JrKs(I) = JargkKs(I)
So for all sub-cases for the arguments, we have that

Jarg′kKs′(I) ≥ JargkKs(I)
Now since I(q) is a monotone function we have that:

JE′
iKs′(I) = J(q arg′1, . . . , arg

′
k)Ks′(I) = JqKs′(I)(Jarg′1Ks′(I) . . . Jarg′kKs′(I))

≥ρqJqKs(I)(Jarg1Ks(I) . . . JargkKs(I)) = J(q arg1 . . . argk)Ks(I) = JEiKs(I)
In compact form

JE′
iKs′(I) ≥ JEiKs(I) = true

• E′
i == "(Vi arg

′
1, · · · , arg′k)" for some formal higher-order variable Vi. Same

analysis as previous gives us JE′
iKs′(I) = true. Instead of a constant monotone

predicate, we have at the root s′(Vi) = s(Vi) = di where di is monotone so we
can follow the same line of thought as before.
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• E′
i == "(E1 ≈ E2)". Each one of E1,E2 is either a variable or a constant of

type ι. The meaning of the expression under current instantiation is the same
regardless of interpretations.

This concludes the argument that if I is not a model of P it is also not a model of P′.
For the other direction let I be an interpretation that is not a model of P′. Then

there exists a rule in P′

p V1 · · ·Vn ← E′
1 ∧ · · · ∧ E′

m

and a Herbrand interpretation s′ such that for all i ∈ {1, . . . ,m}, JEiKs′(I) = true andJp V1 · · ·VnKs(I) = false. By considering the corresponding rule in P

p V1 · · ·Vn ← E1 ∧ · · · ∧ Em

and taking s such that for any formal variable Vi (i ≤ n) it is s(Vi) = s′(Vi) = di and
for any non formal V′

i it is s(V′
i) = d′i where d′i is the top element for the type ρV′

i
, it is

easy to show that for every Ei we also get

JE′
iKs(I) = true

while Jp V1 · · ·VnKs(I) = false. Therefore, I is not a model of P.

Lemma 6.5 allows us to transform every programP inH∃
k to one in a more restricted

fragment which does not allow existential variables in the body of the rules namely
a program in Hk. Furthermore, this transformation depends purely on program P so
trivially polynomial to the input size of the input database. Wewill now briefly describe
the Bezem semantics and how we can use an equivalence theorem between that and the
semantics of our language (Wadge) to calculate the meaning of all propositional and
first-order predicates in the minimum model of P.

6.3 Bezem Semantics and an Equivalence Theorem
We will describe here a new model for semantics that is based on a more syntactical
approach. This semantics is defined for a language that is more general than our own.
It can easily be verified that our language is a subset of the one used in [3]. It can
also be verified that the programs in the fragmentHk and by former argumentsH∃

k are
also valid programs (named "hoapata" programs in the paper) that we can use Bezem
semantics to give them meaning.

Before giving the proper definition, consider the following example of a program
inHk .
Example 6.2.

q a.
q b.
p Q ← (Q a).
id R X ← (R X).

In Bezem's approach, we take the ground instantiation of a program, which can
be viewed as a propositional program that is produced by the original by replacing
every variable with all possible appropriately typed terms of the Herbrand universe.
Those terms are created using only predicate and individual constants that appear in the
program. For example, the ground instantiation of the example program above would
be:
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Example 6.3.
q a.
q b.
p q ← (q a).
id q a ← (q a).
p (id q) ← ((id q) a).
id (id q) a ← ((id q) a).
p (id (id q)) ← ((id (id q)) a).

· · ·
Notice how each variable is replaced with any appropriately typed term including

those that are produced by partial application like (id (id q)) which has the same
type as the constant predicate q. This generally gives us a ground instantiation that is
infinite. We treat this as an infinite propositional program which implies that we can
use the standard fixed point theory of classical logic programming to find which atoms
are true at the minimum model.

Now we present the formal definitions and the main theorem we will use without
proof. Proof of the theorem can be found in [3].

Definition 6.1. For a program P, we define the Herbrand universe for every argument
type ρ, denoted by UP,ρ, to be the set of all ground terms of type ρ that can be formed
out of the individual constants and predicate constants in the program.

The notion of the ground instantiation is given by the following definitions.

Definition 6.2. A ground substitution θ is a finite set of the form {V1/E1, . . . ,Vn/En}
where the Vi's are different argument variables and each Ei is a ground term having the
same type as Vi. We write dom(θ) = {V1, . . . ,Vn} to denote the domain of θ.

Definition 6.3. Let θ be a ground substitution and E be an expression. Then, Eθ is an
expression obtained from E as follows:

• Eθ = E if E is a predicate constant or individual constant;

• Vθ = θ(V) if V ∈ dom(θ); otherwise, Vθ = V;

• (E1 E2)θ = (E1θ E2θ);

• (E1 ≈ E2)θ = (E1θ ≈ E2θ).

If θ is a ground substitution such that vars(E) ⊆ dom(θ), then the ground expression
Eθ is called a ground instance of E.

Definition 6.4. Let P be a program. A ground instance of a clause p V1 · · ·Vn ←
E1, . . . ,Em of P is a formula (p V1 · · ·Vn)θ ← E1θ, . . . ,Emθ, where θ is a ground
substitution whose domain is the set of all variables that appear in the clause, such that
for every V ∈ dom(θ) with V : ρ, it is θ(V) ∈ UP,ρ. The ground instantiation of a
program P, denoted by Gr(P), is the (possibly infinite) set that contains all the possible
ground instances of the clauses of P.

Definition 6.5. Let P be a program and let Gr(P) be its ground instantiation. A Her-
brand interpretation I of Gr(P) is defined as a subset of UP,o by the usual convention
that, for any A ∈ UP,o, I(A) = true iff A ∈ I . We also extend the interpretation I for
every (E1 ≈ E2) ground atom as follows: I(E1 ≈ E2) = true if E1 = E2 and false
otherwise.
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Finally, we need the immediate consequence operator.

Definition 6.6. The immediate consequence operator forGr(P), TGr(P) is the following
operator:

TGr(P)(I)(A) =


true, if there exists a clause A← E1, . . . ,Em in Gr(P)

such that I(Ei) = true for all i ∈ {1, . . . ,m}
false, otherwise.

We have that the least fixed point of TGr(P) exists and is the minimum model of
Gr(P). We will denote this model asMGr(P). The main theorem we will now present
states that with respect to the ground atoms the Bezem approach and our semantics
(Wadge) attribute the same truth values. Its proof can be found in [3].

Theorem 6.7 ([3]). Let P be a program and let Gr(P) be its ground instantiation. Let
MP be the ≤IP -minimum Herbrand model of P and let MGr(P) be the ≤-minimum
model of Gr(P). Then, for every A ∈ UP,o it holds JAK(MP) =MGr(P)(A).

6.4 Finding (partially) theminimummodel of programs
inH∃k

We can now use the results given in the previous two sections to proceed with the
main Lemma 6.3 of this chapter. Ultimately our goal is to use Bezem semantics to find
the truth values of propositional and first-order predicates in the minimum model. We
also want to achieve that in polynomial time with respect to the input. As it has been
presented so far, trying to calculate the minimum model under Bezem semantics is not
feasible due to the possibly infinite size of the ground instantiation. We need one last
step before we can use the semantics. Consider the following two definitions.

Definition 6.7. Let P be a program and U∗
P,o be the subset of UP,o that contains ev-

ery ground term A such that A does not contain a partially applied expression in its
syntactical tree. More specifically A is a ground expression E such that:

• E == "p E1 · · ·En" for some n-arity constant predicate p where each Ei is either
a predicate constant or an individual constant.

• "c1 ≈ c2" for c1, c2 some constants of type ι.

Definition 6.8. Let P be a program and Gr∗(P) be a subset of Gr(P) that contains each
ground instance of a rule

A← E1, . . . ,Em

such that A,E1, · · · ,Em ∈ U∗
P,o.

Example 6.4. The Gr∗(P) of the program of the example 6.2

q a.
q b.
p q ← (q a).
id q a ← (q a).
id q b ← (q b).
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We can show now the following lemma for programs in the fragmentHk.

Lemma 6.8. Let P be a program inHk for any k ≥ 1. LetMGr(P) be the ≤-minimum
model of Gr(P) and MGr∗(P) be the ≤-minimum model of Gr∗(P). Then for every
A ∈ U∗

P,o
MGr∗(P)(A) =MGr(P)(A)

Proof. It follows easily by considering the two important restrictions of programs in
fragment Hk (notice that also H∃

k reduces to Hk after we apply the transformation
of lemma 6.5). Specifically they cannot contain higher-order existential variables and
partial application in the body of the rules. Consider a term A ∈ U∗

P,o. For A to appear
as head in a ground instance of a rule such as:

A← E1, . . . ,Em

there must be a ground substitution which assigns each variable to either a constant or
a constant predicate and is applied to a rule in the program P. By inspecting the syntax
of the body of each literal in said rule it is easy to verify that {E1, . . . ,Em} must also
belong to U∗

P,o therefore the ground instance belongs to Gr∗(P).
By considering each step of the operator TGr(P) we see that for every A ∈ U∗

P,o
we only need to consider ground instances that belong to Gr∗(P). Therefore, we can
findMGr(P)(A) by operating only on Gr∗(P) and not materializing the possibly infinite
Gr(P). This can be seen equivalently as findingMGr∗(P)(A).

Notice here how both Gr∗(P) and U∗
P,o are polynomial in size with respect to the

size of P and that they can be produced easily in polynomial time with respect to the
program. It is also a well-known result that the minimum model of propositional pro-
grams can be calculated in polynomial time with respect to their size.

We are now ready to prove Lemma 6.3.

Proof. Take a program P in Pk, k ≥ 1 and a set of first-order input relations Din.
Perform the following actions:

• Apply the transformation given in Lemma 6.5 to get a new equivalent program
P′ that has no higher-order existential variables. The running time of the trans-
formation is polynomial on P.

• Calculate Gr∗(P′ ∪ Din) and U∗
P′∪Din,o

in running time O(|P ′ ∪ Din|q) for some
fixed q.

• Find theminimummodel of the propositional program that isGr∗(P′ ∪ Din). This
takes polynomial time with respect to |Gr∗(P′ ∪ Din)| . Given that the bound of
|Gr∗(P′ ∪ Din)| is polynomial with respect to |P ′ ∪ Din| we get running time
polynomial with respect to |P ′ ∪ Din|.

For any propositional predicate p in P′ we can retrieve its meaning fromMGr∗(P∪Din).
We can do the same in polynomial time for first-order constant predicates after we
retrieve the truth values of all ground terms that are produced by replacing variables
with individual constants. Lemma 6.8 and the equivalence Theorem 6.7 validates that

[[A]]MGr∗(P′∪Din) = [[A]]MGr(P′∪Din) = [[A]]MP′∪Din
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and also by Lemma 6.5
[[A]]MP′∪Din

= [[A]]MP∪Din

Furthermore, by Theorem 3.19 [[A]]MP∪Din is the same as it would be if we were to
use Well-Founded semantics. The total running time is polynomial in respect to |P ′ ∪
Din| and by considering P and subsequently P′ to be fixed, polynomial in respect to
|Din|
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CHAPTER7
CONCLUSION AND FUTURE WORK

In this chapter, we will discuss possible topics to explore in the future as well as mention
the unresolved questions of this work. More specifically this thesis does not show the
following row from the results table.
partial ap-
plication

negation
(WFS)

h.o. ex-
istential
variables

order 1 order 2 · · · order∞

NO YES NO PTIME PTIME · · · PTIME

This fragment set, which includes negation but no partial application or higher-order
existential variables, is expected to lie in PTIME. A few obstacles restricted the inclu-
sion of the result, in its most general form, in this work. Still it is interesting to mention
different approaches for it. Consider an approach like the one in chapter 6 where we use
an equivalence of extensional and syntactical semantics. This does not hold when we
introduce the negation under the Well-Founded model of semantics in the higher-order
setting.

Assume the following example program and part of its ground instantiation.
Example 7.1. An example program that evaluates differently under Bezem's semantics

r a.
p X :- ∼(q p X).
q P X :- ∼(P X).

r a.
p a :- ∼(q p a).
q p a :- ∼(p a).

The WFS model will assign (p a) = false. The predicate q takes in one step its
meaning, regardless of the meaning of the predicate p and there are no cyclical depen-
dencies. Then (p a) drops from undef to false in the following iteration step of the outer
loop. In Bezem's approach where we treat the program as a propositional based on the
ground instantiation, we can see that the ground terms produce a cyclical dependence
that contains a double negation. It is equivalent to the program:

p :- ∼ q.
q :- ∼ p.
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This leads to both (p a) and (q p a) taking the value of undef. This mismatch makes
the previous approach we took in Chapter 6 unusable. In fact, when we allow richer
syntax in our programs like partial application and/or o type (boolean domain) as an
argument type, Bezem's approach leads to non-extensional models in this setting.

There are two approaches that we are aware of for solving this issue. The first
approach involves finding a strictly polynomial time algorithm that generates a propo-
sitional program from the original program while preserving the truth values of ground
terms. In the positive case, this corresponds to the default behavior of ground instan-
tiation. The second approach, which is more mechanical, leads to a polynomial time
algorithm for model calculation. It is based on demonstrating the following.

• The bottom-up algorithm of finding the WFS model converges in polynomial
w.r.t. size of the program number of steps, both for the inner loops and the outer
loop.

• We can avoid the step of instantiating higher-order variables by a form of lazy-
instantiation where we calculate the output of the function as we need and in an
out-of-order fashion.

Another area of study involves the exploration of lifting the ordered-database as-
sumption. Specifically, when we defined the decidability of a languageLwith Datalog,
we assumed an input relation of a specific form derived from a string w and also an 'ac-
cept' predicate as the output. This input relation implied an ordering of the elements of
the universe, specifically the zero-order constants.

This concept can be extended to encompass any set of input relations and any set
of output relations, or in other words general database queries, provided there is an
ordering relation in place. However, we also know that first-order Datalog with nega-
tion, under stable semantics not only is problably more expressive than positive Datalog
(captures NP) but also has the capability to lift the ordered-database assumption. There-
fore, it is intriguing to establish stable semantics for higher-order Datalog and examine
its expressiveness in relation to the program order.
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