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ABSTRACT

The success of modern Machine Learning Algorithms often relies on the availability
of a large number of accurately labeled examples. However, the process of labeling
examples is laborious and prone to unreliability in practice. As a result, extensive re-
search has been conducted to developMachine LearningAlgorithms that can effectively
handle corrupted samples. Nevertheless, previous works have primarily focused on ad-
dressing Binary Classification problems. In this thesis, we investigate Algorithms and
Complexity for the challenges of Multiclass Classification with Coarse or Noisy labels.
We examine the relationship between these problems and explore the computational
complexity of these problems under different assumptions. Namely, we develop an
algorithm for multiclass learning with agnostic label noise under the Gaussian distribu-
tion, which in terms is an algorithm for the Coarse label problem as well. Finally, we
examine some special but commonly studied cases for the Coarse Label problem and
develop polynomial time algorithms.





ΣΎΝΟΨΗ

Η επιτυχία των σύγχρονων Αλγορίθμων Μηχανικής Μάθησης συνήθως εξαρτάται από
το γεγονός ότι υπάρχει ένας μεγάλος αριθμός σωστά ετικετοποιημένων παραδειγμάτων.
Ωστόσο, στην πράξη, η διαδικασία ετικετοποίησης παραδειγμάτων είναι εξαιρετικά
κοστοβόρα και συχνά μη αξιόπιστη. Για αυτό το λόγο υπάρχει ένας μεγάλος αριθμός
έργων που αφορούν την ανάπτυξη ΑλγορίθμωνΜηχανικής Μάθησης που λειτουργούν
με διεφθαρμένα δείγματα. Ωστόσο, οι προηγούμενες εργασίες απευθύνονται συνήθως
σε προβλήματαΔυαδικήςΚατηγοριοποίησης. Σε αυτήν τη διατριβή, μελετούμεΑλγορίθμους
και Πολυπλοκότητα για τα προβλήματα Πολυταξικής Κατηγοριοποίησης με αδρές ή
Θορυβώδεις ετικέτες. Εξετάζουμε τη σχέση ανάμεσα σε αυτά τα προβλήματα και
διερευνούμε την υπολογιστική πολυπλοκότητα τους υπό διάφορες υποθέσεις. Συγκεκριμένα,
αναπτύσσουμε έναν αλγόριθμο για πολυταξική μάθηση με αγνώστικούς θορύβους ετικέτας
υπό την κανονική κατανομή, που συνεπάγει επίσης έναν αλγόριθμο για το πρόβλημα
μάθησης με αδρές ετικέτες. Τέλος, εξετάζουμε μερικές ειδικές, αλλά συχνά μελετημένες
περιπτώσεις για το πρόβλημα μάθησης με αδρές ετικέτες και αναπτύσσουμε αλγόριθμους
πολυωνυμικού χρόνου.
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CHAPTER1
INTRODUCTION

1.1 Probably Approximately Correct Model
In machine learning the problem of classification is to learn a concept function c : X →
[K],K ∈ N from a collection of samples {xi, c(xi)}m1 that are drawn from a unknown
distribution xi ∼ D, ∀i ∈ [m]. Or in other words, to construct an efficient algorithm
A that according to the input sample outputs a function, or hypothesis, fA that is close
to c. However in order to formalize that goal, what we consider learnable, we have to
further specify the above problem.

First of all, we need to define what we mean by close. For our case, the notion of
closeness that is desired is to have a small probability of error on a random example.
So we define the error of a function f under the distribution D as

errD [f ] = Pr
x∼D

[f(x) ̸= c(x)]

Also, another parameter of our problem should be a function space H ⊆ {f | d :
X → [K]} that we could search over. Clearly, this could not be done efficiently if H
could be the space of all functions. Also if the learning space was too diverse (more
complex) we would maybe have a lot of hypotheses that perfectly fit the data through
interpolation but do much worse on future examples. Now our problem has taken a
more concrete form:

minimizef errD [f ]

s.t. f ∈ H

However, as our function spaceH could be infinite it makes sense that we could only
approximate f into a given accuracy ε. Furthermore, as our input is randomly sampled
we could not be sure that we could even get a representative sample (for example there
is a nonzero probability that our sample could be the same element ofX). So we should
allow for a probability of failure δ.

Another fact that we have to take into account is that we do not know the probability
distributionD fromwhich the instances are generated so our algorithmA has to perform
well for all distributionsD. Taking into account all of these considerations we have the
following definition of learnability.
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1.2. EFFICENT REALIZABLE VS AGNOSTIC LEARNING

Definition 1.1 (PAC learnable). A class of functions H is called PAC learnable if for
every distribution D and c ∈ H, there exists an algorithm A and a polynomial M
such that, for every input ε ≥ 0 and δ ≥ 0 (accuracy and probability of failure), if
the algorithm is given as input a sample S of m ≥ M( 1ε ,

1
δ ) idd pairs {(xi, c(xi))}m1 ,

xi ∼ D then it returns a hypothesis hA(S). Such that:

Pr
S∼Dm

[
errD

[
hA(S)

]
> ε
]
≤ δ

If the runtime of the algorithm is polynomial with respect to 1
ε and

1
δ then we call

the class to be efficiently (or polynomially) PAC learnable. The above definition refers
to the setting where the function that we seek to approximate belongs to our hypothesis
class H. This is called the realizable setting. However, in practice, we can not expect
that we know the concept function space of a problem ahead of time. So all want is to
approximate it with our search space as precisely as possible (agnostic setting).

Definition 1.2 (agnostically PAC learnable). A class of functionsHwith domainX and
imageY is called agnostically PAC learnable if, for every distributionD and c : X → Y
function, there exists an algorithm A and a polynomial M such that, for every input
ε ≥ 0 and δ ≥ 0 (accuracy and probability of failure), if the algorithm is given as
input a sample S of m ≥ M( 1ε ,

1
δ ) idd pairs {(xi, c(xi))}m1 , xi ∼ D then it returns a

hypothesis hA(S) ∈ H. Such that:

Pr
S∼Dm

[
errD

[
hA(S)

]
> min

H
errD [h] + ε

]
≤ δ

In Statistical Learning Theory there is a theorem that bounds the number of exam-
ples needed by each class of functions in order for a learning algorithm to exist. These
bound are achieved by the algorithm that achieves the minimum error in the input sam-
ple. Or else minimizes the empirical error:

min
H

m∑
1

1 (h(xi) ̸= yi))

1.2 Efficent Realizable vs Agnostic Learning
In practice, the labeling process can be quite expensive and time-consuming. Hence
even if we knew the precise concept class chances are that we could not be able to
produce the number of samples that are needed in order to accurately learn it. And so
we would have to resort to more sloppy labeling that could produce some errors and
hence try to learn a concept agnostically outside of the class.

However minimizing the empirical error can not always be done efficiently, espe-
cially in the agnostic setting. In fact, learning agnostically even simple classes like
halfspaces has been shown to be computationally hard [Dan15b]. As a result, we opt
to study problems that are closer to the realizable setting.

Furthermore, we assume that the target concept is realizable within the class but we
observe examples perturbed with some random process [MN06], [AL88]. In that case,
we can get efficient algorithms for some classes in much more complex problems than
realizable PAC learning. In a way these models of noise as a way to study the Spectrum
between realizable and agnostic learning.

Another way to overcome the computational intractability of Agnostic Learning is
to look at distribution-specific algorithms. For the cases where the samples are drawn
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CHAPTER 1. INTRODUCTION

from well-behaved distributions like the Uniform, Normal, or Log-concave distribu-
tions Polynomial Time Approximations Schemes have been developed.

1.3 Learning with Coarse Labels
In this thesis, we will study the problem of Learning with Coarse Labels which is a weak
supervision learning problem. In the following paragraphs, we will define the problem
and summarize the existing algorithmic techniques. Our main motivation is the recent
result [Fot+21] that produced an efficient algorithm for a wide range of corruptions.

Specifically, we will investigate the problem when one has to learn with samples of
the form (x, S) where S is a subset of the label set Y containing the true label of x. We
say that S is, therefore, a coarse label and our goal is to learn with good accuracy on the
ground truth labels, a schematic representation of the problem can be found in figure
1.1. A motivation for this problem is that for labeling it can be that we ask the experts
to identify a subset of the labels that the ground truth label belongs to, for example by
asking yes or no questions if a random label is the correct one. As a result, because the
problem set to the experts is more simple we can reduce the labeling cost as well as the
label noise.

xi ∼ Dx Set Generation (xi, Si) ∼ Dπ Training Process h(x)

Test P(x,y)∼D{h(x) ̸= y}(x, y) ∼ D

Figure 1.1: Learning With Coarse Labels

Of course, this problem would not be feasible if the subsets could be arbitrary, as
some labels could never be separated and thus there would be no way to distinguish
between them. So one needs an assumption that makes the sets fine enough in order for
inference to be possible. Hence we have to formally define the set generation process in
order to give a useful but doable condition. Specifically, we define the Coarse example
generative process as follows.

Definition 1.3 (Generative Process for Coarse Examples ). Let X be an arbitrary do-
main, and let Z = {1, . . . ,K} be the discrete domain of all possible fine labels. We
generate coarsely labeled examples as follows:

1. Draw a finely labeled example (x, z) from a distribution D on X × Z .

2. Draw a coarsening partition S (of Z ) from a distribution π.

3. Find the unique set S ∈ S that contains the fine label z.

4. Observe the coarsely labeled example (x, S).

We denote Dπ the distribution of the coarsely labeled example (x, S).

Notice that the ground truth label always belongs in the set and the marginal on x
is the distribution Dx in both coarse and fine examples. Also, the coarsening partition

3



1.4. STATISTICAL QUERY REDUCTION

distribution is the same for all instances, or in other words we have that the observed
set is conditionally independent of x when we condition on the fine label. Also as
mentioned previously the partition distribution could be too coarse and not separate
some labels at all and hence loss all of the information the original distribution had on
associated labels as a result in such a case learning would not be possible. Thus we will
study partition distributions that are information preserving i.e. the property that not
much information is lost no matter what the fine label distribution is.

Definition 1.4 (Information Preserving Partition Distribution). Let Z be any domain
and let α ∈ (0, 1]. We say that π is an α-information preserving partition distribution
if for every two distributions D1, D2 supported on Z , it holds that TV

(
D1

π, D
2
π

)
≥

α · TV
(
D1, D2

)
, where TV

(
D1, D2

)
is the total variation distance ofD1 and D2.

Intuitively α is the fraction of information that has been preserved, as we have a
corruption process α ≤ 1 so 1− α is the amount of information lost.

1.4 Statistical Query Reduction
The guarantee shown in [Fot+21] is that every algorithm that belongs to a certain model
that learns given fine labeled examples can be simulated given coarse examples when
the partition distribution is information preserving. Specifically, it is possible to effi-
ciently simulate every algorithm in the Statistical Query (SQ) model by simulating the
SQ oracle in polynomial time.

Definition 1.5 (Learnable in the Statistical Query Model [Kea98]). We say that a class
H is PAC learnable in the SQ model if there exists an algorithm A and a polynomial p
such that for all c ∈ H target concepts and distributionsD given access to an SQ oracle
StatD(q, τ) with inputs ε, δ the following hold:

1. For any query (q, τ) query made by A, q is computable in p( 1ε ,
1
δ ) time and

1
τ is

bounded above by p( 1ε ,
1
δ ).

2. A halts in time p( 1ε ,
1
δ ).

3. And for the output of A, h we have that errD [h] ≤ ε with probability at least
1− δ.

Where StatD(χ, τ) is an oracle that computes given a query (q, τ) returns E
x∼D

[q(x, c(x))]

up to accuracy τ . The above definition can be easily modified for the agnostic case.
Essentially algorithms in this model do not have direct access to examples from

the distribution D but only to statistics taken from D. Hence if we could simulate
the SQ oracle using coarse examples we could run every algorithm in the SQ model.
This model covers a wide variety of robust learning algorithms used in practice like
Stochastic Gradient Descent.

Let (q, τ) an SQ it is true that:

E
(x,y)∼D

[q(x, y)] =

k∑
1

E
(x,y)∼D

[q(x, i)1 (y = i)]

4



CHAPTER 1. INTRODUCTION

And

E
(x,y)∼D

[q(x, i)1(y = i)] =

∫
X

q(x, i)D(x, i)dx

=

∫
X

q(x, i)Dx(x)D(i | x)dx

By rejection sampling according to q(x, i) we can get samples from the distribution:

Df
x(x) =

q(x, i)

E
x∼Dx

[q(x, i)]
Dx(x)

So we have:

E
(x,y)∼D

[q(x, i)] =

∫
X

q(x, i)

Df
x(x)

Dx(x)D
f
x(x)D(i | x)dx

=

∫
X

E
x∼Dx

[q(x, i)]Df
x(x)D(i | x)dx

= E
x∼Dx

[q(x, i)] Prz∼Df
z
[z = i]

Where Df
z is the distribution of labels over accepted samples. So it still suffices to

estimate Prz∼Df
z
[z = i]. The expected value of the query function is independent of

the partition and can be estimated by unlabeled examples. Hence learning in this model
has been reduced to estimating probabilities of having i as the label in subsampled
distributions, an unsupervised problem.

1.5 Simulating the SQ oracle
To simulate the SQoraclewith coarse sampleswe need to be able to compute Prz∼Df

z
[z =

i] for different rejection sampling functions f . The authors of [Fot+21] showed that
because the set generation process is information preserving we can do this by only
processing the label subsets and not the instances. Hence we will solve the problem:
Let D probability distribution on a set [K], K ∈ N given samples from the following
generative processes, S ∼ Dπ , estimate the probability of observing i ∈ [K] from D
up to accuracy ε.

Definition 1.6 (Generative process of Coarse Samples). Let π an information preserv-
ing distribution of partitions over [K],K ∈ N. Consider the following process:

1. Draw a sample z from D.

2. Draw a coarsening partition P of [K] from the distribution π

3. Observe S ∈ P such that z ∈ S.

We denote the distribution of S as Dπ

We can do this by Empirical Likelihood Maximization. The corresponding empir-
ical log-likelihood objective after drawing N independent samples S1, . . . , SN from
Dπ is given by

LN (p) =
1

N

N∑
n=1

log

(∑
i∈Sn

pi

)
.

5



1.6. OVERALL ALGORITHM

Using concentration results one can make the total variation distance from the optimum
of the LN and the true probability vector of D smaller than ε with probability at least
1− δ using N polynomial inK, 1

δ ,
1
ε . Thus we have the following theorem:

Theorem 1.7 (Proposition 7 [Fot+21]). Let [K],K ∈ N be a discrete domain and let
D be a distribution supported on [K]. Moreover, let π be an α-information preserving
partition distribution for some α ∈ (0, 1]. Then, with N = Õ

(
K/

(
ϵ2α2

)
log(1/δ)

)
samples fromDπ and in time polynomial in the number of samplesN , we can compute
a distribution D̃ supported on [K] such that TV(D̃,D) ≤ ϵ

1.6 Overall Algorithm
Hence the overall algorithm runs the steps of a predefined SQ algorithm and for each
query, it performsK mean estimations by the sample averages andK Empirical Like-
lihood Maximizations for subsampled distributions and then combines the results as
shown before. From concentration results, one can show that the number of examples
and hence the complexity is polynomial in 1

δ ,
1
ε . From this, we get the following results:

Theorem 1.8 (SQ from Coarsely Labeled Examples). Consider a distributionDπ over
coarsely labeled examples in Rd × [K], with α-information preserving partition dis-
tribution π. Let q : Rd × [K] → [−1, 1] be a query function, that can be evaluated
on any input in time T , and τ, δ ∈ (0, 1). There exists an algorithm (Algorithm 1),
that drawsN = Õ

(
K4/

(
τ3α2

)
log(1/δ)

)
coarsely labeled examples fromDπ and, in

poly (N,T ) time, computes an estimate r̂ such that, with probability at least 1 − δ, it

holds
∣∣∣∣ E
(x,z)∼D

[q(x, z)]− r̂

∣∣∣∣ ≤ τ .

Some important properties of the algorithm above are that it works for any hypoth-
esis class that achieves an SQ algorithm, also it is agnostic on the partition distribution
π, and assumes only information preservation.

1.7 Thesis Overview
However, this result does not necessarily hold for the settingwhereπ is not an information-
preserving partition or the coarsening generative process is instance-dependent. These
are the main questions that we will be concerned with in this thesis.

Specifically, the thesis is structured in the following way:

• In chapter 2 we will see how learning problems under the presence of corruption
with different assumptions are related to each other.

• In chapter 3 we study algorithms for learning under RCN.

• In chapter 4 we will show a reduction of the coarse labels learning to a simpler
case where the combinatorial structure of the set is irrelevant.

• In chapter 5 we will design efficient algorithms for cases where there is a simple
instance dependence in the coarsening generative process.

• In chapter 6 we will design a PTAS for agnostically learning multiclass linear
classifiers.

• In chapter 7 we list further open problems that are of interest in this field.

6



CHAPTER2
MAIN PROBLEMS

2.1 Problem Hierarchy

As we have seen the problem of learning with coarse labels has been solved with
the assumption that the set generation process is information-preserving. And so one
could recover the correct distribution label by looking only at the generated subsets
[Fot+21]. We name this assumption α-IP (for α-information preserving). However,
another weaker assumption is that the incorrect labels are not too frequent, [CST11].
We name this assumption ε-UB (that we have ε as an upper bound on the probability
that an incorrect label belongs in the set).

However, in both cases these assumptions we have that the generated set does not
depend on the point x but rather the ground truth label y. We can generalize both
these assumptions by allowing the information-preserving constant and the probability
bound to be variable with x but still having universal bounds for all x. This is parallel
to learning with Massart noise [MN06]. We will name these problems α(x)-IP and
ε(x)-UB respectively. In the following figure, we see how those problems relate to
each other. And in the coming paragraphs of this section, we will make an introduction
and define each problem separately.

α-IP

α(x)-IP

ε-UB

ε(x)-UB

Figure 2.1: Problem Hierarchy

Notice that the problems form a lattice with edges from stronger to weaker assump-
tions. As in any such case, the existence of algorithms for the more general problems

7



2.2. ε-UB ASSUMPTION

solve also the more confined. Also hardness results in stronger assumptions carry to
more general settings.

2.2 ε-UB Assumption
Definition 2.1 (ε-UB assumption). We say a distribution,Dπ , on X × 2K satisfies the
ε-UB assumption if there exists an ε < 1 such that:

Pr
(x,S)∼Dπ

[z ∈ S | x] = Pr
(x,S)∼Dπ

[z ∈ S | x′] ≤ ε, ∀x, x′ ∈ X : c(x) = c(x′), ∀z ̸= c(x)

We assume that the ground truth labels are realizable by c : X → [K]. We will
show later that solving this problem without the assumption of realizability is hard.
When having this assumption we can solve the problem statistically by the analog of
empirical risk minimization (superset risk minimization).

Theorem 2.2. IfDπ satisfies the ε-UB assumption then we have that for all hypothesis
h:

Pr
(x,S)∼Dπ

[h(x) ̸∈ S] ≤ Pr
(x,y)∼D

[h(x) ̸= y] ≤ 1

1− ε
Pr

(x,S)∼Dπ

[h(x) ̸∈ S]

Proof. The first inequality is trivial because for the prediction to be correct it must
belong in the set. For the second we have that:

Pr
(x,S)∼Dπ

[h(x) ̸∈ S] = Pr
(x,S)∼Dπ

[(h(x) ̸∈ S) ∧ (h(x) ̸= y)]

= Pr
(x,S)∼D

[(h(x) ̸= y] Pr
(x,S)∼Dπ

[h(x) ̸∈ S | h(x) ̸= y]

≥ Pr
(x,S)∼D

[(h(x) ̸= y] (1− ε)

Hence if someone finds a model that has a small probability of predicting outside
the associated set (having a superset error), then he has a model with a low error. This
theorem applies even in the instance-dependent setting (with assumption ε(x)-UB).
And similar VC-dimension generalization results with respect to the empirical superset
error apply also in this case.

Theorem 2.3. (Sample Complexity for Supperset Error [LD14]) Let θ = log 2
1+ε and

suppose the Natarajan dimension of the hypothesis space H is dH . Then if we have a
sample S from Dπ of size n, n ≥ n0(H, ϵ, δ) where

n0(H, ϵ, δ) =
4

θϵ

(
dH

(
log (dH) + 2 logK + log

1

θϵ

)
+ log

1

δ
+ 1

)
Let ERMS be any algorithm that minimizes the number of superset errors on S then
errD [ERMS(x)] ≤ ϵ with probability 1− δ

In this way, one can learn when given examples and sets whose distribution satisfies
the ε-UB assumption. However the process of finding amodel withminimum empirical
superset error much like the ERM is not always efficient.

8



CHAPTER 2. MAIN PROBLEMS

It is true that the ε-UB assumption is a generalization of the α-IP assumption. But
there are examples that satisfy ε-UB but not α-IP. In the following example, we have
four classes and for each example in a class, one of two sets is chosen with probability
a half. This can be represented schematically or by a probability transition matrix of
size 2K ×K with Pr [S = T | y = i] being the elements.

Figure 2.2: Example of a set generation process in ε-UB but not in α-IP

One can easily verify that this example does not satisfy the α-IP assumption as
the probability distributions over the classes ( 12 , 0, 0,

1
2 ) and (0, 1

2 ,
1
2 , 0) both yield a

uniform distribution over the sets. Moreover, observe that since we have two distri-
butions with a positive total variation distance that map to the same distribution over
subsets, given only the associated subsets the distribution over fine labels is not recov-
erable. Hence the unsupervised (statistical) problem is not solvable and the algorithm
of [Fot+21] does not apply in this setting.

Also, observe that the above definition of the ε-UB setting was in the realizable
setting. This was not for simplicity but for the fact that for the situation that we have
soft labels, i.e. we have a probability for a label to be the ground truth for every x ∈ X .
We can have two distributions, for example, ( 12 , 0, 0,

1
2 ) and (0, 1

2 ,
1
2 , 0) in the above

example that if they where the distribution of y given x they both lead to the same
distribution on labels given x. Hence the problem is unidentifiable and so realizability
is important for the validity of the problem.

2.3 ε-UB and Learning with RCN

The setting of learning with the ε-UB assumption is similar to learning with Random
Classification Noise (RCN) [Kea98]. Where independent of the instance we have a
fixed probability of the label being flipped to any other label. Let H aK ×K matrix,
the confusion matrix, such thatHij = Pr [ỹ = j | y = i], where ỹ is the observed label
and y the ground truth. One can schematically represent the example generation process
under this type of noise with the following figure.

9



2.3. ε-UB AND LEARNING WITH RCN

Figure 2.3: Example Generation Process under multiclass RCN noise

It is true that if one given coarse examples {(x, S)}m1 for each example keeps a
random label in the set, ŷi. We would have a problem of learning with noise. Further-
more, as incorrect labels are less frequently in the set than the correct label we have that
the probability that ŷi is the correct label is greater than being any other one. One can
prove that this is a reduction to learning with RCN with the additional assumption that
the correct class is more probable. Of course, that kind of reduction loses some infor-
mation about the problem, as the correct label is always in the set, and in a way we are
amplifying the corruption process. But learning with RCN is a well-studied problem
that is known to have efficient algorithms in a wide number of settings.

Theorem 2.4. There is an efficient reduction from learning with ε-UB coarse samples
to learning with RCN.

Proof. Let {(x, S)}m1 be the coarse examples. By taking for each i ∈ [m] ŷi a random
label from the set Si. We can form a set of instance-label pairs {(xi, ŷi)}m1 . For which
we can compute the probability that the observed label is j given that the ground truth
label is i:

Pr [ŷ = j | y = i, x] = Pr [ŷ = j | y = i]

= E
S

[
Pr [ŷ = j | y = i, S]

]
= E

S

[
1

|S|
1 (j ∈ S) | y = i

]

Let Hij = Pr [ŷ = j | y = i]. As the instance is conditionally independent given the
label we have a problem of learning under RCN with confusion matrixH .

Notice that this reduction preserves the instance distribution, as it does not modify
the instances {xi}m1 . Also, we have that the probability that we observe the correct label

10



CHAPTER 2. MAIN PROBLEMS

can be bounded away by a constant from the probability that we observe any other label.

Hi,j = E
S

[
1

|S|
1 (j ∈ S) | y = i

]
= E

S

[
1

|S|
| y = i

]
− E

S

[
1

|S|
1 (j ̸∈ S) | y = i

]
= Hi,i − E

S

[
1

|S|
1 (j ̸∈ S) | y = i

]
≤ Hi,i −

1

K
E
S
[1 (j ̸∈ S) | y = i]

≤ Hi,i −
1− ε

K

Learning under RCN is a very widely studied topic that gave birth to learning with
the framework of learning with Statistical Queries. And in general, the problem of
learning under RCN is solved when an SQ algorithm exists for binary classification,
as there is an algorithm to compute any Statistical Query from noisy data [Kea98].
However, for multiclass learning problems, there are some degenerate cases that are
not yet understood (for further detail read 3).

2.4 Instance Dependent Set Generation
Both α-IP and ε-UB had the rather unrealistic assumption that the set generation pro-
cess is the same for every instance x ∈ X . This is definitely not the case in practice
as one could easily get more noise closer to the decision boundary. Also, algorithms
that operate with this kind of assumption can rely heavily on the knowledge of the un-
changed rates and be in a way overtuned. Following we see the definitions for both
settings.

Definition 2.5 (ε(x)-UB assumption). We say a distribution,Dπ , on X × 2K satisfies
the ε(x)-UB assumption if there exists an ε < 1 such that:

Pr
(x,S)∼Dπ

[z ∈ S | x] ≤ ε, ∀x ∈ X , ∀z ̸= c(x)

Definition 2.6 (α(x)-IP assumption). We say a distribution, Dπ , on X × 2K satisfies
the α-IP assumption. If there exists an α < 1 and information preserving partition
distributions, π(x), for every x ∈ X with a constant less than α. That is composed
with an example distribution D over X ×K generate Dπ .

As in the case of learning ε-UB coarse samples, one can reduce both cases to learn-
ing with noise. But in this case, the noise rate is instance dependent. Specifically fol-
lowing the proof of the last paragraph one can easily show that both cases are reduced
to learning with Massart noise.

However, distribution-independent PAC learning with Massart noise is known to
be computationally hard even in simple classes like halfspaces. But one can rather get
an error arbitrarily close to the noise threshold in polynomial time.

11



2.5. FURTHER OBSERVATIONS

2.5 Further Observations
Summarizing we introduced three generalizations to the learning with coarse labels
setting discussed in chapter 1 ([Fot+21]). And show their connections to the problem
of learning with noise. In the following figure, we see the overall problem relationships.

α-IP

α(x)-IP

ε-UB

ε(x)-UB

RCN Massart Agnostic

Figure 2.4: Problem Relationships

As in the reduction to learning with noise the distribution of the instances remains
unchanged, we have that also agnostic-PAC learning algorithms will result in coarse
learning algorithms (under ε(x)-UB). For the class of linear classifiers, we have that
agnostic PAC learning can be achieved only in distribution-specific cases. Specifically,
it has been proven that one can agnostically PAC learn half-spaces under the Gaussian
distribution [Dia+22], [Kal+05], [Dan15a]. If any of these results are able to be ex-
tended in the multiclass classification case we would have PAC learning algorithms for
learning with coarse labels as well.

12



CHAPTER3

RANDOM CLASSIFICATION NOISE

In this chapter will study the problem of learning under RCN. Specifically, wewill study
how one can use the forward loss correction method to learn multiclass linear classifiers
under RCN [Pat+17]. The method's main idea is to minimize the model mixed with the
confusion matrix to match the noisy labels.

The main motivation of the study is [Kon+23] where it is shown that one can learn
efficiently halfspaces under RCN (and Massart noise with knowledge of the flip prob-
ability at every point) with the use of this method.

First, we will discuss how learning with RCN differs from binary to multiclass clas-
sification and how this problem is usually solved. And then present an alternative so-
lution for learning multiclass linear classifiers.

3.1 Binary vs Multiclass Label Noise

Aswe have seen learning under RandomClassification Noise is the problem of learning
with label noise that is independent of the instance described by a matrix, H . When
Learning with noise one has to not take every example at face value and instead operate
on statistics that reveal the true label over a region of the space.

Specifically learning under RCN in binary classification can be solved (for every
function class that admits an SQ algorithm [BKW00]) as one can simulate any SQ using
noisy data, [Kea98]. The most popular methods that are used to learn under RCN are
backward loss correctionmethods. Specifically, if the confusionmatrix,H , is invertible
we can transform any statistic by the use of the inverse in order to get noiseless queries
to another statistic. This can be used in an already SQ algorithm like perceptron or
to transform a loss function in order to minimize a noiseless loss, [Blu+98], [Coh97],

13



3.2. FORWARD LOSS CORRECTION

[Nat+13]. Specifically, it is true that:

E
(x,y)∼D̃

[g(x, y)] = E
x∼Dx

[
K∑
1

Hc(x)jg(x, j)

]
= E

x∼Dx

[
HT

c(x)g(x)
]

= E
x∼Dx

[
K∑
i=1

1 (c(x) = i)HT
i g(x)

]
= E

x∼Dx

[
rTHg(x)

]
, r : ri = 1 (c(x) = i)

Where g(x) is the vector of g(x, i), i ∈ [K] andHi the i'th row ofH . Then if one does
choose g such that:

Hg(x) = G(x)

then HT
i g(x) = G(x, i). So

E
(x,y)∼D̃

[g(x, y)] = E
x∼Dx

[
HT

c(x)g(x)
]

= E
x∼Dx

[G(x, c(x))]

= E
(x,y)∼D

[G(x, y)]

Hence one can compute noiseless queries on G. And hence if there exists an SQ al-
gorithm that solves the problem by the use of an appropriate g one can simulate the
noiseless statistical queries. But that does rely on the solution of the system with the
matrix H .

If H is not invertible solving the system algebraically (constructing the function g
fromG) is impossible for all points x. Also, the problem should not be solved in general
as some variations are unidentifiable ( for example if H assigns labels uniformly at
random).

For binary classification, if the noise rate (probability that a label flips) is less than
1/2 (we have a greater probability of seeing the true label) we have that the matrixH is
invertible as it is diagonally dominant. Not only that one can subsample the noise rates
so to make them the same without losing invertibility [RDM06]. But for multiclass
classification that is not the case. Below we see an example of noise rates where we
have a greater probability of seeing the true label but the matrix is non-invertible.

T =


1
2

1
4

1
4 0

1
4

1
2 0 1

4
1
4 0 1

2
1
4

0 1
4

1
4

1
2


Hence it remains an open question if every identifiable case is also solvable for multi-
class classification.

3.2 Forward Loss Correction
In the following paragraphs, we will investigate the possible use of the Forward Loss
Correction method [Pat+17]. This a method commonly used in practice that has been
found to give efficient algorithms for learning noisy perceptrons [Kon+23].
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We assume that the data are linearly separable with margin γ > 0. Or there is a lin-
ear classifier c : Rd → [K] with weights w∗ ∈ Rd×K : c(x) = argmaxj∈[K]

(
w∗T

j x
)

and
w∗T

c(x)x ≥ w∗T
j x+ γ, ∀x ∈ Sup (D) .

Also without loss of generality we can assume that
∑K

1 w∗
j = 0, as adding to all param-

eter vectors the same constant vector does not change the prediction outcomes. Let g(x)
be the one-hot representation of c(x). We use a multiclass linear classifier composite
with a softmax layer, i.e.

f(x;w) =
1

N

 z1
. . .
zK

 , where zi = ew
T
i xi ∈ [K], N =

∑
i

zi

Let the noisy labels be generated according to thematrixH such thatHij = Pr [ŷ = j | y = i]

andHi is the i'th column ofH . We will study the outcome of minimizing the cross en-
tropy of the mixed model with the transition matrix and the observed noisy labels. Let
the mixed model and cross-entropy loss be defined as follows:

mix(f(x,w),H)i = HT
i f(x,w)

ce(y, h(x)) = −
K∑
i=1

yi lnh(x)i

As we will see later this objective in our setting is non-convex, hence we can not use a
plain objective value argument and we have to make an ad-hoc analysis with the use of
its gradients about the trajectory of gradient descent.

3.3 Expected Gradient Computation
First, we will derive the gradient in this setting. In the next paragraphs, we will use the
following expressions to develop first-order methods. By the chain rule, we have that:

∂wjl
ce(y,mix(f(x,w),H)) = −

K∑
i=1

yi
mix(f(x,w),H)i

∂wjl
mix(f(x,w),H)i

= −
K∑
i=1

yi
mix(f(x,w),H)i

∂wjl
HT

i f(x,w)

= −
K∑
i=1

yi
mix(f(x,w),H)i

HT
i ∂wjl

f(x,w)

And

∂wjl
fi(x,w) = ∂wjl

zi
N

= −
zi∂wjl

N

N2
+ ∂wjl

zi
1

N

= −zizjxl

N2
+
1 (i = j) zjxl

N
= −fifjxl + 1 (i = j) fjxl

= (1 (i = j)− fi)fjxl
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Hence

∂wjl
ce(y,mix(f(x,w),H)) = −

K∑
i=1

yi
HT

i f
HT

i (ej − f)fjxl

=

(
−

K∑
i=1

yi
HT

i f
Hji +

K∑
i=1

yi
HT

i f
HT

i f

)
fjxl

=

(
−

K∑
i=1

yi
HT

i f
Hji +

K∑
i=1

yi
HT

i f
HT

i f

)
fjxl

=

(
−

K∑
i=1

yi
HT

i f
Hji + 1

)
fjxl,

∑
i

yi = 1 (3.1)

=

(
K∑
i=1

HjiH
T
i f −Hjiyi
HT

i f

)
fjxl,

∑
i

Hji = 1

=

(
K∑
i=1

(HT
i f − yi)

Hji

HT
i f

)
fjxl (3.2)

Now observe that we have E [yi | x] = HT
i g = mix(g(x), T )). Hence

∂wj
E [ce(y,mix(f(x,w),H)) | x] = E

[
∂wj

ce(y,mix(f(x,w),H)) | x
]

=

(
K∑
i=1

(HT
i f −HT

i g)
Hji

HT
i f

)
fjx

=

(
K∑
i=1

HjiH
T
i

HT
i f

(f − g)

)
fjx

=

(
K∑
i=1

HjiHi

HT
i f

)T

(f − g)fjx

= aTj (f − g)fjx, where aj =
K∑
i=1

HjiHi

HT
i f

(3.3)

And so the expected norm squared of the gradient is the following:

E
[
∥∇ce∥22 | x

]
≥ ∥E [∇ce | x]∥22

= ∇ceT∇ce

=
∑
j∈[K]

aTj (f − g)(f − g)Tajf
2
j x

Tx

3.4 Loss Landscape
If g is defined as the one-hot vector of true labels then it is clear that f can only reach g
in a limit case. While if the labels were realized by the soft labels of a linear model then
f could be exactly equal to g. Hence to attain a small loss the norm of the predictor
must diverge towards infinity [Sou+22].
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Theorem 3.1. ∥∇ce∥F → 0 as ∥w∥F → ∞

Proof. As ∥w∥F → ∞ then f becomes a one-hot vector with the only coordinate

being one the argmaxj∈[K]

(
wT

j

∥w∥F
x

)
. Hence for each x there exists only one non-zero

coordinate of f , call it j. So observing the gradient expression 3.2 we find that only the
j 'th coordinate can be different than 0. But

∂wjl
ce(y,mix(f(x,w),H)) =

(
K∑
i=1

(HT
i f − yi)

Hji

HT
i f

)
fjxl

=

(
K∑
i=1

(Hji − yi)
Hji

Hji

)
xl

=

(
K∑
i=1

(Hji − yi)

)
xl

= 0

One can also note that in this case, the coefficient vector of the expected gradient equals
the vector of all ones ajfj = 1, if fj = 1 and otherwise it is zero.

In the figure below we can see the convex landscape for the one-dimensional and
binary case. And the above result is clearly evident.

Figure 3.1: Loss landscape

So in order to argue that we converge to the true linear classifier. We will iteratively
find a vector that the angle between it and w∗ converges to 0. A popular example of
this technique is the analysis of the perceptron.
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3.5 Correlation with w∗

3.5.1 Correlation of Gradient Update with w∗

Nowwewill analyze the gradient descent dynamics letutj = −ηtj∂wj
ce(y,mix(f(x,w),H))

be the SGD update for the parameters wj when given the point (x, y) and ut the over-
all update to the matrix w. Starting with the w0 = 0 we will have that after T steps
wtj =

∑T
1 utj . As the convex landscape has no critical point we will have to show

that our gradient rotatesw in the correct direction. We have that in expectation updating
with the point x at step t assuming that we have weights w:

E [ut · w∗ | x] = E

 K∑
j=1

uT
tjw

∗
j | x


=

K∑
j=1

ηtja
T
j (g − f)fjw

∗T
j x

=

 K∑
j=1

ηtjfj(w
∗T
j x)aTj

 (g − f)

=

 K∑
j=1

ηtjfj(w
∗T
j x)

K∑
i=1

HjiHi

HT
i f

T

(g − f)

=

 K∑
j=1

K∑
i=1

ηtjfj(w
∗T
j x)

HjiHi

HT
i f

T

(g − f)

=

 K∑
i=1

Hi

HT
i f

K∑
j=1

ηtjfj(w
∗T
j x)Hji

T

(g − f)

=

(
K∑
i=1

Hi

HT
i f

HT
i r

)T

(g − f), r col. vector s.t. rj = ηtjfj(w
∗T
j x)

= rT

(
K∑
i=1

HiH
T
i

HT
i f

)
(g − f)

= rT
(
HDHT

)
(g − f)

= dT
(
ΛHDHT

)
(g − f)

WhereD a diagonal matrix with 1
TT
i f

on the diagonal, Λ the diagonal matrix of the step
sizes multiplied with the soft labels Λ = diag({ηifi}Ki=1), and d the vector of scores
w∗

i x. From this update rule, it is not clear that the expected correlation between the
update and the true vector is positive given the assumption that H leads to a statis-
tically identifiable problem. Also, we do not have enough parameters to use the full
information of H in the updates as Λ is diagonal.
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3.5.2 Correlation of a Tuned Gradient Update
In this paragraph, we will examine if we could use a more complicated single-order
method in order to solve our problem. Specifically, as wewill see whenwewill examine
the cases where H is invertible it would be beneficial if we were able to control more
parameters and eventually use a step size matrix that involves the inverse ofH . So we
will examine the dynamics of the following gradient update:

wjt = wj(t−1) +AT
j u = wj(t−1) +

K∑
l=1

Ajlul

where u is the matrix of negative partial derivatives uj one in each column and A is a
matrix of weight coefficients, to be determined later.

E [Au · w∗ | x] = E

 K∑
j=1

w∗T
j AT

j u | x


= E

 K∑
j=1

w∗T
j

K∑
l=1

Ajlul | x


=

K∑
j=1

K∑
l=1

w∗T
j Ajla

T
l (g − f)flx

=

 K∑
j=1

K∑
l=1

w∗T
j xAjla

T
l fl

 (g − f)

=

 K∑
l=1

aTl

K∑
j=1

djBjl

 (g − f), dj = w∗
jx and B = A · diag(fi)

=

(
K∑
l=1

aTl (B
T d)l

)
(g − f)

=

(
K∑
l=1

K∑
i=1

TjiT
T
i

TT
i f

(BT d)l

)
(g − f)

=

(
K∑
i=1

Ti

TT
i f

TT
i (BT d)

)T

(g − f)

= dTB
(
TDTT

)
(g − f)

= dT
(
AΛTDTT

)
(g − f), Λ = diag(fi) (3.4)

Notice that we arrived at the same formula but now A is a full matrix instead of a
diagonal.

3.5.3 Binary Classification Case
For the binary classification case the confusion matrix has the form:

T =

[
a1 1− a1

1− a2 a2

]
, where a1, a2 ∈ (1/2, 1]
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And hence we have that

(TT
1 fTT

2 f)TDTT =

[
TT
2 fa21 + TT

1 f (1− a1)
2

TT
2 fa1 (1− a2) + TT

1 f (1− a1) a2
TT
2 f (1− a2) a1 + TT

1 fa2 (1− a1) TT
2 f (1− a2)

2
+ TT

1 fa22

]
= (TT

2 f (1− a2) a1 + TT
1 fa2 (1− a1))

[
1 1
1 1

]
+ (a1 + a2 − 1)2

[
f2 0
0 f1

]
Thus by the assumption that all the weight vectors sum to 0, if we use the same step
size for all dimensions, we have that we can ignore the first term. And so if we use as
step size TT

1 fTT
2 f

f1f2
1

(a1+a2−1)2 we have that:

E [ut · w∗ | x] =
K∑
1

(w∗T
j x)(g − f)j

Nowwhen f errs with respect to g at a point x by Lemma 3.2 we have a good correlation
between the update and the optimal parameters.

3.5.4 Invertible Case
By 3.4 if we useA = (TT )−1D−1T−1Λ−1 (TT is invertible iff T andD,Λ are always
invertible) then we would have that

E [ut · w∗ | x] =
K∑
1

(w∗T
j x)(g − f)j

And so by 3.2 would have a good correlation with the optimal parameters.

Lemma 3.2. If f misclassifies x then we have that:
K∑
1

(w∗T
j x)(g − f)j ≥

γ

2

Proof. Without loss of generality we have that g1(x) = 1 and that f1(x) < 1
2 . And so

we have that:
K∑
1

(w∗T
j x)(g − f)j = w∗T

1 x(1− f1)−
∑
j ̸=1

w∗T
j xfj

= w∗T
1 x(

∑
j ̸=1

fj)−
∑
j ̸=1

w∗T
j xfj

=
∑
j ̸=1

w∗T
1 xfj −

∑
j ̸=1

w∗T
j xfj

=
∑
j ̸=1

(w∗T
j x+ γ)fj −

∑
j ̸=1

w∗T
j xfj

= γ
∑
j ̸=1

fj

≥ γ

2
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CHAPTER 3. RANDOM CLASSIFICATION NOISE

Also, we have that E [ut · w∗ | x] ≥ 0 as:

K∑
1

(w∗T
j x)(g − f)j = w∗T

y x(1− fy)−
∑
j ̸=y

w∗T
j xfj

= w∗T
y x(

∑
j ̸=y

fj)−
∑
j ̸=y

w∗T
j xfj

=
∑
j ̸=y

(w∗T
y x− w∗T

j x)fj

≥ 0

3.5.5 Non-Invertible Case

Here we will investigate what would be a valid solution concept for non-invertible ma-
trices. If as in the intuition of the method, we could be able to efficiently generate an
f such that its confusion under T is arbitrarily close to g. Then we notice that for the
matrix

T =


1 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3


∥Tf − Tg∥2 ≤ ε implies that |f1(x)− g1(x)| ≤ ε and hence for sufficiently small

ε, g1(x) = 1 if and only if f1(x) ≥ 1
2 . And if we predict the class 1 if f1(x) ≥

1
2 and

otherwise 0 we could solve the problem of intersection of halfspaces efficiently.

3.6 Norm of the current guess
Here we will investigate how the norm of our parameter vector changes. Having a
bound on the norm gives us a bound on the angle and hence the number of iterations
till convergence. First of all, notice that:

∥wT ∥2F = 2

T∑
t=1

vt · wt +

T∑
i=1

∥vt∥2F

Assuming that vt is the update at step t. Hence we have find an upper bound on
E [vt · wt] and also balance the norm of the update vector. In general if vt = AT∂wce(y,mix(f(x,w), T ))
we have that:

E [vt · wt | x] = dT (AΛTDTT )(g − f), from3.4

where d vector in RK such that dj = wT
j x. Now assuming that we are in the invertible

case ifA is set as (TT )−1D−1T−1Λ−1 in order to have a high correlation with the true
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parameters, then we have that:

E [vt · wt | x] = dT (g − f)

= dy(1−
edy∑
edi

)−
∑
j ̸=y

dj
edj∑
edi

= dy(
∑
j ̸=y

fj)−
∑
j ̸=y

djfj

=
∑
j ̸=y

(dy − dj)fj

=
∑
j ̸=y

(dy − dj)
edj∑
edi

=
∑
j ̸=y

(dy − dj)
1

1 +
∑

i ̸=j,y e
di−dj + edy−dj

We will bound the above expression term by term if dy − dj ≤ 0 then the term is
non-positive. Furthermore if dy − dj > 0

(dy − dj)
1

1 +
∑

i ̸=j,y e
di−dj + edy−dj

≤ (dy − dj)
1

edy−dj

≤ 1

e

Hence the above expression is less than (K − 1) 1e .
Now we have to bound ∥ut∥2 we have that

utl =
∑
j

Alj

(
K∑
i=1

(HT
i f − yi)

Hji

HT
i f

)
fjx

=
∑
j

Alj

(
K∑
i=1

HT
i (f − q)

Hji

HT
i f

)
fjx

=
∑
j

Alj

(
K∑
i=1

Hi
Hji

HT
i f

)T

(f − q)fjx

=
∑
j

Alja
T
j (f − q)fjx

where q such thatHT q = y asH is invertible such a vector exists. By using the analysis
of paragraph 3.8.2 we have that:

uT
t ut =

∑
j

uT
tjutj

=

K∑
j=1

K∑
l=1

uT
tjAjla

T
l (q − f)flx

= dT
(
AΛTDTT

)
(q − f)
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CHAPTER 3. RANDOM CLASSIFICATION NOISE

where d is the vector of uT
tjx. Thus by using the inverse matrix, we have that

uT
t ut = dT (q − f)

=
∑
j

(q − f)jx
Tutj

= d′T (q − f)

Where d′ is the vector of (q − f)jx
Tx so if we assume that the point x are normalized

in the ball of radius one, we have that

uT
t ut =d′T (q − f)

≤(q − f)T (q − f)

=(H−1T y − f)T (H−1T y − f)

=H−1T (y −HT f)
T
H−1T (y −HT f)

=∥(y −HT f)H−1∥22
≤(maxλ(H−1))2∥(y −HT f)∥22
≤O(K)

We assume that the maximum eigenvalue from of the inverse is constant the last in-
equality holds from the fact that the matrixH is stochastic. Hence we have that:

E
[
∥wT ∥22

]
= O(KT )

3.7 Concentration Results
In this paragraph, we will show that since our update vector has a high correlation
with the optimum without increasing the weight norm by much in expectation, we have
that with high probability our guess will be steered to the optimum solution. For our
concentration argument, we define the Martingale:

qT =

T∑
t=1

(E [ut | Ft−1]− ut)

Where let the filtration Ft be the randomness of the SGD update at step t and also let
q0 = 0.

From paragraph 3.5.4 and lemma 3.2 we have that if our current hypothesis has
more than ε probability of error then

E [ut | Ft−1] · w∗ = E
x∼Dx

[ut · w∗]

≥ E
x∼Dx

[γ
2
1 (argmaxfj(x) ̸= g(x))

]
=

γ

2
Prx ∼ Dxargmaxfj(x) ̸= g(x)

≥ εγ

2
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3.7. CONCENTRATION RESULTS

Hence
T∑
1

E [ut | Ft−1] · w∗ ≥ T
εγ

2

Furthermore, from the fact that ∥ut∥2 = O(
√
K)we have that ∥E [ut | Ft−1]−ut∥2 =

O(
√
K) by triangle inequality. And hence by Cauchy-Schwarz and the assumption that

∥w∗∥F = 1we have that ∥E [ut · w∗ | Ft−1]−ut ·w∗∥2 = O(
√
K). Let c be a specific

constant for bounding the above expectations.
From the above and the use of the Azuma-Hoeffding inequality, lemma 3.3, we have

that

Pr
[
qT · w∗ ≥ T

γε

4

]
≤ e−γ2ε2T/(c2128K)

⇒Pr

[
T∑

t=1

(E [ut | Ft−1]− ut) · w∗ ≥ T
γε

4

]
≤ e−γ2ε2T/(c2128K)

⇒Pr

[
wT · w∗ ≤

T∑
t=1

(E [ut | Ft−1]− ut) · w∗ − T
γε

4

]
≤ e−γ2ε2T/(c2128K)

⇒Pr
[
wT · w∗ ≤ T

γε

4

]
≤ e−γ2ε2T/(c2128K)

Hence with T larger than 127c2K log( 1δ )
1

(εγ)2 we have that wT · w∗ ≥ T εγ
4 with

probability at least 1 − δ. Also as E
[
∥wT ∥2F

]
= O(KT ) by Markov's inequality we

have that Pr
[
∥wT ∥2F ≥ O( 1δKT )

]
≤ δ.

Hence with probability 2δ:

cos(θ(w∗, wT )) =
wT · w∗

∥w∗∥2

≥ Tεδγ

4
√
KT

⇒ T = O(
4K

(δεγ)2
)

So if T = O( 4K
(δεγ)2 ) there exists an update that has error lower than ε with probability

at least 1− δ.
So in the above paragraphs showed that learning halfspaceswith information-preserving

noise can be done efficiently by the use of the forward loss correction method. How-
ever, for that goal, we used a complicated update procedure that uses the inverse.

Lemma 3.3 (Azuma-Hoeffding). Let ξ(t) be a martingale with bounded increments,
i.e.,

∣∣ξ(t) − ξ(t−1)
∣∣ ≤M. It holds that Pr

[
ξ(T ) ≥ ξ(0) + λ

]
≤ e−λ2/(2M2T).
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CHAPTER4
LEARNING WITH COMPLEMENTARY LABELS

4.1 Reduction to LearningwithComplementary Labels

The problem of learning with coarse or partial labels has a combinatorial structure given
that the observed subsets can be arbitrary. In this paragraph, we will see a reduction that
removes this combinatorial structure. And what results one can come up with, once the
more straightforward problem is studied.

Specifically, one important variant of the problem of learning with coarse labels is
one when all the sets have sizeK−1. Hence the algorithm receives pairs of an instance
and a label counterexample that is not valid for that instance. In this variant, all the
combinatorial structure of the sets is gone and we have kind of an inverse problem to
learning with correct labels. This problem is called learning with complementary labels
and has been greatly studied in the literature ([Ish+17], [Yu+18], [Zha+21]). However,
despite the fact that this problem seems much simpler than the problem of learning with
coarse labels, the two problems are equivalent.

Theorem 4.1. Distribution-independent learning with coarse samples with the assump-
tion that Pr [|S| < K | x] ≥ β can be reduced to distribution-independent learning with
complementary labels.

Proof. Assuming that there is an efficient PAC learning algorithm for distribution-
independent learning with complementary labels. And that its sample complexity is
characterized by the polynomial p, on ϵ and δ, letm = p(1/ϵ′, 2/δ).

Then let Pr [|S| < K] = α by Lemma 4.2 it suffices to draw O(m/α) (polynomial
number) samples fromD to havem informative examples with probability greater than
δ/2. Then let {(xi, Si)}m1 such samples.

We transform them to {(xi, S
′
i)}m1 , S′

i = [K] − z where z is uniformly drawn
from S̄i. Now as there exists an efficient PAC learning algorithm for this setting andm
examples suffice, we can just run it and get an output hypothesis, h.

However, the distribution onX in the second problem has changed fromDx toD′
x.

Points that are more probable to generate uninformative samples are being sampled less
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4.1. REDUCTION TO LEARNING WITH COMPLEMENTARY LABELS

often. As a result

D′
x =

Dx · Pr [|S| < K | x]

Pr [|S| < K]

Because of the assumption that Pr [|S| < K | x] ≥ β then we have that

E
x∼Dx

[1 (h(x) ̸= c(x))] =

∫
X

1 (h(x) ̸= c(x))Dxdx

=

∫
X

1 (h(x) ̸= c(x))Dx

αPr [|S| < K | x]

αPr [|S| < K | x]
dx

= α

∫
X

1 (h(x) ̸= c(x))D′
x

1

Pr [|S| < K | x]
dx

≤ α

β
E

x∼Dx

[1 (h(x) ̸= c(x))]

≤ α

β
ϵ′

If we set ϵ′ = ϵ βα we get an ϵ, δ hypothesis for coarse label learning.

Lemma4.2. LetD a distribution over domainX and a propertyG ⊆ X with Pr
x∼D

[x ∈ G] ≥
α then with O(nα log 1

δ ) samples from the distributionD we got that at least n samples
will statisfy the property G with probability 1− δ.

Proof. We define the random variables X1, . . . , Xm with Xi = 1 (x ∈ G). The Xi's
are iid Bernoulli random variables with E

X1∼D
[X1] ≥ α. Let E

Xi∼D
[
∑

Xi] = µ from
the Chernoff Bound we have that:

Pr
[∑

Xi ≤ (1− ε)µ
]
< e−

ε2

2 µ

⇒Pr
[∑

Xi ≤ (1− ε)mα
]
< e−

ε2

2 mα

⇒Pr
[∑

Xi ≤ (1− ε)8n ln
1

δ

]
< e−ε24n ln 1

δ , m =
8n

α
ln

1

δ

⇒Pr
[∑

Xi ≤ n
]
< e−n ln 1

δ , δ < e−1/4, ε = 1/2

⇒Pr
[∑

Xi ≤ n
]
< e− ln 1

δ , n ≥ 1

⇒Pr
[∑

Xi < n
]
< δ

Theorem 4.3. Distribution-independent learning with coarse samples with the assump-
tion that Pr [z ∈ S | x] ≤ ε can be reduced to distribution-independent learning with

complementary labels (x, ȳ), ȳ ̸= y with Pr [z = ȳ] ≥ (1− ε) 1
K−1 , ∀z ̸= y.

26



CHAPTER 4. LEARNING WITH COMPLEMENTARY LABELS

Proof. Obviously as Pr [|S| < K | x] ≥ Pr [z ̸∈ S | z ̸= y] ≥ 1 − ε. So by the above
theorem, we have that the problem can be reduced to learning with complementary
labels. But also the resulting counterexamples satisfy the assumption that each non-
label has some lower bounded probability to be observed for every x.

Pr [z = ȳ | x] = Pr [z ̸∈ S ∧ z = ȳ | x]

= Pr [z ̸∈ S | x] Pr [z = ȳ | x ∧ (z ̸∈ S)]

= Pr [z ̸∈ S | x]E
[

1

|S̄|
| x ∧ (z ̸∈ S)

]
≥ (1− ε)

1

K − 1
> 0

And so Pr [z ̸= ȳ | x] ≤ 1− (1− ε) 1
K−1 < 1. And so this reduction does not lose the

set generation assumption ε(x)-UB.

Although the algorithm is not practical as it increases the ambiguity of the label for
each example. It is important from a theoretical point of view as it eliminates all the
combinatorial structures of the sets. Also in this setting, we have reduced the number
of possible observed sets to K from 2K hence backwards loss correction methods can
be applied more efficiently with respect to the dependence on K. However, learning
with complementary labels without additional assumptions is computationally hard.

Theorem 4.4. Proper PAC learning multiclass linear classifiers with complementary
labels in the realizable setting is hard unless NP = RP .

Proof. It suffices to show a reduction from learning the intersection of two halfspaces
to this problem. As learning the intersection of two halfspaces is hard unless NP =
RP [KS08],[KS06]. Assuming that there is a PAC learning algorithm for learning
multiclass linear classifiers with complementary labels and NP ̸= RP . Let p be the
polynomial that characterizes the sample complexity.

Givenm = p( 1ϵ ,
1
δ ) samples from an unknown distributionD that is realized by the

intersection of two unknown halfspaces,w1, w2 ∈ Rd, {xi, c(xi)}m1 . We can transform
it into a sample of counterexamples from xi ∼ Dx that is realized by a multiclass
linear classifier. If c(xi) = +1 we uniformly pick for ȳi labels from {2, 3, 4} and if
c(xi) = −1 we pick as ȳi = 1.

From this transformation me get {xi, ȳi}m1 . It is easy to check that the multiclass
linear classifier that is defined by the vectors w1 + w2, w1 − w2, w2 − w1,−(w1 +
w2) realizes the above counterexamples. And if we learned this classifier to a high
accuracy with high probability then by adding combinations of the vectors we could
get a probably highly accurate hypothesis for the intersection of halfspaces.

4.2 Strong Linear Separability
Here we will look at a stronger version of linear separability that will enable us to
use binary classification algorithms. This stronger notion of separability has been used
recently to make efficient bandit linear classifiers with a finite mistake bound [Bey+19].
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4.3. POSITIVE AND UNLABELED LEARNING

Definition 4.5. We say that a distributionD on Rd× [K] is strongly linearly separable
if

wT
y x > 0 and wT

j x < 0, ∀j ̸= y, ∀(x, y) ∈ Sup(D)

In that case, the One versus All reduction to binary classification works.

Theorem 4.6. IfD is strongly linearly separable then training we can solve the problem
efficiently by trainingK binary linear classifiers.

Proof. As one can learn a linear efficiently with linear programming when having a
polynomial number of samples. Letm = poly

(
1
ϵ ,

1
δ

)
the required number of samples

to get accuracy ϵ/K and confidence δ/K.
Let S ∼ Dm we can make S1, . . . , SK samples sets each one Si by labeling the

class i positive and all the others negative. As each set is linearly separable can use those
to trainK binary linear classifiersw1, . . . , wK with accuracy ϵ/K and confidence δ/K.
Now for a new x if we predict a random label that has a positive inner product and we
call our classifier h. We have that with probability 1−δ all {wi}K1 have error ϵ/K and:

Pr
(x,y)∼D

[h(x) ̸= y] ≤ Pr
(x,y)∼D

[
wT

y x > 0 or ∨j ̸=y w
T
j x < 0

]
≤

K∑
1

Pr
(x,y)∼D

[wi errs on x]

≤ ϵ

It is true that multiclass linear classification can be reduced to binary classification
by the use of a reduction to the strongly linearly separable case. This reduction is done
with the use of the rational kernel [SSSS10].

Theorem 4.7 (Theorem 5 [Bey+19]). Let (x1, y1), (x2, y2) , . . . , (xT , yT ) ∈ B(0, 1)×
{1, 2, . . . ,K} be a sequence of labeled examples that is weakly linearly separable with
margin γ > 0. Let,

γ1 =

[
376 ⌈log2(2K − 2)⌉ ·

⌈√
2
γ

⌉] −⌈log2(2K−2)⌉·
√

2/γ⌉
2

2
√
K

,

γ2 =

(
2s+1r(K − 1)(4s+ 2)

)−(s+1/2)r(K−1)

4
√
K(4K − 5)2K−1

,

where r = 2
⌈
1
4 log2(4K − 3)

⌉
+1 and s = ⌈log2(2/γ)⌉. There exists transformationϕ

such that the sequence of labeled examples transformed byϕ, namely (ϕ (x1) , y1) , . . . , (ϕ (xT ) , yT ),
is strongly linearly separable with margin γ′ = max {γ1, γ2}.

This reduction is efficient however it deceases the margin. We will use this theorem
to reduce our problem to important binary classification problems.

4.3 Positive and Unlabeled Learning
As we saw it suffices to investigate the learning with complementary labels problem.
Now we will assume that we are also in the strongly linearly separable setting we de-
scribed in the previous paragraph. Hence it suffices to trainK linear classifiers one for
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CHAPTER 4. LEARNING WITH COMPLEMENTARY LABELS

each class. However in this case the binary classifier that would classify as positive the
i'th class and as negative all the rest, has to be trained with examples that certify that
a point does not belong in the i'th class and points that correspond to different classes
and their label is there for irrelevant for the classifier.

From the point of view of the i'th binary classifier the sample set is a set of negative,
(when the non-label is i) and unlabeled examples (when the non-label is different than
i). Hence it suffices to solve the problem of learning with positive (if we rename the
labels) and unlabeled examples. With the additional assumption that we receive iid
samples (x, y), x ∼ Dx such that when y = −1 we observe ŷ = 0 (ie unlabeled), and
when y = 1 there is the lower bounded probability that we will observe the true label,
otherwise we observe ŷ = 0.

The problem of learning with positive and unlabeled data (PU learning) is greatly
studied in practice [HL20], [PNS14]. But in theory, it is only investigated when the
distribution of positive examples is the conditional distribution, D(x | y = 1), and the
distribution of unlabeled examples is unchanged Dx, [DGL05]. And in this case, this
problem can be reduced to learning with noise if one considers examples drawn with
2/3 probability from the distribution of the positive examples and labeled positive, and
with probability 1/3 from Dx and labeled negative. And that can be solved for all SQ
classes as we are talking about binary label noise that is bounded away from 1/2 for a
distribution close to D (for more details [DGL05] Proposition 1).

However, as in our case, we have an instance-dependent probability of a label being
revealed, and hence we have a change in the positive example distribution. Particularly
we observe positive examples from D′

+ = η(x)D(x)/E
D
[η(x)] and unlabeled exam-

ples from D. And we will prove that the PU learning to noise reduction mentioned
above leads to an instance-dependent Massart noise or Constant Partition Classifica-
tion Noise [Dec97] with unknown partition. As a result, due to recent breakthroughs
[DGT19], [Che+20], this gives an approximate algorithm for learning with coarse la-
bels. However, this reduction maybe has lost information about the problem so we
propose PU learning with a lower bounded probability of observing a positive example
as an open problem.

Theorem 4.8. LetD be a distribution realized by a halfspace. The problem of learning
from x ∼ D when the positive label is presented with probability η(x) can be reduced
to learning with Massart noise under a different distribution.

Proof. We construct the distribution D′ by sampling a positive example from D′(x)
with probability 2/3 and labeling it positive or sampling an unlabeled example fromD
with probability 1/3 and labeling it negative. Then the resulting distribution is:

D′(x) =

{
D(x)
3 , c(x) = −1

D(x)+2D+(x)
3 , c(x) = +1

And the noise rate is:

n(x) =

{
0, c(x) = −1

D(x)
2+D+(x) , c(x) = +1

Hence we have that the noise rate is at most 1
2+η/E

D
[η(x)] .

The distribution of the noisy examples is different than the original however it is
close as it has non-trivial mass in every point that the original has.
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CHAPTER5
LEARNING WITH SIMPLE INSTANCE

DEPENDENCIES

5.1 Unbiased Coarse Labels

In this paragraph, we will solve the problem of learning with coarse labels for a rather
simple but diverse and widely researched setting [RW18], [Ish+17]. Specifically, we
will study the setting where each label, other than the ground truth, is present in the
set with the same probability. Or in other words consider the setting, η(x)-EP, (for
η(x)-Equal Probabilities) where

Pr
(x,S)∼Dπ

[z ∈ S | x] = η(x) ≤ η < 1, ∀z ̸= c(x), ∀x ∈ X

Also, assume that the ground truth labels follow a model c(x). This is an instance-
dependent setting and hence it is a specialization of the ε(x)-UB problem. Notice that
the labels may be observed with the same probability but not independently, as for
example two labels can be present half the time but not necessarily together. The dif-
ference from the general ε(x)-UB problem is the fact that, in this case, there is only one
function that describes the problem, in the general setting we would haveK.

For the purposes of the next paragraphs without loss of generality, we will ignore
the fact that the distribution can give uninformative samples (i.e. S = [K]) because
these cases can be easily adjusted for by the argument in Theorem 4.1 in Chapter 4.

Here we will prove that this setting can be reduced to the case where the probability
is instance-independent.

Theorem 5.1. Given {(xi, Si)}m1 from the η(x)-EP setting there exists an constant α
such that we can transform them to samples {(xi, S

′
i)}m1 from the α-EP setting.

Proof. Define as πx the distribution of the observed set Si ⊆ [K] when the instance is
x ∈ X . If for each sample set Si each is replaced by the set S′

i = [K]− zi, where zi is
drawn uniformly at random from S̄i. Let π′

x be the probability distribution of S′
i when
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the instance is x. For the new set generation procedure we have that:

Pr
S′
i∼π′

x

[z ̸∈ S′
i] = Pr

S′
i∼π′

x

[z = zi]

= E
Si∼πx

[
Pr

S′
i∼π′

x

[z = zi | Si]

]
= E

Si∼πx

[
1 (zi ̸∈ Si)

K − |Si|

]
Hence if we take the complimentary labels we have that the resulting probability distri-
bution depends on the expected size of the complement ofS. And thus could be instance
dependent and different for different labels. However, we can apply rejection sampling
with rate K−|Si|

K when preprocessing the samples. We will have a new marginal over
the sets π′′

x and we have that:

π′′
x(S) =

π(x)(K − |S|)
Z

Where Z is a normalization factor so:

E
S∼π′′

x

[
1 (zi ̸∈ S)

K − |S|

]
=
∑
S

1 (zi ̸∈ S)

K − |S|
π′′
x(S)

=
∑
S

1 (zi ̸∈ S)

K − |S|
π(x)(K − |S|)

Z

=
∑
S

1 (zi ̸∈ S)

Z

Which is constant for all labels zi other than the ground truth. So Pr
S′
i∼π′

x

[z ̸∈ S′
i] =

1
K−1 , ∀z ̸= c(x) independent of the instance x. The above rejection sampling proce-
dure chances the distributionDx but as there is a lower bounded probability of accepting
any point we have that the distribution is similar enough such that learning in this case
can lead to learning in the original problem (as in the proof of Theorem 4.1).

So even though the probability that each label is present depends on the instance
from an instance-dependent transformation this can be reduced to a much simpler case.
The resulting set distribution is equivalent to the case where for each instance we are
presented with a uniformly chosen non-label and we can show that it is information
preserving.

Theorem 5.2. The set generation process which we are presented with a uniformly
chosen complementary label is information preserving.

Proof. Let P ∈ R2k×k be the coarsion confusion matrix i.e. PS,j = Pr
S∼πj

[S]. In our

case, we have that P has only K non-zero columns (the sets of size K − 1). And for
each corresponding set, the probability that it is chosen is 1

K−1 .
Let p, q probability distributions on the labels. From the structure of P we have that

∥P · (p− q)∥1 = ∥(JK − IK)(p− q)∥1
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When JK is all one's matrix of size K × K. The matrix (JK − IK) is known as the
complement of the identity and it is always invertible. Hence we have that by simple
norm-relationships

∥P · (p− q)∥1 = ∥(JK − IK)(p− q)∥1
≥ ∥(JK − IK)(p− q)∥2
≥ min

λ∈Sp(JK−IK)
|λ|∥p− q∥2

≥
(

1√
K

min
λ∈Sp(JK−IK)

|λ|
)
∥p− q∥1

So by applying the reduction to the instance-independent case and then the MLE
algorithm, we have that:

Theorem 5.3. If the set generation process is such that every label i other than the
ground truth appears in the set with probability η(x) independently, for all points then
there is an efficient coarse learning algorithm that uses samplesO(Npoly (K)). If there
exists an efficient SQ learning algorithm that N statistical queries.

5.2 Labels presented IID
Now we will prove that if each label is present iid with probability less than η to S then
the associated partition distribution is information preserving. In other words, we will
investigate the setting where there exists one set generation distribution for each label
πy , and the sets are generated as such:

Pr
S∼πy

[z ∈ S] = ηz ≤ η, ∀y, ∀z ̸= y iid

Theorem 5.4. The partition probability distribution in such a setting is information
preserving.

Proof. Let p, q probability distributions on the labels. And let P ∈ R2k×k be the
coarsion confusion matrix i.e. PS,j = Pr

S∼πj

[S]. Then it is true that:

(P · p)S = Pr
S∼pπ

[S]

We want to lower bound we ∥P · (p− q)∥1 with respect to ∥p− q∥1. As the l1 and l∞
norms are dual of each other we have that for any v : ∥v∥∞ ≤ 1

∥P · (p− q)∥1 ≥ vTP · (p− q)

Let G = {i : pi − qi ≥ 0}. And set v such that vS = (|S ∩ G| − |S ∩ Ḡ|)/K. Let
g = Kv the not normalized vector. Then

gTPp = E
S∼pπ

[|S ∩G|]− E
S∼pπ

[
|S ∩ Ḡ|

]
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We can write |S ∩G| =
∑

i∈G Xi, for Xi = 1 (i ∈ S) and thus

E
S∼pπ

[|S ∩G|] =
∑
i∈G

Pr
S∼pπ

[i ∈ S]

=
∑
i∈G

(pi + (1− pi)ηi)

=
∑
i∈G

(ηi + (1− ηi)pi)

So we have that:

K∥P · (p− q)∥1 ≥
∑
i∈G

(ηi + (1− ηi)pi)−
∑
i∈Ḡ

(ηi + (1− ηi)pi)

−
∑
i∈G

(ηi + (1− ηi)qi) +
∑
i∈Ḡ

(ηi + (1− ηi)pi)

=
∑
i∈G

(1− ηi)(pi − qi) +
∑
i∈Ḡ

(1− ηi)(qi − pi)

≥ (1− η)∥p− q∥1

Thus TV (Pp, Pq) ≥ 1−η
K TV (p, q) and so the partition distribution is information

preserving.

The intuition is that we set v as a tester to distinguish between the distributions Pp
and Pq. And v has the function that counts the good elements, that are more probable
in one distribution over the other, (versus the bad) in the observed set. By definition of
the good and bad elements in terms of p and q the resulting test gives us an appropri-
ate separation as observing good elements when the set is generated from Pp is more
probable than observing when we have Pq. That difference with few calculations re-
lates to the l1 norm of p and q. For information-preserving coarsions we can apply the
maximum likelihood algorithm and so we have the following theorems.

Theorem 5.5. If the set generation process is such that every label i other than the
ground truth appears in the set with probability ηi independently, for all points then there
is an efficient coarse learning algorithm that uses samples O(Npoly (K/(1− η))). If
there exists an efficient SQ learning algorithm that N statistical queries.

5.3 Learning with Hierarchically Structured Sets
As we have seen in chapters 4 and 5 one can simply ignore the combinatorial struc-
ture of the subsets increase the level of coarsening and only work with complementary
labels. However, that may be sub-optimal, and well-structured sets could give us a
more efficient training procedure. We study the setting when there is a Hierarchical
partition of the labels and we with some probability observe the associated set (the one
containing the ground true label) at some level of the hierarchy.

Specifically, if we observe data from the following generative model:

1. y ∼ D

2. P ∼ π
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3. Observe S where S ∈ P such that y ∈ S.

Where π is a distribution on the levels of a hierarchical partition scheme of the labels.
For simplicity, we assume that the hierarchical partition scheme forms a complete bi-
nary tree. And with each sample, we observe with probability qi the set on the i'th
(with fine-grained samples being the 0'th level). Hence by simply forming the his-
togram of the fine-grained samples and ignoring the sets we could learn the distribution
in θ( n

q0ε2
) samples. Can we find better sample complexity than when using only the

produced fine-grained labels? The following theorem answers this question negatively.

Theorem 5.6 (Hierarchical Distribution Learning). We need Ω( n
q0ϵ2

) hierarchically
coarse samples to approximate a discrete distribution on n elements.

Proof. We can apply the same counterexample that proves that the sample complexity
of learning a discrete distribution on n elements is Ω( n

ϵ2 ). Let the hierarchical parti-
tioning scheme form a binary tree and n even.

Now let z a vector and pz a probability distribution such that:

pz(i) =
1− ϵzi

n
and pz(i+ 1) =

1 + ϵzi
n

Assuming that we output a pẑ distribution in this family.
Notice that each ẑi that does not agree with the corresponding zi contributes 2ϵ

n to
the total variation distance. Hence

dTV(pz, pẑ) =
2ϵ

n

n
2∑
1

(1(ẑi(S) = zi)))

⇒ E[dTV(pz, pẑ)] =
2ϵ

n

n
2∑
1

E[1(ẑi(S) = zi)]

=
2ϵ

n

n
2∑
1

E[E[1(ẑi(S) = zi) | B1 . . . B|S|]]

WhereBi is an indicator variable that signifies to which of the n
2 bins sample i belongs

before the the coarsing process. The conditional distribution of Sj on Bj is the level
distribution with level 0 being split into two events. Specifically the distribution of Sj

conditional on Bj has domain Ω = {2Bj , 2Bj +1, S1, S2, . . . Slgn} with probabilities
{q0 ·

(
1−zjϵ

2

)
, q0 ·

(
1+zjϵ

2

)
, q1, . . . , qlgn} where qi is the probability that we draw

level i from π.
So ẑi has to distinguish between two distributions P0 and P1 on Ω, P0 = {q0 ·(

1−ϵ
2

)
, q0 ·

(
1+ϵ
2

)
, q1, . . . , qlgn} and P1 = {q0 ·

(
1+ϵ
2

)
, q0 ·

(
1−ϵ
2

)
, q1, . . . , qlgn}. From

[DK19]

E[1(ẑi(S) = zi) | B1 . . . B|S|] ≥
1

2
− dTV (P

ki
0 , P ki

1 )

2

So from Pinsker's Inequality

dTV (P
ki
0 , P ki

1 ) ≤

√
DKL(P

ki
0 | P ki

1 )

2
=

√
ki
DKL(P0 | P1)

2
=

√
kiq0

ϵ2

1− ϵ
≤
√

2q0kiϵ, for e ≤
1

2

35



5.3. LEARNING WITH HIERARCHICALLY STRUCTURED SETS

Because only the terms of the level 0 events contribute to the KL divergence. And
E[ki] = 2k

n , ki is the number of samples that belong in the bin i before the coarsing
process. So

E[E[1(ẑi(S) = zi) | B1 . . . B|S|]] ≥
1

2
− E[

√
ki]
√

2q0ϵ

≥ 1

2
−
√

2k

n

√
2q0ϵ, Jensen

=
1

2
− 2
√

kq0/nϵ

⇒ E[dTV(pz, pẑ)] ≥ ϵ(1− 4ϵ
√

kq0/n)

So for E[dTV(pz, pẑ)] < ϵ/2 we need a number of samples k ≥ 1
64

n
ϵ2q0

Hence in order to learn the distribution to total variation distance ε we need to ob-
serve the last layer of the tree a sufficient number of times.
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CHAPTER6
LINEAR MULTICLASS CLASSIFIERS WITH

AGNOSTIC NOISE

Learning linear classifiers with no distributional assumptions is computationally hard in
the agnostic case [Dan15b]. However given the fact that the instances come from well-
behaved distributions like the Uniform, Normal, or Log-concave efficient algorithms
can be designed for agnostically learning with many geometric concepts ( like convex
sets, intersections of halfspaces and halfspaces ) [Kal+05], [Dan15a], [KOS08].

These algorithms rely on the fact that under these distributions there exist poly-
nomials of low-degree that approximate every function in the function class. And as
polynomial regression can be formulated with a convex program we can solve it and
learn improperly by predicting with the regression polynomial. In this chapter, we will
develop an algorithm that learns under the Normal Distribution by using this technique.
The algorithm that we will design will not be polynomial (as this is not achievable even
in the binary classification case) but it will run in polynomial time for any fixed error
input ε.

Specifically, we will use the framework of [Kal+05] and reduce the problem to bi-
nary classification. However common reductions from multiclass to binary classifica-
tion like One Versus All and All Pairs will fail to reach the optimum accuracy [DB95],
[ASS01], [DSS12]. For that reason, we will develop a novel objective function such
that the resulting polynomials after minimization are easier to round and therefore pre-
dict. Finally, we will prove that our new framework will work for a variety of problems
like agnostic learning with coarse labels.

6.1 Approximating Polynomials for Related Concepts
First, consider the class regions of a linear multiclass learning model. As we predict
j whenever w∗T

j x − t∗j > w∗T
i x − t∗i , ∀i ̸= j we have that the region of the class j

is the intersections of the halfspaces with normal vectors w∗
j − w∗

i , ∀i ̸= j and offsets
t∗j − t∗i . Hence if we could learn this intersection of K − 1 halfspaces we could apply
a one versus-all prediction classifier. But, as we have mentioned in previous chapters
learning intersections of halfspaces is computationally hard even in the realizable set-
ting. However, under distributional assumptions, this problem is solvable even when
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6.2. ONE VERSUS ALL LEARNING ALGORITHM

we have agnostic noise. Specifically, we will use the following theorems for approxi-
mating halfspaces and intersections of halfspaces.

Theorem 6.1 ([KOS08]). For any f : Rn → {−1, 1} intersection of halfspaces. There
exist a polynomial p : Rn → R with degree d = O( logKε2 ) such that

E
x∼Nn

[
(p(x)− f)2

]
≤ ε

From theCauchy-Schwartz inequality E
x∼D

[∥p(x)− c(x)∥1] ≤
√

E
x∼D

[∥p(x)− c(x)∥22]
we can immediately get the following corollary.

Corollary 6.2 ([KOS08]). For any f : Rn → {−1, 1} intersection of halfspaces. There
exist a polynomial p : Rn → R with degree d = O( logKε4 ) such that

E
x∼Nn

[|p(x)− f |] ≤ ε

Theorem 6.3 ([KOS08]). For any f : Rn → {−1, 1} halfspace. There exist a poly-
nomial p : Rn → R with degree d = O( 1

ε2 ) such that the l1-norm under the Gaussian
distribution is less than ε.

These theorems describe the existence of low-degree polynomials that approximate
halfspaces and intersections of halfspaces. Moreover, the theorems above are almost
tight and there are lower bounds that characterize that this is the near-optimal (optimal in
the case of halfspaces) in terms of degree polynomials that approximate these concepts
[DKN09], [Hsu+22]. Also one can prove Statistical Query lower bounds using lower
bounds on the degree of approximation by polynomials [Dia+21] in the case of binary
classification. Therefore we have strong evidence to postulate that the algorithms that
we have designed are not far from the optimal algorithms in the SQ framework.

6.2 One Versus All Learning Algorithm

We will investigate the guarantees of the following learning algorithm 1. Summarizing
this algorithm learns a polynomial that approximates the region of every class then
rounds the answer according to a threshold and it predicts according to the One Versus
All (OVA) paradigm 2. As sign (ϕ), where ϕ a proposition, we define the function that
is 1 if ϕ is true and −1 if ϕ is false.
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Algorithm 1: OVAtrain(d degree, S = {(xi, yi)}m1 examples)
Result: h1, . . . , hK polynomial threshold functions

1 for i = 1 : K do
2 Let zj = sign (yj = i) , j = 1, . . . ,m and let S′ = {(xj , zj)}m1
3 Find the polynomial of degree d than minimizes the l1 distance over S′ i.e.

min
pi:deg(pi)≤d

1

m

m∑
1

|pi(xj)− zj |

4 Choose ti ∈ [−1, 1] such that we minimize

1

m

m∑
1

1 (sign (pi(xj)− ti) ̸= zj)

5 end
6 return sign (p1(x)− t1) , . . . , sign (pK(x)− tK)

Algorithm 2: OVAtest(h1, . . . , hK , x) or h(x)
Result: ŷ prediction of a sample x

1 for i = 1 : K do
2 If hi(x) ≥ 0
3 return i
4 end
5 return 1

Theorem 6.4. Assuming that there exists a polynomial of degree d that approximates
every intersection of halfspaces to l1-error ε under the distribution DX then we have
that, the training algorithm 1 with the prediction algorithm 2, by the use ofN = O(n

d

ε )
samples in poly (N) time output a hypothesis with expected error less thanKε+2OPT .

Furthermore, we can boost the algorithm such that the error is less than Kε + 2OPT
with probability at least 1 − δ by the use of polynomial in 1

ε ,
1
δ number of samples in

polynomial time.

Proof. We will set d as the degree and we use O(n
d

ε ) samples (the VC-dimension of
degree d polynomial threshold functions is O(nd)) and run the l1-regression algorithm
1. It is true that for all i ∈ [K]:

1

m

m∑
1

1 (hi(xj) ̸= sign (yj = i)) ≤ 1

2m

m∑
1

|pi(xj)− sign (yj = i) |

Because, we would make a mistake with respect to sign (y = i) if and only if the thresh-
old lay inside the interval [pi(x), sign (y = i)]. Thus a random threshold would achieve
error E

(x,y)∼D
[|pi(x)− sign (y = i) |] /2 in expectation thus by the probabilistic method

there exists a threshold that has a lower error and thus the optimum has a lower error
with certainty.

Now let c be the optimal multiclass linear model and ci the intersections of half-
spaces that each class defines. As we choose the polynomials that minimize the l1
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error we will have polynomials p1, . . . , pK that have better l1 distance from the sign
functions than the polynomials that approximate the intersections of halfspaces {ci}K1 ,
p∗1, . . . , p

∗
K . In other words, we have that

1

m

m∑
1

|pi(xj)− sign (yj = i) | ≤ 1

m

m∑
1

|p∗i (xj)− sign (yj = i) |

≤ 1

m

m∑
1

|p∗i (xj)− ci(xj)|+
1

m

m∑
1

|sign (yj = i)− ci(xj)|

≤ 1

m

m∑
1

|p∗i (xj)− ci(xj)|+
1

m

m∑
1

|sign (yj = i)− ci(xj)|

=
1

m

m∑
1

|p∗i (xj)− ci(xj)|+
2

m

m∑
1

1 (sign (y = i) ̸= ci(x)) , ∀i ∈ [K]

The last inequality is because when an error occurs then the l1 error is equal to 2. From
the above my taking the expectation we have that

Pr
(x,y)∼D

[hi(x) ̸= sign (y = i)] ≤ ε

2
+ Pr

(x,y)∼D
[sign (y = i) ̸= ci(x)]

Aswe chose the number of samples to be related to the VC dimension of PTFs of degree
at most d we have that the empirical error is ε/2 close to the above expectation in an
expected sample S. Thus

E
S

[
Pr

(x,y)∼D
[hi(x) ̸= sign (y = i)]

]
≤ ε+ E

S

[
Pr

(x,y)∼D
[sign (y = i) ̸= ci(x)]

]
, ∀i ∈ [K]

So in expectation over the sample set S we have that

Pr
(x,y)∼D

[h(x) ̸= y] ≤ Pr
(x,y)∼D

hy(x) < 0 or
∨
i ̸=y

hi(x) ≥ 0


= Pr

(x,y)∼D

[∨
i

hi ̸= sign (y = i)

]
≤
∑
i

Pr
(x,y)∼D

[hi(x) ̸= sign (y = i)]

≤
∑
i

(
ε+ Pr

(x,y)∼D
[sign (y = i) ̸= ci(x)]

)
= Kε+

∑
i

Pr
(x,y)∼D

[sign (y = i) ̸= ci(x)]

= Kε+ 2OPT

The last equality is because as {ci}K1 constitute a partition of Rn only one of them can
be equal to 1 the same is true for sign (y = i). Hence if we have a mistake then the sum
of the indicators 1 (ci(x) ̸= sign (y = i)) is equal to 2 the one that corresponds to the
correct label and the one of the prediction. But if the is no mistake then all events are
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falls thus the sum of the indicators is 0.

OPT = Pr
(x,y)∼D

[sign (y ̸= c(x))]

= Pr
(x,y)∼D

[∃i : ci(x) ̸= sign (y = i)]

= E
(x,y)∼D

[1 (∃i : ci(x) ̸= sign (y = i))]

= E
(x,y)∼D

[
1

2

∑
i

1 (ci(x) ̸= sign (y = i))

]

=
1

2

∑
i

Pr
(x,y)∼D

[sign (y = i) ̸= ci(x)]

Furthermore, high accuracy on an expected sample can be easily boosted to high accu-
racy with high confidence in a standard way [Kal+05].

Hence from theorem 6.2 we have the following corollary.

Corollary 6.5. ForDx being the normal distribution we have that if run the algorithm
above with d = Õ(K

4 logK
ε4 ) and using nd samples then with probability at least 1− δ

we get a hypothesis with error at most 2OPT + ε in time polynomial on nd, 1
ε ,

1
δ .

If we assume thatK is constant then we have an n
1
ε4 learning algorithm. Notice that

the analysis carried out aboveworks for any prediction rule that returns an arbitrary label
that has been predicted by the binary models. Also by applying distribution-specific
agnostic boosting algorithms [Fel09] combined with the corollary above we can get the
optimum accuracy, but only for the case when the optimum is less than 1/4.

In the following paragraphs, we will see how we can get optimum accuracy by
designing a more multiclass-specific task and rounding technique.

6.3 One Versus All Shortcomings
In the coming paragraphs, we will use the vector notation for all classifiers rounded
and real-valued. So let p, p∗ beK dimensional vectors of polynomials. Let c be theK
dimensional one-hot vector of the optimum classifier and y the one-hot vector of labels.

In the one versus all paradigm essentially we trained and combined each classifier
separately and as the task was well decomposable to binary tasks we got good accuracy.
Essentially we got regression polynomials {pi}K1 with l1 error lower than the l1 error
of the true classifiers {ci}K1 .

1

m

m∑
1

∥p(xj)− yj∥1 ≤ 1

m

m∑
1

∥p∗(xj)− c(xj)∥1 +
1

m

m∑
1

∥c(xj)− yj∥1, ∀i ∈ [K]

In the coming discussion, we will not consider the l1 error of p∗ with c, as by taking a
sufficient degree we can force it to be less than ε. And as we rounded each classifier
separately we were led to a classifier a collection of classifiers {hi}K1 that in l1 error
less than that of c.

1

m

m∑
1

∥h(xj)− yj∥1 ≤ 1

m

m∑
1

∥p∗(xj)− c(xj)∥1 +
1

m

m∑
1

∥c(xj)− yj∥1, ∀i ∈ [K]
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However, the problem with the collection of classifiers h is that it does not necessarily
lie in the simplex, so we can not predict by sampling. Hence we need to project to it
without increasing the l1 distance from y a one-hot vector that belongs in the simplex.
Unfortunately, the projection lemma that is utilized for the projected gradient descent
guarantees does not apply here. As the vector y = [1, 0, 0] and h = [1, 1/2, 1/2]
have ∥h− y∥1 = 1 and both [1, 0, 0] and [0, 1/2, 1/2] are valid projections but have l1
distances from y being 0 and 2 respectively.

Lemma 6.6 (l2 Projection Lemma). Let C ⊆ Rd any convex body let y ∈ C and
x ̸∈ C then for the projection of x to C:

ΠC(x) = argminz∈C∥x− z∥2

we have that ∥ΠC(x)− y∥2 ≤ ∥x− y∥2.

Hence we would need to make a custom projection method that does not blow up
the l1 error from all one-hot vectors. Let us consider projecting p, we can truncate all
negative values to zero by only decreasing the l1 norm also assuming that the sum of
the vectors is greater than 1 then we can round by decreasing all the weights by the
same amount. As y has only one non-zero coordinate we have that we decrease the l1
distance by (K−1)x if we subtract from all coordinates x and remain nonnegative. As
soon as one coordinate becomes 0 we keep it constant and continue from the rest.

Hence there exists a way to project onto the simplex while keeping decreasing the
l1 norm. The only other case that we need to consider is when having the rounded
classifier h is when all hi's are 0. So we have that ∥h − y∥1 = 1 Then we have no
information so the only logical thing to do is to flip a randomK-sided coin and output
ĥ the corresponding one-hot vector. That way we will have a probability of 1−1/K to
make a mistake and hence have ∥ĥ− y∥1 = 2. Thus we have increased the l1 distance
from y by 1 for an (1− 1

K )Pr [h = 0] fraction of examples. This is the fundamental issue
for the naive One Versus All reduction, that the classifiers have not been incentivized
to collaborate and produce rounded outcomes and thus they can all respond negatively
that does not give any information about the example.

Theorem 6.7. For any A : {0, 1}K × {0, 1}r → {0, 1}K multiclass to binary One
Versus All reduction algorithm using r random bits there exists h1, . . . , hK : Rn →
{0, 1} classifiers such that for all i it holds

Pr
(x,y)∼D

[hi(x) ̸= yi] ≤ Pr
(x,y)∼D

[c∗i (x) ̸= yi] + ϵ

i.e. they are optimal in classification error.But there exists a distribution D on Rd ×
{0, 1}K for which

Pr
(x,y)∼D,r∼{0,1}r

[A(h1(x), . . . , hK(x), r) ̸= y] ≥ 2(1− 1

K
)OPT + ε.

Proof. We define a distribution D as a product of a distribution on one point x and a
distribution that belongs to a family of distributionsF . WhereF = { 1

2 (ei+ej) : i, j ∈
[K], i ̸= j} and {ei}K1 are the canonical basis vectors of RK . The all-zero classifies
have optimal classification error for each distribution in F as they observe each label
with probability 1

2 in the one versus all distributions. Thus we have to prove that the
classifierA(0, . . . , 0, r) has small accuracy against one distribution from the family F .
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Let (p1, . . . , pK) the probability distributions on labels thatA(0, . . . , 0, r) generates
given random bits r. The average classification error over the class F is

1(
K
2

) ∑
i>j

(
1− pi + pj

2

)
= 1− 1(

K
2

) ∑
i>j

(
pi + pj

2

)
= 1− 1(

K
2

) ∑
i>j

pi

= 1− 1

2
(
K
2

) ∑
i ̸=j

pi

= 1− 1

K(K − 1)
(K − 1)

K∑
i=1

pi

= 1− 1

K

= 2

(
1− 1

K

)
1

2

Hence by the probabilistic method, we have that there exists a distribution in the family
for which classification error is greater than 2

(
1− 1

K

)
1
2 . The result follows asOPT =

1
2 .

6.4 An Optimal Agnostic Learner

In this section, we will describe a way to overcome this obstacle and get optimum
accuracy with the same complexity as the OVA algorithm.

6.4.1 Rounding Procedure

We will consider minimizing the objective function L(p) = E
(x,y)∼D

[l(p(x), y)] where

l(p, y) = ∥p− y∥1 + |1−
K∑
i=1

p|+
K∑
i=1

(−pi)+

In that way, we force our pi's to sum up to one and also to have positive values. Specif-
ically, it is true that for this objective the function value gets smaller when we project to
the simplex using algorithm 3. Hence even if we receive a point x that the polynomial
values do not form a probability distribution then we could round without increasing
the objective value.
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Algorithm 3: R(p ∈ RK)
Result: p′ ∈ ∆K a probability distribution vector

1 if p ∈ ∆K then
2 return p
3 end
4 ∀i : pi < 0 set pi = 0

5 let s =
∑K

i=1 pi
6 if s < 1 then
7 ∀i, pi = pi +

s
K

8 end
9 else if s > 1 then
10 while s > 1 do
11 Let S = {i : pi > 0}
12 ∀i ∈ S, pi = pi −min

(
s−1
K ,minj∈S pj

)
13 s =

∑K
i=1 pi

14 end
15 end
16 return p

Theorem 6.8. Let y ∈ {ei}K1 . There exists a procedure A such that from any p we
could get a vector p′ ∈ ∆K such that l(p′, y) ≤ l(p, y).

Proof. We will use the algorithm 3. If there exist coordinates of p that are negative we
can increase them separately by that amount by only decreasing the objective value.
Let pi = −x then by making pi = 0 we decrease the first and third terms by x and as
the middle term has slope 1 for pi so we decrease the function by at least x. Thus the
third term drops to zero.

Now if the
∑

i pi = x ̸= 1 is larger than 1 then decreasing it in any way to 1
drops the second term. If the sum is greater than one we can use the technique of the
previous paragraph to also decrease the l1 difference. If x < 1 then by increasing every
coordinate by x/K we increase the l1 difference by at most xwhich is also the decrease
of the second term.

The theorem below connects the objective value loss and the classification error of
a rounded hypothesis.

Theorem 6.9. There exists a rounding procedure that given for any hypothesis h :
Rn → RK it outputs a hypothesis ĥ : Rn → {ei}K1 such that

Pr
(x,y)∼D

[
ĥ(x) ̸= y

]
≤ L(h)

2

Proof. Assume the hypothesis ĥ that given any x computes h(x) and rounds by running
the Algorithm 3 and then samples according to that probability distribution (Algorithm
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5). With the use of Theorem 6.8 we have that:

L(h) = E
(x,y)∼D

[
∥h(x)− y∥1 + |1−

∑
hi(x)|+

∑
(−hi(x))+

]
≥ E

(x,y)∼D

[
∥R(h(x))− y∥1 + |1−

∑
R(h(x))i|+

∑
(−R(h(x))i)+

]
= E

(x,y)∼D
[∥R(h(x))− y∥1]

Now let's consider the relationship between, the accuracy that a random one hot vector
sampled from a distribution p has being equal to a fixed one hot vector y, and the l1
distance between p and y.

∥p− y∥1 =

K∑
i=1

|pi − yi|

= |pj − 1|+
∑
i ̸=j

|pi|

= 2
∑
i ̸=j

pi

= 2 Pr
i∼p

[i ̸= j]

Hence

L(h) ≥ E
(x,y)∼D

[∥R(h(x))− y∥1]

= E
(x,y)∼D

[
2 Pr
ŷ∼R(h(x))

[ŷ ̸= y]

]
= 2 Pr

(x,y)∼D

[
ĥ(x) ̸= y

]
The last probability also takes into account the random coins used by ĥ.

6.4.2 Overall Algorithm

The pseudocode for the training and prediction routines is given in Algorithm 4 and 5.
To give guarantees about the algorithms we will first show that there exists polynomials
of low degree that achieve a small loss.

Theorem 6.10. Let D a distribution on Rd × [K] such that the x-marginal is a stan-
dard normal. There exist polynomials p1, . . . , pK with degree at mostO(K

2 logK
ε4 ) that

achieve L(p) ≤ 2OPT + 3ε.

Proof. For any vector of polynomials p = [p1, . . . , pK ] and c optimummulticlass clas-
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sifier we have that

L(p) = E
(x,y)∼D

[
∥p− y∥1 + |1−

∑
pi|+

∑
(−pi)+

]
= E

(x,y)∼D

[
∥c− y∥1 + ∥c− p∥1 + |1−

∑
pi|+

∑
(−pi)+

]
= E

(x,y)∼D

[
∥c− y∥1 + ∥p− y∥1 + |

∑
ci −

∑
pi|+

∑
(−pi)+

]
≤ E

(x,y)∼D

[
∥c− y∥1 + 2∥p− c∥1 +

∑
(−pi)+

]
≤ E

(x,y)∼D
[∥c− y∥1 + 3∥p− c∥1]

The last inequality is true because the negative coordinates of p also contribute to the
l1 the same amount, as c has only one non-zero coordinate.

Now as the x-marginal is the standard normal distribution and each coordinate of
c represents an intersection of halfspaces from Theorem 6.1 we have that there exist
polynomials of degree at most O( logKε2 ) that can approximate each coordinate to l22

distance ε. Thus with degreeO(K
2 logK
ε4 )we can approximate the vector c to l22 distance

ε2. Combining the fact that

OPT = Pr
x∼Dx

[c(x) ̸= y] = E
(x,y)∼D

[∥c− y∥1] /2

we have that L(p) ≤ 2OPT + 3ε.

Now given the Theorems 6.9, 6.10 the only thing left to show is that minimization
of the objective function L can be done efficiently and with a small number of samples.
In the work [Kal+05] as well as in the One Versus All analysis, optimization is done
on the empirical l1 loss and then VC dimension arguments are used in order uniformly
bound the population loss. Here as we use a more complicated rounding procedure that
does not produce polynomial threshold functions this is not an option.

To bound the complexity of minimization of L we will use a custom concentration
argument and also the fact that the empirical analog of L is a convex program (that can
be minimized efficiently).

Theorem 6.11. With N = (nd)O(d)

Kε2 samples and poly
(
N,nd, 1

ε

)
runtime where d =

K2 logK
ε4 , we can compute a vector of polynomials p̂ such that

L(p̂) ≤ min
p:deg(pi)<d

L(p) +O(ε)

Proof. First, we show that there exists an almost optimal polynomial that has bounded
coefficients. From the proof of the last theorem 6.10, we have that there exists a vector
of polynomials p∗ of degree d = O(K

2 logK
ε4 ) that is ε-optimal for L and also for every

i

E
(x,y)∼D

[
p∗i (x)

2
]
= E

(x,y)∼D

[
(p∗i (x)− c(x) + c(x))2

]
= E

(x,y)∼D

[
2(p∗i (x)− c(x))2 + 2c(x)2)

]
= 2

ε2

K
+ 2

≤ 3
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If we write pi(x) in the Hermite basis pi(x) =
∑

a∈N caHa(x), it holds that
∑

a c
2
a =

E
(x,y)∼D

[
p∗i (x)

2
]
. As the one-dimensional Hermite polynomials of degree k are

hk(z) =

⌊K
2 ⌋∑

m=0

(−1)mzk−2m

m!(n− 2m)!2m

Thus, each monomial has a coefficient absolute bounded by 2k. Therefore, the max-
imum coefficient of a multidimensional Hermite polynomial Ha(x) is 2|a|, thus the
maximum coefficient of the polynomial is bounded by a constant B = O(2d). Let P
be the set of polynomials of degree d in n dimensions with coefficients bounded by B
also let pi(x) =

∑
j mj(x)aij the sum of monomials form of pi.

Let S be a set ofN samples. We define the empirical loss of a vector of polynomials
as

LN (p) =
1

N

N∑
i=1

l(p(xi), yi)

Our goal is to show that the empirical loss LN (p) is close to the population loss L(p)
for the output polynomial p of the optimization algorithm for LN . The minimization
of LN subject to |a| < B for all a coefficients can be formulated as a linear program
(convex) and thus it can be solved with additive error ε in poly

(
N,nd, 1

ε

)
. Define the

random variables {Xi}Ki=1 such that

Xi = | 1
N

∑
(x,y)∈S

|pi(x)− y| − E
(x,y)∼D

[|pi(x)− y|] |
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As Xi is non-negative by Markov's Inequality we have

Pr
S∼DN

[Xi ≥ δ] ≤
E

S∼DN
[Xi]

δ

≤

√
E

S∼DN
[X2

i ]

δ

=

√
Var

S∼DN
[Xi]

δ

=

√
Var
S∼D

[Xi]
√
Nδ

≤

√√√√ E
S∼D

[(
|pi(x)− y| − E

(x,y)∼D
[|pi(x)− y|]

)2
]

√
Nδ

≤

√
2 E
S∼D

[
|pi(x)− y|2

]
+ 2

(
E

(x,y)∼D
[|pi(x)− y|]

)2

√
Nδ

≤
2

√
2 E
x∼Nd

[
pi(x)

2
]
+ 2

√
Nδ

≤
2

√
2 E
x∼Nd

[
(
∑

j aijmj(x))
2
]
+ 2

√
Nδ

≤
2

√
4 E
x∼Nd

[
(
∑

j a
2
ijmj(x)2)

]
+ 2

√
Nδ

≤
2
√
4B2

∑
j E
x∼Nd

[(mj(x)2)] + 2
√
Nδ

≤
2

√
4B2

∑
j E
x∼Nd

[
(∥x∥2j2 )

]
+ 2

√
Nδ

≤
2
√
4B2

∑
j O(jj) + 2

√
Nδ

≤ 2
√
4B2nd+1O(dd) + 2√

Nδ

≤ O(

√
B2nd+1dd√

Nδ
)

Here we used the fact that the number of coefficients of all degree d multivariate poly-
nomial in n dimensions is nd+1. Using N = O(B

2nd+1dd

ε2 ) = (nd)O(d)

ε2 we can make
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this probability constant. By with N = (nd)O(d)

Kε2 we can do this for all Xi simultane-
ously. Working in the same way we can do this for the other two components of L.
Thus using N = (nd)O(d)

Kε2 we can have that ∀p with constant probability

|LN (p)− L(p)| ≤ ε

Now by solving the linear program, we get a polynomial p such that

LN (p) ≤ min
q∈P

LN (q) + ε

⇒LN (p) ≤ LN (p∗) + ε

⇒L(p)− ε ≤ LN (p∗) + ε

⇒L(p) ≤ L(p∗) + 3ε

⇒L(p) ≤ 2OPT +O(ε)

with constant probability. Substituting the degree of p∗ we getN =
(
nK2 logK

ε4

)O(K2 logK
ε4

)

/ε2.

The above result holds with constant probability but it can be efficiently boosted
to δ by only multiplying the number of samples with O(log 1

δ ) ([SSBD14] Chapter 13
exercise 1). Also, the formulation of the minimization of LN as a linear program is
nearly the same as the formulation of l1 polynomial regression as a linear program.

Algorithm 4: AgnosticLearner(d bound degree, S = {(xi, yi)}m1 examples,
B bound on the coefficients)
Result: p polynomial

1 Find an ε approximate minimizer p =
∑

a⊆N cax
a of the following problem

via linear programming

min
pi:deg(pi)≤d

1

|S|
∑
i

l(p(xi), yi)

s.t. |ca| ≤ B

return p

Algorithm 5: Predict(p, x) or ĥ(x)
Result: ŷ prediction of a sample x

1 Compute h = p(x)
2 Round according to R (Algorithm 3)
3 return ŷ ∼ R(h)

6.5 Approximating The Multiclass Model
The approach in the previous paragraph was to minimize a function of the one-hot
vectors describing the labels. This is the advisable approach as minimizing the distance
from the integer-valued labels takes to account the relative distance between the labels.
And as the labels represent categorical values they should be on orthogonal directions
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like the one-hot vectors. However, despite that, we tightly bound the degree of the
multiclass polynomial that approximates the integer-valued labels. But we note that
this approach leads to O(K ·OPT ) accuracy.

6.5.1 Existance of a low-degree approximating polynomial

We saw the guarantee of the One Versus all learning algorithm was 2OPT + ε and the
times two factor on the approximation error came from the fact that we trained multiple
learners in this section we will describe how one can construct a polynomial that has
small l1 error with respect to the multiclass labels.

Specifically, we will show that there is a linear combination of the intersection of
halfspace polynomials that has ε error with respect to the l1 norm. Consider theK×K
matrix H

H =


1 −1 . . . −1
−1 1 . . . −1

. . .
−1 −1 . . . 1

 = 2I − J

where J is the all-ones matrix. The above matrix has eigenvalues 2 and 2−K as J has
eigenvalues 0 ( with algebraic multiplicityK − 1 ) andK ( with algebraic multiplicity
1). Hence the system Hx = b is always solvable for everyK ≥ 3.

Theorem 6.12. For every K-class linear model c there exists a polynomial p of de-
gree O( 1

ε4 ) that approximates it to error ε in l1 distance with respect to the Gaussian
distribution.

Proof. Let ci the partition to intersections of halfspaces of c. From theorem ?? we
have p1, . . . , pK polynomials that approximate ci to error ε1, . . . , εK respectively in l1
distance with respect to the Gaussian distribution. We will show that the polynomial
p = vTP (x) where P the vector with coordinates {pi(x)} and v : Hv = b with b the
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vector with values 1, . . . ,K satisfies the requirements of the theorem.

E
x∼Nn

[|p(x)− c(x)|] =
K∑
i=1

E
x∼Nn

[|p(x)− c(x)| · 1 (ci(x) = 1)]

=

K∑
i=1

E
x∼Nn

[
|vTP − bi| · 1 (ci(x) = 1)

]
=

K∑
i=1

E
x∼Nn

[
|vTP − vTHi| · 1 (ci(x) = 1)

]
, Hi the i'th row of H

≤
K∑
i=1

K∑
j=1

|vj | E
x∼Nn

[|pj −Hij | · 1 (ci(x) = 1)]

=

K∑
j=1

|vj |
K∑
i=1

E
x∼Nn

[|pj − cj(x)| · 1 (ci(x) = 1)]

=

K∑
j=1

|vj | E
x∼Nn

[|pj − cj(x)|]

=

K∑
j=1

|vj |εj

≤ ε

If we set εj = ε
|vj | . As p is a linear combination of the polynomials p1, . . . , pK so we

have that deg(p) ≤ maxi deg(pi). Hencewe have that the degree of p isO(
maxi v4

i logK
ε4 ).

The values {|vi|}K1 are independent with respect to ε but they depend onK.

6.5.2 Lower Bounds on the Approximation Degree
This algorithm may not be tight as we solve the much harder problem of learning with
intersections of halfspaces instead of directly approximating the multiclass linear clas-
sifier. However, in this paragraph, we will show that the polynomial that we specified
is optimal with respect to the degree. This intuitively makes sense as the function of the
multiclass linear model can be partitioned to regions that are intersections of halfspaces.

Specifically, we will show that if a multiclass linear model could be approximated
to error ε with a low degree polynomial then intersections of halfspaces could be ap-
proximated also by a polynomial with the same degree. This reduction along with lower
bounds on the degree of polynomials that approximate intersections of halfspaces can
give us a lower bound for the degree of polynomials that can sufficiently approximate
multiclass linear models.

Theorem 6.13. If for every function in the class ofK-class linear models, there exists
a polynomial of degree at most dK( 1ε ) that approximates it to l1 error ε then there exists
a polynomial of degree at most dK+1(O( 1ε )) that approximates every intersection ofK
halfspaces.

Proof. Assuming that there exist polynomials of degree at most dK that approximate
everyK-class linear model. Let c an intersection ofK halfspaces c(x) = (aT1 x > 0)∧
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· · ·∧(aTKx > 0). Consider the multiclass linear model fw with weightsw ∈ Rn×(K+1)

w1 = a1 + · · ·+ aK

w2 = −a1 + · · ·+ aK

· · ·
wK+1 = a1 + · · · − aK

We have that x is classified as 1 if and only if

wT
1 x > wT

i x, ∀i ∈ {2, . . . ,K + 1}
⇐⇒ aTi x ≥ 0, ∀i ∈ [K]

⇐⇒ c(x) = 1

From our assumption, there exist polynomials of degree at most dK+1 that approximate
w as well as all renamings of the labels of w. We will show that there exists a linear
combination of the cyclic renamings of w that approximates c. Consider the following
linear system Hv = b where

H =


1 2 . . . K + 1

K + 1 1 . . . K
. . .

2 3 . . . 1

 and b =


1
−1
. . .
−1


it is easy to see that the above system is always invertible due to the circulant nature
of H . Consider the polynomial p = vTP where P is the vector of polynomials that
approximate the associated cyclic renamings of w. Let w = w1, . . . , wK+1 signify the
K+1 cyclic renamings ofw and let p1, . . . , pK the polynomials that approximate them
to error {εi}K+1

1 . We have that

E
x∼Nn

[
|c(x)− vTP |

]
=

K+1∑
i=1

E
x∼Nn

[
|c(x)− vTP | · 1 (fw(x) = i)

]
=

K+1∑
i=1

E
x∼Nn

[
|bi − vTP | · 1 (fw(x) = i)

]
=

K+1∑
i=1

E
x∼Nn

[
|vTHi − vTP | · 1 (fw(x) = i)

]
≤

K+1∑
i=1

K+1∑
j=1

|vj | E
x∼Nn

[|Hij − pj(x)| · 1 (fw(x) = i)]

=

K+1∑
i=1

K+1∑
j=1

|vj | E
x∼Nn

[|fwj (x)− pj(x)| · 1 (fw(x) = i)]

=

K+1∑
j=1

|vj | E
x∼Nn

[|fwj (x)− pj(x)|]

≤
K+1∑
j=1

|vj |εj

= ε
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The last inequality can be achieved if we set εi = ε/|vi|, ∀i ∈ [K], thus 1
εi

= O( 1ε ).
As p is a linear combination of the polynomials {pi}K+1 we have that its degree is at
most the maximum so at most dK+1(O( 1ε )).

From the above theorem, we can see that in order approximate multiclass linear
models with sufficient accuracywe need to approximate the corresponding intersections
of halfspaces like the method of the above paragraph.
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CHAPTER7
FUTURE WORK AND OVERVIEW

Concluding we studied algorithms for multiclass learning in the presence of corruption
and produced efficient algorithms for specific assumptions for learning with coarse and
even noisy data. However, despite our efforts, there are still a large number of important
open problems one should consider.

As multiclass learning is underrepresented in the literature there is a large number of
problems that can be investigated. We divide these problems into two categories: semi-
supervised multiclass learning and multiclass learning in the presence of corruption.

In the first category, we classify learning problems that concern the setting of learn-
ing with Coarse Labels. Specifically the problems of learning under the ε-UB, ε(x)-UB
and α(x)-IP problems. As well as the problem of PU learning when we always observe
the positive label with some lower bounded probability. These settings can help speed
up the Machine Learning pipeline as we would need substantially less labeling effort
by learning in a semi-supervised manner.

In the second category, we classify learning problems where the labels have been
imposed on some type of corruption. Namely the problems of learning with multiclass
RCN and Massart noise. These settings can help the development of more robust trust-
worthy algorithms as in practice the realizable setting is quite unrealistic.
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