
On the security of Bitcoin and DAG-based
performance solutions

Danai Balla
AL1.19.0017

Examination committee:
Aris Pagourtzis, School of Electrical and Computer
Engineering, National Technical University of Athens.
Lefteris Kokoris-Kogias, Institute of Science and
Technology Austria.
Nikos Leonardos, Department of Informatics and
Telecommunications, National and Kapodistrian
University of Athens.

Supervisor:
Aris Pagourtzis, Professor,
School of Electrical and Computer
Engineering,
National Technical University of
Athens.

ABSTRACT

The Bitcoin protocol has been proposed as a decentralized payment system in which
any participant can verify their transactions. However, it performs significantly worse
than its centralized counterparts, and many modifications have been proposed since its
inception with the aim of improving performance. In this thesis, we explore a category
of protocols that use an alternative chain selection rule or use a directed acyclic graph
of blocks instead of a blockchain, with a focus on their security guarantees.

We begin by describing the Bitcoin protocol and presenting an overview of its secu-
rity proofs over time, with the aim of understanding the proof methods and the resulting
performance limitations. Then, we describe GHOST, which uses the GHOST rule in-
stead of the longest chain rule of Bitcoin and serves as a stepping stone for DAG-based
protocols such as PHANTOM,GHOSTDAG, SPECTRE, and Conflux. We also present
an attempt for an alternative proof of the security of GHOST. Finally, we describe these
DAG-based protocols and present their security guarantees.

ΣΥΝΟΨΗ

Το πρωτόκολλο Bitcoin έχει προταθεί ως αποκεντρωμένο σύστημα πληρωμών στο
οποίο οποιοσδήποτε συμμετέχων μπορεί να επαληθεύσει τις συναλλαγές του. Όμως,
η απόδοση του είναι σημαντικά μικρότερη από τα αντίστοιχα κεντροποιημένα
συστήματα, και από τη σύλληψή του έχουν προταθεί πολλές τροποποιήσεις του που
έχουν στόχο να αυξήσουν την απόδοση του. Σε αυτή τη διπλωματική, εξερευνούμε
μια κατηγορία πρωτοκόλλων τα οποία χρησιμοποιούν διαφορετικό κανόνα επιλογής
αλυσίδας ή χρησιμοποιούν κατευθυνόμενο ακυκλικό γράφημα αντί για αλυσίδα από
block, εστιάζοντας στις εγγυήσεις ασφάλειας τους.

Αρχικά περιγράφουμε το πρωτόκολλο Bitcoin και παρουσιάζουμε μια επισκόπηση
των αποδείξεων της ασφάλειάς του, με σκοπό να κατανοήσουμε τις μεθόδους που
χρησιμοποιήθηκαν και τους περιορισμούς στην απόδοση που προκύπτουν από αυτές.
Στη συνέχεια, περιγράφουμε το πρωτόκολλο GHOST, το οποίο στη θέση του κανόνα
της μεγαλύτερης αλυσίδας του Bitcoin χρησιμοποιεί τον κανόνα GHOST, και είναι
η βάση για πρωτόκολλα που βασίζονται σε κατευθυνόμενο ακυκλικό γράφημα όπως
τα PHANTOM, GHOSTDAG, SPECTRE και Conflux. Παρουσιάζουμε επίσης
μια απόπειρα για μια εναλλακτική απόδειξη της ασφάλειας του GHOST. Τέλος,
περιγράφουμε τα παραπάνω πρωτόκολλα που βασίζονται σε κατευθυνόμενα ακυκλικά
γραφήματα και παρουσιάζουμε τις εγγυήσεις ασφάλειάς τους.

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα αρχικά να ευχαριστήσω τον επιβλέποντα καθηγητή μου Άρη Παγουρτζή
για την πολύτιμη καθοδήγηση και στήριξη που μου προσέφερε κατά τη διάρκεια
εκπόνησης αυτής της διπλωματικής, και για το γεγονός ότι μέσα από τα μαθήματα
του με κινητοποίησε να ασχοληθώ με ένα τόσο ενδιαφέρον θέμα. Επίσης, θα ήθελα
να ευχαριστήσω την υποψήφια διδάκτορα Pourandokht Behrouz για τις ιδέες που
μοιραστήκαμε και τον χρόνο που αφιέρωσε στις συζητήσεις μας, οι οποίες ήταν
πολύτιμες για την εκπόνηση αυτής της διπλωματικής.

Θα ήθελα επίσης να ευχαριστήσω τους συμφοιτητές μου στο ΑΛΜΑ με τους
οποίους ξεπεράσαμε μαζί κάθε δυσκολία που αντιμετωπίσαμε στην κατανόηση του
απαιτητικού αλλά γοητευτικού πεδίου της Θεωρητικής Πληροφορικής. Ιδιαίτερα θα
ήθελα να ευχαριστήσω τον Φίλιππο, με τον οποίο μεγαλώσαμε μαζί ως μαθηματικοί
και μοιραστήκαμε μαθηματικές ανησυχίες τα τελευταία 8 χρόνια.

Τέλος, θα ήθελα να ευχαριστήσω τον Π. ο οποίος ήταν πάντα εκεί για να με
βοηθήσει όταν τα μαθηματικά μου δεν πήγαιναν καλά, και τον Δημήτρη για τη στήριξη
που μου έχει προσφέρει τα τελευταία χρόνια και την υπομονή του να ακούει τις ιδέες
και τις σκέψεις μου για κάθε τι που μελετάω.

CONTENTS

1 Introduction 1
1.1 Bitcoin, its performance, and Directed Acyclic Graphs 1
1.2 Thesis outline . 2

2 Background 5
2.1 Negligible functions . 5
2.2 Hash functions . 5
2.3 The random oracle model . 6
2.4 Merkle trees . 7

3 The Bitcoin Protocol 9
3.1 Introduction . 9
3.2 Protocol details . 9
3.3 Security of the Bitcoin protocol . 11

4 The GHOST Protocol 23
4.1 Introduction . 23
4.2 Protocol Details . 23
4.3 The Balance Attack . 24
4.4 Security of the GHOST Protocol . 26

5 The PHANTOM and GHOSTDAG protocols 39
5.1 Introduction . 39
5.2 The PHANTOM Protocol . 41
5.3 The GHOSTDAG Protocol . 44
5.4 Security of the GHOSTDAG protocol 45

6 Other DAG-based protocols 51
6.1 The Conflux protocol . 51
6.2 The SPECTRE protocol . 52

7 Conclusion 55
7.1 Discussion . 55
7.2 Open problems . 56

i

CONTENTS

Bibliography 57

ii

CHAPTER1
INTRODUCTION

1.1 Bitcoin, its performance, and Directed Acyclic
Graphs

The Bitcoin protocol [2] was proposed in 2008 as a decentralized and permissionless
payment system. Decentralized means that multiple entities run the protocol, and per-
missionless means that any entity can join or leave the protocol without the need for
permission. Transactions are stored in a distributed ledger, a database that is shared and
syncrhonized by all participants. Before transactions are added to the distributed ledger,
they are organized into a blockchain, and the longest chain rule is used to distinguish
between valid and invalid transactions. The blockchain is a sequence of chunks of data
called blocks, and every block is linked to a previous one, forming a chain. The longest
chain rule dictates that when having two distinct blockchain structures, the valid data
is the data that appears in the longest one. Participants of the protocol, called miners,
collect transactions into a block, link the block to the last block of the longest chain, and
attempt to solve a moderately hard computational puzzle. If they succeed, the block is
considered valid, and they broadcast it to the network.

In order for a distributed ledger protocol to be used as a payment system, it should
have good performance and security. The performance of distributed ledger protocols
is measured using three aspects: scalability, throughput, and latency [21]. Scalability
is the ability of the protocol to add greater amount of data into the ledger as the number
of its users grows, throughput measures the amount of data adder per unit of time and
latency measures the amount of time that should elapse from the moment data is added
to the ledger until the data is considered permanently added. Regarding security of
distributed ledger protocols, one concern that arises is that at the same moment in time
two participants may have different views of the ledger. Furthermore, it might be the
case that some participants do not follow the protocol rules and may deviate from the
protocol arbitrarily. The security of a distributed ledger protocol guarantees that despite
the different views of the ledger and the deviation from the protocol rules by some
participants, participants will eventually agree on the same transaction history and they
are able to add transactions to the ledger.

Unfortunately, the Bitcoin protocol has low performance compared to popular

1

1.2. THESIS OUTLINE

means of payment such as Visa. On average, one block is produced every 10 min-
utes regardless of the number of the participants, and in order for a transaction inside a
block to be considered confirmed, the block should be buried by 6 blocks in the chain.
This is equivalent to a throughput of approximately 7 transactions per second, one hour
latency and no scalability. This performance is not sufficient to support current needs
from electronic payment systems.

In terms of security, theoretical security analysis has shown that as long as the partic-
ipants that follow the protocol hold roughly more computational power than the number
of participants that deviate, confirmed transactions are permanent and new transactions
added will eventually become confirmed. However, it has been shown that the rate
in which blocks are produced cannot be significantly increased without serious loss in
security [25].

Many modifications of the Bitcoin protocol have been proposed that aim to allow
the block creation rate to be increased and avoid security tradeoffs. A family of them
uses either alternative chain selection rules, such as the GHOST protocol [7], or use
a Directed Acyclic Graph of blocks (blockDAG) instead of a blockchain [10, 34, 19].
Regarding the Bitcoin protocol, the reason that the block creation rate cannot be in-
creased is that the percentage of the adversarial power that it can tolerate is inversely
proportional to the network delay [25], and it should be ensured that when a block is
mined it should have fully propagated before the next block is mined [4]. The aim of
these protocols is to make the adversarial power tolerance independent of the network
delay, so that the block creation rate can be increased without loss in security.

1.2 Thesis outline

In this thesis we present the protocols that in order to improve on performance di-
verge from the Bitcoin protocol by either using alternative chain selection rules or using
blockDAGs as their underlying data structure. We focus on the security guarantees and
techniques used in security proofs of these protocols.

In Chapter 2 we give an overview of the preliminary cryptographic tools that are
commonly used in blockchain protocols.

In Chapter 3, we present the Bitcoin protocol and some of the arguments and proofs
for its security since its appearance, starting from the synchronous setting in which
network delay is abstracted from the model [4] and finally presenting a recent tight
bound for the adversarial power tolerance in the setting where network delay is present
and upper-bounded by a constant [25].

In Chapter 4 we describe the GHOST rule [7]. The GHOST rule was designed to
avoid the secret mining attack that affects the Bitcoin protocol, but it was later found that
a balance attack applies [9], which we describe. Furthermore, we discuss the methodol-
ogy used and bounds obtained in the security analyses of GHOST. Finally, we present
an attempt for an alternative proof for an already proven bound on the adversarial power
that GHOST can tolerate using techniques present in the analyses of Bitcoin.

In Chapter 5 we present the PHANTOM and GHOSTDAG protocols [34], which
are protocols that use a blockDAG as their underlying data structure. The PHAN-
TOM protocol uses an NP-hard problem to distinguish between honest and adversarial
blocks, and GHOSTDAG uses an approximation algorithm for the same problem. The
GHOSTDAG protocol is presented by its creators as a fix of the GHOST protocol [34].
We also present the security guarantees of GHOSTDAG.

2

CHAPTER 1. INTRODUCTION

In Chapter 6 we present two other protocols that use a blockDAG as their under-
lying data structure, SPECTRE [10] and Conflux [29], and we discuss their security
guarantees.

Finally, in Chapter 7 we discuss the security of the protocols that we have presented
and we propose directions for further research.

3

1.2. THESIS OUTLINE

4

CHAPTER2
BACKGROUND

In this chapter we give an overview of the cryptographic tools that are commonly used
in blockchain protocols.

2.1 Negligible functions
A function f : Z≥1 → R is called negligible if f tends to 0 as n→∞, but faster than
the inverse of any polynomial. Formally:

Definition 2.1 (negligible function [24]). A function f : Z≥1 → R is called negligible
if for all c ∈ R>0 there exists n0 ∈ Z≥1 such that for every n ≥ n0, we have |f(n)| <
1
nc .

2.2 Hash functions
A hash function is a function that takes as input a string of arbitrary length and com-
presses it into a shorter string. Given an input for the hash function, its value should be
computable in polynomial time. More formally:

Definition 2.2 (hash function-syntax [26]). A hash function is a pair of probabilistic
polynomial-time algorithms (Gen,H) that satisfy the following properties.

1. Gen is a probabilistic algorithm which takes as input a security parameter 1n and
outputs a key s.

2. There exists a polynomial l such thatH is a deterministic polynomial time algo-
rithm that takes as input a key s and any string x ∈ {0, 1}∗ and outputs a string
Hs(x) ∈ {0, 1}l(n).

If for every n and s the hash function Hs is defined only over inputs of length l(n)
and l′(n) where l′(n) > l(n), then we say that (Gen,H) is a fixed-length hash function
with length parameter l′.

5

2.3. THE RANDOM ORACLE MODEL

Hash functions used in cryptography are often called cryptographic hash functions.
A collision in a hash function H is a pair of values x and x′, such that x ̸= x′

and H(x) = H(x′). A hash function is said to be collision resistant if it is infeasible
for a probabilistic polynomial time algorithm to find a collision. For a hash function
Π = (Gen,H), the experiment for finding a collision is presented in Algorithm 1.
Using Algorithm 1, the formal definition of a collision resistant hash function is given
in Definition 2.3.

Algorithm 1 The collision-finding experiment [26].
1: function Hash− ColΠ,A(n)
2: A key s is chosen.
3: The adversary A is given s and outputs a pair of values x and x′. Formally,

(x, x′)← A(s).
4: The output of the experiment is 1 if and only if x′ ̸= x and Hs(x) = Hs(x′).

In such a case we say that A has found a collision.
5: end function

Definition 2.3 (collision resistant hash function [26]). A hash function Π = (Gen,H)
is collision resistant if for all probabilistic polynomial-time adversaries A there exists
a negligible function negl such that

Pr[Hash− ColΠ,A(n) = 1] ≤ negl(n).

An example of a cryptographic hash function widely used in practice as a collision
resistant hash function is SHA256 [26].

Collision resistance is a strong security requirement, and in some applications
weaker notions of security suffice. There are usually three notions of security for hash
functions.

1. Collision resistance (Definition 2.3).

2. Second preimage resistance. Informally, a hash function is second preimage re-
sistant if given a key s and a string x it is hard for a probabilistic polynomial-time
adversary to find a string x′ such that Hs(x) = Hs(x′).

3. Preimage resistance. Informally, a hash function is preimage resistant if given a
key s and some value y it is hard for a probabilistic polynomial-time adversary
to find a value x′ such that Hs(x′) = y.

The formal definitions for the second preimage resistance and preimage resistance
properties are similar to Definition 2.3, by defining similar experiments as the experi-
ment of Algorithm 1. It is important to note that a hash function that is collision resistant
is also second preimage resistant, and a hash function that is second preimage resistant
is also preimage resistant.

2.3 The random oracle model
A common methodology used in the design and analysis of protocols which use hash
functions is the random oracle model. The random oracle model assumes the existence
of a public, randomly chosen function H that can be evaluated only by querying an

6

CHAPTER 2. BACKGROUND

oracle, that can be thought as a "magic box", and on input x, returnsH(x). The random
oracle model methodology consists of the following two steps [26].

1. The scheme is designed and proven secure using the assumption that the world
contains a random oracle.

2. When the scheme is implemented in practice, the random oracle is instantiated
with a cryptographic hash function Ĥ . At each point where the scheme dictates
that a party should use the random oracleH , the hash function Ĥ is used instead.

The purpose of this methodology is to abstract the details of the specific hash func-
tion used in practice, with the hope that the security proof given in the first step will
carry over to the real world implementation.

2.4 Merkle trees
Consider n items, x1, . . . , xn which belong to a spaceX , for which we wish to compute
a short hash and later be able to validate each item. One solution to this problem is
to hash every item using a hash function h and store the tuple (h(x1), . . . , h(xn)).
This approach uses linear space. Merkle trees provide a space-efficient solution to this
problem.

Assume that n is a power of 2, if n is not a power of 2 we can extend the tuple
(x1, . . . , xn)with dummy elements to the closest power of 2. The definition of aMerkle
tree hash is given in Definition 2.4.

Definition 2.4 (Merkle tree hash). Given a hash function h : X → Y and an integer n
that is a power of 2, theMerkle tree hash derived from h is a hash functionH : Xn → Y
which, given as input a tuple (x1, . . . , xn) ∈ Xn, its value is the output of Algorithm
2.

Algorithm 2Merkle tree hash calculation [24].
Input: x1, . . . , xn ∈ X , where n is a power of 2
Output: y ∈ Y
1: for i = 1 to n do
2: yi ← h(xi)
3: end for
4: for i = 1 to n− 1 do
5: yi+n ← h(y2i−1||y2i)
6: end for
7: return y2n−1

It can be proven that if a hash function h is collision resistant, then the Merkle tree
hash induced by h is also collision resistant.

An example of a Merkle tree is given in Figure 2.1
Given a Merkle tree hash value y = H(x1, . . . , xn), we can efficiently prove that

a x ∈ X is in the position i in the tuple T = (x1, . . . , xn) as follows. One outputs as
the proof π all the intermediate hashes that are the siblings of nodes on the path from
the leaf number i to the root of the tree. This proof π contains exactly log2 n elements
in Y . For example, to prove membership of the element x3 in Figure 2.1, one provides
the proof π = (y4, y0, y14). To verify, one uses π to compute the Merkle root ŷ15, and
accepts if y = ŷ15.

7

2.4. MERKLE TREES

Figure 2.1: A Merkle tree with eight leaves. To prove membership of x3, one provides
the elements highlighted in orange.

8

CHAPTER3
THE BITCOIN PROTOCOL

3.1 Introduction
The Bitcoin protocol was proposed in 2008 by a person or a group of people called
Satoshi Nakamoto as a payment system. Participants transact using Bitcoin, a currency
native to the protocol. The Bitcoin protocol is decentralized, meaning that multiple
entities run the protocol and maintain the transaction database, and permissionless, al-
lowing participants to participate in the protocol and transact with each other without
the need for a trusted third party, as for example a bank.

The Bitcoin protocol is the first decentralized and permissionless protocol that was
implemented and used for payments. After its appearance many other decentralized
and permissionless payment protocols have been created, aiming to improve on perfor-
mance [8, 34, 8, 20], anonimity [41], or support more complex transactions [38]. All
of them share common mechanisms with the Bitcoin protocol.

In this Chapter we give a description of the mechanism of the Bitcoin protocol and
we discuss its security, with the aim of understanding how security is proven and how
it is shown from the security proofs that the block creation rate cannot be increased.

3.2 Protocol details

3.2.1 Blocks
In the Bitcoin protocol, transactions are broadcasted, collected, and organized into
blocks. A block is a data structure that consist of two main parts: a list of transac-
tions and a header. It may also contain other values such as the software version or a
timestamp [37].

The first block ever created is called the genesis block, which is hardcoded in the
Bitcoin software. Every other block is created via a procedure called mining.

Block Headers

Every block header, except from the block header of the genesis block, consists of three
main parts.

9

3.2. PROTOCOL DETAILS

Figure 3.1: A high level overview of a blockchain.

1. The Merkle tree hash of the transactions of the block, which ensures the im-
mutability of the transactions inside the block.

2. The hash of the previous block header using the SHA256 hash function [2].

3. A value nonce, which ensures that enough computational effort has been made
in order for the block to be accepted by the network.

The block header of the genesis block does not contain the hash of some other block
header.

Since in a block header the hash of some other block header is included, blocks are
linked. A chain of blocks is called a blockchain. The genesis block is the root of the
blockchain. By construction, a blockchain is a timely ordered sequence of blocks: a
block has necessarily been created after its predecessor.

A high level overview of a blockchain appears in Figure 3.1.

Mining

Mining is the procedure in which new blocks are created, and participants that attempt
to create new blocks are called miners1 In order for a block to be considered valid and
accepted by the network, the miner should find a proof-of-work for the block. The
proof-of-work is a value for the nonce such that when the string containing the data of
the block header is hashed using the SHA256 hash function, the hash value is lower
than a threshold T. Proof-of-work ensures that enough computational power has been
spent, since SHA256 is used as a collision resistant hash function. Upon successful
mining of a block, the block is broadcasted to the network by the miner.

The Proof-of-Work mechanism is the mechanism that enables the Bitcoin protocol
to be a permissionless distributed ledger protocol. Anyone can join or leave the protocol
and create as many identities as they wish, since the rate in which a participant can
produce blocks depends on their computational (CPU) power and not on the number of
identities they possess.

.
The threshold T is set so that 1 block per 10minutes is produced [2] by the network.

The reason for the choice of rate is to ensure that a block has propagated to the whole
network before a new blocks is mined. Since the amount of time needed by the network
to mine a new block depends on the network's total computational power, the threshold

1The reason for being called miners is that when a new block is mined, new Bitcoins are created and sent
to the address of the miner as a reward for the resources they have spent. For the rest of this work we will
use the terms participant, player and party interchangeably to refer to a miner.

10

CHAPTER 3. THE BITCOIN PROTOCOL

T is recalculated every 2016 blocks [37] to preserve the 1 block per 10 minutes rate.
This rate is equivalent to 7 transactions per second [28], which is a low rate compared
to Visa that can support 65,000 transactions per second2, and potentially cannot serve
current needs. For this reason, debates on the block size of the Bitcoin protocol and
variants with larger block size have emerged [22].

A mathematical definition of a block is given below.

Definition 3.1 (block [4]). LetG(·),H(·) be cryptographic hash functions with output
in {0, 1}κ. A block is any triple of the form B = ⟨s, x, ctr⟩ where s ∈ {0, 1}κ, x ∈
{0, 1}∗, ctr ∈ N are such that satisfy predicate validblockqT(B) defined as

(H(ctr,G(s, x)) < T) ∧ (ctr ≤ q).

3.2.2 Forks and the longest chain rule
A fork is the result of two distinct blocks pointing to the same block. Forks are created
because of two main reasons: network delay and adversarial behavior, as illustrated in
Figure 3.2. When forks appear, conflicting transactions may be included in the different
branches of the tree and it is necessary that all miners include only one and the same
one in their local ledger.

Figure 3.2: Forks in the Bitcoin protocol. Blocks A and B are created from
honest miners, who due to network delay did not receive each other's block
when mining. Block C is created by the adversary who may be aware of more
recent blocks than the block C is pointing to, but chose to create a fork.

The way to resolve forks is by using the longest chain rule: the valid blockchain is
the longest one and blocks that are not in the longest chain are ignored. Furthermore,
when miners create new blocks, their blocks should point to the longest chain of blocks
the miner observes and thus increasing its length.

3.3 Security of the Bitcoin protocol

3.3.1 Nakamoto's calculations
In the BitcoinWhitepaper [2], the security of the Bitcoin protocol was discussed by con-
sidering the scenario of an attacker performing a secret mining attack3. In this attack,
the adversary publishes a transaction in the honest chain and starts secretly mining an

2source: visa fact sheet https://www.visa.co.uk/dam/VCOM/download/corporate/media/
visanet-technology/aboutvisafactsheet.pdf

3In the Bitcoin Whitepaper [2] this attack is called a double spending attack. We chose to call it a secret
mining attack since as we will see in Chapter 4, there are other attacks that result in double spending, but the
strategy of the attack is to secretly mine a chain.

11

https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf

3.3. SECURITY OF THE BITCOIN PROTOCOL

alternative chain that contains a conflicting transaction. After the recipient of the trans-
action in the honest chain accepts it, the adversary broadcasts their secretly mined chain
to the network. If the adversarial chain is longer than the honest chain, the adversary is
able to reverse the transaction and the attack succeeds.

Using the following arguments, it was concluded that if the honest parties possess
more computational power than the attacker, the attack will not succeed. As we will see
in the following sections, this argument is not correct when network delay is present.
In this case an attacker with less than half of the total computational power can succeed
in the secret mining attack, and actually the network delay works in their favor.

The race between the honest and the adversarial chain is modelled as a Simple Ran-
dom Walk [39]. The success event (+1) is the event that the honest parties mine the
next block and thus the difference in the length of the two chains increases by one, and
the failure event (−1) is the event that the adversary mines the next block and thus the
difference decreases by one.

If p, q are the probabilities that an honest party and the attacker find the next block,
respectively, then similarly to the "Monkey falls of the cliff" problem [1], the probability
qm that the attacker will ever create a longer chain than the honest parties if the honest
chain ism blocks longer than the attacker chain is

qm =

{
1 if p ≤ q(

p
q

)m

if p > q

The seller accepts the transaction when the honest chain has been extended by k
blocks from the block containing the transaction. Assuming that these k blocks took
the average time per block to be mined, the number of blocks the attacker will have
mined on his secret chain in the same time follows a Poisson distribution with expected
value λ = k p

q . Then, the probability that the attacker can succeed in the attack is
calculated as follows.

∞∑
m=0

Pr[attacker minesm blocks] ·Pr[attacker can beat (k−m) difference in length]

The mathematical equation is Equation 3.1.

∞∑
m=0

λme−λ

m!
fk(m) (3.1)

where

fk(m) =

(

q
p

)(k−m)

ifm ≤ k

1 ifm > k

Then, by calculating the values of Equation 3.1 for several values of q and k, it was
concluded that the probability that the attacker will succeed drops exponentially as k
increases.

3.3.2 Bitcoin in the synchronous setting
The first security analysis of the Bitcoin protocol under any adversarial strategy was
by Garay et al. [4]. The protocol used to distributively form and maintain the the

12

CHAPTER 3. THE BITCOIN PROTOCOL

blockchain was separated from the application, which is using the blockchain to se-
curely store transactions. The protocol was named Bitcoin Backbone, and the appli-
cation was named a transaction ledger. A model and a security proof of the Bitcoin
backbone protocol under any adversarial strategy was given, showing that it satisfies
two fundamental properties, Common Prefix and Chain Quality. Furthermore, it was
shown that under the Honest Majority Assumption, the Bitcoin Backbone protocol can
be used to implement a robust transaction ledger, where robustness means that it satis-
fies Persistence and Liveness.

In the analysis, a static number n of participants are assumed, among which t are
adversarial. The hash function is modelled as a random oracle with a probability of
success p for each query. Communication was assumed syncrhonous, in the following
sense. Time is divided in rounds. At the beginning of each round, each party receives
the longest chains broadcasted by other parties in the previous round and potentially
updates its local longest chain. Then, it attempts to mine a block, having q queries to
the random oracle, and if successful before the q queries are exhausted, updates its local
chain with the new block. At the end of the round, every honest party broadcasts to all
parties its local longest chain. The adversary has the ability to send different blocks
to different parties, however, they cannot alter the content or prevent the delivery of
messages sent by honest parties. Since each party has q queries in each round, each one
successful with probability p, proof-of-work mining is modelled as a Binomial ran-
dom variable. The security of the Bitcoin protocol depends on the number of uniquely
successful rounds, namely, rounds in which exactly one honest block is mined.

Using the notation of table 3.1, we give the definitions of honest majority assump-
tion, Common Prefix, and Chain Growth properties below.

p probability that a query to the random oracle is successful
λ tail-bounds parameter
n total number of parties mining
t number of parties controlled by the adversary
q number of queries each party has to the random oracle
δ advantage of honest parties, (t/(n− t) ≤ 1− δ)
α probability at least one honest party succeeds in finding a POW in a round

α = 1− (1− p)q(n−t)

ϵ quality of concentration of random variables in typical executions, cf. Definition 3.9
k number of blocks for the common prefix property
l number of blocks for the chain quality property
µ chain quality parameter
s number of rounds for the chain growth property
τ chain growth parameter

Table 3.1: Notation

Definition 3.2 (Honest Majority Assumption [4]). A number of t out of n parties are
corrupted such that t ≤ (1− δ)(n− t), where 3α+ 3ϵ < δ ≤ 1

Definition 3.3 (Common Prefix [4], simplified form). The common prefix property
Qcp with parameter k ∈ N states that for any pair of honest parties P1, P2 adopting the
chains C1, C2 at rounds r1 ≤ r2 respectively, it holds that C⌈k1 4 is a prefix of C2.

4C⌈k is the chain resulting from C by removing the last k blocks.

13

3.3. SECURITY OF THE BITCOIN PROTOCOL

Definition 3.4 (Chain Quality [4], simplified form). The chain quality property Qcq

with parameters µ ∈ R and l ∈ N states that for any honest party P with chain C, it
holds that for any l consecutive blocks of C, the ratio of honest blocks is at least µ.

In a subsequent work byKiayias and Panagiotakos [5] another fundamental property
of the Bitcoin backbone was identified, the Chain Growth property. The Chain Growth
property was later stated explicitly into the analysis of Garay et al.[4].

Definition 3.5 (Chain Growth [4], simplified form). The chain growth property Qcg
with parameters τ ∈ R and s ∈ N states that for any honest party P that has a chain C,
it holds that after any s consecutive rounds it adopts a chain that is at least τ · s blocks
longer than C.

The three properties together are sufficient to prove in a black box manner that
Nakamoto's protocol can be used to implement a transaction ledger that satisfies Per-
sistence and Liveness. The Persistence property ensures that once a transaction is in-
cluded in a block of the longest chain which is buried by k blocks, it will remain in
the same position in the ledger. The Liveness property ensures that if honest parties
attempt to include a transaction in the ledger, the transaction will be eventually added
and will eventually be confirmed.

Definition 3.6 (Persistence [4]). Parameterized by k ∈ N (the “depth” parameter), if in
a certain round an honest party reports a ledger that contains a transaction tx in a block
more than k blocks away from the end of the ledger, then tx will always be reported in
the same position in the ledger by any honest party from this round on.

Definition 3.7 (Liveness [4]). Parameterized by u, k ∈ N (the “wait time” and “depth”
parameters, resp.), provided that a valid transaction is given as input to all honest parties
continuously for u consecutive rounds, then there exists an honest party who will report
this transaction at a block more than k blocks from the end of the ledger.

More specifically, the Common Prefix property is sufficient to prove Persistence,
and the Chain Growth and Chain Quality properties is sufficient to prove Liveness. In-
tuitively, it is straightforward why the Common Prefix property implies Persistence.
Regarding the Liveness property, the Chain Growth property ensures that new blocks
are added to the chains of honest parties, and the Chain Quality property ensures that
some of the blocks that are added are honest, thus eventually if honest participants at-
tempt to include a transaction in the ledger, the transaction will be added and confirmed.

It is important to note that the technique of using the Common Prefix, Chain Growth
and Chain Quality properties to prove Persistence and Liveness was later used in the
security proofs of the family of Ouroboros protocols [12, 16, 15] and the Prism protocol
[20].

The security of the Bitcoin protocol depends on uniquely successful rounds. A
round is called uniquely successful if in this round exactly one honest party succeeds in
mining a block. Another type of rounds defined are the successful rounds. A round is
called successful if at least one honest party succeeds in mining a block. The following
random variables are introduced to capture whether rounds are successful or uniquely
successful, and also to count the number of adversarial blocks mined in one round or in
a set of rounds.

Definition 3.8 ([4]). For a round i, let

• Random variable Xi be equal to 1, if round i is successful, and 0 otherwise.

14

CHAPTER 3. THE BITCOIN PROTOCOL

• Random variable Yi be equal to 1, if round i is uniquely successful, and 0 other-
wise.

• Random variable Zi be equal to the number of blocks the adversary mines in
round i, formally defined as the sum of the successful queries in round i of all
the parties controlled by the adversary.

Furthermore, for a set of rounds S, let X(S) =
∑

i∈S Xi and Y (S) and Z(S)
defined similarly.

To explain the results of Garay et al.[4], the definition of a typical execution is
needed. A typical execution is an execution of the protocol in which during a sufficient
number of consecutive rounds, inversely proportional to the probability that a round
is successful, the random variables of Definition 3.8 are close to expectation, and the
number of adversarial blocks is less than the number of successful rounds. Using the
notation of Table 3.1, a typical execution is defined as follows.

Definition 3.9 (typical execution, [4]). An execution is (ϵ, λ)-typical (or just typical),
for ϵ ∈ (0, 1) and integer λ ≥ 2

α , if, for any set S of at least λ consecutive rounds, the
following hold.

(a) (1− ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] and (1− ϵ)E[Y (S)] < Y (S)

(b) Z(S) < E[Z(S)] + ϵE[X(S)]

(c) No insertions, no copies, and no predictions occured, where

– an insertion occurs when, given a chain C with two consecutive blocks B1

and B2, a block B3 created after B2 is such that B1, B3, B2 form three
consecutive blocks of a valid chain,

– a copy occurs if the same block exists in two different positions, and

– a prediction occurs when a block extends one which was computed at a later
round.

Typical executions are the most likely to happen.

Theorem 3.10 ([4]). An execution is typical with overwhelming probability.

Furthermore, in a typical execution, for any set S of at least λ consecutive rounds,
it holds that

Y (S) > Z(S). (3.2)

That is, during a sufficient amount of consecutive rounds, the number of those that are
uniquely successful is greater than the number of adversarial blocks produced during
these rounds. Equation 3.2 is the core equation used in the proofs of Persistence and
Liveness stated below, showing the dependency of the security of the Bitcoin protocol
to uniquely successful rounds.

Lemma 3.11 (Persistence [4], simplified form). Under the Honest Majority Assump-
tion, it holds that the transaction ledger induced by Nakamoto's protocol satisfies Per-
sistence (cf. Definition 3.6) with parameter k = ⌈2λα⌉ with probability at least
1− e−Ω(ϵ2λα).

15

3.3. SECURITY OF THE BITCOIN PROTOCOL

Lemma 3.12 (Liveness [4], simplified form). Under the Honest Majority Assumption,
it holds thatthe transaction ledger induced by Nakamoto's protocol satisfies Liveness
(cf. Definition 3.7) with parameters u = ⌈ 4λ

1−ϵ⌉ and k = ⌈2λα⌉, with probability at
least 1− e−Ω(ϵ2λα).

Finally, Lemmas 3.11 and 3.12 hold under the Honest Majority assumption. The
relation 3α + 3ϵ < δ ≤ 1 of Defintion 3.2 shows the relation between the proof-of-
work difficulty and the adversarial power tolerance of the protocol. If the probability
p that a query to the random oracle is successful is small, the probability α that at least
one honest party succeeds in finding a proof-of-work in a round increases, and thus the
lower bound on δ increases, making the protocol resistant only to smaller adversarial
fractions.

3.3.3 Bitcoin in the bounded network delay setting
Dependence of adversarial power tolerance to network delay

There are two ways in which the Bitcoin protocol could increase its throughput: either
increasing the block creation rate, or increasing the block size. However, both of these
approaches result in a decrease in the adversarial power the Bitcoin protocol can tolerate
securely. That is because the adversarial power tolerance of the Bitcoin protocol is
dependent on the network delay [7].

First, if the block creation rate increases, an adversary with less than 50% of the total
computational power can succeed in the secret mining attack. When the block creation
rate is increased and network delay is present, more forks will be created, since honest
miners that have not yet received the last addition to the chain will contribute to a less
updated chain. Thus, more blocks are created, but they are forming forks instead of
contributing to the longest chain. If the adversary is assumed to suffer from little or
no delay, he can secretly mine a longer chain than the honest parties while having less
computational power, and thus the secret mining attack will succeed (see Figure 3.3).

Figure 3.3: Bitcoin under high block creation rate. Blue blocks are honest blocks and
red dashed blocks form the attacker's secretly mined chain. Although the attacker has
less computational power than the honest parties, since he suffers from no delay he is
able to secretly mine a longer chain than the honest parties.

16

CHAPTER 3. THE BITCOIN PROTOCOL

Secondly, increasing the block size also leads to decrease in security. Using data
provided by Decker and Watenhoffer [3], Sompolinksy and Zohar [7] observed that an
increase in block size leads to a linear increase in delay (Figure 3.4). This means that
if the block size is increased, again more forks will be created and the secret mining
attack will succeed. Thus, in order to preserve security, when increasing block creation
rates, the block size should be lowered so that the delay reduces, and when increasing
the block size the block creation rate should be lowered.

Figure 3.4: The relation between the block size and the time it took to reach 25% (red),
50% (green), and 75% (blue) of monitored network nodes. Figure taken from Som-
polinksy and Zohar [7].

In conclusion, increasing the block size and increasing the block creation rate can
be seen as equivalent approaches, and none of them solves the performance issue of
Bitcoin. This is because the adversarial power tolerance of the Bitcoin protocol is de-
pendent on the rate in which the longest chain grows, which is in turn dependent on
the network delay. This means that if the adversary manages to mine blocks faster than
the rate in which the longest chain grows, they can succeed in the secret mining attack.
Namely, if τ is the rate in which the longest chain grows, and q ·λh is the computational
power of the adversary, the security threshold of a chain protocol is defined as τ

q·λh
[7].

As a result, if we want the Bitcoin protocol to tolerate an adversary that possesses a
fraction of the computational power close to 50%, the block creation rate should be
kept low enough so that the chain of honest parties' grows in a rate close to the rate the
honest blocks are produced.

Discrete time analysis

Pass et al. [14] analyzed the security of the Bitcoin protocol in the random oracle model,
in a setting where network delay is controlled by the adversary and upper bounded by
a constant ∆ > 0. As in the analysis of Garay et al. [4], time is divided in rounds,
however, in this analysis, the arrival of a block mined in a round can be delayed for
up to ∆ rounds. Under this model, a bound on the adversarial power tolerance of the
Bitcoin protocol parameterized by the upper bound on the network delay∆ is given. It
is also shown that the security of the Bitcoin protocol breaks in a setting where network
delay is unbounded.

For a transaction ledger to be robust, it should satisfy Persistence and Liveness,
similarly to the analysis of Garay et al[4].

17

3.3. SECURITY OF THE BITCOIN PROTOCOL

Definition 3.13 (Persistence [14]). The persistence property stipulates that if some hon-
est party P outputs a messagem at position i in its local ledger, then

1. messagem is the only message that can ever be output at position i of any other
honest party’s ledger, and

2. every other honest party will eventually outputm at position i.

Definition 3.14 (Liveness [14]). The liveness property stipulates that from any given
round r, if a sufficiently long period of time t elapses-we refer to this time as the wait-
time of the ledger-every honest party will output a message m as part of their (local)
ledger, where m was provided as an input to some honest party between rounds r and
r + t.

In order for a transaction ledger which is built on top of a blockchain protocol to
satisfy Persistence and Liveness, it is sufficient for the blockchain protocol to satisfy
the following properties.

Definition 3.15 ([14]). A secure blockchain protocol should satisfy the following prop-
erties.

(a) consistency: At any point, the chains of two honest parties can differ only in the
last k blocks, with overwhelming probability in k.

(b) future self-consistence: At any two rounds r, s the chains of any honest party at
r and s differ only within the last k blocks, with overwhelming probability in k.

(c) τ -chain growth: Parameterized by τ ∈ R, at any point in the execution, the chain
of honest parties grows by at least k blocks in the last k

τ rounds with overwhelm-
ing probability in k; τ is called the chain-growth of the protocol.

(d) µ-chain quality: Parameterized by µ ∈ R, for any k consecutive blocks in any
chain held by some honest party, the fraction of blocks that were contributed by
honest parties is at least µ, with overwhelming probability in k.

If the adversarial power tolerance is appropriately bounded, the Bitcoin protocol is
a secure blockchain protocol as in Definition 3.15. Using the notation of Table 3.2, the
result is described in the following theorem.

n total number of parties
ρ fraction of parties that are controlled by the adversary
p probability that a query to the random oracle is successful
α probability that some honest miner finds a block in one round,

α = 1− (1− p)(1−ρ)n

β expected number of blocks mined by the adversary in one round
β = ρnp

γ discounted version of α due to network delay
γ = α

1+∆α

Table 3.2: Notation

18

CHAPTER 3. THE BITCOIN PROTOCOL

Theorem 3.16 ([14]). Assume there exists some δ > 0 such that

α(1− (2∆ + 1)α) ≥ (1 + δ)β (3.3)

Let τ = γ
1+δ and µ = 1 − (1 + δ)βγ . Then Nakamoto’s protocol satisfies consistency,

future self consistency, µ-chain quality and τ -chain growth.

Equation 3.3 in Theorem 3.16 gives an upper bound for the adversarial power the
Bitcoin protocol can tolerate securely, parameterized both by the computational power
of the honest parties and the network delay. Furthermore, the network delay affects the
parameters of the chain growth and chain quality properties, since both are dependent
on γ, which is a discounted version of α due to network delay.

It is proven that every blockchain protocol that satisfies the properties of Definition
3.15 can be used to maintain a public ledger that satisfies Persistence and Liveness, as
in the following theorem.

Theorem 3.17 ([14], simplified form). Let R(·) be a strictly positive, super-constant
polynomial and suppose that a blockchain protocol satisfies consistency, τ -chain
growth and µ-chain quality, where µ and τ are strictly positive. Then, for every δ > 0,
the public ledger R(·)-induced by the blockchain protocol 5 satisfies persistence and
liveness with wait-time t = (1 + δ)R(κ)

τ .

Observe that the chain-quality parameter µ does not appear as a parameter of the
wait time. The reason is that it is sufficient that µ is strictly positive [14].

It is also shown that as long as the network delay is bounded by a constant ∆ > 0,
even if∆ is large, we can lower the mining rate and achieve security, as in the following
corollary.

Corollary 3.18 ([14], simplified form). Assume ρ < 1
2 . Then for every n,∆, there

exists some sufficiently small p0 = Θ
(

1
∆n

)
such that Nakamoto’s protocol with min-

ing parameter p ≤ p0 satisfies consistency, future self consistency,
(
1− 1

1−ρ

)
-chain

quality and pn
2 -chain growth.

In Corollary 3.18 the upper bound p0 on p is inversely proportional to the network
delay ∆ and the number of participants n. This means that to maintain security when
having a large number of participants or a large network delay, p should be small, and
thus have a small block creation rate.This in turn reduces the value of the chain growth
parameter, and thus the throughput of the protocol decreases.

On the contrary, if the network delay is unbounded then the security of the Bitcoin
protocol breaks.

Theorem 3.19 (Inconsistency of Nakamoto's protocol with Unbounded Delays [14],
simplified form). For every 0 < δ < 1

2 , 0 < ρ < 1 and every inverse polynomial p(·),
Nakamoto's protocol does not satisfy neither consistency nor liveness for n = 2

ρ2 and
∆ = 1+δ

ρnp .

Kiffer et al. [18] also provided a bound for the adversarial power tolerance for the
Persistence property (named Consistency in their work) of the Bitcoin protocol under
network delays, adopting the model of Pass et al [14]. A neater form of this bound was

5Given a blockchain protocol, the public ledger R(κ)-induced by the blockchain protocol extracts the
messages/transactions that are inside the blocks of the blockhain, truncates the last R(κ) records of it, and
outputs the results. ([14], simplified form)

19

3.3. SECURITY OF THE BITCOIN PROTOCOL

∆ upper bound on network delay
p probability that a query to the random oracle is successful
n total number of miners, each with identical computing power
ρ fraction of corrupted miners
α probability that at least one honest miner mines a block in one round,

α = 1− (1− p)(1−ρ)n

γ probability that exactly one honest miner mines a block in one round,
γ = (1− ρ)pn(1− p)(1−ρ)n−1

β expected number of blocks the adversary can mine in one round,
β = pρn

Table 3.3: Notation

later given by Zhao et al. [31], demonstrating that the bound is superior to that of Pass
et al.[14].

Using the notation of Table 3.3, the result of Zhao et al. is presented in Theorem
3.20.

Theorem 3.20 ([31]). Nakamoto’s blockchain protocol satisfies consistency if there
exists a positive constant δ > 0 such that

(1− α)2∆γ ≥ (1 + δ)β. (3.4)

Continuous time analysis

Ren [23] also studied the Bitcoin protocol in a setting in which adversarial network
delays are upper bounded by∆ > 0. Instead of dividing time in rounds, he studied the
security of the Bitcoin protocol in the continuous time setting, modelling mining as a
Poisson process. The security proof presented was much simpler than previous works.

Considering that an honest party considers a block B committed if B is buried at
least k blocks deep in its adopted chain, safety and liveness properties are defined as
follows.

• safety6: Honest parties do not commit different blocks at the same height.

• liveness: Every transaction is eventually committed by all honest parties.

Let α be the collective mining rate of honest parties, β be the collective mining
rate of adversarial parties and ∆ be an upper bound on the network delay. Let also
g = e−α∆; the term g can be thought as a discounted version of α due to network
delay. The Safety and Liveness results are given in the following theorems.

Theorem 3.21 (Safety [23]). Let g = e−α∆ and suppose g2α > (1 + δ)β. Consider
any time t and any blockB that is considered committed by some honest party at time t.
Except for e−Ω(δ2g2k) probability, for all time t′ ≥ t, no honest party commits a block
B′ ̸= B at the height of B.

Theorem 3.22 (Liveness [23]). Let g = e−α∆ and suppose gα > (1 + δ)β. At time
t, except for e−Ω(δ2gαt) probability, every honest party commits at least δ

6gαt− k − 1
honest blocks.

6Similar to Persistence of Garay et al. [4] with a different name.

20

CHAPTER 3. THE BITCOIN PROTOCOL

The relation g2α > (1 + δ)β for the Safety property (Theorem 3.21) is the same
bound as that of Zhao et al. (Theorem 3.20) expressed in the continuous-time setting
[23].

Tight consistency bound

Lastly, a tight bound for the consistency property of the Bitcoin protocol was given by
Gaži et al. [25]. In this work, proof-of-work mining is modelled as a Poisson process,
and the discrete time approximation of a Poisson Process was used. If rh, ra is the
expected number of honest and adversarial blocks in unit time, respectively, and ∆ is
an upper bound on the network delay, then the Bitcoin protocol is secure if

ra <
1

∆ + 1
rh

(3.5)

Equation 3.5 is tight in the sense that if ra exceeds the given threshold, the adversary
can beat the rate in which the longest chain grows and the secret mining attack applies,
but below the threshold the Bitcoin protocol is proven to be secure.

Concerning the bound on the proof-of-work difficulty, or equivalently the proba-
bility that a query to the random oracle is successful, the result is as follows. For a time
interval of length L, divide it into L

s sufficiently small intervals of length s each, such
that at most one block can be mined in any interval. Let ph = rhs and pa = ras be
the probability that an honest and an adversarial party mines a block in an interval of
length s, respectively. In this discretized setting, the Bitcoin protocol is secure if

pa <
1

∆− 1 + 1
ph

Figure 3.5: Figure taken from Gaži et al. [25]. The solid dashed line is the threshold
of Equation 3.5 for ∆ = ∆0 = 10. The red area represents the pairs (ra, rh) for
which the secret mining attack applies, and the blue area represents the pairs for which
the Bitcoin protocol is secure. The dashed blue area represents the pairs for which the
Bitcoin protocol was proven secure via previous work [23].

21

3.3. SECURITY OF THE BITCOIN PROTOCOL

22

CHAPTER4
THE GHOST PROTOCOL

4.1 Introduction
The GHOST protocol was proposed by Sompolinsky and Zohar [7] as a modification
of the Bitcoin protocol. Instead of the longest chain selection rule, it uses the Greedy
Heaviest Observed Sub Tree (GHOST) rule to select a chain of blocks. The intuition
behind GHOST is that blocks that may not be in the final selected chain should be
counted in the chain selection proccess. The GHOST protocol aimed to support higher
throughput (transactions per second) than the longest chain rule by avoiding the secret
mining attack discussed in Chapter 3. Even though it avoids the secret mining attack, a
balance attack was found that makes the throughput of the GHOST protocol dependent
on the network delay [13].

In this chapter we describe the GHOST rule, the balance attack and security proofs
for GHOST. We also present our contribution, which is an alternative proof of security
for GHOST.

4.2 Protocol Details
Contrary to the Bitcoin protocol inwhichminers only store themost recent longest chain
of blocks they have received, in the GHOST protocol miners keep all valid blocks they
receive and then use the GHOST rule to find the last block of the GHOST chain. Then,
they attempt to mine a new block that points to the last block of the GHOST chain
instead of the last block of the longest chain.

We will call the data structure formed by valid blocks a blockTree, since if blocks
are considered as vertices and hash references as edges, the data structure has the form
of a tree. We first give our definition of a blockTree. Next we give the definition of the
weight of a block in a blockTree, and then we describe the GHOST rule in Algorithm
3.

Definition 4.1 (BlockTree). A blockTree is a directed rooted tree T = (V,E), where
V represents blocks and E represents hash references.

Definition 4.2 (Weight of a subtree). For a blockTree T = (V,E) and B ∈ V , denote

23

4.3. THE BALANCE ATTACK

by T (B) the subtree of T rooted at B. The weight of T (B), denoted w(T (B)), is the
number of blocks in T (B).

Algorithm 3 The GHOST rule[7].
Input: BlockTree T = (V,E)
Output: Last block of the GHOST chain of T
1: B ← genesis block
2: while childrenT (B) ̸= ∅ do
3: B ← argmaxB′∈childrenT (B)w(T (B

′))
4: end while
5: return B

As presented in Algorithm 3, the GHOST chain is calculated by starting from the
genesis block and at each step choosing the block that has the biggest weight, until
reaching a leaf. An example of the execution of Algorithm 3 in a blockTree is given in
Figure 4.1.

Figure 4.1: An example of the execution of Algorithm 3 in a blockTree. The algorithm
returns the last block of the GHOST chain (blue blocks). The weight of each block
appears in the top left circle in each block.

That is, the higher the weight of the subtree of a block, the bigger its chances that
it will be selected. For a block in the GHOST protocol to be considered confirmed, it
should be in the GHOST chain and its subtree should have a sufficient weight.

4.3 The Balance Attack
Although the GHOST protocol avoids the secret mining attack, it cannot support unlim-
ited throughput when network delay is present. An attack called balance attack applies
to GHOST and makes its security dependent on the network delay [13]. This attack
also applies to Bitcoin.

LetH = (V,E) be the graph of the communication network in which the GHOST
protocol is executed. The adversary partitions V into sets (V1, . . . , Vr) such that the
computational power of network nodes in each Vi is almost the same. Let Hi =
H[Vi] = (Vi, Ei) be the subgraph of H induced by Vi. Let also E0 = E \

∪r
i=1{Ei}.

24

CHAPTER 4. THE GHOST PROTOCOL

If the adversary is able to disrupt communications inE0 for a sufficient amount of time,
he is able to double-spend.

The attack works as follows. The adversary disrupts communications in E0 for∆0

seconds and sends a transaction tx crediting a merchant to Vi for some i ∈ {1, . . . , r}.
Let view(Hi) be the set of blocks miners in Vi can receive. After sending tx, the
adversary starts mining on top of a block B that appears in view(Hj) for some j ∈
{1, . . . , r} but does not appear in view(Hi), and broadcasts his blocks only in the nodes
in Vj . When∆0 seconds have elapsed, he stops disrupting communications on E0 and
he can issue a transaction tx′ that double-spends the coins of tx. If ∆0 is big enough,
the block containing tx will be considered committed by the merchant after time ∆0

has elapsed.
Assuming for simplicity that r = 2, and assume that during time ∆0, all honest

miners mine blocks. Using the notation of Table 4.1, each set of miners in V1 and V2

performsm = 1−ρ
2 f∆0 Bernoulli trials, each one with probability of success p. If Xi

is the number of blocks mined by miners in Vi, i = 1, 2, then

µh = E[Xi] = mp =
1− ρ

2
f∆0p.

Similarly, the expected number of blocks the adversary can mine in time∆0 is

µa = ρf∆0p.

f total mining power of the system (number of Hashes tested per second)
p probability that a hash is successful
ρ fraction of mining power owned by the adversary
r number of communication subgraphs
∆0 disruption time between communication subgraphs (in seconds)
µh expected number of blocks mined by honest miners in Vi in a time interval of length∆0

µa expected number of blocks mined by the adversary in a time interval of length∆0

Table 4.1: Notation

The success of the balance attack relies on the adversary being able to mine more
blocks than the difference between the number of blocks mined by the miners in V1

and V2, since then the blockTree branch that does not contain his transaction will be
selected.

Theorem 4.3 ([9]). If∆0 ≥
(1−ρ)6log(4

ε)

ρ2fp , then after the communication is re-enabled,
Pr[µa > |X1 −X2|] > 1− ε.

Theorem 4.3 shows the relation between the proof-of-work hardness, the network
delay and the adversarial power tolerance of the GHOST protocol. If the probability p
that a hash is successful, the total mining power f , or the fraction of adversarial mining
power increases, the lower bound on ∆0 decreases, making it easier for the adversary
to succeed in the attack. On the other hand, if the network delay is big enough, it is
more likely to be larger than this lower bound.

An example of the execution of the attack for r = 2 and 3 blocks needed for con-
firmation is illustrated in Figure 4.2.

25

4.4. SECURITY OF THE GHOST PROTOCOL

(a) Attacker starts disrupting communications
betweenH1 andH2 and issues a transaction in
H2.

(b) Attaker starts mining on top of block B in
view(H1). At the same time interval, 3 blocks
aremined on top of the block containing thema-
licious transaction, thus the merchant considers
the transaction confirmed.

(c) Attacker stops disrupting communications.
The GHOST chain (in blue) does not contain
the block with the malicious transaction, thus
the adversary can double-spend.

Figure 4.2: An example of the execution of a balance attack, when the number of blocks
needed to confirm a block are 3.

4.4 Security of the GHOST Protocol

4.4.1 Resilience under secret mining attacks

Sompolinsky and Zohar [7] provided an initial security analysis of GHOST and proved
that the GHOST protocol avoids the secret mining attack of the Bitcoin protocol (Figure
4.3).

Modelling the block creation as a Poisson process, let λh be the honest block cre-
ation rate. For a block B, let time(B) be the moment in time B was created.

Proposition 4.4 (GHOST is resilient to secret mining attacks [7]). Assume the at-
tacker’s block creation rate is q · λh, and 0 ≤ q < 1. The probability that a block
B will be off the main chain sometime after time(B) + s, given that it was in the main
chain at time(B) + s, goes to zero as s goes to infinity.

The proof of Proposition 4.4 is based on the fact that the attacker possesses less
computational power than the honest parties. If a blockB is in the main chain of honest
parties at time time(B) + s, the difference in the size of the subtree rooted at B and
the attacker's tree grows, as s goes to infinity, by the law of large numbers.

26

CHAPTER 4. THE GHOST PROTOCOL

Figure 4.3: The attacker's secretly mined chain is able to win over the longest chain,
but not over the GHOST chain.

4.4.2 GHOST in the synchronous setting
Although Sompolinsky and Zohar [7] analyzed the security of the GHOST protocol,
the analysis was not as general as the security analyses of Bitcoin (for example as the
analysis of Garay et al. [4]), since it did not include the possibility that the adversary
may send conflicting information to different parties. For this reason, Kiayias and Pana-
giotakos [11] modified the model of Garay et al. [4] proposing a model that is based
on trees rather than on chains and proved the security of the GHOST protocol in the
synchronous setting.

In their model, they expressed the notion of a block being d-dominant, which intu-
itively means that the block is "stronger" than its siblings by a quantity of d.

Definition 4.5 ([11]). Let w be a function defined on trees which takes only non-
negative values. For a directed blockTree T , let siblings(B) denote the set of vertices
in T that share the same parent with B. Let also T (B) be the subrtree of T rooted at
B. Then, block B is d-dominant in T if

w(T (B)) ≥ d and ∀u ∈ siblings(B) : w(T (B)) ≤ w(T (B)) + d.

Using the notion of d-dominant blocks, a unified description of the Bitcoin and
GHOST backbone protocols can be obtained as follows. Let for a blocktree T , w(T)
to be equal to the height of T , and assume that miners in the Bitcoin protocol keep all
valid blocks they receive instead of keeping only the blocks of the longest chain. We
can describe the procedure that a miner follows to calculate the longest chain as the
procedure in which the miner starts from the genesis block, and then at each step picks
one of the 0-dominant children, until reaching a leaf. We can describe in the same way
the procedure to find the GHOST chain in the GHOST protocol, by setting w(T) to be
the number of blocks in T .

To prove the security of GHOST, Kiayias and Panagiotakos, similarly to Garay
et al. [4], separate the protocol used to maintain the data structure, which they named
GHOST backbone, from the distributed ledger application. They show that the GHOST
backbone satisfies the Fresh Block lemma. Using the notation of Table 4.2, the Fresh
Block lemma is described as follows.

27

4.4. SECURITY OF THE GHOST PROTOCOL

p probability that a query to the random oracle is successful
λ tail-bounds parameter
n total number of parties mining
t number of parties controlled by the adversary
q number of queries each party has to the random oracle
δ advantage of honest parties, (t/(n− t) ≤ 1− δ)
α probability at least one honest party succeeds in finding a POW in a round

α = 1− (1− p)q(n−t)

γ probability that exactly one honest party succeeds in finding a POW in a round
β expected number of blocks the adversary can mine in one round

β = pqt
f total mining power

f = α+ β < 1

Table 4.2: Notation

Lemma 4.6 (Fresh Block [11]). Assume γ ≥ (1 + δ)β, for some real δ ∈ (0, 1) and
f < 1. Then, for all s ∈ N and r ≥ s it holds that there exists a block mined by an
honest player on and after round r− s, that is contained in the chain which any honest
player adopts on and after round r with probability 1− e−Ω(δ2s).

The Fresh Block lemma is sufficient to prove in a black box manner that the public
ledger built on top of the GHOST protocol satisfies Persistence and Liveness. The
definitions of Persistence and Liveness are similar to those of Garay et al. for the Bitcoin
protocol (Definitions 3.6 and 3.7), with the difference that the "depth" parameter is
a "weight" parameter: for both properties, blocks should have a weight of at least k
instead of being k blocks deep in the ledger.

Theorem 4.7 (Persistence [11], simplified form). Suppose γ ≥ (1+δ)β and (1+δ)f ≤
1, for some δ ∈ (0, 1). Then, for all k ∈ N, the public ledger built on top of the GHOST
protocol satisfies Persistence with depth parameter k, with probability 1− e−Ω(δ2k).

Theorem 4.8 (Liveness [11], simplified form). Assume γ ≥ (1 + δ)β, for some δ ∈
(0, 1) and f < 1. Then, for all k ∈ N, the public ledger built on top of the GHOST
protocol satisfies Liveness with wait time u = k+ k

(1−δ)α rounds and depth parameter
k, with probability 1− e−Ω(δ2k).

The Fresh Block lemma is sufficient to prove Persistance and Liveness. For Per-
sistence, honest parties wait for a sufficient amount of time after a block has been in-
cluded in the GHOST chain to consider it committed, such that in this amount of time
the Fresh Block lemma is applicable, and an honest block that is a descendant of the
block containing the transaction appears in the GHOST chain. As a result, the block
containing the transaction will be in every honest party's chain. For Liveness, the u
rounds for wait time are set so as to be sufficient for the Fresh Block lemma to apply,
and similarly to Persistence, the block containing the transaction will be a descendant
of an honest block that is in the chain of every honest party. Then, all honest parties
will mine on a chain containing the block with the transaction, and thus the block will
eventually be commited.

28

CHAPTER 4. THE GHOST PROTOCOL

4.4.3 GHOST in the bounded network delay setting
Discrete time analysis of GHOST

Kiffer et al. [18] proved that GHOST satisfies Persistence, with the same bound as that
of Bitcoin. Namely, GHOST is secure if Equation 3.4 holds.

Continuous time analysis of GHOST

In this section we present an attempt for a proof of the Safety property of GHOST in the
continuous time setting where proof-of-work is modelled as a Poisson process, using
techniques of Ren [23] and Kiayias and Panagiotakos.[11]. Our proof attempt implies
that GHOST is as secure as Bitcoin, in the sense that the adversarial power tolerance
for the Safety property to hold is the same for both protocols.

The theorem that we are interested in is the following, and is similar to that of Ren
[23] for Bitcoin.

Theorem 4.9 (informal). Let g = e−α∆ and δ be any positive constant. The GHOST
protocol with the k-confirmation rule satisfies consistency except for e−Ω(δ2g2k) prob-
ability if

g2α > (1 + δ)β.

In Theorem 4.9, the values α, β are the total mining rate of honest and adversarial
parties, respectively, and∆ is an upper bound on the network delay. Furthermore, the k-
confirmation rule dictates that a party considers a block committed if it is in the GHOST
chain of that party and its subtree is composed of more than k blocks.

Essentially, Theorem 4.9 states that the bound of Ren [23] on the adversarial power
tolerance of Bitcoin also holds for GHOST. This bound, which is proven in the contin-
uous time setting, is equivalent to that of Kiffer et al. [18] in which mining is modelled
as a Bernoulli random variable. Thus, our proof attempt does not imply a better bound
than the ones already proven for GHOST. Our methodology consists of proving Safety
using a Common Prefix methodology, similar to that of Bitcoin [4, 23, 14].In the Bit-
coin protocol, apart from the use in proving Safety, the Common Prefix methodology
is often required for compositions [17] and in security proofs of protocols built on top
of it as for example light client constructions [33]. Thus, Safety is only one of the many
potential applications of the Common Prefix methodology. We hope that the common
prefix methodology for the GHOST protocol can aid in the construction of similar pro-
tocols using the GHOST protocol as a base. The techniques that we use were present
in the work of Kiayias and Panagiotakos [11], however, a lot of them were not stated
explicitly, but rather used in the Fresh Block lemma proof.

Model. Every miner stores a local blockTree, follows the GHOST rule on their block-
Tree and mine on top of the tip of the GHOST chain, which they find using Algorithm
3. Ties are broken arbitrarily. Upon mining or receiving a new block, miners broadcast
the block to other miners. When receiving a new block, a miner adds it to their local
tree only if they have received all its ancestors, in other case they add it after receiving
them. We assume that the network suffers a delay which is upper bounded by a constant
∆, this means that if an honest miner broadcasts a block at time t, by time t+∆ every
other honest miner should have received it, but it is possible that theymay have not have
received it earlier than t+∆. Adversarial miners do not suffer from any delay, meaning
that if an adversarial miner broadcasts a block at time t, honest and adversarial miners

29

4.4. SECURITY OF THE GHOST PROTOCOL

can receive it at time t. The adversary has the ability to send different blocks to different
parties or send blocks only to specific parties. However, honest parties broadcast the
blocks they receive thus in the case the adversary sends blocks to a specific party at time
t every honest party will have received it at time t + ∆. The adversary also controls
the delay of the honest miners. If a miner broadcasts a block, the adversary can control
the arrival time of that block to other miners, however, he cannot delay its arrival by
more than ∆. However, the adversary cannot alter the content of the messages sent by
honest miners.

Preliminary definitions. For a blockTree T = (V,E) and a blockB ∈ V , letwT (B)
be the number of vertices of the subtree of T rooted atB. When T is clear from context,
we will write w(B) instead of wT (B). For a party P and a moment in time t let TP

t

be the local tree of party P at time t. The k-confirmation rule dictates that an honest
party P considers a block B committed at time t if B is in the GHOST chain of TP

t

and wTP
t
(B) ≥ k.

Our proof attempt implies an upper bound on the adversarial power tolerance of the
GHOST protocol in order to satisfy Safety with overwhelming probability.

Definition 4.10 (Safety). Parameterized by k ∈ N, if for an honest party P at time t a
block B is considered committed, then for every honest player P ′ at time t′ ≥ t block
B is considered committed.

We will use the notion of dominance of a block, introduced by Kiayias and Pana-
giotakos. Let T = (V,E) be a blocktree and B ∈ V . We denote by siblingsT (B) the
set of blocks in T that have the same parent as B. Dominance is defined as follows.

Definition 4.11 ([11], rephrased). Let T = (V,E) be a blockTree and B ∈ V . For
d ≥ 0, we say that the block B is d-dominant in T if:

• w(B) ≥ d, if siblingsT (B) = ∅

• w(B) ≥ d and w(B) ≥ w(B′) + d for every B′ ∈ siblingsT (B), if
siblingsT (B) ̸= ∅.

We observe that if a block is (d + 1)-dominant then it is d-dominant. Also, using
the above definition, the GHOST chain in the local tree of a player P at time t is a
0-dominant root-leaf path in the local tree of player P at time t.

Definition 4.12. Let T = (V,E) be a blockTree and B ∈ V . The rooted path up to B
is the path from the genesis block to blockB (includingB). We say that the rooted path
up toB is d-dominant in T if every block in the rooted path up toB is d-dominant in T .
Furthermore, if B is in the GHOST chain of this tree, we say instead that the GHOST
chain up to B is d-dominant in T .

The same definition as Definition 4.12 with different notation is present in the work
of Kiayias and Panagiotakos [11].

We observe that if the GHOST chain of a player up to block B is d-dominant, it
means that at least d blocks should be added to that player's local tree in order for a
block of the GHOST chain up to B to be potentially kicked out of the GHOST chain
for this player (the block will become 0-dominant, so then it depends on tie-breaking).
It is necessary that these blocks affect the dominance of the block in order for it to be
kicked out of the chain. But where do these blocks should point to in order to affect
the dominance of the block? From the definition of the dominance of a block, we can
observe the following.

30

CHAPTER 4. THE GHOST PROTOCOL

Observation 4.13. Assume that a block B is d-dominant in a tree T , and that k new
blocks are added to T . Then:

(a) the dominance of B will be reduced by k if and only if these k new blocks are
descendants of parent(B) but are not descendants of B.

(b) The dominance of B will be increased by k if and only if these k new blocks are
descendants of B.

Furthermore, B will remain d-dominant if and only if new blocks (potentially 0)
are added to T and these blocks are not descendants of parent(B).

Preliminary lemmas. We transfer the main lemmas for the synchronous setting of
Kiayias and Panagiotakos [11] to the bounded delay setting. All the proofs that we
provide are similar to theirs.

The fist lemma states that if in a time period the adversary broadcasts less blocks
that the number of loner blocksmined in this period, after the end of the period there will
exist a loner block that will be in the GHOST chain of every honest party. Furthermore,
the dominance of the GHOST chain will be equal to the difference between the number
of loner blocks mined and the number of adversarial blocks broadcasted in this time
period.

Lemma 4.14. Assume that exactlym loner blocks are mined in [t0 +∆, t1 −∆], and
assume that the adversary broadcasts k < m blocks in [t0, t1]. Then, there exists a
loner blockB, mined in [t0+∆, t1−∆] such that at time t1, block B is in the GHOST
chain of every honest party and the GHOST chain up to B is (m− k)-dominant.

Proof. We will prove the lemma by induction onm.
Ifm = 1, then k = 0. This means that the adversary does not broadcast any block

in [t0, t1]. Let B be the loner block mined in [t0 + ∆, t1 −∆] and let t be the time it
was mined. Since B is a loner block, no other honest block is mined in [t−∆, t+∆]
and no adversarial block is broadcasted in the same interval. Thus, all parties have the
same view of the ledger at time t. The honest block will be mined on the GHOST chain,
and by time t +∆ everyone will have received it, and the GHOST chain up to B will
be 1-dominant. In (t + ∆, t1] every honest block will be a descendant of B and no
adversarial block is broadcasted, thus the dominance of the GHOST chain up to B can
only increase. We conclude that at time t1 block B is in the GHOST chain of every
honest party and the GHOST chain up to B is 1-dominant for every honest party.

Assume that the lemma holds form− 1 loner blocks.
For m loner blocks, let t′1 be the time that the (m − 1)-th loner block was mined,

and t be the time that the m-th loner block was mined. Let also k1 be the number of
adversarial blocks broadcasted in (t0, t′1 +∆]. We divide into two cases.

1. If k1 = m− 1, then the adversary does not broadcast any block in (t′1 +∆, t1].
Since at times t′1 and t loner blocks are mined we have t′1 +∆ < t, thus before
time t all honest parties have received all adversarial blocks. Furthermore, no
honest block is mined in [t −∆, t). Thus all parties will have the same view of
the ledger by time t. Let B be the m-th loner block. The honest party that will
mine B will mine it on top of the GHOST chain and by time t+∆ every honest
party will have received B. Because of B the GHOST chain up to block B will
be 1-dominant, and in (t + ∆, t1] since the adversary does not broadcast any
blocks, every other honest block will be a descendant of B, thus the dominance

31

4.4. SECURITY OF THE GHOST PROTOCOL

of the GHOST chain up to B can only increase. This means that at time t1 block
B is in the GHOST chain of every honest party and the GHOST chain up toB is
1-dominant.

2. If k1 < m − 1, by the induction hypothesis there exists a loner block B mined
in [t0 +∆, t′1] such that at time t′1 +∆ block B is in the GHOST chain of every
honest party and the GHOST chain up toB is (m−k1)-dominant for every honest
party.
Let

– k2 be the number of adversarial blocks broadcasted in (t′1 +∆, t],
– k3 be the number of adversarial blocks broadcasted in (t, t+∆], and
– k4 be the number of adversarial blocks broadcasted in (t+∆, t1].

We divide into two cases.

(a) If k2 = m − 1 − k1, then either B remains in the GHOST chain of every
honest player in (t′1 + ∆, t] or the chain up to B can become 0-dominant
for at least one honest player. However, all blocks that have height less or
equal to the height of B can be at most 0-dominant for every honest player
in (t1 + ∆, t]. The honest player that will mine the m-th loner block B′

will mine it on his local GHOST chain, thus his local GHOST chain up to
B′ will be 1-dominant.
Since k2 = m−1−k1, we have k3 = k4 = 0. Thus, the adversary will not
broadcast any block in [t, t1] and similarly to the induction base, at time t1
blockB′ will be in the GHOST chain of every honest party and the GHOST
chain up to B′ will be 1-dominant.

(b) If k2 < m− 1− k1, then in (t′1 +∆, t] block B will remain in the GHOST
chain of every honest party and the GHOST chain up to B will be (m −
1 − k1 − k2)-dominant. This means that the m-th loner block will be a
descendant of B. In (t, t+∆] no honest block is mined and the adversary
broadcasts k3 ≤ m− 1− k1− k2 blocks. Since at time t+∆ every honest
party will have received the m-th loner block, block B is in the GHOST
chain of every honest party and the GHOST chain up to B is (m − k1 −
k2 − k3)-dominant. Since k4 < m − k1 − k2 − k3, the dominance of the
GHOST chain up to B can decrease by at most k4, thus B will remain in
the GHOST chain of every honest party in (t+∆, t1] Thus at time t1, block
B is in the GHOST chain of every honest party and the GHOST chain up
to B is (m− k1 − k2 − k3 − k4)-dominant.

For the next lemma, we need the following definition.

Definition 4.15. For a moment in time t, let Tt =
∪

P :P honest T
P
t . If the adversary

broadcasts blocks at time t, we assume that Tt contains these blocks.

Since we are arguing about security in the continuous time setting, we need to define
random variables for the adversarial and honest blocks in a continuous time interval.

Definition 4.16. For any continuous time interval I we define YI and ZI to be the
number of loners and malicious blocks mined in the interval, respectively. Let also Zbd

I

be the number of blocks the adversary broadcasts in the interval I .

32

CHAPTER 4. THE GHOST PROTOCOL

The following lemma is a corollary of Lemma 4.14, and states that in order for the
adversary to make honest parties switch chains, he has for a period of time to broadcast
more blocks that the number of loner blocks in that period.

Lemma 4.17. LetB1, B2, . . . , Br where r ≥ 2 be a sequence of loner blocks such that
block Bi is mined in time ti and t1 < t2 < · · · < tr. Assume that Bi is the first loner
block in [t1, tr] that is not a descendant ofBi−1 for i ≥ 2. In order for this sequence of
loner blocks to exist, the inequality Zbd

[t1−∆,t2]
≥ Y[t1,tr−∆) should hold. Furthermore,

if Zbd
[t1−∆,tr]

= Y[t1,tr−∆), then block Br is in a 1-dominant path in Ttr .

Proof Sketch. The lemma follows by induction. We provide a proof for the induc-
tion base, for which we transfer the corresponding induction base proof for the similar
lemma appearing in the work of Kiayias and Panagiotakos [11]. The induction step
follows similarly.

For r = 2, assume for the purpose of contradiction that Zbd
[t1−∆,t2]

< Y[t1,t2−∆) Let
t be the time the last loner block was mined in [t1, t2 −∆], then we have Y[t1,t2−∆) =

Y[t1,t]. We have assumed Zbd
[t1−∆,t2]

< Y[t1,t2−∆) and since Zbd
[t1−∆,t+∆] ≤ Zbd

[t1−∆,t2]
,

we haveZbd
[t1−∆,t+∆] < Y[t1,t]. By applying Lemma 4.14 for the interval [t1, t], we have

that there exists a loner block B, mined in [t1, t] such that B is in the GHOST chain
of every honest party at time t + ∆, and the GHOST chain up to B is (Y[t1,t2−∆] −
Zbd
[t1−∆,t+∆])-dominant at time t+∆.
Since Zbd

(t+∆,t2]
< Y[t1,t2−∆) − Zbd

[t1−∆,t+∆], block B will remain in the GHOST
chain of every honest party in (t+∆, t2] and thus block B2 that will be mined at time
t2 will be a descendant ofB. However,B is a descendant ofB1 by the definition ofB2

and B2 is a descendant of B, thus B2 is a descendant of B1 which is a contradiction.
Thus, Zbd

[t1−∆,t2]
≥ Y[t1,t2−∆).

Assume now that Zbd
[t1−∆,t2]

= Y[t1,t2−∆). We divide into two cases.

1. Assume that Zbd
[t1−∆,t+∆] = Y[t1,t].

If t+∆ < t2−∆ then no adversarial block is mined in [t2−∆, t], and no loner
block is mined. Thus every honest party will have the same view of the tree at
time t2, and the honest party that will mine block B2 will mine it on top of a
0-dominant rooted path, making the path 1-dominant in Tt2 .

Else, if t+∆ ≥ t2 −∆, then let p be the rooted path up to B1 in Tt+∆, and let
B ∈ p.

For every B′ ∈ siblingsTt+∆
(B),

wTt+∆(B) ≥ Y[t1,t−∆] = Y[t1,t2−∆] = Zbd
[t1−∆,t+∆] ≥ wTt+∆(B

′) (4.1)

Furthermore, Tt2 is the tree composed by adding block B2 to Tt+∆. Block B2

cannot be a descendant of block B1 by the theorem statement. Thus B2 will be
mined on top of a path that by Equation 4.1 will be 0-dominant in Tt+∆, and will
become 1-dominant in Tt2 .

2. If Zbd
[t1−∆,t+∆] < Y[t1,t], then as previously discussed, there exists a loner block

B, mined in [t1, t] that is in the GHOST chain of all honest parties at time t+∆,
and the GHOST chain up to B is (Y[t1,t2−∆] − Zbd

[t1−∆,t+∆])-dominant at time
t + ∆ for every honest party. Let p′ be the GHOST chain up to B. Since

33

4.4. SECURITY OF THE GHOST PROTOCOL

Zbd
(t1+∆,t2]

= Y[t1,t2−∆] − Zbd
[t1−∆,t+∆] in the worst case the adversary can de-

crease the dominance of every block in p′ to 0 for some honest parties, however,
he cannot make the blocks of a rooted path that does not contain p′ as a prefix
1-dominant. Block B2 cannot a descendant of B as previously discussed, thus it
will be mined on top of a path that is 0-dominant for the player mining B2.

In GHOST, the length of the chains of honest parties does not necessarily increase
monotonically, and the adversary can use very old blocks to switch the chain of honest
parties. The following observation gives a lower bound on the blocks the adversary
may broadcast to do so, and is essential to argue about the Safety property of GHOST
using a Common Prefix lemma format. This obseration was also used in the work of
Kiayias and Panagiotakos for the Fresh Block lemma proof.

Observation 4.18. Assume that there exists an honest block B∗, mined in t∗ ≤ t0,
such that

1. every loner block in [t0 +∆, t1 −∆] is a descendant of this block, and

2. block B∗ is in the GHOST chain of every honest party at time t1.

Then, Lemma 4.14 still holds if we further assume that the adversary broadcasts as
many blocks as they want, but only k of them are descendants ofB∗, as long as all loner
blocks are descendants of B∗ and B∗ is in the chain of every honest party at time t1.
The reason is that blocks that are not descendants ofB∗ will not affect the dominance of
blocks that are descendants ofB∗. Equivalently, we can ignore the blocks the adversary
broadcasts that are mined before t∗, since these blocks will not be descendants of B∗.
Since Lemma 4.17 is a corollary of Lemma 4.14, Lemma 4.17 also holds under that
assumption. Although block B∗ is chosen by the adversary, the genesis block satisfies
these properties, so such a block always exists.

Consequences of Common Prefix violation. The following lemma states that if a
block is considered committed by an honest party and at some later moment in time
another party has a chain that does not include this block, there should exist a period of
time in which the adversary mined at least as many blocks as the number of loner blocks
in this period. This argument is essentially Equation 3.2 in Chapter 3 which is used in
many security proofs for Persistence and Liveness of Bitcoin [4, 23] and of GHOST
[11].

Theorem 4.19 (Consequence of common prefix violation). Consider any time t and
block B that is considered committed by some honest party at time t. If at time t′ ≥ t
an honest party adopts a chain which does not contain B, then there exist times t0, t1
where t0 < t ≤ t1 ≤ t′ such that Z[t0,t1] ≥ Y[t0+∆,t1−∆]. Furthermore, in t0 an
honest block B0 is mined which is also considered committed at time t by the honest
party.

Proof. Let t1 be the first time after B was committed that an honest party adopts such
a chain. Take the most recent honest block B0 that is an ancestor of B and mined at
some time t0 < t that satisfies the following properties:

1. every loner block in [t0 +∆, t1 −∆] is a descendant of B0, and

34

CHAPTER 4. THE GHOST PROTOCOL

2. block B0 is in the chain of every honest party at time t1.

Such a block is well defined since the genesis block satisfies this property. Also, since
B0 is an ancestor of B, at time t the weight of B0 for the honest party that considers B
committed is greater than k, thus B0 is also considered committed by the honest party.

LetB1, B2, . . . , Br be the longest possible sequence of loner blocks such that block
Bi is mined in time si, where t0 + ∆ ≤ s1 < s2 < · · · < sr ≤ t1 −∆, block B1 is
the first loner block mined in [t0 +∆, t1−∆], and Bi is the first loner block in [s1, sr]
that is not a descendant of Bi−1 for i ≥ 2. Then:

• For the interval [t0 + ∆, sr], by applying Lemma 4.17 for the interval [s1, sr],
we have that Zbd

[s1−∆,sr]
≥ Y[s1,sr−∆]. Since s1 is the time the first loner block

was mined in [t0 +∆, t1 −∆], we have that Zbd
[t0,sr]

≥ Zbd
[s1−∆,sr]

, thus

Zbd
[t0,sr]

≥ Y[t0+∆,sr−∆]. (4.2)

• For the interval (sr, t1 −∆], we have that the loner blocks mined form a chain
and are descendants on Br. Assume that Zbd

(sr,t1]
< Y(sr+∆,t1−∆]. Then, by

Lemma 4.14 we have that there exists a loner blockB′ mined in [sr+∆, t1−∆]
such thatB′ is in the chain of every honest party at time t1. IfB′ is an ancestor of
B, since all loner blocks mined after B′ are descendants of B′ from the fact that
B1, . . . , Br was the longest possible sequence, we obtain a contradiction, since
B0 was the most recent block with this property. IfB′ is a descendant of blockB,
then B is in the chain of every honest party at time t1, which is a contradiction.
If B′ is nor an ancestor nor a descendant of B, then since all loner blocks after
B′ form a chain and are in the chain of every honest party at time t1, we have
that there are earlier times than t1 for which honest parties have chains that do
not contain B, which is a contradiction. Thus,

Zbd
(sr,t1]

≥ Y(sr+∆,t1−∆]. (4.3)

We have that
Zbd
t0,t1 = Zbd

t0,sr + Zbd
(sr,t1]

(4.4)

and
Y[t0+∆,t1−∆] = Y[t0,sr−∆] + Y(sr+∆,t1−∆] + 1. (4.5)

We will show that equality cannot hold in both Equations 4.2 and 4.3, and thus
proving

Zbd
[t0,t1]

≥ Y[t0+∆,t1−∆].

Assume that Zbd
[t0,sr]

= Y[t0+∆,sr−∆], and let

Tsr =
∪

P :P honest

TP
sr .

Then, Br ∈ Tsr . Let p be the rooted path up to Br in Tsr , then by Lemma 4.17,
every block in p is 1-dominant in Tsr . This means that for all B′ ∈ p and for all
B′′ ∈ siblingsTsr

(B′) we have

wTsr
(B′) ≥ wTsr

(B′′) + 1. (4.6)

35

4.4. SECURITY OF THE GHOST PROTOCOL

Let also Tt1−∆ =
∪

P :P honest T
P
t1−∆ and assume Y(sr+∆,t1−∆] = Zbd

(sr,t1−∆). As-
sume that at least∆ time has passed from sr +∆ until t1 −∆, else Y(sr+∆,t1−∆] = 0
and this case is trivial. Then, we have that the blocks that the honest players have in
their local trees at time sr will have fully propagated to all honest players at time t1−∆,
thus Tsr ⊆ Tt1−∆.

We will abuse notation and for a block B′ ∈ Tt1−∆, if B′ ̸∈ Ttsr
we will behave

as B′ ∈ Tsr but wTsr
(B′) = 0.

Then in Tt1−∆, for every B′ ∈ p, since loner blocks mined after Br are all in
the same chain, we have that wTt1−∆

(B′) ≥ wTsr
(B′) + Y(sr+∆,t1−∆], and since

Zbd
[sr,t1−∆] = Y(sr+∆,t1−∆] we have that

wTt1−∆(B
′) ≥ wTsr

(B′) + Zbd
(sr,t1−∆]. (4.7)

Furthermore, for every blockB′ and every blockB′′ ∈ siblingsTt1−∆(B
′)we have

wTt1−∆
(B′′) ≤ wTsr

(B′′) + Zbd
(sr,t1−∆]. (4.8)

Combining Equations 4.6, 4.7 and 4.8, we have that for every B′′ ∈
siblingsTt1−∆

(B′),
wTt1−∆

(B′) ≥ wTt1−∆
(B′′) + 1,

which means that p is 1-dominant in T(t1−∆]. At time t1 every honest party will have
received every block of Tt1−∆, and since Zbd

t1−∆,t1
= 0, at time t1 p will remain 1-

dominant for every honest player P and thus p will be a prefix of the GHOST chain
of every player p. However, Br ∈ p, thus Br is in the chain of every honest party at
time t1 and all loner blocks mined after time sr are descendants of Br. Furthermore,
if block Br is mined after time t, then it should be a descendant of B, since t1 is the
first time after t that an honest party has a chain that does not contain B. But then,
since Br is in the chain of every honest party at time t1, the same should hold for B,
which is a contradiction. Thus, Br is mined before time t. However, this contradicts
the definition of B0.

Thus, we showed that equality cannot hold in both Equations 4.2 and 4.3. Combin-
ing this fact together with equations 4.5 and 4.4 we have that

Zbd
[t0,t1]

≥ Y[t0+∆,t1−∆].

Since we used Lemma 4.14 and 4.17, by applying Observation 4.18 we can ignore
the blocks the adversary broadcasts that aremined before t0 and the inequalityZbd

[t0,t1]
≥

Y[t0+∆,t1−∆] will still hold. Thus Z[t0,t1] ≥ Zbd
[t0,t1]

(the adversary may mine more
blocks than the ones they broadcast) and thus

Z[t0,t1] ≥ Y[t0+∆,t1−∆].

Also, since B0 is an ancestor of B, at time t the weight of B0 for the honest party
that considers B committed is greater than k, thus B0 is also considered committed by
the honest party.

Safety Using Theorem 4.19, the Safety property of GHOST can be proven as follows.

Theorem 4.20 (Safety). Let g = e−α∆ and consider any 0 < δ < 1 such that g2α >
(1 + δ)β. Consider any time t and any block B that is considered committed by some
honest party at time t. Except for e−Ω(δ2g2k), for all time t′ ≥ t, no honest party has a
chain that does not contain B.

36

CHAPTER 4. THE GHOST PROTOCOL

Proof Sketch. Consider a time t and a block B that is considered committed by some
honest party at time t. Furthermore, let E be the event that at time t′ ≥ t an honest
party has a chain that does not contain B. By applying Theorem 4.19, we obtain the
following.

(a) There exist times t0 and t1 such that t0 < t and t ≤ t1 ≤ t′ such that Z[t0,t1] ≥
Y[t0+∆,t1−∆].

(b) At time t0 an honest blockB0 is mined that is also considered committed at time
t by the honest party that considered B committed at time t.

Using points (a) and (b) above, the proof that E happens with probability e−Ω(δ2g2k) is
identical to the proof of Ren [23] for Bitcoin.

37

4.4. SECURITY OF THE GHOST PROTOCOL

38

CHAPTER5
THE PHANTOM AND GHOSTDAG PROTOCOLS

5.1 Introduction

5.1.1 From trees to DAGs
As discussed in Chapter 3, when increasing block creation rates in the Bitcoin proto-
col, more forks are created. Apart from the effect on security, this also means that in
protocols that use some chain selection rule, among blocks that are created in parallel
only one of them is selected although many of them could have been created by honest
miners. This means that a linear increase in block creation rate does not necessarily
result in a linear increase in throughput, since the transactions inside blocks that could
be created by honest miners are not included into the ledger. Figure 5.1 illustrates this
situation.

Figure 5.1: Bitcoin under high block creation rate. Only one block is selected out of
every fork and as a consequence a lot of transactions in blocks created by honest miners
are not included in the ledger.

To solve this problem, Lewenberg et al. [6] proposed to modify the Bitcoin protocol
and use a Directed Acyclic Graph data structure in place of a blockchain. The idea is
that when a new block is created, it should reference all blocks that in the view of the

39

5.1. INTRODUCTION

miner are not already referenced by some other block, contrary to referencing only one
block as in chain based protocols such as Bitcoin and GHOST. Having more references
results in the ability to extract more information about the relation between the creation
times of blocks. The idea of using a DAG instead of a chain has been present in many
other distributed ledger protocols [20, 17, 35, 32, 30].

The data structure created when restructuring the blockchain into a DAG is com-
monly called a blockDAG [6], [34]. Although if we consider the blocks as vertices and
the references as edges the resulting data structure is a DAG, not every DAG can be the
resulting data structure of this reconstruction. This means that the class of blockDAGs
is a subclass of the class of DAGs. The following definition characterizes blockDAGs.

Definition 5.1 (blockDAG, [36]). A blockDAG is a Directed Acyclic Graph G =
(V,E) in which vertices represent blocks and edges represent hash references, and sat-
isfies the following properties.

• There exists only one sink (i.e., a vertex with out-degree 0), and

• if (u, v1), (u, v2) ∈ E then there is no directed path from v1 to v2.

An example of a blockDAG appears in Figure 5.2

Figure 5.2: An example of a blockDAG.

5.1.2 The PHANTOM and GHOSTDAG protocols

The PHANTOMprotocol and its optimization, GHOSTDAG [34], are DAG-based pro-
tocols that generalize Nakamoto's longest chain protocol in order to achieve scalability.
In contrast with other protocols such as SPECTRE [10], PHANTOM and GHOSTDAG
provide a total ordering of transactions, and thus have the capability of supporting smart
contracts. The GHOSTDAG protocol is said by the authors to be a fix to the GHOST
protocol discussed in Chapter 4 and has been implemented in the KASPA network [40].

In the following sections we will give an overview of the PHANTOM and
GHOSTDAG protocols and discuss the security of GHOSTDAG.

40

CHAPTER 5. THE PHANTOM AND GHOSTDAG PROTOCOLS

5.2 The PHANTOM Protocol

5.2.1 Intuition
As discussed in previous chapters, the throughput of the Bitcoin protocol is suppressed
since its security is dependent on the number of blocks that are able to fully propagate
before a new block is mined. This means that in an interval of length 2 ·∆, where∆ is
an upper bound on the network delay, fewer than one block should be mined in order
for the protocol to be secure. The core idea behind PHANTOM is that we could use a
blockDAG structure, allowmultiple blocks to bemined in an interval of length 2·∆, and
distinguish between honest an malicious blocks using information from the structure of
the formed blockDAG. Furthermore, the longest chain rule results as a special case of
the procedure used to distinguish between honest and malicious blocks.

5.2.2 Mining protocol
When mining a new block, a miner has to follow two rules.

1. Create the block such that it points to the tips of the DAG.

2. Publish the block immediately.

5.2.3 The maximum k-cluster subDAG problem
The maximum k-cluster subDAG problem is the core problem used in the PHANTOM
protocol in order to distinguish between honest and malicious blocks.

The intuition behind the maximum k-cluster subDAG problem is the following. In
proof-of-work protocols, the number of blocks created in an interval of a specific length
is only dependent on the block creation rate. Furthermore, for a given block creation
rate, if∆ is an upper bound on the network delay and δ is an error tolerance parameter,
by modelling proof-of-work mining as a Poisson process one can calculate an upper
bound for the number of blocks created in an interval of length 2 · ∆, so that their
number is below the upper bound with probability at least 1 − δ. This means that for
a block B created at some time t we can find a parameter k such that the number of
additional blocks created in [t − ∆, t + ∆] is upper bounded by k with probability at
least 1−δ. With this notion of k, it turns out that the subDAG created by honest miners
has a specific structure, and is captured by the notion of a k-cluster.

Before we give the definition of a k-cluster, we give the following preliminary def-
inition.

Definition 5.2 ([34]). Let G = (V,E) be a blockDAG and B ∈ V . Then,

• The tips of G are defined as tips(G) := {B′ ∈ V | degin(B′) = 0}, where
degin(B

′) is the in-degree of B′ ∈ V .

• The past of B with respect to G is defined as pastG(B) := {B′ ∈ V | B′ ̸=
B and ∃B −B′ path in G}.

• The future ofB with respect toG is defined as futureG(B) := {B′ ∈ V | B′ ̸=
B and ∃B′ −B path in G}.

• The cone of B with respect to G is defined as coneG(v) := pastG(B) ∪ {B} ∪
futureG(B).

41

5.2. THE PHANTOM PROTOCOL

• The anticone of B with respect to G is defined as anticoneG(B) := V \
coneG(B).

An example of Definition 5.2 is given in Figure 5.3.

(a) tips(G) = {H, I, J} (b) pastG(F) = {Gen,C,D} and
futureG(F) = {H, I, J}

(c) coneG(F) = pastG(F) ∪ {F} ∪
futureG(F) = {Gen,C,D, F,H, I, J} and
anticoneG(F) = V \ coneG(F) = {B,E}

Figure 5.3: An example of Definition 5.2

Using Definition 5.2 we can define the notion of a k-cluster.

Definition 5.3 ([34]). Given a DAG G = (V,E), a subset S ⊆ B is called a k-cluster
of G if ∀B ∈ S, |anticoneG(B) ∩ S| ≤ k

The definition of a k-cluster aims to capture the following observation for the graph
structure that is formed by honest blocks.

Observation 5.4 ([34]). Assume an upper bound ∆ on the network delay and assume
that a block is mined by an honest miner at time t. Then the block satisfies the following
properties.

1. The block should reference directly or indirectly all blocks published before time
t−∆. That is because the miner will have received these blocks at time t.

2. The block should be referenced directly or indirectly by all honest blocks mined
after t+∆. That is because all other miners will have received the block by time
t+∆.

Honest miners are assumed to possess more computational power than malicious
miners, and thus create a k-cluster that is larger in size than the malicious miners. Thus,
the solution of the following optimization problem contains most honest blocks.

42

CHAPTER 5. THE PHANTOM AND GHOSTDAG PROTOCOLS

Maximum k-cluster subDAG:
Input: blockDAG G = (V,E)
Output: A set S∗ ⊆ V of maximum size such that ∀B ∈ S∗, |anticoneG(B)∩
S∗| ≤ k.

An example of the maximum 3-cluster in a blockDAG is given in Figure 5.4.

Figure 5.4: An example of the largest 3-cluster in a blockDAG. Example taken from
Sompolinsky et al. [34].

For k = 0, the maximum 0-cluster subDAG problem is equivalent to finding a
longest chain in the DAG. Thus the maximum k-cluster subDAG problem is a general-
ization of the longest chain rule. However, for k > 0, the maximum k-cluster subDAG
problem is NP-hard [34], thus PHANTOM cannot be used in practice.

5.2.4 DAG ordering protocol
Since the block creation rate is increased and blocks are created in parallel, different
honest miners may create blocks that contain conflicting transactions, thus in order to
solve the conflict an ordering between them should be decided. Furthermore, in contrast
with protocols such as Bitcoin and GHOST in which a total ordering of transactions can
be derived immediately from the ordering of the blocks in the selected chain, an total
ordering of transactions in DAG-based protocols is not straightforward.

We first give the definition of an ordering rule of blocks in a blockDAG as described
by Sompolinksy et al. [34].

Definition 5.5 (ordering rule, [34]). An ordering rule ord is an algorithm that takes as
input a blockDAG G and outputs a total ordering of blocks (B0, B1, . . . , Bn), where
n = |V | and {B1, . . . , Bn} = V .

Transactions in a block can be ordered in the way the appear in the block. Thus,
one can extend an ordering rule of blocks to an ordering rule of transactions by first
using the ordering rule to order blocks and then ordering transactions inside the blocks
by the order they appear. This means that for a DAG-based protocol, an ordering rule
of blocks suffices in order to have an ordering rule of transactions.

The ordering rule or PHANTOM is specified as follows. Suppose thatS is a solution
of the maximum k-cluster subDAG problem in a blockDAGG = (V,E). The ordering

43

5.3. THE GHOSTDAG PROTOCOL

rule orders the blocks of the DAG in a topological order while prioritizing over blocks
in the k-cluster.

5.3 The GHOSTDAG Protocol
Since the maximum k-cluster subDAG problem is NP-hard, the GHOSTDAG protocol
was created as an optimization of the PHANTOM protocol. The GHOSTDAG protocol
uses an approximation algorithm for the maximum k-cluster subDAG problem and thus
it can be used in practice.

5.3.1 DAG Ordering protocol
The ordering algorithm of GHOSTDAG is presented in Algorithm 4.

Algorithm 4 The GHOSTDAG ordering algorithm [34].
Input: : block DAG G, anticone parameter k
Output: BLUEk(G): the Blue set of G; ord: an ordered list containing all blocks in

G
1: function OrderDAG(G, k)
2: if G == {genesis} then
3: return ({genesis}, [genesis])
4: end if
5: for B ∈ tips(G) do
6: (BlueSetB , OrderedListB)← OrderDAG(pastG(B), k)
7: end for
8: Bmax ← argmax{|BlueSetB | : B ∈ tips(G)} ▷ ties are broken according to

lowest hash
9: BlueSetG ← BlueSetBmax

10: OrderListG ← OrderedListBmax

11: add Bmax to the end of OrderedListG
12: for B ∈ anticoneG(Bmax) do in some topological ordering
13: if BlueSetG ∪ {B} is a k-cluster then
14: add B to BlueSetG
15: end if
16: add B to the end of OrderedListG
17: end for
18: return (BlueSetG, OrderedListG)
19: end function

The algorithm takes as input a blockDAG G and the anticone parameter k and out-
puts Bluek(G), a set of blocks that are considered honest called blue set, and ord, an
ordered list of the blocks of the DAG. The algorithm is recursive. For the base case,
if the blockDAG contains only the genesis block, a set and a list containing only the
genesis block are returned (lines 1-4). For every tip of the blockDAG, the algorithm
performs a recursive call to compute the blue set and the ordered list of its past (lines
6-7). The size of the blue set is called the blue score of the tip. The algorithm selects
the tip with the highest blue score, adds it to the blue set and to the end of the list (lines
9-10). Then, for every block in the anticone of the highest scoring tip (line 12), the

44

CHAPTER 5. THE PHANTOM AND GHOSTDAG PROTOCOLS

algorithm checks whether adding the block to the blue set preserves the k-cluster prop-
erty (line 13). If yes, then the block is added to the blue set (line 14). Then, the block
is added to the end of the list (line 16).

Essentially, Algorithm 4 calculates an approximation for the size of themaximum k-
cluster of past(B), for every blockB in the blockDAG. Then, starting from the virtual
block, it selects a chain greedily, each time picking the block for which the calculated
size of k-cluster in its past is the biggest. Finally, it orders the blockDAG topologically
around this chain.

An execution of the iterative version of Algorithm 4 for k = 3 is presented in
Figures 5.5, 5.6 and 5.7. We present the algorithm as having two procedures, one in
which the blue sets and the blue scores are calculated and one in which the total ordering
is calculated. In Figure 5.5 we illustrate how the blue score is calculated for each block.
Since in every step the highest scoring tip is selected, the selected blocks form a chain,
called the blue chain. We explain how this chain is selected in Figure 5.6. Having
selected the blue chain and assuming the blue set has been calculated for the past of
every block, we illustrate how the ordered list is calculated in Figure 5.7.

It is important to note that if we set k = 0 in Algorithm 4, the algorithm calculates
the longest chain in the blockDAG. Thus, the GHOSTDAG protocol can be seen as a
protocol that uses a generalization of the longest chain rule.

Although Algorithm 4 has high computational complexity, in KASPA [40], the im-
plementation of GHOSTDAG, a more efficient version of the algorithm is used [34].

5.3.2 Setting the anticone parameter k
The parameter k is decided before the start of the protocol execution and is hard-coded
in the protocol. It is calculated given as input an upper bound on the network delay∆, a
desired block creation rate λ and an error tolerance parameter δ, so that for every block
B it holds that |anticone(B)| ≤ k with probability at least 1− δ.

More precisely, the calculation of k is described in Equation 5.1.

k(∆, λ, δ) = min{k̂ ∈ N | f(k̂,∆, λ) < δ}, (5.1)

where f(k̂,∆, λ) is defined as

f(k̂,∆, λ) = max

{ ∞∑
j=k̂+1

e−2λ∆ (2λ∆)j

j!
,

2∆λ

k̂ + 2∆λ

}
. (5.2)

Modelling the block creation rate as a Poisson process, if t is the time a block B

is created, the term
∑∞

j=k̂+1 e
−2λ∆ (2λ∆)j

j! in Equation (5.2) corresponds to the prob-
ability of more than k blocks being created in the interval [t − ∆, t + ∆]. The term
2∆λ

k̂+2∆λ
comes from the security analysis of GHOSTDAG and is the ratio in which the

adversary can reduce the size of the BlueSet.

5.4 Security of the GHOSTDAG protocol

5.4.1 Model
The network consists of nodes (or miners/ parties/ players). There are two types of
miners; honest miners, which follow the protocol, andmalicious miners that can deviate

45

5.4. SECURITY OF THE GHOSTDAG PROTOCOL

arbitrarily. Honest nodes form a connected component in the network's topology. The
networks suffers from delay upper bounded by a constant∆.

Proof-of-work mining is modelled as a Poisson proccess with constant rate λ. The
computational power of a miner P is 0 < αP < 1 and is the probability that miner P
will be the creator of the next block in the system.

5.4.2 Security
In this section we will abuse notation and for a blockDAG G = (V,E) we will write
B ∈ G instead of B ∈ V .

For a playerP and amoment in time t, we denote byGP
t be the blockDAG observed

by P at time t. For an ordering rule ord, a blockDAG G and B,B′ ∈ G we write
B ≺G B′ if B′ comes before B in the output of ord with input the blockDAG G. If
B ∈ G but B′ ̸∈ G we will also write B ≺G B′.

Definition 5.6 ([34]). Fix an ordering rule ord, a time t > 0, a time length r > 0 and
a player P . For a block B, the risk of the player P for the block B at time t and for the
time length r is defined as follows.

• If B ∈ GP
t ,

RiskP (B, t, r) := Pr[∃s > t+ r, ∃B′ ∈ GP
s : B ≺GP

t+r
B′ and B′ ≺GP

s
B]

(5.3)

• If B ̸∈ GP
t ,

RiskP (B, t, r) := 1

The function Risk for the block B at time t and for the time length r is defined as

Risk(B, t, r) := max
P :P is honest

RiskP (B, t, r) (5.4)

Equation 5.3 is the probability that, for a block B which is in the DAG that is
observed by a player P at time t, there exists a block B′ that does not precede B in the
ordering at time t+ r but at a time later than t+ r will precede it. The function Risk
in equation 5.4 is defined as the maximal risk over all honest players.

Definition 5.7 ([34]). For β > 0, an ordering rule ord is said to (1 − β)-converge if
for every t > 0, every honest player P and every B ∈ GP

t ,

lim
r→∞

Risk(B, t, r) = 0. (5.5)

even if a fraction β of the mining power is adversarial.

The convergence property of an ordering rule of Definition 5.7 couples the Safety
and Liveness properties required for the security of distributed ledger protocols [34].
If for a block B at time t for some time length r, Risk(B, t, r) < ε, then a transaction
inside a block is guaranteed to be irreversible, and a decision to accept this transaction
can be made, up to an error probability of ε.

Definition 5.8 ([34]). The security threshold of an ordering rule ord is defined as the
maximal β > 0 for which it (1− β)-converges exponentially fast.

46

CHAPTER 5. THE PHANTOM AND GHOSTDAG PROTOCOLS

The security of GHOSTDAG is given by the following theorem.

Theorem 5.9 ([34]). Given a block creation rate λ > 0, an error tolerance parameter
δ > 0 and an upper bound on the network delay ∆ > 0, the security threshold of
GHOSTDAG, parameterized with k(∆, λ, δ), is lower bounded by 1

2 · (1− δ).

47

5.4. SECURITY OF THE GHOSTDAG PROTOCOL

(a) The genesis block has empty past, so it
has a score of 0.

(b) The set {Gen} is a 3-cluster, so the
score of B,C,D and E is set to 1.

(c) For blocks F,H and I their past set is a
3-cluster, so their score is equal to the size
of their past set.

(d) To calculate the score of block J , first
H , the tip with the highest score in its past,
is selected. In this step,
BlueSet(past(J)) =
BlueSet(past(H)) = {Gen,C,D,E}.

(e) BlockH is added to
BlueSet(past(J). Now
BlueSet(past(J))= {Gen,C, F,E,H}.

(f) Block B cannot be added to the blueSet
since the set would not be a 3-cluster.
Then block F is addedd to the blueSet.
BlueSet(past(J)) =
{Gen,C, F,E, F,H} and score(J) = 6.

(g) Blue score is calculated analogously for
blocksK,L andM .

Figure 5.5: Blue score calculation in GHOSTDAG for k = 3. The score of each
block is equal to the size of the blue set of its past. Example taken and mofidied from
Sompolinsky et al. [34].

48

CHAPTER 5. THE PHANTOM AND GHOSTDAG PROTOCOLS

(a) Blue score is calculated for each block. (b) A virtual block is added that points to
the tips of the DAG. Then the Blue Chain
is selected greedily, starting from the virtual
block and selecting each time the blockwith
the higher blue score.

Figure 5.6: Chain selection in GHOSTDAG. Example taken and mofidied from Som-
polinsky et al. [34].

49

5.4. SECURITY OF THE GHOSTDAG PROTOCOL

(a) past(D) is ordered. In this step,
OrderderList = [Gen].

(b) past(H) is ordered. In this step,
OrderedList = [Gen,D,C,E].

(c) past(K) is ordered. In this step,
OrderedList = [Gen,D,C,E,H, I,B].

(d) past(M) is ordered. In this step,
OrderedList =
[Gen,D,C,E,H, I,B,K, F].

(e) past(V irtual) is ordered. In this step,
OrderedList =
[Gen,D,C,E,H, I,B,K, F,M, J, L].

Figure 5.7: Ordering of GHOSTDAG after the chain selection. Starting from the gen-
esis block, the past of every block in the blue chain is ordered. In every step the high-
est scoring tip is added to OrderedList, and then blocks in its anticone are added to
OrderedList in topological order. Example taken and modified from Sompolinsky et
al. [34].

50

CHAPTER6
OTHER DAG-BASED PROTOCOLS

6.1 The Conflux protocol
The Conflux protocol [19] is a proof-of-work DAG-based protocol that uses the
GHOST rule in order to achieve high throughput.

Similarly to the PHANTOM and GHOSTDAG protocols, blocks point to all unref-
erenced blocks the miner observed at the time of creation. However, two types of edges
are used.

• parent edges. Each block except the genesis block has exactly one outgoing
parent edge. As a result, the subgraph that contains only the parent edges is a
tree.

• reference edges. Each block can have multiple outgoing reference edges.

The mining rules are as follows.

1. The new block should reference with a parent edge the tip of the GHOST chain
of the tree composed by parent edges.

2. The new block should point to all other tips of the DAG with reference edges.

3. Upon being successful in mining, the miner should broadcast the block immedi-
ately.

The ordering of blocks is calculated as follows. First, the GHOST chain of the tree
composed by parent edges, which is called pivot chain, is calculated. Let B1, . . . , Bn

be the blocks of the pivot chain. Then, a partition of the blocks into n sets S1, . . . , Sn

is made, where Si = {Bi} ∪ {B′ | B′ is not in the pivot chain and B′ ̸∈ Sj , ∀j < i}..
The setSi is called the epoch of blockBi. Blocks of each epoch are sorted topologically,
breaking ties according to the lowest hash. If Li is the ordered list of the blocks in Si,
the total ordering of blocks is the concatenation of all lists. That is, L = L1|| · · · ||Ln.
Finally, as in PHANTOM and GHOSTDAG, transactions inside a block are ordered in
the way they appear in the block, and thus a total ordering of transactions results by
ordering the blocks, then ordering the transactions inside the blocks, and then in case
of conflicting transactions removing all but the first one in the ordering.

51

6.2. THE SPECTRE PROTOCOL

An example of a blockDAG created using the mining rules of Conflux is given in
Figure 6.1.

Figure 6.1: An example of a blockDAG in the Conflux protocol. Solid arrows represent
parent edges, and dashed arrows represent reference edges. The pivot chain is shown in
yellow. Blocks are added to their corresponding epoch as shown in the figure. The total
ordering of blocks is L = [Genesis,A,C,B,E,D, F,H, I, J,G,M,K]. Example
taken and modified from Li et al. [19].

The security of Conflux depends on the security of GHOST. Since GHOST is vul-
nerable to the balance attack [9], Conflux uses a variant of GHOST called GreedyHeav-
iest Adaptive SubTree (GHAST) designed to avoid the balance attack [28, 27].

6.2 The SPECTRE protocol

The SPECTRE protocol [10] is a proof-of-work DAG-based protocol that achieves
high throughput but provides only a pairwise ordering of transactions. For this rea-
son, SPECTRE can be used for payments but not for smart contract applications. The
SPECTRE protocol guarantees weak liveness, meaning that the pairwise ordering is ro-
bust only for transactions for which no conflicting transaction is published for a short
period of time. For honest users of the protocol this property suffices, since they will
not publish conflicting transactions.

The mining rules of SPECTRE are identical to those of PHANTOM and
GHOSTDAG presented in Chapter 5. When mining a block, the block should refer-
ence all the tips of the DAG the miner observes and upon successful mining, the miner
should broadcast the block immediately.

Let G = (V,E) be a blockDAG and assume that in blocks B1, B2 ∈ V two con-
flicting transactions appear. As mentioned previously, SPECTRE provides a partial
ordering of transactions. This is acquired by providing a partial ordering of blocks,
namely, by making possible to decide whether B1 ≺ B2 or B2 ≺ B1. This is done
using the following procedure.

Every block B ∈ V is considered as a voter, whose vote is decided based on the
structure of the DAG. Specifically, the vote of blockB for the pairB1, B2 with respect

52

CHAPTER 6. OTHER DAG-BASED PROTOCOLS

to the structure of the blockDAG G is

voteB1,B2
(B,G) =

−1, which represents B1 ≺ B2

0, which represents a tie
+1, which represents B2 ≺ B1

(6.1)

Let also virtual(G) be a hypothetical block as in Chapter 5 such that
past(virtual(G)) = G. The hypothetical block virtual(G) is called the virtual block
and it is associated with a vote as well. Specifically, voteB1,B2(virtual(G), G) is equal
to the majority of votes in V .

Using Definition 5.2, the rules to calculate the value of voteB1,B2(B,G) for a block
B ∈ V are as follows.

1. IfB ∈ future(B1)\future(B2) then voteB1,B2
(B,G) = −1. That is, if block

B is in future(B1) but not in future(B2), B votes in favor of B1. Similarly,
if B ∈ future(B2) \ future(B1) then voteB1,B2

(B,G) = 1.

2. If B ∈ future(B1) ∩ future(B2) then
voteB1,B2

(B,G) = voteB1,B2
(virtual(past(B)), G). That is, if B is in both

future(B1) and future(B2), it votes as the majority of blocks in its past.

3. If B ̸∈ future(B1) ∪ future(B2), B votes as the majority of blocks in
future(B).

4. If B = B1 then voteB1,B2
(B,G) = −1, that is, block B1 votes for itself. Simi-

larly, if B = B2 then voteB1,B2
(B,G) = 1.

Finally, if
∑

B∈V voteB1,B2
(B,G) < 0 then it is decided that B1 ≺ B2, and if∑

B∈V voteB1,B2
(B,G) > 0 then it is decided that B2 ≺ B1.

Concerning ties, they are broken using some deterministic rule, for example in favor
of the block with the lowest hash or other information inside the block header.

An example of the voting procedure on a pair of blocks B1, B2 is illustrated in
Figure 6.2.

Using the above pairwise ordering procedure, a set TxO of accepted transactions
is extracted from the blockDAG. A transaction included in a block B1 is considered
accepted if the following hold.

1. All of its inputs1 have been accepted.

2. For any conflicting transaction included in a block B2 ∈ anticone(B1) it holds
that B1 ≺ B2.

3. Any conflicting included in a block B2 ∈ past(B1) has been rejected.

Finally, a setRobustTxO of robustly accepted transactions is extracted from TxO.
The set RobustTxO contains the transactions of TxO that are guaranteed to be ac-
cepted forever with an error probability of ϵ, and may not include all the transactions
of TxO.

The SPECTRE protocol satisfies the following security properties for a 50%-
bounded adversary.

1The inputs of a transaction refer to the UTXO transaction model. See the Bitcoin whitepaper [2] for
more details on this topic.

53

6.2. THE SPECTRE PROTOCOL

Figure 6.2: An example of the voting procedure on pair of blocksB1, B2 in a blockDAG
G = (V,E). ForB ∈ V , voteB1,B2(B,G) = −1 ifB1 ≺ B2 and voteB1,B2(B,G) =
+1 if B2 ≺ B1. We also have that voteB1,B2

(B1, G) = −1 and voteB1,B2
(B2, G) =

+1. We have that
∑

B∈V voteB1,B2
(B,G) < 0, thus it is decided that B1 ≺ B2.

Example taken and modified from Sompolinsky et al. [10].

Definition 6.1 (Consistency [10], simplified form). If a transaction is included in TxO
by some honest party then all of its inputs have also been included, and there is no
conflicting transaction included.

Definition 6.2 (Safety [10], simplified form). If a transaction is included in
RobustTxO by some honest party, then with high probability it will be included in
RobustTxO by all honest parties, and the expected waiting time for this event is con-
stant.

Definition 6.3 (Weak Liveness [10], simplified form). If a transaction is published in
the ledger, it included in RobustTxO by any honest party after a short while, provided
that its inputs are also included in RobustTxO and that no conflicting transactions are
published.

54

CHAPTER7
CONCLUSION

7.1 Discussion
In this work we presented performance solutions to Bitcoin that use alternative chain
selection rules or a Directed Acyclic Graph as their underlying data structure.

We first presented the Bitcoin protocol and discussed its security proofs. Then, we
presented the GHOST rule, which instead of the longest chain selects greedily each
time the block that is the root of the biggest subtree, and we discussed the arguments
and proofs for its security. Finally, we presented our contribution, an attempt for an
alternative proof of an already known upper bound on the adversarial power tolerance of
GHOST using a Common Prefix technique, that is a reconstruction of previous security
proofs.

Regarding DAG-based distributed ledgers, we presented the PHANTOM protocol
and its optimization GHOSTDAG, that allow multiple blocks to be created in parallel
and use information of the structure of the DAG created to provide a total ordering of
transactions. We also presented the main security properties of GHOSTDAG. Finally,
we presented the mechanisms of SPECTRE and Conflux protocols and discussed their
security guarantees.

Regarding attacks on the aforementioned protocols, the secret mining attack is
known to apply to Bitcoin since its construction [2], and it is exactly the attack that
prevents the protocol from satisfying consistency if the tight bound is not satisfied [25].
The GHOST protocol was designed to avoid the secret mining attack of Bitcoin, how-
ever, it does not avoid all the attacks applicable to Bitcoin since it is vulnerable to the
balancing attack. The GHOSTDAG protocol can be seen as a fix of the GHOST rule
[34] and the Conflux protocol that initially relied on the GHOST rule now uses a varia-
tion of it, GHAST, that avoids the balancing attack [27]. Furthermore, a liveness attack
for a previous variant of GHOSTDAGwas found [19], which we did not include in this
work.

We conclude that in many cases in which a protocol is proposed as a scalability so-
lution to Bitcoin and is designed to avoid a particular attack, another attack appears that
affects its security and makes the protocol non-scalable. Furthermore, when arguing
about the security of a protocol, the assumptions on the capabilities of the adversary
should be as close to real conditions as possible and the definitions of the required se-

55

7.2. OPEN PROBLEMS

curity properties should reflect the real-world requirements. For example, although a
security analysis of GHOST was present in the initial paper, the security analysis did
not consider the possibility that the adversary could send different blocks to different
parties, which is something that can happen in the real-world execution, and is exactly
the reason the balance attack succeeds.

7.2 Open problems
There are many problems left open concerning the security of the protocols we pre-
sented. Some of the open problems stated in the works we presented are a proof for a
tight consistency bound of Bitcoin in the variable difficulty setting [25], light client con-
structions for GHOST [7], a security analysis of PHANTOM [34], research on tighter
methods to calculate the anticone parameter in GHOSTDAG [34] and a reformulation
of the security proof of GHOSTDAG that includes Safety and Liveness properties [34].

In the direction of light clients for GHOST, NIPoPoW protocols for Bitcoin [33]
could potentially be modified to work for GHOST and their security proof could be
based on a modification of our proof attempt presented in Chapter 4. Regarding the
security analysis of PHANTOM, a possible approach would be to compare its security
to some other DAG-based protocol for which its security is already examined, such as
the Parallel Chains protocol [17], using some appropriate mapping.

Directions for further research that we identify in the works we presented are the
following. Regarding GHOST, a tight consistency bound could potentially be achieved
using the techniques of Gaži et al. for Bitcoin [25] and liveness bounds for GHOST
in the bounded delay setting could potentially be achieved by transferring the Fresh
Block lemma [11] to the bounded delay setting. We strongly believe that the already
known bounds for GHOST can be improved and a comparison of GHOST and Bitcoin
could be made. Regarding PHANTOM and GHOSTDAG, a formal proof for the NP-
hardness of the maximum k-cluster subDAG problem is needed, and it could also be
useful to examine whether there is any tradeoff in security when using an approximation
algorithm for an NP-hard problem.

56

BIBLIOGRAPHY

[1] Sven Erick Alm. ``Simple random walk''. In: Unpublished manuscript (2002).
http://www2. math. uu. se/~ sea/kurser/stokprocmn1/slumpvandring_eng. pdf
(2002).

[2] Satoshi Nakamoto. ``Bitcoin: A peer-to-peer electronic cash system''. In:Decen-
tralized Business Review (2008), p. 21260.

[3] Christian Decker and Roger Wattenhofer. ``Information propagation in the bit-
coin network''. In: IEEE P2P 2013 Proceedings. IEEE. 2013, pp. 1–10.

[4] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. ``The bitcoin backbone pro-
tocol: Analysis and applications''. In: Annual international conference on the
theory and applications of cryptographic techniques. Springer. 2015, pp. 281–
310.

[5] Aggelos Kiayias and Giorgos Panagiotakos. ``Speed-security tradeoffs in
blockchain protocols''. In: Cryptology ePrint Archive (2015).

[6] Yoad Lewenberg, Yonatan Sompolinsky, andAviv Zohar. ``Inclusive block chain
protocols''. In: International Conference on Financial Cryptography and Data
Security. Springer. 2015, pp. 528–547.

[7] Yonatan Sompolinsky and Aviv Zohar. ``Secure high-rate transaction process-
ing in bitcoin''. In: International conference on financial cryptography and data
security. Springer. 2015, pp. 507–527.

[8] Jing Chen and Silvio Micali. ``Algorand''. In: arXiv preprint arXiv:1607.01341
(2016).

[9] Christopher Natoli and Vincent Gramoli. ``The balance attack against proof-
of-work blockchains: The R3 testbed as an example''. In: arXiv preprint
arXiv:1612.09426 (2016).

[10] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. ``Spectre: A fast and
scalable cryptocurrency protocol''. In: Cryptology ePrint Archive (2016).

[11] Aggelos Kiayias and Giorgos Panagiotakos. ``On trees, chains and fast transac-
tions in the blockchain''. In: International Conference on Cryptology and Infor-
mation Security in Latin America. Springer. 2017, pp. 327–351.

57

BIBLIOGRAPHY

[12] Aggelos Kiayias et al. ``Ouroboros: A provably secure proof-of-stake blockchain
protocol''. In: Annual international cryptology conference. Springer. 2017,
pp. 357–388.

[13] Christopher Natoli and Vincent Gramoli. ``The balance attack or why forkable
blockchains are ill-suited for consortium''. In: 2017 47th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN). IEEE.
2017, pp. 579–590.

[14] Rafael Pass, Lior Seeman, andAbhi Shelat. ``Analysis of the blockchain protocol
in asynchronous networks''. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer. 2017, pp. 643–673.

[15] Christian Badertscher et al. ``Ouroboros genesis: Composable proof-of-stake
blockchains with dynamic availability''. In: Proceedings of the 2018 ACM
SIGSACConference on Computer and Communications Security. 2018, pp. 913–
930.

[16] Bernardo David et al. ``Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain''. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer. 2018,
pp. 66–98.

[17] Matthias Fitzi et al. ``Parallel chains: Improving throughput and latency of
blockchain protocols via parallel composition''. In: Cryptology ePrint Archive
(2018).

[18] Lucianna Kiffer, Rajmohan Rajaraman, and Abhi Shelat. ``A better method to
analyze blockchain consistency''. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 2018, pp. 729–744.

[19] Chenxing Li et al. ``Scaling nakamoto consensus to thousands of transactions
per second''. In: arXiv preprint arXiv:1805.03870 (2018).

[20] Vivek Bagaria et al. ``Prism: Deconstructing the blockchain to approach physical
limits''. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019, pp. 585–602.

[21] Shehar Bano et al. ``SoK: Consensus in the age of blockchains''. In: Proceed-
ings of the 1st ACM Conference on Advances in Financial Technologies. 2019,
pp. 183–198.

[22] Bitcoin Cash. ``Bitcoin cash''. In: Development 2 (2019).
[23] Ling Ren. ``Analysis of nakamoto consensus''. In: Cryptology ePrint Archive

(2019).
[24] Dan Boneh and Victor Shoup. ``A graduate course in applied cryptography''. In:

Draft 0.5 (2020).
[25] Peter Gaži, Aggelos Kiayias, and Alexander Russell. ``Tight consistency bounds

for bitcoin''. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 2020, pp. 819–838.

[26] Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography. CRC
press, 2020.

[27] Chenxing Li, Fan Long, and Guang Yang. ``GHAST: Breaking confirmation
delay barrier in nakamoto consensus via adaptive weighted blocks''. In: arXiv
preprint arXiv:2006.01072 (2020).

58

BIBLIOGRAPHY

[28] Chenxing Li and Guang Yang. ``Conflux protocol specification''. In: (2020).
[29] Jing Li and Dongning Guo. ``Continuous-time analysis of the bitcoin and prism

backbone protocols''. In: arXiv preprint arXiv:2001.05644 (2020).
[30] Wellington Fernandes Silvano and Roderval Marcelino. ``Iota Tangle: A cryp-

tocurrency to communicate Internet-of-Things data''. In: Future Generation
Computer Systems 112 (2020), pp. 307–319.

[31] Jun Zhao et al. ``An analysis of blockchain consistency in asynchronous net-
works: Deriving a neat bound''. In: 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). IEEE. 2020, pp. 179–189.

[32] Iddo Bentov et al. ``Tortoise and hares consensus: the meshcash framework
for incentive-compatible, scalable cryptocurrencies''. In: International Sympo-
sium on Cyber Security Cryptography and Machine Learning. Springer. 2021,
pp. 114–127.

[33] Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. ``Mining in Logarith-
mic Space''. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2021, pp. 3487–3501.

[34] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. ``PHANTOM
GHOSTDAG: a scalable generalization of Nakamoto consensus: September 2,
2021''. In: Proceedings of the 3rd ACM Conference on Advances in Financial
Technologies. 2021, pp. 57–70.

[35] George Danezis et al. ``Narwhal and Tusk: a DAG-based mempool and efficient
BFT consensus''. In: Proceedings of the Seventeenth European Conference on
Computer Systems. 2022, pp. 34–50.

[36] Tatsuya Yanagita et al. ``Space-Efficient Data Structure for Posets with Applica-
tions''. In: 18th Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2022.

[37] Bitcoin wiki. url: https://en.bitcoin.it/wiki/.
[38] Ethereum whitepaper. url: https://ethereum.org/el/whitepaper/.
[39] William Feller. ``An introduction to probability theory and its applications''. In:

1, 2nd ().
[40] Kaspa github repository. url: https://github.com/kaspanet/kaspad/.
[41] Monero Project. url: https://www.getmonero.org/.

59

https://en.bitcoin.it/wiki/
https://ethereum.org/el/whitepaper/
https://github.com/kaspanet/kaspad/
https://www.getmonero.org/

	Introduction
	Bitcoin, its performance, and Directed Acyclic Graphs
	Thesis outline

	Background
	Negligible functions
	Hash functions
	The random oracle model
	Merkle trees

	The Bitcoin Protocol
	Introduction
	Protocol details
	Security of the Bitcoin protocol

	The GHOST Protocol
	Introduction
	Protocol Details
	The Balance Attack
	Security of the GHOST Protocol

	The PHANTOM and GHOSTDAG protocols
	Introduction
	The PHANTOM Protocol
	The GHOSTDAG Protocol
	Security of the GHOSTDAG protocol

	Other DAG-based protocols
	The Conflux protocol
	The SPECTRE protocol

	Conclusion
	Discussion
	Open problems

	Bibliography

