Equivalent Definitions for Block Elimination
Distance and a Polynomial Kernel

Filippos Mavropoulos
R.N: AL1190015

Examination committee:

Archontia C. Giannopoulou, Department of
Informatics and Telecommunications, National and
Kapodistrian University of Athens.

Stavros G. Kolliopoulos, Department of Informatics
and Telecommunications, National and Kapodistrian
University of Athens.

Dimitrios M. Thilikos, Department of Mathematics,
National and Kapodistrian University of Athens.

Aoyikh ko Avakprtd
3 =
3 Q
= g
& S
& 5
3 OCAMY 2

=
< &
3 T
g &
3 >
00 T 9301Xa2u028]A

Supervisor:

Archontia C. Giannopoulou, Assistant
Professor, Department of Informatics and
Telecommunications

National and Kapodistrian University of
Athens.

ABSTRACT

Block elimination distance is a parameter on graphs that measures the distance of the
biconnected components of a graph from a given class of graphs. When the indicated
graph class is the class of edgeless graphs, we call the parameter block treedepth. In this
thesis, we prove that block treedepth is equivalent to the minimum number of colors
needed to color a graph such that every biconnected subgraph has a vertex of unique
color. Additionally, we introduce a special kind of non-proper edge coloring that can
serve as an alternative for block treedepth, called cycle edge ranking. Moreover, we
make a connection between block treedepth and graph searching games by introduc-
ing two versions of the cops and robbers game that can be used to calculate the block
treedepth of a graph. Finally, we prove that block treedepth has a polynomial kernel
when parameterized by the vertex cover number.

XYNOYH

H diovvexnikn andotaon eloleryns ival pio TOPAUETPOG GE YPOENLOTA TOV UETPAEL
v “amdoTaon” TV SIGVVEKTIKOV GUVICTOGOV VOGS YPAPNUATOG amd pio dedopévn
KAdon ypaenudtev. Otav 1 VTOdEKVOOUEVT] KAAOT] YPOONUATOV gival 1 KAdon TV
YPOONUATOV YOPIG OKUEG, XPNOWOTOOVUE TOV OpO dLovvekTiKO Jevipofaldog Yo, va
TEPLYPAYOLLLE TNV TOPAUETPO. ZTNV TOPOVCA SIMAMUOTIKY], ATOSEKVOOVUE OTL TO dt-
oLVEKTIKO devTpoPdaBog etval 1IGOSVVALLO e TO EAGYLETO TANO0G YPpOUAT®V EVOC YpOLLO-
TGOV OV amodidel KOPLPN LOVASKOD YPMOUOTOS GE KAOE SIGVLVEKTIKO LITOYPAO L
oV Ypapnpatog. EmmpocBitmg, eicdyovpe o 101k mepintwon evog un £yKupov
OKUOYPOUATIGHOD TTOV UITOPEL VO AELTOVPYNOEL OG £VAG EVOALOKTIKOS OPIoUOS TOL dt-
GLVEKTIKOV devTpoPfabovg, o onoiog kaAeitan katdraln axuwmy koklov. 'Eneita, cuvoé-
ovpe To S1oVVEKTIKO devtpoPdbog Le maiyvio avalinong o YPaQnLOTO, EIGAYOVTOG
V0 TapaAAayEG TOL TAlYVIOL KAEPTEG KOl OGTUVOLOL Ol OTTOIEG LITOPOVV VAL YPNCLLO-
ToMBOVV Y10 TOV VIOAOYIGHO TOV SIGLVEKTIKOV devTpoPdbovg evog ypapnuatog. Té-
AOG, OITOdEIKVOOVLLE OTL TO OIGVVEKTIKO 0eVTPOPAbog emdEyEToL TOAMVLUIKO TUPVE
TOPAUETPIKOTOMUEVO MG TPOG TO UEYEDOC TOL KOADUUATOG KOPUO@DV.

ACKNOWLEDGEMENTS

First, I wish to express my gratitude to assistant professor Archontia C. Giannopoulou
for her precious guidance and for her support as the supervisor of this thesis. I would
also like to sincerely thank professor Dimitrios M. Thilikos for his crucial contribution
to the thesis and professor Stavros G. Kolliopoulos for offering his time as a member
of the examination committee.

There are many friends that I would like to thank from the academia. Christoforos,
for knowing the right moment to offer a warm smile. Danai, for sharing common paths
for the past eight years. John, for being a bright light in the darkness. Yung, for our
past and future meaningful conversations.

Lastly, there are many people from outside the academia to whom I owe my grat-
itude. I would like to thank all my friends for their emotional support, my parents,
Grigoris and Vivian, for their unconditional love, and Glykeria for being so kind and
thoughtful.

CONTENTS

1 Introductio

1.1 In General . .

[2 Tnthisthesid o o o 1

2 Preliminaries

D.1 Set Theo /[S

.2 Graph Theory

E.3 Parameterized

B Distance Parameterﬂ

7
3.1 Vertex Deletion Distancd 7
9

B.2 Elimination Distancd o v oov v

3.2.1 Treedepth 9

B.22 Centered Coloringdo v 11

B.2.3 A Searching Game for Treedepth 13

5.3 Block Elimination Distanca 15

‘3.3.1 Block Treedepth and Block-Centered Coloringd 16
B32 CycleEdge Rankingd oo v 19

B.3.3 A Searching Game for Block Treedepth 21
A Polynomial Kernel 25
31
B graphy 33

CHAPTER 1

INTRODUCTION

1.1 In General

A popular concept in graph theory is asking for the minimum amount of modifications
needed for a given graph to reach a certain state. The number of modifications are
usually described as distance parameters. Distance parameters on graphs serve as a
measure of how far a graph is from a given graph class C. This roughly means that a
distance parameter checks how many removals (usually vertex removals) one would
have to apply on a graph in order for the resulting graph to belong to a certain class.
One of the most basic and simple distance parameters is the vertex deletion distance,
whose importance originates from the fact that for a variety of graph classes, vertex
deletion distance describes well-studied NP-complete problem, such as, the VERTEX
COVER problem. A more general distance parameter called elimination distance was
proposed by Bulian and Dawar in 2016 ([2]) while studying the GRAPH ISOMORPHISM
problem. The two parameters are quite similar since they both only involve vertex
deletions. However, elimination distance is a parameter that is applied simultaneously
on every connected component of a graph. A special case of elimination distance called
treedepth has been around for a much longer time. Treedepth in a sense measures how
close a graph is to the empty graph if we are allowed to delete vertices from multiple
connected components in every step and it goes with many different names (e.g. vertex
rankings [|ll], centered colorings [[12]). Regarding the computational complexity of the
corresponding decision problem of treedepth, it has been proven that, given an integer
k, it is NP-complete to decide whether the treedepth of a graph is equal to & ([[L3]) and
is also fixed parameter tractable when parameterized by & [[10].

1.2 In this thesis

In 2021, Diner, Giannopoulou, Stamoulis and Thilikos [5] proposed an even more flex-
ible distance parameter called block elimination distance. As the name suggests, here
the vertex deletions are applied on the two-connected components of the graph. In
the third chapter, we introduce block treedepth as the analogous of treedepth for block
elimination distance. Moreover, we prove that block treedepth is a parameter which is

1

1.2. IN THIS THESIS

equivalent to 2-connected centered colorings. Moving on, we introduce an edge color-
ing for graphs called cycle edge ranking and, again, we prove its equivalence to block
treedepth. Furthermore, we connect block treedepth with two versions of the cops and
robbers game, the Searcher-Stationary and the LIFO-Search. Finally, the fourth chap-
ter of this thesis is dedicated to reduction rules that will lead to a proof that the corre-
sponding decision problem of block treedepth admits a cubic kernel when the vertex
cover number of the graph is the parameter, thus coming to the conclusion that BLoCK
TREEDEPTH is in FPT when parameterized by VERTEX COVER.

CHAPTER 2

PRELIMINARIES

In this chapter we introduce all the notions, definitions and concepts that will be needed
throughout the thesis.

2.1 Set Theory

We start with some basic concepts. We use N to represent the set of natural numbers
and Z respectively for the set of integers. By [k] we denote the set of all integers that are
greater or equal than 1 and less or equal than k. For a family of sets A, | J 4 4 A denotes
the union of all elements that are part of at least one set in .A. For a given alphabet 3,
we define as X* the set of all finite length strings that can be generated by arbitrarily
concatenating elements of L. If S is a set, then (“;) denotes the set of all subsets of S
that contain exactly two elements. A binary relation R on a set S is a subset of S' x S.
If (a,b) € R we write aRb. A relation R is called transitive if for every a,b,c € S
when aRb and bRc are true, a Rc also holds. A relation R is called antisymmetric if for
every a,b € R, if both aRb and bRa are true, then a = b holds. A partially ordered set
(S, R) is a set S along with an antisymmetric and transitive relation R on the elements
of S. A chain C of S is a subset of S such that for every two elements a, b € C, either
aRb or bRa holds. An antichain C' of S is a subset of .S such that for every elements
a,b € C neither aRb nor bRa holds. A non-trivial antichain is an antichain that is not
an empty set or a singleton.

2.2 Graph Theory

Here, we state basic concepts on graphs. We borrow some terminology from [3]. All
graphs in this thesis are considered to be finite, undirected and simple (no loops or
multiple edges) unless stated otherwise. The set of all such graphs is denoted by G. For
a graph G, we use V(G) to denote the set of vertices of G and E(G) to denote the set
of edges of G. If u and v are the endpoints of an edge e, then we say that e = {u,v} or
e = uv. We say that H is asubgraph of Gif V(H) C V(G)and E(H) C E(G). Also,
foraset S C V(G), the induced subgraph G[S] is the graph that has S as the vertex set
and its edge set contains exactly all edges of F/(G) with both endpoints in S. A path of

3

2.3. PARAMETERIZED COMPLEXITY AND ALGORITHMS

G is a sequence of vertices (v1, . .., vg) such that v;v, 11 € E(G) foreveryi € [k —1].
A cycle of a graph G is a sequence of vertices (v1, ..., vy) such that v;v;11 € E(QG)
for every ¢ € [k — 1] and also viv; € E(G). A graph will be called connected if for
any two vertices in V' (G) there exists a path connecting them. A graph G is a forest if it
contains no cycle, and G is a tree if it is a connected forest. The distance between two
vertices u, v is a function dist : V(G) x V(G) — N which is equal to one less than the
number of vertices on the shortest path connecting u with v and is denoted dist(u, v).
The neighborhood of a vertex u € V(G) is denoted as N (u) = {v € V(G) | {u,v} €
E(G)}. Forasubset S C V(G), we set Ng(S) = U{Ng(v) | v € V(G)}. With
G \ u we denote the induced subgraph of V(G) \ {u}, while for an edge ¢ € E(G)
we denote G\ e = (V(G), E(G) \ {e}). A cut-vertex is a vertex u € V(G) such that
G \ u has more connected components than G. A graph G is called biconnected if it
has more than two vertices and it has no cut-vertex. A block graph is a graph that is
either biconnected, a vertex or an edge. A block of a graph G is a maximal biconnected
component of G. The degree of a vertex is equal to deg(u) = |Ng(u)|. A vertex is
called isolated if deg(u) = 0 and pendant if deg(u) = 1. A leaf'is a vertex u of a
tree that has deg(u) = 1. An acyclic graph T' = (V(T), E(T'),r) is called rooted tree,
where r € V(T) is the root. For vertices t1,to € V(T'), we say that ¢, is an ancestor
of t9 if t; belongs to the unique path from r to ¢5. The vertex ¢ is a descendant of t,
if t1 belongs to a path from ¢2 to any leaf of T" other than the root. If ¢; is an ancestor
of to we write t1 <7, t2 The depth of a rooted tree is equal to the maximum size of
a path from the root to a leaf. A rooted forest is a graph whose connected components
are rooted trees. A bridge is an edge such that G \ e has more connected components
than G. A graph property of a graph is a binary function p : G — {0, 1}.We say that
a graph G has a property p if p(G) = 1 and we say that G does not have this property
otherwise. A class of graphs G, is the set of all graphs that have a property p.

Definition 2.1. A distance parameter of a graph G is a function f : G — [k], for some
k eN.

Definition 2.2. A (proper) coloring of a graph G is a function f : V(G) — [k] for some
k € N such that, if f(u) = f(v) then uv ¢ E(G). For a subgraph H Cg;, G, we say
that f| g : V(H) — [k] is the restriction of f with respect to H. The size of a coloring
is defined to be equal to |Im(f)].

Definition 2.3. An edge k-coloring of a graph G is a function f : E(G) — [k] for some
keN.

2.3 Parameterized Complexity and Algorithms

Parameterized complexity is a recent field of complexity theory that focuses on trac-
ing parameters that would make a problem easier to cope with when these parameters
are fixed. There are many well studied algorithmic problems that are NP-hard. This
makes them require too much time in order to find solutions. Towards an attempt to
further classification and better understanding of NP-hard problems, we focus on fixed
parameter tractability (FPT). This basically is the class that contains all problems that
can be solved in polynomial time when we consider suitable parameters as part of the
input and are exponential only towards the fixed parameters. We borrow the following
terminology and notations from [4].

CHAPTER 2. PRELIMINARIES

Definition 2.4. A parameterized problem is a language L C ¥* x N, where ¥ is a
finite alphabet. For an instance (z, k) € ¥* x N, k is called the parameter. The size of
an instance (z, k) is equal to |x| + k.

In this thesis, the input = will be a graph G.

Definition 2.5. A parameterized problem L is called fixed parameter tractable (FPT)
if there exists an algorithm .4, a computable function f : N — N and a constant ¢ such
that, given (x.k) € ¥* x N, the algorithm A correctly decides whether (z, k) € L in
time bounded by f(k) - |(z, k)|°. The complexity class containing all fixed parameter
tractable problems is denoted as FPT.

Definition 2.6. A reduction rule is a function ¢ : ¥* x N — ¥* x N that maps an
instance (G, k) of a problem L to an equivalent instance (G', k') of L such that ¢ is
computable in polynomial time with respect to |I| and k. We say that two instances are
equivalent when (G, k) € Lifand only if (G, k') € L. A reduction rule is called safe
if it produces equivalent instances of a problem.

Definition 2.7. A kernelization algorithm or a kernel for a parameterized problem L
is an algorithm .4 that, given an instance (G, k) of L, works in polynomial time and
returns an equivalent instance (G’, k) of L. Moreover, it is required that there exists a
computable function g such that whenever (G’, k) is the output of an instance (G, k),
we have that |G'| + k' < g(k).

Theorem 2.8. [4] A decidable parameterized problem L is in FPT if and only if L
admits a kernelization algorithm.

2.3. PARAMETERIZED COMPLEXITY AND ALGORITHMS

CHAPTER 3

DISTANCE PARAMETERS

In this chapter we describe distance parameters for graphs. We begin with vertex dele-
tion distance, then move on to elimination distance and finally we introduce block elim-
ination distance. The order in which they are introduced is of importance, since each
measure can and will be described as a relaxed alternative of the previous one.

3.1 Vertex Deletion Distance

A natural question one could ask for graphs is what is the least number of vertices that
should be removed in order for a graph to obtain a certain property. This exactly is the
concept of vertex deletion distance. A formal definition is the following:

Definition 3.1. The vertex deletion distance of a graph G from a target class C is defined

as
0 ifGelC

"dC(G>:{ 1+ min{vde(G\v) |v e V(G)} ifG¢&C

It is in our interests to explore the nature of vertex deletion distance and what it
represents when we indicate certain graph classes as the target classes in vertex deletion
distance. First, we focus on the simplest graph class which is the class of edgeless
graphs, denoted by £. By focusing on vdg, we notice that the parameter is equal to the
number of vertices one needs to delete from a graph in order for the resulting graph
to be edgeless. For someone who is familiar with the basic concepts of graph theory,
it is easy to observe that this question is equivalent to the following famous NP-hard
problem:

VERTEX COVER
Input: A graph G and an integer k.

Question: Is there a set S C V(&) such that every edge has at least one end-point in
Sand|S| < k?

We define the vertex cover number of a graph G, vc(G), to be equal to the minimum
integer k for which the VERTEX COVER problem has a positive answer and we claim that
it is equal to vd¢ (G).

3.1. VERTEX DELETION DISTANCE

Figure 3.1: An example of an optimal vertex cover.

Figure 3.2: An example of an optimal feedback vertex set.

Claim 3.2. The vertex cover number of a graph G is equal to vdg (G).

Proof. Let S be a vertex cover of minimum size for GG. If we remove every vertex of S
from G in an arbitrary order, the resulting graph G \ S is an induced subgraph of G and
since every edge of G has at least one end-point in S, G \ S is edgeless. Thus, ve(G) >
vdg (G). On the other hand, if one can delete vdg (G) vertices from G and eliminate all
edges, then there certainly exists a subset S C V(G) of size |S| < vdg(G) that is a
vertex cover for G. Thus, ve(G) < |S|. All-together, we get that ve(G) = vdg(G) O

A similar situation arises when the indicated class is defined as the class of forest
graphs, denoted by F. Here, vd r represents the minimum number of vertices needed
to be removed in order for the resulting graph to be acyclic. The equivalent problem
this time is called FEEDBACK VERTEX SET (see Figure B.2), another well studied NP-hard
problem.

FEEDBACK VERTEX SET
Input: A graph G and an integer k.

Question: Is there a set S C V(G) such that every cycle of G has at least one vertex
in S and |S| < k?

Claim 3.3. The size of an optimal feedback vertex set for a graph G is equal to vd .

Proof. Let fvs(G) be the size of a minimum sized feedback vertex set for G and let S be
a feedback vertex set of minimum size for the graph. Obviously, the removal of every
vertex in S results in G \ S. Every cycle in G had a vertex removed. Thus, G \ S €
F or equivalently, fvs(G) > vdz(G). Now, there exists a subset of V(G) of size
vd z(G) from G whose removal breaks every cycle in G. This subset is not necessarily
of minimum size. Hence, fvs(G) < vdz(G) which concludes the proof. O

Of course, the list of problems that can be represented as a special case of vertex deletion
distance does not end here. In fact, for every class C the vertex deletion distance to this
class gives birth to a different graph-algorithmic problem, many of which problems are
NP-hard.

CHAPTER 3. DISTANCE PARAMETERS

3.2 Elimination Distance

Sometimes, there exist algorithmic problems for graphs whose questions would be more
meaningful if we could focus on a certain connected component of the graph and not
the whole graph. This gives rise to the following question: is there a distance parameter
for graphs which would recursively focus on the connected components of the graph?
The concept of elimination distance describes exactly this idea and is defined as the
following recursive function:

Definition 3.4. [2] Let G be a graph and let C be a class of graphs. The elimination
distance of G from C is equal to

0 ifGelC
ede(G) = ¢ max{edc(C) | C € cc(G)} if G ¢ C and G not connected
1+ min{edc(G\v) |v € V(G)} if G ¢C and G is connected

where cc(G) is the set of all maximal connected components of G.

3.2.1 Treedepth

Elimination distance was first introduced by Bulian and Dawar in 2016 as a tool to
show that the GRAPH ISOMORPHISM problem is fixed parameter tractable. However, this
concept was not entirely unknown until then. Consider the case in which the target
class is defined as the class of edgeless graphs, £. In this certain case, we use the term
treedepth in order to describe edg (G).

Definition 3.5. [[11]] Let G be a graph. The treedepth of G is denoted as td(G) and is
defined as

0 if B(G) =0
td(G) = ¢ max{td(C) | C € cc(G)} if E(G) # 0 and G not connected
14+ min{td(G \v) |v € V(G)} if E(G) # 0 and G is connected

Treedepth is a notion that has been rediscovered many times and appears with dif-
ferent names and definitions throughout the literature. It is worth mentioning that in the
original definition the treedepth of an edgeless graph is defined to be equal to 1 instead
of 0, but this is just a technical discrepancy that does not create any inconsistency. We
move on to a definition that appears in [|L1]] for the first time and will help us define
treedepth in a alternate way.

Definition 3.6. [[11]] The closure of a rooted forest F, clos(F'), is a graph F” such that
V(F') = V(F) and E(F') = {ay | = is an ancestor of }y and x # y. The treedepth
of a graph G is the minimum height of a rooted forest F' such that G Cg, clos(F).

Definition B.4g is useful, because it will be used to define a tree-like decomposition of
graphs based on the order that the treedepth recursion picks the deleted vertices in every
step.

Definition 3.7. A treedepth decomposition of a graph G is a rooted forest F' whose ver-
tices is exactly V(G) and if uv € E(G), then u is either an ancestor or a descendant of
vin F. The treedepth of G is equal to the minimum height of a treedepth decomposition
reduced by one.

3.2. ELIMINATION DISTANCE

»<}.
e
SR

I

Figure 3.3: A graph whose treedepth is equal to 4. Here, we see an optimal recursive choice of
the deleted vertices.

10

CHAPTER 3. DISTANCE PARAMETERS

Figure 3.4: An example of a treedepth decomposition of minimum depth. If we match every
color of the decomposition to a number in a rising order from top to bottom (red= 1, blue= 2
etc.), we see that the coloring is also a vertex ranking.

The basic idea in order to obtain a treedepth decomposition of a graph G is exactly the
following recursive process. If G is connected and has exactly one vertex, then F' = G
and the root is exactly the unique vertex of G. If G is connected and has more than one
vertices, then pick a vertex u € V(G) as the root. Then, repeat the process for every
connected components of G \ u and connect u with the root of every decomposition of
the corresponding connected components of G \ u. Finally, if G is not connected then
the treedepth decomposition is the graph that is acquired by the union of the treedepth
decompositions of every connected component separately. An example can be found
in Figure B.4.

An interesting observation about treedepth is that it is always upper bounded by
vertex cover number. This is due to the fact that treedepth is a special case of elimination
distance while vertex cover number originates from vertex deletion distance. In the
first case, vertices are picked to be deleted from the connected components of the graph
while in the second case one cannot delete more than one vertex in one step. What is
more, for every non-negative integers c, k, there exists a graph G such that td(G) < k
and vc(G) > c¢ - k. For example, consider the clique graph K} and let G be a
graph that has ¢ copies of Kj;1. Obviously, the treedepth of this graph is equal to
k while its vertex cover number is equal to ¢ - k. Moreover, this can be generalized
for elimination distance and vertex deletion distance. When the indicated classes are
the same, elimination distance is always upper bounded by vertex deletion distance
and there is no function of elimination distance which upper bounds vertex deletion
distance.

3.2.2 Centered Colorings

Vertex colorings can usually be interpreted as a vertex labelling serving a certain pur-
pose. In terms of treedepth, this purpose can be described through a special kind of
colorings called centered colorings.

Definition 3.8. A centered coloring ¢ : V(G) — N of a graph G is a coloring such
that for every connected subgraph H, there exists a color ¢ € N such that ¢| ;' (c) is a
singleton. A vertex of unique color in H is called center of H. The minimum size of a
centered coloring for G is denoted x.(G).

The importance of centered colorings is that, in a way, they describe the order in
which vertices are picked to be deleted when calculating treedepth. The relation be-

11

3.2. ELIMINATION DISTANCE

tween the treedepth of a graph G and the minimum size of a centered coloring for G
can be better comprehended through the proof of the following theorem.

Theorem 3.9. [[L1] For every graph G, it holds that td(G) = x.(G) — 1.

Proof. Definition B.7 states that for every graph G, the minimum height of a treedepth
decomposition 7' among every treedepth decompositions for G is equal to td(G) + 1.
Thus, it suffices to prove that the height of a treedepth decomposition of minimum
height is equal to the size of an optimal centered coloring for G. Also, notice that
neither the depth of a treedepth decomposition nor x. is affected by the amount of
connected components of G. Thus, in what follows we make the assumption that G is
connected.

First, we prove that x.(G) > depth(T), where depth(T') is the depth of T. We
will create a new treedepth decomposition T using the following process. Since G is
connected, it has at least one center. Arbitrarily pick a center u of G as the root of T”
and remove the center from G. Then, arbitrarily pick a center from every connected
component of G \ u, add all centers in 7" and connect them to the root. Repeat the
process for every connected component that pops up after the removal of the centers
that were picked previously and . Obviously, the process will terminate in x.(G) steps.
We claim that 7" is indeed a treedepth decomposition for G. Let uv € E(G) be an
edge of G. It is clear that u and v cannot be picked at the same stage of the process
described above as they can not have the same color. This holds because because they
are connected with an edge and thus they cannot be separated unless one vertex of the
edge is removed. Suppose that u, without loss of generality, is picked first. Then v will
continue to be a vertex in a connected component acquired after the removal of w. Thus
v will be a descendant of win 7”. Hence, T” is a treedepth decomposition for G of height
Xc(G). Since T is not necessarily of optimal height, we get that x.(G) > depth(T’).

Now, we need to prove that x.(G) < depth(T). Given the optimal treedepth de-
composition T for G, we will construct a centered coloring using at most depth(7")
colors. Let u be the root of 7. We claim that the coloring ¢(v) = dist(u,v) + 1is a
centered coloring for G. We need to prove that every connected subgraph H Cg, G
has a center via ¢. Let, towards a contradiction, H be a connected subgraph that has no
center when we restrict ¢ on its vertices. This means that for every color that appears in
H there exist at least two vertices that have this color. Let v1 and v, be two vertices of
minimum color. Since H is connected, there exists a path from vy to vs. This path, p,
can be written as vy, wy, . . ., w;, V2 for some j € N. For every vertex w on this path, it
holds that ¢(w) > ¢(v2) = ¢(v1). From the definition of a treedepth decomposition,
v 1s either an ancestor or a descendant of w; and since v; is of minimum color in H,
we get that w, is a descendant of v1. Now, for every integer k € [j] we have that w; is
either an ancestor or a descendant of w;,. Thus, every vertex on p has a descendant
or ancestor relation with v; and since vy is of minimum color, we get that vs is also
a descendant of v;. However, this is a contradiction because ¢(v2) = ¢(v1) which
implies that dist (v1, u) = disty (ve, w). Thus, H has a center. Because of the fact that
¢ is not necessarily of minimum size, we have that x.(G) < depth(T). Altogether,
Xc(G) = depth(T) = td(G) + 1. O

Besides the obvious, the proof of Theorem B.9 states something stronger than just
the equivalence of treedepth and centered colorings. Since graph colorings can be inter-
preted as labelling of vertices, when we mention colors we could also refer to numbers
representing the colors. During the transition from a treedepth decomposition of G to
a centered coloring, notice that the center of every connected subgraph is in fact the

12

CHAPTER 3. DISTANCE PARAMETERS

vertex whose color is the smallest among every color in the subgraph. This means that
treedepth actually is equivalent to a certain kind of colorings that ensure that in every
connected subgraph, the smallest color is unique. This concept is mentioned as vertex
rankings in the literature ([[l]) and is in fact a concept that is prior to treedepth. Fig-
ure B.4 offers an example of a centered coloring and a vertex ranking, as well as an
example of the transition from a centered coloring to a treedepth decomposition and
vise versa.

3.2.3 A Searching Game for Treedepth

Searching games ([6]) are often used to describe a situation during which a fugitive is
trying to avoid a set of searchers. In graph theory, the pursuit takes place on a graph
G where V(G) represents a set of rooms while E(G) represents a set of aisles that
connect the rooms. Graph searching games are useful because they usually serve as
characterisations for graph parameters while offering an intuitive perspective that can
help better understand the parameter.

A famous variation of searching game is the cops and robbers game. In this vari-
ation, the fugitive is impersonated by a robber and the searchers can be interpreted as
the cops. Even though the two opposing sides always remain the same, different rules
give rise to alternate versions of the game. For example, there are variations in which
the robber is visible and others where the robber is invisible. Also, in some versions
the cops cannot be moved once they are placed on a vertex and in other they have the
ability to move. Here, we will be focusing on two versions of the game.

The first version of the game is called Searcher-Stationary. In this version, the
robber is visible and the cops cannot move once they are placed in the graph. The
game starts with the robber picking a vertex as its initial position. Then, the cops are
informed of the robbers position and proceed with picking the vertex that they are going
to occupy. Once they made their decision, they announce the position that they picked
and then the robber picks his next destination right before the cops occupy the selected
vertex. The robber can move through vertices that are connected with edges and are
not occupied by the cops, and can cover an infinite distance in a single round. In other
words, the robber can move from one vertex to another in one round as long as there is
a path connecting the two vertices that is not blocked by a vertex occupied by the cops.
The process is repeated until the robber cannot move and the cops occupy the vertex on
which the robber is standing on. When this happens, the robber is considered captured
and the game is over. Consider that the robber is a genius and always acts in his best
interest.

In the second version the robber is invisible and the cops are allowed to move in
the graph in a Last-In-First-Out way. The name of this version is LIFO-Search. This
means that a cop can be moved after every cop that entered the graph later, is pulled
out from the graph. Here, the robber selects a vertex at the beginning of the game and
can move on paths that are not intercepted by cops. The cops consider the robber to be
omnipresent and thus have to search every vertex of the graph, while every other rule
remains the same. The minimum amount of cops needed to capture a robber on a graph
G in the Searcher-Stationary version is called stationary cop number of G, denoted by
vco(@), while the minimum amount of cops needed to capture a robber on a graph G
in the LIFO-Search version is called /ifo cop number of G, and is denoted by ico(G)
Our purpose is to relate the cop number of a graph with its treedepth. However, before
we state a theorem from [7] that points the relation, we will first introduce a notion that
is also equivalent to treedepth and has been used as a tool to offer a better insight to the

13

3.2. ELIMINATION DISTANCE

cop and robber game that we described above.

Definition 3.10. A shelter of a graph G is a collection S of non-empty connected sets
in G such that for every non-minimal set S € S no vertex belongs to all its children, in
other words,

({S"]5" e Ms(S)} =0,

where Ms(S) is the C-maximal elements of {S’ € S : §' C S}. The thickness of a
shelter S is the minimal length of a maximal C-chain and is denoted by th(S).

We are now ready to state a theorem that relates treedepth with cops and robbers and
shelters.

Theorem 3.11. [[7] Let G be a graph and k be a non-negative integer. Then the follow-
ing are equivalent.

* () d(G) <k,

* (ii) for every shelter S of G, th(S) < k + 1,
* (iii) veo(G) < k + 1,

s (iv)ico(G) < k+ 1.

The two versions that we described can offer a good intuition when it comes to
calculating the treedepth of whole graph classes in the general case. In order to give
an example, we first define a graph G to be a star if there exists a vertex u € V(G)
such that uv € E(G) for every other vertex in V(G), and for any vertices vy, vy # u
we have that vivs € E(G). Here, we call u the center of the star. The LIFO-Search
game played on a star graph .S would require exactly 2 cops to cover the whole graph.
The first one will be standing on the center of .S the whole time, thus blocking any
movement of the robber. Then the second cop will search every other vertex one by
one until the robber is caught (see Figure B.9). This means that for every star graph .S,
ico(S) < 2 or equivalently td(S) < 1.

A different example is the application of the Searcher-Stationary version applied
on the path with k vertices, denoted by P,. We will construct a strategy for the cops
in the Searcher-Stationary version applied on path graphs in order to calculate the sta-
tionary cop number of P, which will help us prove that the treedepth of Py is equal to
[log,(k)]. The following claim is clearly equivalent to the previous statement.

Claim 3.12. For every k > 0, vco(Pyx) = k + 1.

Proof. We will prove the claim by induction on k. For the base case, Poo = P is
a path graph on one vertex. Thus, the robber only has one option and cannot move
and indeed vco(P;) = 1. Let the claim be true for every &’ < k. We will prove
that the claim is also true for k. Consider that we place a cop on the middle vertex
of P,.. Thus, now the robber is restricted to move on a path of length 2*~! and by
induction hypothesis, from then on there are k cops needed to capture it. This proves
that vco(Pyr) < k + 1. Now, We will prove that vco(P,x) > k + 1 by constructing a
shelter S such that th(S) > k+1. We define the root of S to be the whole path. Then we
split P, in half, creating two Pyr—1 subgraphs and making these subgraphs the children
of the original path. We continue this process with every leaf of S until all the resulting
paths consist of a single vertex. The process will be repeated log(2*) = k. Every step
extends the length of every maximal chain by exactly 1. Thus, vco(Pox) > k + 1,
which proves that vco(Par) > k + 1. Altogether, vco(Por) = k + 1. O

14

CHAPTER 3. DISTANCE PARAMETERS

U

Figure 3.5: A star graph and a demonstration of how the cops would capture an invisible robber
in a LIFO-Search game. The red vertex represents the first cop that is placed in the graph while
the blue arrows represent the movements of the second cop.

3.3 Block Elimination Distance

In this section, we study a more flexible graph distance parameter called block elimina-
tion distance. Block elimination distance is quite similar to elimination distance. The
idea is that instead of applying the recursion on connected components, we apply it on
the biconnected components of the graph instead. Formally, block elimination distance
is described as follows:

Definition 3.13. The block elimination distance of a graph G from a class C is defined
as

0 ifGelC
bedc(G) = ¢ max{bed¢(B) | B € bc(G)} if G ¢ C and G is not biconnected
1+ min{bed¢(G\ v |v € V(G))} if G ¢ C and G is biconnected

where bc(G) denotes the biconnected components of G.

A forest-like representation of the order in which the vertices are deleted during the
calculation of the block elimination distance of graph can be quite a useful tool for
proofs. Again, we borrow the following definition from [5].

Definition 3.14. Let C be a non-trivial hereditary class of graphs and let G be a graph.
Let (F, R, T) be a triple consisting of a rooted forest F’, its set of roots R and a function
7 V(G) — 2V, Also, given a vertex t € V(F), we define dp r(t) = {t' €
V(F) | t <p g t'} as the set of descendants of ¢ in F'. Moreover, for every S C V(F),
we define 771(S) = {v € V(G) | 7(v) NS # 0} and for every t € V(F) we
define G; = G|t~ 'dp r(t)]. We say that (F, R, 7) is a C-block tree layout of G if the
following hold:

1. forevery v € V(G), 7(v) is an (F, R)-antichain,
2. forevery t € V(F'), G, is a block-graph,

15

3.3. BLOCK ELIMINATION DISTANCE

Figure 3.6: A C-block tree layout where C = €.

3. foreveryt ¢ L(F,R), |7~ '({t})| =1and G; ¢ C,
4. foreveryt € L(F,R),G, € C

5. for every non-trivial (F, R)-antichain C, the graph | J{G, | t € C} is not bicon-
nected.

The depth of a C-block tree layout (F, R, 7) is equal to the depth of the rooted forest
(F, R).

In a way, C-block tree layouts are the analogous of treedepth decompositions for
block elimination distance. There is a relation between the order in which vertices are
deleted from a graph during calculating its block elimination distance from a given
class and the depth of the image of each vertex via 7 in the tree layout. However, the
relation is not as obvious as in treedepth decompositions. For example, in Figure B.4
we see that a vertex of a graph G can be mapped to more than one vertex in its block
tree layout. What is more, the vertices of a block tree layout that are the image of a
vertex in G do not have to be in the same depth. The only restriction is that they have
to form an anti-chain, meaning that there are no two vertices in a block tree layout that
are the image of the same vertex from GG and have a descendant-ancestor relation. The
following theorem summarizes the usefulness of block tree layouts.

Theorem 3.15. [5] Let C be a non-trivial hereditary class and let G be a graph. Then
the minimum depth of a C-block tree layout of G is equal to bed¢(G) — 1.

3.3.1 Block Treedepth and Block-Centered Colorings

Here we focus on the special case that C is the class of edgeless graphs. In this case, we
get a graph measure which is similar to treedepth but instead applied on the biconnected
components of the graph, which we call block treedepth. We use the notation tds(G)
to describe bedg (G). Our purpose is to find equivalent coloring definitions for block
treedepth that are analogous to those of treedepth. The following definition traces back
to [B], although it is mentioned as 2-connected centered coloring. What is interesting
about it, is that block-centered colorings can be traced in the literacy before block elim-
ination distance was firstly mentioned although the first is a special case of the second.

Definition 3.16. A block-centered coloring ¢ : V(G) — N of a graph G is a proper
coloring such that for every biconnected subgraph B € bc(G) of G there exists a color
¢ € [k] satisfying |¢~'|y/(5)(c)| = 1. The minimum amount of colors needed to color

16

CHAPTER 3. DISTANCE PARAMETERS

a graph G block-centrally is called block-centered coloring number of G and is denoted

as Xoc(G).

We now proceed to prove the equivalence of the block-centered coloring number of a
graph G and its block treedepth.

Proposition 3.17. For every non-negative integer &, xpc.(G) — 1 < k if and only if
tda(G) < k.

Proof. We will use induction on k. It is trivial to check that when k& = 0 then x3.(G) —
1 = bed(G) = 0 (here, G is an edgeless graph).

We will prove that x;.(G) — 1 < k implies that tdo(G) < k. Assume that k > 1,
Xbe(G) —1 < k and let ¢ be a block-centered coloring for G using at most &k + 1 colors.
We first consider the case in which G is biconnected. This means that there exists a
vertex v € V(G) and acolor ¢ € [k+1] such that v is the only vertex in V (G) satisfying
#(v) = c. Then H = G\ v has a block-centered coloring h = ¢|y-() that uses at most
k colors. Thus xp.(H) < k and by induction hypothesis we get tdo(H) < k — 1. By
the definition of block elimination distance and since (G is biconnected, it holds that
tde(G) < 14 tda(H) < k. Now assume that G is not biconnected. In this case,
there exist vertices vy, ..., v, € V(G) witnessing the unique colors by restricting ¢ in
every maximal biconnected component { By, ..., B;} of G respectively. By induction
hypothesis applied on each B; \ v;, we get that tdo(B; \ v;) < k — 1. Thus, td2(G) =
max{td2(B) | B € {B1,..., B} < 14+max{tdz(B) | B € {B1\v1,...,B\v} <k.

Finally, we will prove that tdo(G) < k implies that x;.(G) < k + 1. In fact, we
will use induction to prove an even stronger statement, that tdo(G) < k implies that
Xbe(G) < k+ 1 and given any vertex u € V(G) and any color ¢ € [k + 1] there exists
a coloring ¢ of size k + 1 such that ¢(u) = ¢. For k = 0, the case is trivial since G
is edgeless and the only color in use is 1. Suppose that the statement is true for every
integer ¢+ < k. We will prove that the statement is also true for £ + 1 by using induction
on the number of the blocks, [, of G. For [= 1, notice that GG is a block graph, meaning
that it either is a vertex, an edge, or it is biconnected. This means that there exists a
vertex v € V(G) such that td(G'\ v) < k. By induction hypothesis, G \ v has a block-
centered coloring that uses at most k£ colors. We extend the coloring to G by assigning
the color £ + 1 on v. The new coloring is indeed an extension to a block-centered
coloring for GG. since every biconnected subgraph that does not contain v has a center
from the original coloring and for every subgraph that contains v, it also serves as its
center. Now, given a block-centered coloring ¢ of size k + 1, a color ¢ and a vertex w,
if (u) # c then we assign ¢(u) to every vertex that is colored with ¢ and assign ¢ to
every vertex that is colored with ¢(u). The coloring obviously remains block-centered
and has the original size. This proves the base case. Suppose that the statement holds
for every integer j < [. We will prove that it also holds for [+ 1. Given a graph G
with [+ 1 blocks, we calculate the block cut tree of G. The block cut tree of a graph
is a graph T whose vertices are the blocks of G and whose edge set contains a pair of
vertices if and only if the blocks that they represent intersect in G. Notice that T¢; is a
forest, since a cycle in Tz would imply the existence of a “cycle” of blocks in G which
contradicts to the maximality of blocks. We arbitrarily pick any vertex v € V(Tg) to
be the root of Tz and perform a breadth first search on the block cut tree. Let m be the
last vertex that was visited during the search and let B,,, be its corresponding block in
(. Notice that m is a leaf. This means that B,,, intersects with at most one other block
in G. Let B}, be the union of every other block of G other than B,,. Now, notice that
B,, and B!, intersect with at most one vertex. Both B,,, and B/, have less than [+ 1

17

3.3. BLOCK ELIMINATION DISTANCE

Figure 3.7: An example of a biconnected graph whose block-centered chromatic number is
equal to 4.

blocks. By induction hypothesis, they also have block-centered colorings y and x’ of
size k + 1 using the colors in [k + 1]. If they do not intersect, then the union of the two
colorings is obviously a block-centered coloring for G. Suppose that they intersect and
that V(B],) N V(B,,) = {z}. Notice that, by induction hypothesis, we can rearrange
X in order to achieve x(z) to be equal to x’(z). We create a new coloring ¢ = y U x’.
This is possible since the two colorings agree on the colors of vertices that are in both
graphs. Also, there is no biconnected subgraph of G that is both a subgraph of B,,, and
B!.. Thus, ¢ is a block-centered coloring of G using k + 1 colors. To conclude the
proof, for any vertex u € V(G) and any color i € [k + 1], if ¢(u) # ¢ then arbitrarily
pick a color j € [k + 1] and switch the color of every vertex that is colored with 4 to j
and vise versa. The new coloring remains a block-centered coloring for G. Altogether,
Xbe(G) < k + 1. This concludes the proof. O

Combining Theorem and Proposition we get that the minimum depth of a
block tree layout for a graph G is equal to x;.(G) — 1. This implies a relation between
the block-centered chromatic number of a graph and the depth of an optimal block tree
layout. Nevertheless, unlike centered colorings, this connection does not occur by just
assigning a different color to every level of a block tree layout, since the same vertex
can be mapped in several levels. What is more, we saw that centered colorings can
also be comprehended as a special case of vertex rankings through which the vertex of
unique color (via a centered coloring) of a connected subgraph of a graph is also the
vertex whose assigned color is the one with the smallest index. Unfortunately, this is
not the case with block-centered colorings. This is due to the fact that, as we saw in
the proof of Proposition B.17, during the first stage of the construction of the coloring
there might be adjacent vertices that share the same color. These vertices ought to be in
different maximal biconnected components and in order to prevent this from happening
we perform a permutation of the colors in one of the components. An example of such
a permutation can be found in Figure B.§ This can lead to the colors of smallest indices
to not be unique in certain biconnected components of a graph. Finally, notice that
every biconnected subgraph of a graph is also a connected subgraph. This implies
that a centered coloring for a graph G would also be a block-centered coloring for G,
meaning that x;.(G) < Xx.(G) or equivalently td2(G) < td(G) for every graph G.

18

CHAPTER 3. DISTANCE PARAMETERS

"

Figure 3.8: An example of how a permutation of colors works in a biconnected component in
order to fix a block-centered coloring into a proper coloring. Here, every red vertex in the left
biconnected component becomes an orange vertex and vice versa.

Figure 3.9: An example of a cycle edge ranking. Here, red represents the color of the minimum
index while pink represent the color of the highest index. The fact that there are only 3 colors
needed implies that the block treedepth of this graph is less than or equal to 3.

3.3.2 Cycle Edge Rankings

In an attempt to define an analogous of vertex rankings for block treedepth, we intro-
duce a coloring that resembles rankings and is equivalent to td,. In this direction, we
introduce cycle edge rankings.

Definition 3.18. An edge coloring of a graph G, r : E(G) — N, is called a cycle edge
ranking if for every cycle C' <, G either of the following holds:

* largmin e o) (M(E(C))| = 1, or
* Nargmin.cp o) (r(E(C)) = {v} for some v € V(C).

The minimum amount of colors a cycle edge ranking uses for a graph G is denoted as
cer(G).

In plain words, cycle edge rankings are a kind of edge colorings such that for every
cycle of a graph G either the color of smallest index is unique, or the edges with the
color of the smallest index share a common vertex. Notice that cycle edge rankings
are not necessarily proper edge colorings, meaning that two edges sharing a vertex can
have the same color. As a matter of fact, it is quite common for cycle edge rankings to
assign same colors to adjacent edges as we can see in Figure B.9. We now proceed to
prove the equivalence of cycle edge ranking and block treedepth.

Proposition 3.19. For every non-negative integer k, cer(G) < kifand onlyiftdy(G) <
k.

3.3. BLOCK ELIMINATION DISTANCE

Proof. We will use induction on k. For k = 0, it is obvious that tdy(G) = 0 if and
only if G is edgeless and that G is edgeless if and only if cer(G) = 0, which concludes
the base case for both directions.

First we will prove that when tdy(G) < k is true then cer(G) < k is also true.
Assume that £ > 1 and td2(G) < k and that G is biconnected. This means that there
exists a vertex v € V(G) such that tdo(H) < k — 1, where H = G \ u. By induction
hypothesis, H has a cycle edge ranking that uses at most £ — 1 colors. We produce a
new cycle edge ranking r’ by setting r'(e) = 1 for every edge e whose one endpoint
is w and r'(e) = r(e) + 1 for every remaining edge. We claim that r’ is a cycle edge
ranking for G. Let C be a cycle of G. If C does not contain u, then r'|g confirms
that the extension of r in G is a cycle edge ranking. Suppose that u € V(C'). Notice
that if e € argmin,c (o) (r(E(C)) then r'(e) = 1. By construction, the only edges in
G satisfying r'(e) = 1 all share a common endpoint. Thus, r’ is a cycle edge ranking
for G using at most k colors and cer(G) < k. Now, assume that G is not biconnected
and that td2(G) < k. Let B = {B4y,..., B;} be the set of all blocks of G. For every
block B; € B, it is true that tdo(B;) < k. This means that every block has a cycle
edge ranking ¢; using at most k colors, all from [k]. We claim that ¢ = Uiem @i is a
cycle edge ranking of G. Indeed, since the coloring is not proper, there is no problem
with adjacent edges having the same colors in ¢. On the other hand, no cycle can be
contained in more that one block. Thus, for every cycle C' Cy, (G), there exists a block
B; containing it and hence ¢ |, confirms that either all edges of minimum color in C
share a vertex or the edge of minimum color is unique. Altogether, cer(G) < k.

Now, we will prove that when cer(G) < k is true then tdy(G) < k is also true.
Thus, assume that & > 1 and that cer(G) < k. Let B € BB be a maximal biconnected
component of G. Suppose, towards a contradiction, that e, es € E(B) are two non-
adjacent edges satisfying r(e;) = r(ez) = 1. For every two edges that belong to the
same biconnected component, there exists a cycle containing both edges. Thus, either
[{e € B|r(e)=1} =1or({e € B |r(e) =1} € V(B) holds. We pick a vertex v
from B as follows: if {e € E(B) | r(e) = 1} = {ujuz} then set v = u;. Otherwise,
v=_) e € B|r(e) =1}. Let H = B\ v. The restriction r|z of r on H uses at most
k — 1 colors and is a cycle edge ranking for H. Therefore, by induction hypothesis
tday(H) < k — 1. H is acquired from G by removing exactly one vertex from every
biconnected component of G and thus we get that tdo (B) < tda(H)+1 < k. Since this
is true for any block of G, by definition of block treedepth tds(G) < k. This concludes
the proof. O

The relation between cycle edge rankings and block-centered colorings is actually
not that hard to spot. Previously, we saw that if we know the order in which vertices
where eliminated from a graph G while calculating its block treedepth, we can produce a
block-centered coloring for G. In order to make this coloring a proper coloring we need
to perform some permutations. Suppose that we do not perform the aforementioned
permutations presented in the proof of Lemma 3.17. Then we have a coloring that does
assign a vertex of unique color to every biconnected subgraph of G but might not be
proper. Now, if we transfer the color of every vertex to its adjacent edges in a way such
that every edge gets the color of smallest index among the colors that its endpoints are
assigned by the (non- proper) block-centered coloring, we get a cycle edge ranking for
the graph.

20

CHAPTER 3. DISTANCE PARAMETERS

3.3.3 A Searching Game for Block Treedepth

In an attempt to better understand block treedepth, we define cops and robbers games for
block treedepth. The games are quite similar to those that were described for treedepth,
but of course we adapt the rules to fit the nature of block treedepth. The general rules
for the game are that we have a unique robber that is always acting in its best interest
and an infinite amount of cops that are placed on vertices. The robber however now
stands on edges. At the beginning, the robber selects an edge. Then the cops announce
the vertex that they are going to occupy, and right before they occupy it the robber can
move again. However, unlike the first variation that we described, the robber can only
move between edges that belong in the same block. For example, the robber cannot
use cut-vertices to move from a block of a graph to another one. A humorous way to
physicalize the extra restriction in order to make it easier to visualize this version of
the game, is to think of the robber as acrophobic, thus cannot use bridges. The game
ends once the cops capture both the endpoints of the edge that the robber is standing on.
Again, we have a Searcher-Stationary version of the game in which the robber is visible
and the cops cannot move once placed on a vertex and a LIFO-search version, where
the robber is invisible and the cops can move in a LIFO order. The minimum amount
of cops needed to capture a robber on a graph G in this variation is denoted by vcb(G)
in the Searcher-Stationary version and icb(G) in the LIFO-search version. Before we
relate block treedepth with cb(G), we give the definition of shacks as an analogous of
shelters but for block treedepth.

Definition 3.20. A shack of a graph G is a collection S of non-empty block-subgraphs
of GG such that for every non-minimal set S € S vo vertex belongs to all its children. In
other words,

(S| 5" € Ms(S)} = 0.

where Ms(S) is the C-maximal elements of {S’ € S : S’ C S}. The thickness of a
shelter S is the minimal length of a maximal C-chain and is denoted by th(S).

Now, we have the tools to introduce the analogous of Theorem for this new version
of the game.

Theorem 3.21. Let GG be a graph with at least one edge and & be a non-negative integer.
Then the following are equivalent.

(i) for every shack S of G, th(S) < k + 1.
(ii) tda(G) < k.
(i) veb(G) < k + 1.
(iv) icb(G) < k + 1.

Proof. (i) = (i1). We will prove the contrapositive by induction. For £ = 0, let G be
a graph such that td,(G) > 0. Of course this graph has a shack of thickness at least 2,
since any graph that has an edge has a corresponding shack that consists of the graph
itself and all its vertices as singletons. Suppose thatif G is a graph such that td>(G) > k
then some shack S of G satisfies th(S) > k + 1. We will prove that if td(G) > k+1
for a graph G, then G has a shack of thickness at least k¥ + 2. From the definition of
block treedepth, it is true that there exists a block B of G such that td>(B) = tdz(G).
For every vertex v € V(B) let B, be equal to the graph B\ v. It is true that tdy (B,,) >

21

3.3. BLOCK ELIMINATION DISTANCE

tda(B) — 1 > k and thus, by induction hypothesis, for every B, there exists a shack
S, satisfying th(S,) > k + 1. We claim that S" = {B} U,y) Sw is a shack of B.
Indeed, ({5’ | S’ € Ms:/(B)} = 0, since every vertex of V' (B) is absent from at least
one set in Mg/ (B). Also, th(S") = th(S,) + 1 > k + 2. Finally, it is easy to check
that since B is a subgraph of GG and has a shack of thickness greater than k + 2 then G
also has a shack with the same property, because the shack of the subgraph is a shack
for GG too. This concludes the first proof.

(i1) = (iii)). We will prove the statement by induction on k. For k = 1, let G be
a graph with td,(G) < 1. Since G is not edgeless, G is a forest graph. In the current
version of cops and robbers, the robber is not allowed to move in a forest and thus all the
cops have to do is to cover the endpoints of the edge that the robber is sitting on, meaning
that veb(G) < 2. Suppose that if tdo(G) < k then veb(G) < k + 1 holds. We will
prove that if td>(G) < k+1thenveb(G) < k+1isalso true. Let B be any biconnected
component of G. By the definition of block treedepth, we know that td(B) < td>(G).
Then, there exists a vertex v € V(B) such that tda(B \ v) = td2(G) — 1 < k. By
induction hypothesis, it holds that veb(B\ v) < k + 1. Consider that we place a cop on
v in B. Then, we need at most k + 1 cops to capture the robber in the remaining graph.
Thus, veb(B) < k + 2. Notice that according to the rules the robber cannot transfer
from a biconnected component to another since that would require moving between
edges that do not belong in the same biconnected component. Hence, since k + 2 cops
are enough in order to secure any biconnected component, we have that veb(G) < k+2,
which concludes the proof.

(iii) = (i). Again, we use induction to prove the contrapositive. For k = 1, let
G be a graph and S be a shack such that th(S) > 2. Then G has at least one cycle
and thus there are at least 3 cops needed in order to capture a visible fugitive, meaning
that veb(G) > 2. Now, suppose that if G has a shack S such that th(S) > k+ then
veb(G) > k+11is true. We will prove that G having a shack S such that th(S) > k+2
implies that veb(G) > k + 2. Let B be any maximal element of S and let B be a child
of B in S. This means that B’ has a shack S’ whose thickness is greater than k + 1. By
induction hypothesis, vcb(B’) > k + 1. Now, let v be a vertex in V' (B). Suppose that
the robber is sitting on an edge in B whose one endpoint is v and let u be the first vertex
that the cops cover in B. By definition of a shack, there exists a child B” of B such
that u & V(B"). If the robber picks an edge in E(B") to stand on, there are at least k
cops needed in order to capture it from then on. Hence, vcb(G) > veb(B) > k + 2,
which concludes the proof.

(i1) = (iv). We will prove the statement by induction on k, following a quite similar
method as in (ii) = (iii). For ¥ = 1, let G be a graph with td,(G) < 1. Again, G is
not edgeless and thus it is a forest. Regardless that the robber is invisible, it cannot
move away from the edge that it originally selected since the graph is a forest and thus
a strategy for the cops is to cover the endpoints of every edge one by one, meaning
that icb(G) < 2. Now, we assume that whenever td,(G) < k then icb(G) < k + 1
is true. We will prove that if td>(G) < k + 1 then icb(G) < k + 1 is also true.
Let B; be any biconnected component of G and v; be a vertex in V' (B;) such that
such that tdy(B; \ v;) = td2(G) — 1 < k. By induction hypothesis, it holds that
ich(B; \ v;) < k + 1. Consider that we place a cop on v; in B;. Then, we need at
most £ + 1 cops to capture the robber in the remaining biconnected component.Thus,
icb(B;) < k + 2. Once again, according to the rules the robber cannot transfer from
a biconnected component to another since that would require moving between edges
that do not belong in the same biconnected component. Hence, since k + 2 cops are

22

CHAPTER 3. DISTANCE PARAMETERS

enough in order to secure any biconnected component, a valid strategy for the cops
would be to exhaustively check every biconnected component one by one using k + 2
cops. Altogether, we have that icb(G) < k + 2.

(iv) = (i). We will prove the contrapositive by induction. Indeed, for £ = 1 the
contrapositive of the statement is true since every graph that has a shack of thickness
th(S) > 2 also has a cycle and thus there are more than 2 non-stationary cops needed
to search every edge and to capture an invisible robber. Suppose that the statement is
also true for every k' < k, that is for every ¥’ < k G having a shack of thickness
th(S) > k' + 1 implies that icb(G) > k' + 1. We will prove that the statement is also
true for k+ 1. Let G be a graph that has at least one shack S that satisfies th(S) > k42
and let M be any maximal element of S that is also a maximal biconnected component
of G. Then, any child M’ of M has a shack of thickness th(S) > k + 1. Suppose
that the cops want to search for the robber in M. This means that they pick a vertex
v" € V(M) to place a cop on. By definition of shack, there exists a child M’ of M in &
such that v' ¢ V' (M"). By induction hypothesis, there are at least & + 1 non-stationary
cops needed to exhaustively search M’. The first cop cannot move unless every next
cop placed in M’ is removed from the graph and on the other hand, if all the other &£+ 1
cops are removed and the k + 2-th cop decides to move to a vertex v”, then there exists
a different biconnected subgraph M"” of M such that v" ¢ M" for which there are at
least k + 1 cops needed to completely search. Thus, veb(G) > veb(M) > k+2. O

23

3.3. BLOCK ELIMINATION DISTANCE

24

CHAPTER 4

A POLYNOMIAL KERNEL

Consider the following problem:

BLOCK TREEDEPTH
Input: A graph G, an integer k and a vertex cover C of G.

Parameter: |C|.

Question: Is the block treedepth of G at most k?

Our aim here is to prove that there exists a polynomial kernel for BLOCK TREEDEPTH
when parameterized by vertex cover number. The idea behind the rules that will even-
tually lead to the kernel is similar to the rules for treedepth parameterized by vertex
cover [9], but of course adjusted to the nature of block treedepth.

In what follows, G = (V, E) is a graph that has at least one cycle (otherwise the
problem would be trivial), C is a non-empty cover of G, k a positive integer and finally
I represents the independent set V(G) \ C. We will describe some rules that will not
change the block-treedepth of G.

Lemma 4.1. Let w € V(G) be an isolated vertex of G and let G’ = G[V(G) \ {u}].
Then tdQ(G) = tdz(G/).

Proof. Clearly, td2(G) > tda(G’). For the converse inequality, let ¢ be a block-
centered coloring of G’. Since u is not part of any biconnected component of G and
since u has no neighbors in G, we arbitrarily assign a color c to u that is already being
used by ¢ on G’ and extend ¢ to a block-centered coloring ¢’ of G using at most as
many colors as ¢ uses. Thus, tda(G) < tda(G’), which concludes the proof. O

This lemma confirms that the following rule is safe.
Rule 1. Let u € V(G) be an isolated vertex. Then, delete u from G.

Lemma 4.2. Let e € E(G) be a bridge and G’ = (V, E \ {e}). Then td2(G) =
tdo(G").

Proof. Tt is trivial that td2(G) > td2(G’). Now, let ¢ be a block-centered coloring for
G’. We will prove that every biconnected subgraph of G has a vertex of unique color

25

when colored by ¢. Let H be a biconnected subgraph of G. Since H is a biconnected
subgraph of G’ and e does not participate in any biconnected component, then H is also
a biconnected subgraph of GG. Thus, ¢ is a block-centered coloring for G. This shows
that tdo(G) < td2(G’), resulting to td2(G) = td2(G'). O

Rule 2. Let e € E(G) be a bridge. Then, delete e from G.

Lemma 4.3. Suppose that tdy(G) < k and let uy, us € V(G) be non-adjacent vertices
such that [Ng(u1) N Ng(ug)| > k. IfG' = (V, EU{uy, uz}), thentdy(G) = tda(G’).

Proof. 1t is easy to check that td2(G) < td2(G’). In order to prove the converse,
let ¢ be a block-centered coloring for G using at most & colors. First, we claim that
after adding {u1,us2} in E(G), ¢ remains a proper coloring. In order to prove this,
notice that for every pair v1,v2 € Ng(u1) N Ng(uz) the induced subgraph H =
G[{u1,uz2,v1,v2}] is biconnected. Thus ¢(u1) # ¢(us2), since otherwise every vertex
v € Ng(u1) N Ng(uz) would need to be assigned a different color via ¢ and this
would contradict the fact that ¢ uses at most k£ colors. Now, let B be a biconnected
subgraph of G’ that is not a biconnected subgraph of G. Clearly, ui,us € V(B).
Notice that since B is biconnected in G’ but not in G, then B either contains no vertex
from Ng(u1) N Ng(ug) or V(B) = {uy,us,w}, where w € Ng(u1) N Ng(uz).
In any case notice that for every pair {y1,y2} € Ng(u1) N Ng(usz) the subgraph
B’ = G[V(B)U{y1, y2}] is biconnected. This means that either y; or y, have a unique
color in B’ or that some vertex of B has a unique color. The first case cannot be true,
since otherwise every vertex in Ng(u1) N Ng(uz2) would need a different color and, as
mentioned above, this is not possible. Thus, B has a vertex of unique color in G and
hence it also has a vertex of unique color in G’. This implies that tdo(G) > td2(G'),
which concludes the proof. O

We can safely introduce the third rule, which adds some edges to the graph.

Rule 3. Let u, v be non-adjacent vertices of G. If | Ng (u1) N N (ug)| > k and at least
one of u € C orv € C hold. Then, add the edge {u, v} to G.

Lemma 4.4. Let tdo(G) < k and let u € V(G) be a simplicial vertex such that for
every pair of vertices vy, v2 € Ng(u) it holds that |(Ng(v1) N Ng(v2)) \ Ng(u)| > k.
IfG' = (V\ {u}, E), then td2(G) = td2(G").

Proof. First, itis trivial to show that tdo(G) > td2(G’). Itremains to prove the opposite
inequality. In what follows, we denote the clique neighborhood of u as Q = N¢(u) and
R={veV(Q)|Jui,uz € Q:v € (Ng(u1) N Ng(uz)) \ Na(u)} \ {u}. Suppose
that ¢’ is a block-centered coloring of G’. We will extend ¢’ to a block-centered coloring
of G, using k+1 colors by describing a construction. During this construction, consider
u to be colorless. Initially, let B; be the maximal block of G that contains u. Notice that
u belongs to exactly one maximal block, since every block containing u also contains at
least two vertices from () (actually contains () and two blocks of a graph cannot share
an edge. Since Bj is a biconnected subgraph of G, then By NG is either a biconnected
subgraph of G’ or an edge of G'. In both cases, B; contains a vertex (say wy) of unique
color when we restrict ¢’ on its vertices. Now, let B be the maximal block of G\ {w1 }
containing u. Bs also contains a vertex (say ws) of unique color via ¢’. By repeating
this process we claim that there exists a minimum integer [> 0 such that B; = G[u],
meaning that B; consists of exactly one vertex, which is w. It is trivial to check that
B; is a monotonically decreasing sequence of graphs (the relation here is the subgraph

26

CHAPTER 4. A POLYNOMIAL KERNEL

k-neighbor -
k-neighbor

k-neighbor

Figure 4.1: An example of the application of Rule i on a graph. Here we delete u because its
neighborhood is a clique and every pair of vertices from the clique have a common neighborhood
of size at least k, without counting u.

relation). Now, since tdy(G) < k notice that By has at most k + 1 colors via ¢'. Thus
By 1 is exactly the empty graph. This means that there exists I’ < k + 1 such that
By = G[0]. Due to the fact that we consider u to be colorless, it is true that u € V(B;)
for all i < I’. These facts lead to the proof of the aforementioned claim. Moreover,
notice that | = I’ — 1 < k. Now, it is time to color u. We claim that any color that can
be found in B;_1 \ w;_ and cannot be found in Q, would extend ¢’ to a block-centered
coloring ¢ for G. Apparently, we first have to prove that V(B;_1 \ w;—1) \ @ # 0. For
starters, there exist at least two vertices ¢1,¢2 € @ such that ¢1,¢2 € V(B;_1), since
otherwise u would have at most one neighbor in B;_; and thus u would not be a part
of a larger biconnected component. Moreover, we claim that V' (B;_1) contains at least
one common neighbor of ¢; and ¢,. Notice that as long as ¢; and g2 belong in B; for
some integer ¢ < k, then every vertex that belongs to their common neighborhood and
is not equal to any vertex w; for any j < 7 also belongs to B;. This implies that it would
take more than k iterations in order to eliminate every common neighbor of ¢; and ¢
from B;. However, it is already proven that [< k. Thus, B;_; indeed contains at least
one common neighbor of ¢, g2 and hence it is indeed true that V (B;_1 \w;_1)\ Q # 0.

Finally, we have to prove that by arbitrarily assigning any color from V(B;_; \
wi—1) \ @ to u, ¢’ is in fact extended to a block-centered coloring ¢ of G. Let B be a
biconnected subgraph of G that contains w. It is easy to check that for any biconnected
subgraph B of G containing u, it holds that B;_1 Cg, B Cg, Bi. This implies that
there exists a positive integer i < [— 1 such that B Cg, B; but B €, B;11. Observe
that w; € V(B) since otherwise B would either not be biconnected or it would be
a subgraph of B; ;. However, the color of w; is unique in B; and that means that
its color is also unique in B. In order to conclude the proof, notice that for every
vertex wj, j € [l — 1] ¢(u) # ¢(w;). This is true because there exists a vertex ¢ €
V(Bi—1 \ wi—1) \ @ such that ¢(q) = ¢(u) and ¢ € B; for every integer j € [l — 1].
Hence, there exists a block-centered coloring for G using at most x4.(G’) colors and
thus tdQ(G) = tdQ(Gl). O

The fourth and last rule follows.

Rule 4. Letu € V(G) be a simplicial vertex such that for every pair of vertices v1, vy €
N¢(u) it holds that | (Ng(v1) N Ng(v2)) \ Ng(u)| > k. Then, delete u from G.

Now we are ready to prove the existence of a cubic kernel for our problem.

27

Figure 4.2: A graph partitioned into its vertex cover and independent set that is a sketch for the
proof of Lemma .3,

Lemma 4.5. Let G be a graph such that td>(G) < k and |C| > k. If none of the
aforementioned rules are applicable to GG, then the number of vertices of G is O(|C3).

Proof. Let S be the set of simplicial vertices of G that are not in C, N be the set of
non-simplicial vertices not in C and I = V(G) \ C. Since Rule [I| and Rule P have been
exhaustively applied, every vertex in G has at least 2 neighbors. Thus, every vertex in 1
has at least two neighbors in C'. Now, from Rule }, for every vertex u € S there exists
an edge {v1,v2} € E(G[C]) such that the common neighbors in .S are at most k. We
associate every vertex « € S with an edge in E(G[C]). Notice also that every edge in
E(G]C)) is associated with at most k vertices in .S. Thus, |S| < k\@(l# <|C)3.
Now, let u be a vertex in N. This vertex is not simplicial and its whole neighborhood
is in C. Therefore, there exists vertices uj, us € C such that {u1,us} € E(G). Notice
that according to Rule B u; and u, cannot have more than £ common neighbors. Every
vertex in IV has a corresponding pair of non-adjacent vertices in C. This implies that
IN| < (lGUZIEL < |03, Finally, we have that V(G) = |C|+|S|+|N| < 3[C]3. O

We proceed to prove the main theorem of the chapter.

Theorem 4.6. BLOCK TREEDEPTH admits a polynomial kernel when parameterized by
vertex cover number.

Proof. Consider (G, C, k) to be an instance of BLOCK TREEDEPTH parameterized by VER-
TEX COVER. In the case that |C'| < k, the problem is trivial and (G, C, k) is obviously a
YES-instance. Now, suppose that |C'| > k. After exhaustively applying the aforemen-
tioned rules we get a graph G’ such that td>(G) < k if and only if td(G’) < k. We
claim that C" = V/(G') N C'is a vertex cover of G’. This certainly holds for every rule
involving vertex or edge removals. However, this also applies for Rule [regardless of
the fact that it adds an edge, as at least one of the vertices of this edge already belongs to
the original vertex cover. This leads us to a new instance (G’, C’, k). Now, Lemma .5
guarantees that if [V (G’)| > 3|C’|3 then td2(G’) > k and thus (G’, C’, k) would be a
NO-instance. In conclusion, BLOCK-CENTERED COLORING admits a cubic kernel when
parameterized by vertex cover number. O

28

CHAPTER 4. A POLYNOMIAL KERNEL

Corollary 4.7. BLOCK TREEDEPTH is in FPT when parameterized by VERTEX COVER.

Proof. The proof follows by combining the results of Theorem §.4 and Theorem P.§,
since the exhaustive application of the aforementioned reduction rules describes a ker-
nelization algorithm. O

29

30

CHAPTER 5

CONCLUSION

Throughout this thesis, we introduced block treedepth from the view of block elimina-
tion distance as an analogous of what treedepth is for elimination distance. We provided
two equivalent coloring definitions of block treedepth and then we saw how they can
serve as an alternate tool to block tree layouts for technical proofs and we proved that
there exist searching games that can be used to describe block treedepth. Furthermore,
using techniques similar to the ones used for treedepth, we managed to prove that the
problem of deciding the block treedepth of a graph admits a cubic kernel and is fixed
parameter tractable when parameterized by vertex cover number. For future work, we
conjecture that a parameterization of the problem by the size of a minimum feedback
vertex set would possibly offer an even smaller kernel, since feedback vertex is more
suitable for the nature of block treedepth. Finally, a fixed parameter algorithm for both
block treedepth and block elimination distance would be interesting since these param-
eters seem promising when we consider parameterizing other problems by them.

31

32

BIBLIOGRAPHY

[1] Hans L. BODLAENDER, JITENDER S. DEOGUN, KLAUS JANSEN, AND TON KLOKS,
Rankings of Graphs, SIAM Journal on Discrete Mathematics, 11(1), 168—-181.

[2] Jannis BuLiaN, AND ANUI DAWAR, Graph Isomorphism Parameterized by Elimi-
nation Distance to Bounded Degree, Algorithmica. 2015,75(2):363-382.

[3] REINHARD DIESTEL, Graph Theory, Electronic Edition 2005.

[4] MARek CyGAN, FeEpoOr V. Fomin, Lukasz KowaLik, DANIEL LOKSHTANOV,
DANIEL MARX, MARCIN PILIPCZUK, MICHA PILIPCZUK, AND SAKET SAURABH, Pa-
rameterized Algorithms, Springer, 2015.

[5] OzNUR YASAR DINER, ARCHONTIA C. GIANNOPOULOU, GIANNOS STAMOULIS, AND
Divrtrios M. THILIKOS, Block Elimination Distance, Graphs and Combinatorics,
38(5).

[6] FEDOR V. FoMIN, AND DiMITRIOS M. THILIKOS, 4n annotated bibliography on
guaranteed graph searching, Theoretical Computer Science, 399(3), 236-245.

[7] ArcHONTIA C. GIANNOPOULOU, PAUL HUNTER, AND DiMITRIOS M. THILIKOS,
LIFO-search: A min—max theorem and a searching game for cycle-rank and tree-
depth, Discrete Applied Mathematics, 160(15), 2089—2097.

[8] ToNny HUYNG, GWENAEL JORET, PIOTR MICEK, MICHAL T. SEWERYN, AND PAUL
WoLLAN, Excluding a Ladder, Combinatorica, November 2021.

[9] Yasuaki KoBavasHi, AND Hisao Tamakl, Treedepth Parameterized by Vertex
Cover Number, 11th International Symposium on Parameterized and Exact Com-
putation (IPEC 2016)

[10] WoiCIECH NADARA, MICHAL PILIPCZUK, AND MARCIN SMULEWICZ, Computing
treedepth in polynomial space and linear fpt time, May 2022.

[11] JarosLAV NESETRIL, AND PATRICE OSSONA DE MENDEZ, Tree-depth, subgraph col-
oring and homomorphism bounds, European Journal of Combinatorics, Elsevier,
2006, 27(6), pp.1022-1041.

33

https://doi.org/10.1137/s0895480195282550
https://arxiv.org/pdf/1406.4718.pdf
https://arxiv.org/pdf/1406.4718.pdf
https://sites.math.washington.edu/~billey/classes/562.winter.2018/articles/GraphTheory.pdf
https://www.mimuw.edu.pl/~malcin/book/parameterized-algorithms.pdf
https://www.mimuw.edu.pl/~malcin/book/parameterized-algorithms.pdf
https://arxiv.org/pdf/2103.01872.pdf
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.dam.2012.03.015
https://doi.org/10.1016/j.dam.2012.03.015
https://arxiv.org/pdf/2002.00496.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/6943/pdf/LIPIcs-IPEC-2016-18.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/6943/pdf/LIPIcs-IPEC-2016-18.pdf
https://arxiv.org/pdf/2205.02656.pdf
https://arxiv.org/pdf/2205.02656.pdf
https://reader.elsevier.com/reader/sd/pii/S0195669805000570?token=B40E3E8BEFEA8EE0BFA2540981AFF4E17F50C3AF5A70BDBE8B0539CCEA8950C8726D744799538C6C3C53BC6DCC623514&originRegion=eu-west-1&originCreation=20220820115815
https://reader.elsevier.com/reader/sd/pii/S0195669805000570?token=B40E3E8BEFEA8EE0BFA2540981AFF4E17F50C3AF5A70BDBE8B0539CCEA8950C8726D744799538C6C3C53BC6DCC623514&originRegion=eu-west-1&originCreation=20220820115815

BIBLIOGRAPHY

[12] JarROSLAV NESETRIL, AND PATRICE OSSONA DE MENDEZ, Grad and classes with
bounded expansion I. Decompositions, European Journal of Combinatorics, 2008,
29(3), 760-776

[13] ALex POTHEN, The complexity of optimal elimination trees,Technical Report CS
88-16, Department of Computer Science, Penn State 1988.

34

https://arxiv.org/pdf/math/0508323.pdf
https://arxiv.org/pdf/math/0508323.pdf
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf

	Introduction
	In General
	In this thesis

	Preliminaries
	Set Theory
	Graph Theory
	Parameterized Complexity and Algorithms

	Distance Parameters
	Vertex Deletion Distance
	Elimination Distance
	Treedepth
	Centered Colorings
	A Searching Game for Treedepth

	Block Elimination Distance
	Block Treedepth and Block-Centered Colorings
	Cycle Edge Rankings
	A Searching Game for Block Treedepth

	A Polynomial Kernel
	Conclusion
	Bibliography

