
Simulation Relations among Message Passing
and Mobile Agent Algorithms

Maria Ioanna Spyrakou
A0013

Examination committee:
Aris Pagourtzis, School of Electrical and Computer
Engineering, National Technical University of Athens.
Dimitris Fotakis, School of Electrical and Computer
Engineering, National Technical University of Athens.
Stathis Zachos, School of Electrical and Computer
Engineering, National Technical University of Athens.

Supervisor:
Aris Pagourtzis, Professor,
School of Electrical and Computer
Engineering ,
National Technical University of Athens.

Η παρούσα Διπλωματική Εργασία
εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση του
Μεταπτυχιακού Διπλώματος Ειδίκευσης

«Αλγόριθμοι, Λογική και Διακριτά Μαθηματικά»
που απονέμει το

Τμήμα Πληροφορικής και Τηλεπικοινωνιών
του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την από Εξεταστική Επιτροπή
αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. .

2. .

3. .

ABSTRACT

Simulations of distributed systems are powerful, since they allow us to prove the rela
tions among different systems, compare their capabilities and performance and transfer
positive and impossibility results from one to another. This thesis aims in analysing the
equivalence of the message passing model and the mobile agent model via a simulation
relation. Furthermore, it will examine the simulations that can be obtained between
the message passing model and the mobile agent model, when some components of the
systems may fail or be under adversarial attack.

We prove the following a) simulation relations of a mobile agent system with black
holes by a message passing system with always dead processes, b) a simulation of a
message passing algorithm that sends at most k−1messages to always dead processes
by a mobile agent system with black holes and at least k mobile agents, c) a simulation
of mobile agent black+ hole system by a message passing system with crash failures
and d) a simulation of mobile agent gray hole system by a message passing system
with omission failures. Furthermore we present some positive and impossibility results
as a consequence of the simulations presented.

ΣΎΝΟΨΗ

Οι προσομοιώσεις στα κατανεμημένα συστήματα είναι πολύ ισχυρά εργαλεία, καθώς
μας επιτρέπουν να αποδεικνύουμε τις σχέσεις διαφορετικών συστημάτων, να συγκρί
νουμε τις δυνατότητες και την απόδοση τους και να μεταφέρουμε θετικά και αρνητικά
αποτελέσματα από ένα σύστημα στο άλλο. Σε αυτή την εργασία θα εξετάσουμε την
ισοδυναμία των κατανεμημένων συστημάτων ανταλλαγής μηνυμάτων (MP) και κινη
τών πρακτόρων (MA) μέσω μίας σχέσης προσομοίωσης. Στη συνέχεια θα ερευνηθεί
ποιες προσομοιώσεις μπορούν να αποδειχθούν ανάμεσα στο μοντέλο ανταλλαγής μηνυ
μάτων και στο μοντέλο κινητών πρακτόρων, όταν κάποιες συνιστώσες των συστημάτων
υποστούν βλάβη ή λειτουργούν υπό τις εντολές κάποιου αντιπάλου.

Θα αποδείξουμε τις ακόλουθες σχέσεις προσομοίωσης: α) συστημάτων MA με
μαύρες οπές από συστήματα MP με "διαρκώς αδρανείς επεξεργαστές", β) αλγορίθμων
MP που στέλνονται το πολύ k− 1 μηνύματα σε "διαρκώς αδρανείς επεξεργαστές" από
συστήματα MA με μαύρες οπές και τουλάχιστον k πράκτορες, γ) συστημάτων ΜΑ με
μαύρες+ οπές από συστήματα MP με χαλασμένους επεξεργαστές και δ) προσομοίωση
συστημάτωνMAμε γκρίζες οπές από συστήματαMPμε επεξεργαστές που παραλείπουν
βήματα του αλγορίθμου. Επιπλέον, θα παρουσιάσουμε αποτελέσματα και αποδείξεις
αδυναμίας επίτευξης στόχου των συστημάτων ανταλλαγής μηνυμάτων και κινητών
πρακτόρων που προκύπτουν ως απόρροια των προσομοιώσεων που αποδείχθηκαν.

ΕΥΧΑΡΙΣΤΊΕΣ

Θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου, κ. Αριστείδη Παγουρτζή,
για την σωστή καθοδήγηση του, τις συμβουλές, ιδέες και γνώσεις του και την υπομονή
του κατά την εκπόνηση της διπλωματικής μου εργασίας. Επιπλέον θα ήθελα να ευχαρι
στήσω τα μέλη της τριμελούς επιτροπής, κ. Δημήτριο Φωτάκη και κ. Ευστάθιο Ζάχο
για το χρόνο τους και για τις γνώσεις που μου μεταλαμπάδευσαν με τη διδασκαλία
τους.

Επίσης θα ήθελα να ευχαριστήσω τους συμφοιτητές και φίλους μου για τη βοήθεια
και τη στήριξη που μου παρείχαν μέσα από τις συζητήσεις μας.

Τέλος, θα ήθελα να ευχαριστήσω τους γονείς μου, για την αγάπη τους, τη στήριξη
τους, την εμπιστοσύνη τους και την αμέριστη υπομονή τους καθ' όλα τα χρόνια των
σπουδών μου.

CONTENTS

1 Distributed Computing Models 1
1.1 Introduction . 1
1.2 Message Passing Model (MP) . 2
1.3 Mobile Agent Model (MA) . 6
1.4 Simulations . 9

2 Simulations among honest MA and MP models 15
2.1 Simulation of ΜA Algorithm by a MP System 15
2.2 Simulation of synchronous ΜA Algorithm by a synchronous MP System 22
2.3 Simulation of a MP Algorithm by a MA System 22
2.4 Simulation of synchronous ΜP Algorithm by a synchronous MA System 30

3 Simulations among adversarial MA and MP models 33
3.1 Simulation of a MP Algorithm by MA when agents might crash . . . 33
3.2 Always Dead Processes inMP (ADPMP) and Black holes inMA (BH

MA) . 37
3.3 Simulations among BHMA and ADPMP model 40
3.4 Crash Failures in MP (CFMP) and Black+ holes in MA (B+HMA) . 51
3.5 Simulation of a B+HMA algorithm by a CFMP algorithm 56
3.6 Omission Failures in MP (OFMP) and Gray holes in MA (GHMA) . 62
3.7 Simulation of a GHMA algorithm by an OFMP algorithm 68
3.8 Summarizing tables of the simulations 75
3.9 Discussion . 77

4 Instantiations 79
4.1 Problem Definitions . 79
4.2 Positive Results . 83
4.3 Impossibility Results . 85
4.4 Conclusion . 90

Bibliography 91

i

CHAPTER1
DISTRIBUTED COMPUTING MODELS

1.1 Introduction
Distributed Computing Models and distributed algorithms are designed to solve prob
lems when a distributed or dislocated set of processes want to achieve a certain common
goal, under various assumptions about the communication of the processes, the mobil
ity of the processes as well as the possible failures of the communication network and
of the processes. Distributed algorithms have many applications in reallife scenarios
and the research goal is to design realistic distributed computing models that capture
various attacks.

In distributed computing, two main models are the message passing model and the
mobile agent model. In the message passing model, there are n stationary processes
that communicate to each other through some communication channels, by exchanging
messages. The message passing model can be represented by a directed or undirected
graph G = (V,E), where the vertices correspond to the processes and the edges to the
communication channels. In the mobile agent model, there are k non stationary pro
cesses, called agents, that move to different execution places, according to the provided
navigation subsystem.

Chalopin et al proved in [9] that every message passing algorithm can be simulated
in the mobile agent system, and vice versa, given that the navigation system of the mo
bile agent system and is a graphG = (V,E) where the vertices represent the execution
places and the edges the navigation links is equal with the communication system of the
message passing model. This paper established the equivalence between the message
passing model and the mobile agent model.

Simulations are useful for proving impossibility results and solving problems be
tween different models of computation. Many major results in distributed computing
were established using simulation relations. For example it was proved in [2] that any
task computable with less than |V |/2 faulty processes in the message passing model is
computable in the shared memory model and vice versa, using emulators, that translate
algorithms from the shared memory model to the message passing model. Further
more, the impossibility of the kset consensus problem, which is a generalization of the
impossibility of the consensus problem (FLP [17]) was proved by simulation, by the
"BGdistributed simulation algorithm", which was introduced in [7] and proved in [8].

1

1.2. MESSAGE PASSING MODEL (MP)

The "BG simulation algorithm" transforms any kfault tolerant solution for the kset
consensus into a k + 1 wait free solution in the shared memory model. Since the latter
is impossible, the simulation proves the impossibility of the kset consensus.

The problem of Byzantine Synchronous consensus can be solved by combining a
series of simulations from Byzantine to "identical" Byzantine, from "identical" Byzan
tine to omission failure and from omission failure to crash failure model in 4(f + 1)
rounds when n > 4f , where f is the number of Byzantine failures, as presented in [4,
pp. 251–275], [26]. Although the Byzantine Agreement problem can be solved opti
mally in t+1 rounds, when n > 3f [18], the solution using the simulations despite not
being optimal, it is much simpler.

In this thesis we will focus on simulation relations between Mobile Agent and Mes
sage Passing Algorithms. In chapter 1 we will define the Message Passing (MP) and
the Mobile Agent (MA) model and generalize the definitions of simulations of [23]
and [4]. In chapter 2 we will present and analyse the simulations of [6, 9] both in the
asynchronous and the synchronous model. In chapter 3 we will present the simulation
of [13] of a Message Passing algorithm by Mobile Agent System where agents may
crash and examine if there are simulation relations between message passing and mo
bile agent systems, when some components of the two systems, real and simulated, may
fail or behave maliciously. More specifically, we prove the following: a) a simulation
of mobile agent system with black holes by a message passing system with always dead
processes, b) a simulation of message passing algorithm that sends at most k − 1 mes
sages to always dead processes by a mobile agent system with black holes and at least k
mobile agents, c) a simulation of mobile agent black+ hole system by a message passing
system with crash failures and d) a simulation of mobile agent gray hole system by a
message passing system with omission failures. Lastly, in chapter 4 we will present
some use cases of the simulations presented in chapter 3, where positive results and
impossibility results of one system will be transformed into positive and impossibility
results for the other system.

1.2 Message Passing Model (MP)
In order to define a message passing system we will use the definition and notation

of message passing systems of [32, pp. 43–47], [9], [22, pp. 39–49], [4, pp. 9–15]. In
distributed computing, a message passing system (P, C, λ) is formed by a collection
P of processes that communicate to each other by exchanging messages through the
communication subsystem C and each process p ∈ P has an initial state λ(p) that
encodes the initial input of the process i.e. the ID of the process (an integer in case
of non anonymous network and⊥ otherwise), topology information, sense of direction
e.t.c. The communication subsystem is represented as a simple connected undirected
graph G = (V, E, δ) where:

• Each process p ∈ P is located on a vertex of V . (|P| = |V | = n)

• Edges E represent the communication channels between the processes.

• δu : N
G
(u)→ [1, deg

G
(u)] is the port labelling function, where

N
G
(u) =

{
v ∈ V | {u, v} ∈ E

}
and deg

G
(u) = |N

G
(u)|,

and labels the edges incident to every vertex u ∈ V .

Processes communicate to each other by sending and receiving messages through
the communication channels. Processes know through which port a message was re

2

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

pip1

Communication Medium
Message Passing System

C = G(V,E, δ)

pjpn

send
receivesend

receive

send
receivesend

receive

Figure 1.1: Communication of processes p1, ..., pn through a message passing commu
nication system G(V,E, δ)

ceived and can choose through which port a message will be sent. The communication
of processes through a message passing communication system is illustrated in figure
1.1, where the communication system is responsible for delivering the send events of
processes to the corresponding port/recipient of the receive event [29, pp. 3–7].

The main models of communication of processes are the LOCAL, the CONGEST
and the ASYNC [27, pp. 15–29].In the LOCAL model, communication of processes
takes place within synchronous rounds and processes wake up simultaneously and start
the computation at the same round. It aims in capturing and examining the locality of
distributed computing. For this reason it allows exchanging messages of unlimited size
and unlimited local computations, avoiding the obstacles imposed by congestion and
asynchrony.

The CONGEST model, focuses mostly in the volumn of communication and in the
time and message complexity of the protocol. In this model the maximummessage size
is O(logn) bits and the communication can be either synchronous or asynchronous.

In the ASYNC (asynchronous) model, the communication of processes is asyn
chronous and receiving a message from a neighboring process takes finite but unpre
dictable time. Therefore this model aims in capturing and examining the effects of
asynchrony.

In this thesis we will consider mostly the ASYNC and the LOCAL model.

Message Passing algorithm
Processes in the message passing systems can be modelled as I/O automata [24, 23],
state machines [27, 4] or transition systems [32]. Following the approach of [32], each

3

1.2. MESSAGE PASSING MODEL (MP)

process in the message passing system is a transition system, that can interact with the
communication subsystem. Let M denote the set of all possible messages. For each
process p ∈ P the local algorithm Dp is defined by:

• the set of possible states Q (not necessarily finite)

• the set of initial states I ⊆ Q

• the initial state λ(p) ∈ I of p ∈ P

• a relation ⊢p of events (internal events, send events or receive events)
Let statei(p), i ≥ 0 be the state of process p ∈ P . LetM be the multiset of messages
in transit. M is initially empty. A message in transit is a triple (p,m, p′) where p ∈ P
is the sender, m ∈ M is the message and p′ ∈ P is the receiver. 1 The set of possible
events of message passing algorithm D is denoted as events(D). The possible events
associated to process p ∈ P are either:

• internal events
(c, 0, ⊥) ⊢p (d, 0, ⊥)

where c is the old state of p and d is the new state of p.
⊥ is the null message and 0 indicates that no message is sent nor received.

• send events
(c, 0, ⊥) ⊢p (d, out, m)

where c is the old state of p and d is the new state of p after sending messagem
through port out.
M ←M ∪ {(p,m, p′)}, where p′ ∈ P is such that δp(p′) = out

• receive events
(c, in, m) ⊢p (d, 0, ⊥)

where c is the old state of p and d is the new state of p after receiving messagem
through port in.
M ←M \ {(p′,m, p)}, where p′ ∈ P is such that δp(p′) = in

A distributed Message Passing algorithm D for a collection of processes P =
{p1, p2, ..., pn} is the collection of local algorithms Dp, p ∈ P . A transition in a
message passing algorithm is defined by an event on a process. A configuration ofD is
defined as configi(D) = (statei,Mi), where statei(p), p ∈ P is the state of process
p andMi is the multiset of messages in transit. Initially state0(p) = λ(p) ∈ I , p ∈ P
andM0 = ∅. Therefore, the execution E of the message passing algorithmD is defined
as a sequence of configurations and events:

E = (statei, Mi, ϕi)i≥0

where for each i there exist a unique process p ∈ P such that:

• statei+1(p
′) = statei(p

′), ∀p′ ∈ P : p′ ̸= p

• statei+1(p) andMi+1 are obtained from statei andMi by the applicable event
ϕi on p.

A configuration is terminal when there are no applicable events.

1Processes do not necessarily have unique identifiers

4

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

Termination

A process is active if an internal or send event is applicable in his state and passive
otherwise. [32] A message passing algorithm D terminates:

• Implicitly: when all processes are passive and there are no messages in transit.

• Explicitly: if it terminates implicitly and at least one process detects the termi
nation of the algorithm, in the sense that all processes have computed their final
values.

Complexity Measures
In a message passing algorithm the complexity measures we are interested in analysing
are the number of messages exchanged, the amount of time for the termination (implicit
or explicit) of the algorithm and the space complexity in terms of total or local memory
requirements.
Definition 1.1. Themessage complexity [4] or communication complexity [23] of an
algorithm D on a communication system C, denoted asMSG(D, C), is the maximum
number of nonnull messages exchanged in the message passing algorithm over all
executions.
Definition 1.2. The bit complexity [23]an algorithmD on a communication systemC,
denoted asBit(D, C), is defined as the total number of bits in the messages exchanged
in the message passing algorithm over all executions.
Definition 1.3. The time complexity [4] or round complexity on a synchronous sys
tem of an algorithm D on a communication system C, denoted as Time(D, C), is the
maximum number of rounds until termination over all executions of the message pass
ing algorithm.

In asynchronous systems, defining the time complexity requires more attention,
since several delays may occur at the processes. The delay of a message is defined as
the time that elapses between a send event and the corresponding receive event.
Definition 1.4. The time complexity of an asynchronous system [4, 27], of an al
gorithm D on a communication system C, denoted as Time(D, C), is the maximum
number of time units from the start of the execution of algorithmD until the termination,
over all executions of the message passing algorithm D.

Another time complexity measure, namely the round complexity of asynchronous
systems, was defined in [11] in order to capture the notion of round complexity of
synchronous systems but in asynchronous systems. In this work, the delay value T is
assumed to be chosen by an adversary and the definition of an asynchronous round for
process pi is the number of times that pi alternated between receive and send events.
Definition 1.5. The asynchronous round complexity [11] of an algorithm D on a
communication system C, denoted as RC(D, C), is the maximum number of rounds
of all processes over all executions of D.
Definition 1.6. The total space complexity of an algorithm D on a communication
system C, denoted as Mem(D, C), is the total number of memory bits used by the
algorithm in the network in the worst case. The local space complexity or maxi
mum space complexity of an algorithm D on a communication system C, denoted as
LocMem(D, C), is the maximum number of memory bits use by the algorithm at any
processor in the network in the worst case. [27].

5

1.3. MOBILE AGENT MODEL (MA)

1.3 Mobile Agent Model (MA)
In order to define a mobile agent system we will use the definition and notation of

message passing systems of [9]. In the mobile agent model there is a setA of k identical
mobile agents, which are non stationary computational entities with internal memory,
called notebook. Mobile agents are located on execution places P and can move from
place to place through the navigation subsystem S and execute the places that they visit
and read and write data on the local memory of the execution places. Mobile agents
can be:

• synchronous, where traversing one edge of the navigation subsystem and exe
cuting a place takes places within a round.

• asynchronous, where each of their actions is executed in finite but unpredictable
time.

The navigation subsystem S is a simple undirected connected labelled graph G =
(V, E, δ), where agents are located on the vertices V and can move through the links
E.

• The vertices V represent the execution places P, and are equipped with a white
board, which is local memory that agents can access.

• The edges incident to every vertex u ∈ V are distinctly labelled according to the
port labelling function δu : N

G
(u)→ [1, deg

G
(u)],

where N
G
(u) =

{
v ∈ V | {u, v} ∈ E

}
and deg

G
(u) = |N

G
(u)|

When an agent migrates from a place knows through which port it migrates.

The function λ describes the initial states. More precisely, λ(α), α ∈ A is the initial
state of mobile agent α and λ(p), p ∈ P is the initial state of execution place p, which
encodes the initial input of the process i.e. the ID of the process or the execution place
(an integer in case of nonanonymous network and⊥ otherwise), topology information,
sense of direction e.t.c. Agents are initially located on the vertices of G according to
the function π0 : A→ V , and for each agent α ∈ A the initial location π0(α) is called
homebase of agent α. An agent α ∈ A located at an execution place pi ∈ P can copy
whiteboardpi to notebookα, perform (local) computations, write on whiteboardpi ,
depart from pi to pk ∈ NG(pi) and arrive to pk. The navigation of mobile agents
through the navigation system is illustrated in figure 1.2, where agents can depart from
an execution place pi to migrate to execution place pk and arrive to execution place pi
from execution place pk using the navigation system S = G(V,E, δ).

Therefore the mobile agent system is described as

(A,P,S, π0, λ)

.

Mobile Agent Algorithm

Following the definition of mobile algorithm of [9] each agent in the mobile agent sys
tem is a transition system, that can interact with the execution places and the navigation
subsystem. For each mobile agent α ∈ A the local algorithm Aα is defined by:

• the set of possible states QP of the execution places(not necessarily finite).

6

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

pip1

Navigation System
S = G(V,E, δ)

pjpn

agent α departs
from pi to

pk ∈ NG(pi)

agent α arrives
to pi from

pk ∈ NG(pi)

α departs

α arrives

α departs
α arrivesα departs

α arrives

Figure 1.2: Navigation of mobile agent α ∈ A over the execution places p1, ..., pn
through a mobile agent navigation system G(V,E, δ)

• the set of possible states QA of the agents (not necessarily finite).

• the set IA ⊆ QA of initial states λ(α) ∈ IA, of agents α ∈ A

• the set IP ⊆ QP initial states λ(p) ∈ IP of execution places p ∈ P

• a relation ⊢αp of events.

Let stateA(α) be the state of agent α ∈ A and stateA(p) be the state of execution
place p ∈ P. Let M be the set of mobiles agents in transit. M is initially empty. An
agent in transit is a triple (p, α, p′) where p ∈ P is the place of departure and p′ ∈ P is
the place of arrival. 2 Let π : A → P be a mapping of agents that are not in transit.
The set of possible events is denoted as events(A). The possible events associated to
agent α ∈ A are:

• α departs from p
(s, q, 0) ⊢αp (s′, q′, out)

where s is the old state of α, s′ is the new state of α, q is the old state of p and q′
is the new state of p, after the departure of α through port out.
M←M ∪ {(p, α, p′)}, where p′ ∈ P is such that δp(p′) = out
π(α)←⊥

• α arrives at p
(s, q, in) ⊢αp (s′, q′, 0)

2Execution places do not necessarily have unique identifiers

7

1.3. MOBILE AGENT MODEL (MA)

where s is the old state of α, s′ is the new state of α, q is the old state of p and q′
is the new state of p, after the arrival of α through port in.
M←M \ {(p′, α, p)}, where p′ ∈ P is such that δp(p′) = in
π(α)← p

• α remains at p
(s, q, 0) ⊢αp (s′, q′, 0)

where s is the old state of α, s′ is the new state of α, q is the old state of p and q′
is the new state of p.

A Mobile agent algorithm A for a collection of mobile agents A is the collection of
local algorithms Aα, α ∈ P. A configuration of A is defined as configi(A) =
(stateAi ,Mi, πi), where stateAi (α), α ∈ A is the state of agent α, stateAi (p), p ∈ P is
the state of execution place p,Mi is the multiset of agents in transit and πi is the posi
tion of agents that are not in transit. Initially stateA0 (α) = λ(α), α ∈ A, stateA0 (p) =
λ(p), p ∈ P andM0 = ∅. Therefore, the mobile agent algorithm is defined as

A = (⊢αp)α∈A, p∈P

and the execution E of the mobile agent algorithm A is defined as the sequence of
cnfigurations:

E = (stateAi , Mi, πi)i≥0

where for each i there exist a unique agent α ∈ A and a unique place p ∈ P such that:

• stateAi+1(α
′) = stateAi (α

′), ∀α′ ∈ A : α′ ̸= α

• stateAi+1(p
′) = stateAi (p

′), ∀p′ ∈ P : p′ ̸= p

• stateAi+1(p) andMi+1 are obtained from stateAi andMi by an event on p.

A configuration is terminal when there are no applicable events.

Termination: A mobile agent is passive if there are no applicable events to his state.
[9]. A terminal configuration of mobile agent algorithmA is a configuration where all
agents are passive. A mobile agent algorithm A terminates:

• Implicitly: if it reaches a terminal configuration, but no agent is aware of the
termination of A.

• Explicitly: if it reaches a terminal configuration and at least one agent detects
the termination of A.

Complexity Measures
The complexity of a mobile agent algorithm can be measured by the number of mobile
agents used, by the time until the termination(implicit or explicit) of the algorithm, by
the number of moves or steps taken by the mobile agents and the memory requirements
of the notebook of the mobile agents and the whiteboard of the execution places.

Definition 1.7. The agent complexity of a mobile agent algorithm A on a navigation
system S, denoted as Agents(A,S), is the minimum number k of mobile agents of
the mobile agent system such that algorithm A correctly computes the outputs of the
problem on S with k mobile agents over all executions of A. [25]

8

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

Definition 1.8. The time complexity of a mobile agent algorithm A on a navigation
system S, denoted as Time(A,S), is the maximum number of time units until the termi
nation of the algorithm, over all executions of algorithmA [15, 12], assuming that each
move(traversal of a link) of an agent takes one time unit. In the case of asynchronous
mobile agent this is referred as ideal time [25].

Definition 1.9. Themove complexity of an agent α of a mobile agent algorithmA on
a navigation system S, denoted as Move(α,A,S), is the maximum number or moves
(traversals of links) of agent α ∈ A, until the termination of the algorithm, over all
executions of algorithmA. The total move complexity of algorithmA on a navigation
system S is TotalMoves(A,S) =

∑
α∈A Move(α,A,S)

We note that for the time complexity and the move complexity of a mobile agent
algorithm A and a navigation system S of a mobile agent system (A,P,S, π0, λ) the
following relation holds: Time(A,S) = maxα∈A Move(α,A,S)

The space complexity is measured in terms of the whiteboardmemory and the note
book memory, and we are interesting in analysing the space complexity both locally,
on each execution place or agent and globally for the entire system.

Definition 1.10. The total space complexity of execution places of a mobile agent
algorithmA on a navigation system S, denoted asMemWB(A,S), is the total number
of memory bits used by execution places(whiteboards), during the execution of the
algorithm A in the navigation system S in the worst case.

Definition 1.11. The local space complexity of an execution place, of a mobile agent
algorithm A on a navigation system S, denoted as LocMemWB(A,S), is the maxi
mum number of memory bits used by algorithm A at any execution place(whiteboard)
of the navigation system in the worst case.

Definition 1.12. The total space complexity of a mobile agent of a mobile agent
algorithm A on a navigation system S, denoted asMemAg(A,S), is the total number
of memory buts used by mobile agents(notebooks) during the execution of algorithm
A in the navigation system S in the worst case.

Definition 1.13. The local space complexity of a mobile agent of a mobile agent al
gorithm A on a navigation system S, denoted as LocMemAg(A,S), is the maximum
number of memory bits used by any mobile agent(notebook) on the execution of algo
rithm A on the navigation system in the worst case.

1.4 Simulations
A simulation between two distributed systems A1 and A2 is a relation between them,
that indicates that they have the same input/output behavior, under the same conditions.
An algorithmA1 of the communication system C1 simulates algorithmA2 of the com
munication system C2, if for every execution E1 of A1 there exist an execution E2 of
A2 that corresponds to E2.

In [23, pp. 224–228] a simulation relation is defined between two I/O automata
that have the same external interface. A similar definition of simulations is given in
[4, pp. 157–166], where the simulation relation is defined between two communica
tion systems. We will extend the definitions of simulation of [23] and [4] to define
simulations between two distributed systems.

9

1.4. SIMULATIONS

Definition 1.14. (extension of the definition of simulation of [23])
Let A1, A2 be two distributed systems, with corresponding communication systems
C1, C2. Suppose f is a binary relation over config(A1) and config(A2):

f ⊆ config(A1)× config(A2)

and h is an injective function h : events(A2)→ events(A1). Then f is a simulation
relation from A1 to A2 if the following hold:

1. If s is an initial configuration of A1, then the intersection of f(s) with the set of
initial configurations of A2 is non empty.

2. If s is a reachable configuration of A1, u ∈ f(s) is a reachable configuration of
A2 and π is an applicable event on s, that changes the configuration ofA1 into s′,
then there exists an execution segment E of A2 starting with u and ending with
u′ ∈ f(s′) such that

h(trace(E)) = trace(π)

where trace(E) is the subsequence of E consisting of all the external events.

Figure 1.3: Simulation relation from system A1 to A2.
Any applicable event on a state ofA1 has a corresponding state and sequence of events
in A2, for which the resulting state of A2 corresponds to the resulting state of A1

The definition of simulation of [4] is based on the Layered model. The layering
technique is often used to control the complexity of large scale systems. In the layered
model we assume a stack of processes, one on top of the other, where each process in
the stack interacts only with the layer above and below. The top process communicates
with the external environment and the bottom with the communication system. A com
munication system C has a set of inputs, denoted as in(C), a set of outputs, denoted
as out(P) and a set of allowable sequences seq(C) of inputs and outputs. The sets of
inputs and outputs form the interface of C. For an execution E we denote as top(E)
and bot(E) the restriction of the sequence of events of execution E to the events of the
top and respectively bottom interface.

10

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

Admissibility of an execution of a layered communication system (C2, C1) is a
property that captures the proper behavior of the system. Informally, an execution of
a layered system (C2, C1) is admissible if it does not halt while there is an applicable
event, if the inputs of satisfy the input constraints of C2 and the communication system
is correct, according to the specifications of C1. More formally, an execution α is
(C2, C1)admissible, if it is:

• fair, that is every event that is continuously enabled eventually occurs.

• user compliant for C2, that is for every prefix α′ϕ of execution α, where ϕ is
an input event from the environment to C2, if α′ is a prefix of some element of
seq(C2) then so is α′ϕ

• correct for C1,that is if bot(α) is an element of seq(C1).

Example 1.15. The interface to an asynchronousmessage passing system has two types
of events:

• send event: (c, 0,⊥) ⊥p (d, out,m)
which is an input event of the message passing system on behalf of processor p,
that sends messagem through the communication port out.

• receive event: (c, in,m) ⊥p (d, 0,⊥)
which is an output event of the message passing system on behalf of processor p,
where messagem is received through communication port in.

The interface of an asynchronous message passing system is depicted in figure 1.4

Message Passing system

Receive event
process p receivesm
through port in

(c, in,m) ⊢p (d, 0,⊥)

Send event
process p sendsm
through port out

(c, 0,⊥) ⊢p (d, out,m)

Figure 1.4: The interface of the asynchronous message passing system

Example 1.16. The interface to an asynchronous mobile agent system has two types
of events:

• depart event: (s, q, 0) ⊥α
p (s′, q′, out)

which is an input event of the mobile agent system on behalf of agent α ∈ A
located at execution place p, that departs from p through the port out.

• arrive event: (s, q, in) ⊥p (s′, q′, 0)
which is an output event of the mobile agent system on behalf of agent α ∈ A
located at execution place p, that arrives to p through the port in.

The interface of an asynchronous mobile agent system is depicted in figure 1.5

11

1.4. SIMULATIONS

Mobile Agent system

Arrive event
agent α arrives at p
through port in

(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Figure 1.5: The interface of the asynchronous mobile agent system

Definition 1.17. (extension of the definition of simulation of [4].)
Communication system C1 of distributed system A1 simulates communication system
C2 of distributed system A2 if there exists a collection of processes, called Sim that
satisfies the following

1. The top interface of Sim is the interface of C2.

2. The bottom interface of Sim is the interface of C1.

3. For every (C2, C1)admissible execution E of Sim, there exists a sequence σ of
allowable inputs and outputs of C2 such that σ = top(E)

Figure 1.6 illustrates the definition of simulation 1.17

C1Sim

C2

C1 outputC1 input C1 outputC1 input

C2 outputC2 input

Figure 1.6: Simulation of system C2 on top of C1.
The inputs of the Simulation processes are transformed to inputs of system C1 and the
outputs of system C1 are transformed to outputs of system C2. Running the simulation
on top of C1 produces the same appearance as does in C2

We note that definitions 1.14 and 1.17 are equivalent.

Proposition 1.18. The definition of simulation of 1.14 and 1.17 are equivalent

12

CHAPTER 1. DISTRIBUTED COMPUTING MODELS

Proof. (⇒) Assume that f is a simulation relation, according to definition 1.14, from
A1 to A2 and h is an injective function h : events(A2) → events(A1). Let Sim be
a set of processors that has as top interface A2, bottom interface A1 and maps inputs,
outputs and states of A2 to A1 according to f and h.

Let E be a (C2, C1)admissible execution ofSim. Let E be of the form (statei, eventi)i≥0.
Let E|A1 be the restriction of E to states and events of system A1 and is of the form
E|A1 = (state′i, event

′
i)i≥0.

By definition 1.14 ∀i u ∈ f(state′i), state′i is reachable configuration ofA1, event′i
is an applicable event on state′i that changes the configuration to state′i+1. Hence by
definition 1.14 there exists an execution segment αi of A2 starting with u and ending
with u′ ∈ f(state′i+1) such that: h(trace(αi)) = trace(π).

Let σ = α0 α1 α2 We note that σ is an execution ofA2 for which σ = top(E).
This is illustrated in figure 1.4 Therefore C1 simulates C2 according to definition 1.17.

C2Sim

C1

αjαi αjαi

h(trace(αj)) = trace(πj)h(trace(αi)) = trace(πi)

Figure 1.7: Sketch of the proof of the implication of definition 1.17 by 1.14

(⇐) Assume that C1 simulates C2 according to definition 1.17 for a collection of
processes Sim. Suppose that f is a binary relation that maps f : config(A1) ×
config(A2) and h is injective h : events(A2) → events(A1), and f and h are
defined according to the transformations that are performed at the Sim processes and
f is a simulation relation from A1 to A2 according to definition 1.14.

1. If s ∈ IA1
⇒ f(s) ∪ IA2

̸= ∅, where IA1
, IA2

are the initial states of A1, A2,
since the bottom interface of Sim is C2 and the top interface is C1.

2. Let s be a reachable configuration of A1, u ∈ f(s) a reachable configuration of
A2 and π applicable event on s such that (s, π) ⊢ s′.
⇒ there exists a (C2, C1) admissible execution E of Sim where s ∈ E and π
applicable event on s such that (s, π) ⊢ s′.
⇒ there exist sequence σ of allowable inputs and outputs of C2 such that σ =
top(E). Hence there exists subsequence σ′ of σ starting with u ∈ f(s) ending
with u′ ∈ f(s′) such that h(trace(σ′)) = trace(π)

13

1.4. SIMULATIONS

14

CHAPTER2
SIMULATIONS AMONG HONEST MA AND MP

MODELS

2.1 Simulation of ΜA Algorithm by a MP System
It has been proved in [9] and [6] that everymobile agent algorithm can be simulated in

the message passing model, by creating for each execution of a mobile agent algorithm
A an equivalent execution in a message passing system.

Let (A,P, S, π0, λ) a mobile agent system, where S = (V,E, δ) is the navigation
subsystem, and A = (⊢αp)α∈A, p∈P.

The mobile agent algorithm A can be simulated in the message passing system
(P, C, λ′) = (V, E, δ, λ′) where:

• for each execution place P of the mobile agent system there is a process p ∈ P
in the message passing system. Therefore there is a 11 correspondence between
execution places and processes and |P | = |P|. We will use the letter p to refer to
both the process p ∈ P in the message passing setting and for its corresponding
execution place p ∈ P in the mobile agent setting.

• the communication subsystem C is equal to the navigation subsystem S.
C = S = (V,E, δ)

• the labelling of the processes, which encodes the initial state is:

λ′(v) =

{
(λ(v), 1, λ(α)), if v is the homebase of agent α
(λ(v), 0, ♯), otherwise

, v ∈ V

where ♯ is a null state.

Let D be the message passing algorithm that simulates the mobile agent algorithm A.
For each process p ∈ P in the local simulation algorithm Dp we have:

• The set of possible states Q of a process is defined by the set of possible states
QP of the execution places and by the state of a mobile agent if the mobile agent
is present at the execution place.

Q = QP × {0, 1} × QA ∪ {♯}

15

2.1. SIMULATION OF ΜA ALGORITHM BY A MP SYSTEM

where {0, 1} represents the presence of a mobile agent at an execution place and
♯ is a null state and is used when there is no agent present at an execution place.

• The set of initial states I ⊆ Q of a process is similarly defined as:

I = IP × {0, 1} × IA ∪ {♯}

• The initial state λ′(p) ∈ I of p ∈ P is defined as:

λ′(p) =

{
(λ(p), 1, λ(α)), if p is the homebase of agent α
(λ(p), 0, ♯), otherwise

, p ∈ P

where λ(p) is the initial state of the corresponding execution place p ∈ P, 1
indicates that p is the homebase of some agent α ∈ A and λ(α) is the is the
initial state of agent α ∈ A and 0 indicates that p is not homebase of any agent
and ♯ is the null state.

• state(p) ∈ Q, p ∈ P is defined by the state of the corresponding execution place
and the state of mobile agent α ∈ A if α is located at the execution place p ∈ P

state(p) =

{
(stateA(p), 1, stateA(α)), if α is located at p
(stateA(p), 0, ♯), otherwise

, p ∈ P

• The presence of a mobile agent α at an execution place is encoded by a token
t(α) and the state of the corresponding mobile agent is encoded by the value of
the token, t(α) ∈ QA

• The set of possible messagesM = QA equals the set possible states of the agents.

• The mapping h : events(A)→ events(D) of possible events of the relation ⊢αp
in the relation ⊢p of the message passing algorithm D is:

A departure event (s, q, 0) ⊢αp (s′, q′, out), p ∈ P, α ∈ A is simulated in
a send event (c, 0, ⊥) ⊢p (d, out, m) for the corresponding process p ∈ P
where:

– the old state c of p is: c = (q, 1, s)

– the new state d of p is: d = (q′, 0, ♯)

– the message m = t(α) = s′ is sent through the port out and indicates that
token t(α) is sent via port out.
M ←M ∪ {(p,m, p′)}, where p′ ∈ P is such that δp(p′) = out

An arrival event (s, q, in) ⊢αp (s′, q′, 0), p ∈ P, α ∈ A is simulated in a
receive event (c, in, m) ⊢p (d, 0, ⊥) for the corresponding process p ∈ P
where:

– the old state c of p is: c = (q, 0, ♯)

– the new state d of p is: d = (q′, 1, s′)

– the message m = t(α) = s is received through the port in and indicates
that token t(α) is received via port in.
port in.
M ←M \ {(p′,m, p)}, where p′ ∈ P is such that δp(p′) = in

16

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

An event where agent α ∈ A remains at p ∈ P (s, q, in) ⊢αp (s′, q′, 0), is
simulated in an internal event (c, 0, ⊥) ⊢p (d, 0, ⊥) for the corresponding
process p ∈ P where:

– the old state c of p is: c = (q, 1, s)

– the new state d of p is: d = (q′, 1, s′)

Let Dp be the algorithm induced by this construction on the process p ∈ P and D =
(Dp)p∈P . The execution E ′ of the simulation algorithm D is the sequence:

E ′ = (statei, Mi)i≥0

where for each i exists a unique process p such that:

• statei+1(p
′) = statei(p

′), ∀p′ ∈ P : p′ ̸= p

• statei+1(p) andMi+1 are obtained from statei andMi by and event on p.

Proposition 2.1. [9] Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented
on the mobile agent system (A, P, S, π0, λ). Let D = (Dp)p∈P be the message pass
ing algorithm defined above on the message passing system (P, C, λ′).
Then algorithm D simulates algorithm A in the message passing system (P,C, λ′)

Proof. Let ED be an execution of algorithm Dp, p ∈ P in the message passing system
(P, C, λ′), f the simulation relation and h the events' mapping described above. By
the construction of algorithm Dp from algorithm A of the system (A, P, S, π0, λ) we
note that:

1. f(λ′) ∩ IA ̸= ∅

2. If s = (statei,Mi), for some i ∈ N is a reachable configuration of D, u ∈
f(s), u = (stateAj ,Mj , πj),∈ N is a reachable configuration of A and π is an
applicable event on s that changes the state from s to s′ = (statei+1,Mi+1) then
by the mapping of events described above we note that there exists an event π′

i

of the mobile agent system such that h(π′) = π.
Therefore, for any applicable event π we have that there exists an execution seg
ment EA of A such that: h(trace(EA)) = π

Hence, by definition 1.14 the message passing system (P, C, λ′) simulates the mobile
agent system (A, P, S, π0, λ)

Termination
Lemma 2.2. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on the
mobile agent system (A, P, S, π0, λ). Let D = (Dp)p∈P be the message passing
algorithm defined above on the message passing system (P, C, λ′). If algorithmA has
the termination property then algorithm D has the termination property.

Proof. AlgorithmD simulates algorithmA, therefore for every execution ED ofD there
exists an equivalent execution EA of A.

If algorithm A terminates implicitly then all agents eventually become passive in
EA and ∀α ∈ A located at p ∈ P there is no applicable event of the relation ⊢αp . By

17

2.1. SIMULATION OF ΜA ALGORITHM BY A MP SYSTEM

the mapping of events in the simulation message passing algorithm D it is implied that
∀p ∈ P there is no applicable event of the relation ⊢p on the execution ED. Hence D
terminate implicitly.

If algorithm A terminates explicitly then at least one agent α ∈ A at p ∈ P detects
termination in E ; i.e. that all execution places have their final values. By the construc
tion of D, process p ∈ P with token t(α) detects termination ; i.e. that all processes
have their final values. Hence D terminates explicitly.

Remarks: In the simulation algorithm D described above a process p ∈ P has an
internal or send or receive event if and only if there is an agent on the corresponding
execution place p ∈ P. Hence during the execution of D there are at most k processes
that execute events simultaneously, where k = |A|.

By the construction of the simulation algorithm D there is a correspondence be
tween the whiteboardp, p ∈ P and the local memory of the corresponding process
p ∈ P and between notebookα, of mobile agent α ∈ A and the messages exchanged
in the message passing algorithm D.

Complexity
Message complexity

Proposition 2.3. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on
the mobile agent system (A, P, S, π0, λ). Let D = (Dp)p∈P be the message passing
algorithm defined above on the message passing system (P, C, λ′), where C = S.
Then the total number of messages exchanged(message complexity) during the exe
cution of D is:

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

whereMove(α,A,S) is the move complexity of agent α ∈ A in the execution of A.
The total size of messages exchanged is

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

where LocMemAg(α,A,S) is the local space complexity of agent α i.e. the size of
notebook of α.

Proof. If in the simulation algorithm D there is a send event for process p ∈ P and
token t(α), α ∈ A then in algorithm A agent α ∈ A departs from the execution
place p ∈ P. Therefore, the number of times the token t(α) will be sent through the
communication system is Move(α,A,S) and hence the message complexity of S is
MSG(D, C) =

∑
α∈A Move(α,A,S). The size of each message t(α) inD equals the

size of the notebookα of the corresponding agent α or state(α), whose space com
plexity is LocMemAg(α,A,S). Therefore the bit complexity of the algorithm is:
Bit(D, C) =

∑
α∈A Move(α,A,S) · LocMemAg(α,A,S).

Time Complexity

Proposition 2.4. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on
the mobile agent system (A, P, S, π0, λ). Let D = (Dp)p∈P be the message passing

18

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

algorithm defined above on the message passing system (P, C, λ′), where C = S.
Then the time complexity of D is:

Time(D, C) = Time(A,S)

where Time(A,S) is the time complexity of mobile agent algorithm A on the naviga
tion system S.

Proof. For every event of an execution E of D that involves token t(α), α ∈ A, in
the corresponding equivalent execution E ′ ofA there is exactly one event that involves
agent α, since each path traversal in A and each message delivery in D takes one unit
of time. Therefore, the time complexity of A equals the time complexity of D.

Space Complexity

Proposition 2.5. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on
the mobile agent system (A, P, S, π0, λ). Let D = (Dp)p∈P be the message passing
algorithm defined above on the message passing system (P, C, λ′), where C = S.
Then the local space complexity of D is:

LocMem(D, C) = max
p∈P

{
LocMemWB(p,A,S)

}
+max

α∈A

{
LocMemAg(α,A,S)

}
where LocMemWB(p,A,S) is the local space complexity of execution place p ∈ P
and LocMemAg(α,A,S) is the local space complexity of agent α ∈ A of algorithm
A on the navigation system S.
The total space complexity of algorithm D is:

Mem(D, C) =
∑
p∈P

LocMemWB(p,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Proof. In the simulation algorithmD each process p ∈ P stores and processes the con
tents of whiteboardp and notebookα, ∀α ∈ A. Therefore the local memory require
ments for each process p ∈ P is: LocMem(D, C) =

(
maxp∈P{LocMemWB(p,A,S)}+

maxα∈A{LocMemAg(α,A,S)}
)
whereLocMemWB(p,A,S) is the space complex

ity of the whiteboardp execution place p and LocMemAg(α,A,S) is the space com
plexity of notebookα of agent α ∈ A of algorithm A.

Table 2.1 summarises the simulation of a mobile agent algorithm A by message
passing algorithm D, table 2.2 summarises the complexity of the simulation and figure
2.1 illustrates the simulation relation.

19

2.1. SIMULATION OF ΜA ALGORITHM BY A MP SYSTEM

Table 2.1: Simulation of Mobile Agent AlgorithmA by Message Passing AlgorithmD

Mobile Agent Model Message Passing Model

System: (A, P, S, π0, λ) System: (P, C, λ′)

S = (V, E, δ) navigation subsystem C = (V, E, δ) communication subsystem
P or V : execution places, P orV : asynchronous processes

equipped with a whiteboard
E : migration ports E : communication channels
δu : N

G
(u)→ [1, degG(u)] : u ∈ V δu : N

G
(u)→ [1, deg(u)] : u ∈ V

port labelling function port labelling function
λ : initial states of places and agents λ′ : initial states of processes

λ′(p) =

{
(λ(p), 1, λ(α)), π0(p) = α

(λ(p), 0, ♯), otherwise
, p ∈ P

A: set of k asynchronous agents. k tokens
π0 : A→ V agents' initial placement π0 : initial placement of tokens
π : A→ V location of agents. π : location of tokens.

Mobile Agent algorithm A: Simulation message Passing algorithm D:

QA : set of possible states of α ∈ A M = QA: set of possible messages
QP: set of possible states of p ∈ P Q = QP × {0, 1} ×QA ∪ {♯}:

set of possible states of p ∈ P
IA ⊆ QA: set of initial states of α ∈ A
IP ⊆ QP: set of initial states of p ∈ P I = IP × {0, 1} × IA ∪ {♯}:

set of initial states of p ∈ P

stateA(p), p ∈ P state(p) =

{
(stateA(p), 1, stateA(α)), π(p) = α

(stateA(p), 0, ♯), otherwise
stateA(α), α ∈ A , p ∈ P

M: multiset of agents in transit M = M: multiset of messages in transit

Events of the relation ⊢αp of Aα Events of the relation ⊢p of D, p ∈ P

departure event: send event:
(s, q, 0) ⊢αp (s′, q′, out)

(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 0, ♯), out, s′

)
arrival event: receive event:

(s, q, in) ⊢αp (s′, q′, 0)
(
(q, 0, ♯), in, s

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
α remains at p: internal event:

(s, q, 0) ⊢αp (s′, q′, 0)
(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 1, s′), 0, ⊥

)

20

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Table 2.2: Complexity of the Simulation of the Mobile Agent AlgorithmA byMessage
Passing Algorithm D

Message
Complexity

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

Bit
Complexity

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

Time
Complexity

Time(D, C) = Time
(
A,S

)

Local Space
Complexity

LocMem(D, C) = max
p∈P
{LocMemWB(α,A,S)}+max

α∈A
{LocMemAg(α,A,S)}

Total Space
Complexity

Mem(D, C) =
∑
p∈P

LocMemWB(α,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Sim
Mobile Agent system

Message Passing system

Arrive event
agent α arrives at p
through port in

(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Receive event
process p receivesm = s

through port in
((q, 0, ♯), in, s) ⊢p ((q′, 1, s′), 0,⊥)

Send event
process p sendsm = s′

through port out
((q, 1, s), 0,⊥) ⊢p ((q′, 0, ♯), out, s′)

Figure 2.1: Simulation of Mobile agent algorithm by a Message Passing system, where
the inputs of mobile agent system (depart events) are transformed into inputs of the
message passing system (send events) and the outputs of the message passing system
(receive events) are transformed into outputs of the mobile agent system (arrive events).
Running the simulation algorithm on top of the message passing system produces the
same appearance as does running the algorithm on top of the mobile agent system.

21

2.2. SIMULATION OF SYNCHRONOUS ΜA ALGORITHM BY A SYNCHRONOUS
MP SYSTEM

2.2 Simulation of synchronousΜAAlgorithm by a syn
chronous MP System

The simulation presented in section 2.1 can be modified appropriately in order to sim
ulate synchronous mobile agent algorithms by synchronous message passing systems.
Since in a synchronous mobile agent algorithm A in one round a mobile agent can ex
ecute a place and traverse a link, in the simulation algorithm D each token is received,
processed and sent in one round by a process. Therefore, for every execution ED of the
simulation algorithmD in the message passing system (P,C, λ′) there exists an execu
tion EA of mobile agent algorithmA in the mobile agent system (A,P,S, π0, λ), where
each state of each round of ED corresponds to a state in EA in the same round. Thus,
the round complexity(time) of the simulation algorithm D is the same as the round
complexity(time) of algorithmA and the message complexity and space complexity of
D is as presented in section 2.1

We note that the simulations that will be presented in chapter ?? of mobile agent al
gorithms with faults by message passing systems with faults, can be similarly modified
and applied to the synchronous systems as well.

2.3 Simulation of a MP Algorithm by a MA System
In this section the mobile agent simulation algorithm of the message passing algo

rithm will not be described by an enumeration of the states and events, as in section
2.1, but by pseudo code [32]. The idea on simulating a message passing algorithm
through a mobile agent algorithm is to make each agent responsible for executing the
computational steps of a group of processes of the message passing algorithm.

Chalopin et al. proposed in [9] a procedure to simulate a message passing algorithm
D on the system (P,C, λ) = (V,E, δ, λ) to a mobile agent algorithmA, on the system
(A,P,S, π0, λ

′), where S = (V,E, δ), there is one execution place p ∈ P on each vertex
of V , A is a set of k ≥ 1 asynchronous anonymous mobile agents, π0 is any function
A → V and λ′(p) = λ(p), p ∈ V and λ′(α) = ♯, ∀α ∈ A. In this procedure, even
though agents and execution places might be anonymous, each agent α ∈ A is able to
compute a tree Tα, subgraph of G, by taking advantage of the edge labelling function
δu. We call Tα the territory of agent α. Then each mobile agent α ∈ A is responsible
for simulating the execution of the local algorithm Dp for each of the corresponding
process p ∈ Tα in his territory.

Partial Graph Traversal for the Construction of Tα

For the construction of Tα, each agent α starts from its homebase and begins a par
tial graph traversal. Since the system is anonymous, each agent stores in the variable
(queue) ePath the labels of the links traversed and when the agent wants to backtrack,
he dequeues a link from ePath and traverses that link. For each execution place u, on
u's whiteboard there is a variable visited, which takes the value "yes", if at least one
agent has visited u, otherwise takes the value "no". Initially, visitedu ← "no", ∀u ∈
V . Similarly, for each execution place u, for each link δu(v), v ∈ NG(u) there is a vari
able traversed, where initially traversedu(δu(v)) ← NULL, ∀u ∈ G ∀v ∈ NG(u),
which takes the value traversedu(δu(v)) ← "T " if it has been explored and belongs
to a spanning tree of an agent, otherwise if it is explored but does not belong to any tree
traversedu(δu(v))← "NT "

22

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Each time agent α located at u ∈ V (G) traverses an unexplored link {u, v} ∈ E, it
marks it as explored, then visits vertex v ∈ V (G) and adds δv(u) in ePath. If v is unvis
ited, α sets visitedv ← "yes", traversedu(δu(v))← "T " and traversedv(δv(u))←
"T ", symbolizing that {u, v} ∈ Tα. Then α chooses an unexplored edge e = {v, w}
such that traversedv(δv(w)) = NULL to continue the graph traversal. If vertex u
is visited, then agent α backtracks to v, by dequeuing the link δu(v) from ePath, and
sets traversedu(δu(v))← "NT " and traversedv(δv(u))← "NT " , symbolizing that
{u, v} ̸∈ Tα.

When there are nomore unexplored links at a current nodeu, (traversedu(δu(v)) ̸=
NULL, ∀v ∈ NG(u)), agent α backtracks, by dequeuing a link from ePath. When,
agent α is located at v ∈ V (G) and ePath is empty, α knows that he is currently at his
homebase. If α is at homebase and there are no more unexplored edges, the partial tree
computation has ended, and by following the links labelled as T , agent α is able to tra
verse Tα and visit the vertices that correspond to processes for which he is responsible
for simulating their actions in the message passing system.

Remarks: After agents finish the partial graph traversal:

• Every vertex of the graph G has been marked as visited by exactly one agent.
Therefore, for every agent α, β ∈ A it holds that Tα ∩ Tβ = ∅

• Assuming that the graph of the navigation subsystem is connected, every vertex
will be marked as visited by some agent.

• Consequently, every process in message passing model is assigned to exactly one
agent in the mobile agent system, and each of the agents is responsible to execute
the assigned processes computations.

• If u1 ∈ Tα, u2 ∈ Tβ , α, β ∈ A then every (u1, u2)path contains at lest one
edge e = {w, z} such that traversedw(δw(z)) = "NT ".

Message encoding
In the message passing algorithm, the events that can be performed by processes are
to send a message via port j, receive a message via port j and internal events. The
whiteboard of each vertex whiteboardu, u ∈ V , has a variable in − bufu , which is
a FIFO queue containing all the received messages that haven't been read yet, and a
variable TBDu, which is a FIFO queue containing all the messages to be delivered to
neighbours of u.

Send a message m via port j
Let {u, v} ∈ G(E) be a link, such that δu(v) = j, and suppose that in the local mes
sage passing algorithmDu process u sends messagem via port j. Suppose that u ∈ Tα,
for some agent α ∈ A. Then the action send messagem via link j in the message pass
ing system will be simulated in the mobile agent system as agent α dequeues message
< j, m > from TBDu, traverses link j and writes in the in− bufv variable the tuple
< δv(u), m > and backtracks through link δv(u). Agent α is able to write in the inbuf
variable of vertex v, although vertex v doesn't necessarily belong to Tα.

Receive a message m from port j
Let u ∈ G(V) and agent α ∈ A located at u. The action receive a message m from

23

2.3. SIMULATION OF A MP ALGORITHM BY A MA SYSTEM

port j of the message passing algorithm is simulated in the mobile agent algorithm as
dequeuing < m, j > from the inbuf variable, and then continuing with the corre
sponding computations of algorithm Du on process u.

Internal events:
For each internal event in the state of the process agents apply this events to the state
of the corresponding execution place.

Procedure for simulating a message passing algorithm on a mobile
agent setting

Algorithm 1 Simulation of a MP algorithm on a MA system [9]

Step 1: Each agent α constructs a tree Tα, which is result of partial graph traversal
described before. This leads to a spanning forest of k trees, where each vertex v ∈
V (G) belongs to exactly one Tα, for some agent α.

Step 2: Agent α executes the message passing algotihm Dv on the vertices v ∈ Tα.
Each time Tα is traversed by agent α, on every vertex v ∈ Tα d ≥ 1 computational
steps of Dv are executed.

Termination Detection

Although algorithm 1 of the mobile agent system (A,P,S, π0, λ
′) simulates algorithm

D of the message passing system(P,C, λ) = (V,E, δ, λ), it does not inherit the termi
nation property of algorithmD. Therefore algorithm 1 should be modified so that if the
simulated algorithm has the termination property, implicit or explicit, then the simula
tion algorithm has also the termination property, implicit or explicit respectively.

After each agent α ∈ A traverses Tα and executes all computational steps of Dv

at v ∈ Tα, α returns at his homebase and becomes passive. In the event that a mobile
agent β ̸= α, β ∈ A writes a message in the in − buf variable of a vertex u ∈ Tα,
agent β should be able to wake up or notify agent α that there are more computations
to execute on u ∈ Tα.

For that reason, for each execution place u ∈ Tα, ∀α ∈ A, the variable visitedu is
replaced by a variable fatherlinku, that takes the values:

fatherlinku =

NULL, if u has not been visited yet
−1, if u is homebase of α
δu(u, v), if v is the father of u in Tα

In this way, every agent β, that writes a message on u ∈ Tα is able to reach the home
base of α and wake up agent α. Additionally, every vertex that is homebase of an agent
has a variable fStateu, which is the token "Finished" or the token "NotF inished",
and indicates whether there are more computations to be executed on the vertices of Tα.
Initially fatherlinku = NULL, ∀u ∈ V and fStateπ0(α) = "NotF inished",∀α ∈
A .

24

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Algorithm 2 Tree construction of Tα by mobile agent α ∈ A

Initially fatherlinku ← NULL, ∀u ∈ V
traversedu(δu(v))← NULL ∀u, v s.t. (u, v) ∈ E

On wake up agent α ∈ A is at homebase π0(α) ∈ V and executes:
fatherlinkπ0(α) ← −1
ePath← ∅
u← π0(α)
π(α) = π0(α)
while ∃v ∈ N

G
(u) s.t. traversedu(δu(v)) == NULL or ePath ̸= ∅ do

if ∃v ∈ N
G
(u) s.t. traversedu(δu(v)) == NULL then

π(α)← v ▷ agent migrates to v
ePath.enqueue(δv(u))
if fatherlinkv = NULL then

fatherlinkv = δv(u)
traversedv(δv(u))← "T "
u← v

else
traversedv(δv(u))← "NT "
(u, v)← ePath.dequeue()
π(α)← u ▷ agent backtracks to u
traversedu(δu(v))← "NT "

else
(u,w)← ePath.dequeue()
π(α)← w ▷ agent backtracks to w
traversedw(δw(u))← "T "
u← w

The total number of agent moves of algorithm 2 is 2 · E(G), since every edge of
the graph G will be traversed by exactly one agent and exactly 2 times, once while
exploring and once when backtracking.

The procedure that simulates a message passing algorithm D to a mobile agent
algorithm A is described in algorithm 3.

25

2.3. SIMULATION OF A MP ALGORITHM BY A MA SYSTEM

Algorithm 3 Simulation of a terminating MP algorithm by an MA system [9]

Step 1: Each agent α executes the partial graph traversal of algorithm 2 and con
structs a tree Tα. This leads to a spanning forest of k trees, where each vertex
v ∈ V (G) belongs to exactly one Tα, for some agent α ∈ A.
During that stage, when agent α backtracks from a vertex u ∈ Tα, the fatherlinku
of u is set to the dequeued value of ePath.

Step 2: Agent α executes the message passing algorithm D on the vertices of Tα.
Agent α begins a traversal of Tα if and only if the fState of its homebase is
"NotF inished", otherwise α becomes passive.
When α begins a traversal of Tα, α sets the fState of its homebase to "Finished"
and on every vertex v ∈ Tα executes d ≥ 1 computational steps of D.

If agent α delivers a message from vertex u ∈ Tα to vertex v ∈ Tβ , then writes the
message < m, dv(u) > in the in − buf variable v and follows the fatherLink of
v to reach the homebase w of agent β.
If the fState of w is "Finished", α sets fStatew ← "NotF inished" and if β is
"passive", agent α wakes him up and changes his state to "active".

Proposition 2.6. [9] Let D be a message passing algorithm implemented on the mes
sage passing system (P, C, λ), where C = (V,E, δ). Then algorithm 3 implemented
on mobile agent system (A, P, S, π0, λ

′), where S = (V,E, δ) simulates algorithmD.

Proof. By the construction of the simulation algorithm 3 we note that for every exe
cution E of algorithm 3 in the mobile agent system (A, P, S, π0, λ

′) there exists an
equivalent execution ED of algorithm D in the message passing system (P,C, λ).

Termination

Lemma 2.7. Let D be a message passing algorithm implemented on the message
passing system (P, C, λ), where C = (V,E, δ). If algorithm D has the termina
tion property then the simulation algorithm 3 implemented on the mobile agent system
(A, P, S, π0, λ

′), where S = (V,E, δ) has the termination property.

Proof. Algorithm 3 simulates algorithmD, therefore for every execution E of algorithm
3 there exists an equivalent execution ED of D.

If algorithm D terminates implicitly then all processes eventually become passive
in ED and ∀u ∈ P there is no applicable event. Hence, there exists a time in execution
E such that all simulated events of algorithm D have been executed and there is no
applicable simulated event for every u ∈ P. By the construction of algorithm 3, each
agent α ∈ A is either passive or will eventually become passive after finishing the
traversal of Tα and arriving at homebaseα.

If algorithm D terminates explicitly then at least one process u ∈ P detects ter
mination in ED ; i.e. that all processes have their final values. By the construction of
simulation algorithm 3, eventually some agent α ∈ A located at u ∈ P detects termi
nation ; i.e. that all whiteboards have their final values.

Hence the simulation algorithm 3 terminates explicitly.

26

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Complexity
Space Complexity

Proposition 2.8. Let D = (⊢p)p∈P be a message passing algorithm implemented on
the message passing system (P,C, λ), where C = (V,E, δ). Let A = (⊢αp)α∈A,p∈P
be the mobile agent algorithm 3 on the mobile agent system (A,P),S, π0, λ

′, where
S = C. Then the local space complexity of agent α ∈ A is:

LocMemAg(α,A,S) = O
(
|V | · log∆+ max

m∈M
|m|

)
where∆ is themaximum degree of the graph andm is the size/bits of messagesm ∈M,
and the local space complexity of execution place p ∈ P is:

LocMemWB(p,A,S) = O
(
∆
)
+Bit(D, C) + LocMem(D, C)

where Bit(D, C) is the total bits of messages exchanged D and LocMem(D, C)
)
is

the local space complexity of the message passing algorithm.

Proof. When executing algorithm 3, each agent needs to have enoughmemory: to store
the links traversed (ePath variable) in order to be able to return to homebaseα, to store
the messages to be delivered (onemessage per delivery) when simulating the send event
of process u ∈ Tα and to simulate the receive and internal events of process u ∈ Tα.
Therefore the notebook memory of agent α (LocMemAg(α,A,S)) should be enough
to:

• store ePath→ O(n · log∆), where∆ = maxu∈G(V)deg(u)

• store messages to be delivered: O(maxm∈M |m|)

• store fStsate variable→ O(1).
(whether the agent is active or passive)

The whiteboard of each execution place u ∈ P (LocMemWB(p,A,S)) corresponds
to the memory of process u and should have enough memory to store:

• variable visitedu → O(1).

• variable fatherLinku → O(log∆),∆ = maxu∈G(V)deg(u)
(the link of the father of u in the tree Tα) .

• variable traversedu: O(∆),

• in− bufu variable→ Bit(D, C)
(the incoming messages: total number of bits that process u received in message
passing algorithm D)

• TBDu variable→ Bit(D, C)
(the outgoing messages: total number of bits process u sent in message passing
algorithm D)

• the states of process u ∈ P in D → LocMem(D, C)

27

2.3. SIMULATION OF A MP ALGORITHM BY A MA SYSTEM

Move Complexity

The number of agent moves required for the simulation depends on:

• the number of messages exchanged in the message passing algorithm

• the number of agents, the graph topology, and therefore the size and depth of each
tree Tα constructed by agent α

• the number of computational steps executed on each vertex u ∈ Tα on each
traversal of Tα, by agent α, which depends on the message passing algorithmD.

Depth of the tree:
Assume that the mobile agent system has k agents α1, · · · , αk and each agent αi per
forms tαi

traversals of Tαi
and then terminates.

If agent αi simulates the action send a message from vertex u ∈ Tαi
to vertex v ∈ Tβj

,
where j is not necessarily different from i, then the number of steps required by agent
αi is:

• 2 steps, one to arrive to vertex v and one to backtrack to u, and continue compu
tations on u or move to the next vertex of Tαi

• In the case of simulation with termination (algorithm 3), agent αi needs to reach
homebase of agent αj and then backtrack to vertex v, which requires at most
2 · depth(Tαj) moves.

Remark: If agent α simulates the event send message m from u to v, if edge {u, v}
is marked as T , then agent α knows that v ∈ Tα, and can omit going to its homebase,
by having an extra local variable fStateα ← "NotFinished". If edge {u, v} is marked
asNT , then agent α doesn't know that v ∈ Tα, and has to follow fatherlink to reach its
homebase.

Therefore, if the total number of messages exchanged in the message passing algorithm
D isMSG(D, C), then the total number of moves of agents to simulate the actions of
sending messages is at most:

Move(A,S) =
(
MSG(D, C) · (2 + 2 · max

i∈{1,..., k}
{depth(Tαi

)})
)

Size of the tree
On step 1 of algorithms 1 and 3 every agent αi traverses Tαi

tαi
times and then termi

nates. For every traversal of Tαi , αi needs 2 · |V (Tαi)| moves to reach its homebase.
Therefore the total number of moves performed by all the agents is at most:

2 · |E|︸ ︷︷ ︸
construction of Tαi

+2 ·
k∑

i=1

tαi
· |V (Tαi

)|︸ ︷︷ ︸
traversal of Tαi

+MSG(D, C) · (2 + 2 · max
i∈{1,..., k}

{depth(Tαi
)})︸ ︷︷ ︸

message delivery

=

= O
(
|E|+MSG(D, C) · |V |

)
28

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Figure 2.2: Example of tree construction of agents α, β ∈ A

Proposition 2.9. Let D = (⊢p)p∈P be a message passing algorithm implemented on
the message passing system (P,C, λ), where C = (V,E, δ). Let A = (⊢αp)α∈A,p∈P
be the mobile agent algorithm 3 on the mobile agent system (A,P),S, π0, λ

′, where
S = C. Then themove complexity of algorithm A is:

TotalMove(A,S) =
∑
α∈A

Move(α,A,S) = O
(
|E|+MSG(D, C) · |V |

)

whereMSG(D, C) is the message complexity of algorithm D on communication sys
tem C.

Remark: The simulation of message passing algorithm to mobile agent algorithm
described in algorithm 2 is general and applicable to every message passing algorithm.
However it is not always the most efficient in time complexity and in the total number
of agents' moves.

For specific message passing algorithms more efficient simulations can be designed
to reduce the number of agents' moves. For example Suzuki et al. in [31] present for
the problem of gossiping a simulation of the message passing algorithm to a mobile
algorithm that terminates within 2 ·MSG(D, C)moves of agents, whereMSG(D, C)
is the total number of messages exchanged in the message passing algorithm.

29

2.4. SIMULATION OF SYNCHRONOUS ΜP ALGORITHM BY A SYNCHRONOUS
MA SYSTEM

2.4 Simulation of synchronous ΜP Algorithm by a syn
chronous MA System

The simulation presented in chapter 2.3 can be modified so that it can simulate a syn
chronous message passing algorithm by a synchronous mobile agent system. In the
modified simulation algorithm one round of the message passing algorithm D will be
simulated in multiple rounds of the simulation algorithm A. More precisely, in each
synchronous round r of algorithm D each agent α ∈ A will traverse one time his tree
α. When α visits each node u ∈ Tα:

• It will collect and read all the messages that u received in the corresponding
previous round (round r − 1 of algorithm D). If u hasn't received a messages of
round r − 1 from each one of its neighbors, then agent α will wait until every
neighbor of u sends a message for round r − 1.

• Then it execute the local algorithm Au, writes the messages to be sent in the
TBDu variable and delivers the messages of round r in the neighbors of u, as
described in section 2.3. If in the local algorithm Au, u doesn't send a message
to a process v ∈ NG(u), then agent α delivers a null message to v. Then agent
α repeats this procedure at the next node of his tree Tα.

We note that the time that agent α ∈ A will have to wait at node u at round r − 1 to
receive all the messages from round r−1 is finite since if agent is waiting for a message
from neighbor v from round r − 1 then:

• If v ∈ Tα, then themessagemust have already been delivered, sinceα has already
delivered all messages of nodes of Tα for round r − 1.

• If v ∈ Tβ , β ̸= α ∈ A, then agent β is executing round r − 1 of algorithm D,
since otherwise this would imply that agent α could not be executing round r.
Therefore, in finite time agent β will deliver the messages of round r − 1 of the
local algorithm D⊑.

Complexity
Time/Round Complexity

Let Hα = Tα ∪ {NG(u) : u ∈ Tα} be the subgraph of G containing the tree Tα and
the neighbors of the vertices of Tα and let E(Tα) and E(Hα) denote the set of edges
of Tα and Hα respectively. For every round of algorithm D simulation algorithm A
requires:

• 2 ·maxα∈A |Tα| agent rounds for the partial tree traversal of Tα and the delivery
of the messages in Tα

• For the message delivery:

– ∀u ∈ Tα, the messages with recipient u can be delivered to u during the Tα

traversal.

– ∀u ∈ |Hα \ Tα| the messages with recipient u require |E(Hα) \ E(Tα)|
additional rounds for the message delivery.

30

CHAPTER 2. SIMULATIONS AMONG HONEST MA AND MP MODELS

Therefore if the round complexity of algorithm D is R then the worst case round com
plexity of the simulation algorithm A is:

Time(A,S) = Time(D, C) · 2 ·max
α∈A
|Tα|+ |E(Hα) \ E(Tα)|

Move Complexity of agents

The total moves performed by the agents on the execution of A is:

TotalMove(A,S) =
∑
α∈A

Move(α,A,S) = Time(D, C)·
(∑
α∈A

(2·|Tα|+2·|E(Hα)\E(Tα)|)
)

= Time(D, C) · (2 · n+ 4 · |E(G) \ {
⋃
α∈A

E(Tα)|})

where Time(D, C) is the time/round complexity of algorithm D on communication
system C. Therefore the total moves performed by the agents are:

TotalMove(A, C) = O
(
Time(D, C) · |V |+ |E|

)

31

2.4. SIMULATION OF SYNCHRONOUS ΜP ALGORITHM BY A SYNCHRONOUS
MA SYSTEM

32

CHAPTER3

SIMULATIONS AMONG ADVERSARIAL MA AND
MP MODELS

3.1 Simulation of a MP Algorithm by MA when agents
might crash

A typical and realistic type of fault that can occur in the mobile agent model are crash
failures of mobile agents, i.e. when some mobile agents crash and stop executing the
mobile agent algorithm. Das et al. [13] proved that a message passing algorithm can
be simulated in the mobile agent system even when agents might crash unexpectedly
while traversing an edge, as long as at least one agent survives. They provided two
algorithms in their work, one for the non anonymous setting and one for the anony
mous setting, where neither agents nor execution places have unique identifiers. Their
proposed algorithm for the anonymous setting,AnSimulate [13], simulates a message
passing algorithm in an anonymous mobile agent system with k mobile agents and at
most k − 1 crash failures.

In the setup phase of algorithm 4, agents run a partial graph traversal algorithm to
obtain their territories, similarly to algorithm 2. Then, in algorithm 4 AnSimulate ,
each agent simulates the message passing algorithm on his territory and at the same time
checks neighboring territories to see if there are any dead agents, by checking the delay
of delivering the messages. If in a neighboring territory there is a slow or dead agent,
the agent annexes the territory to his territory and continues simulating the message
passing algorithm at the expanded territory.

The partition of the territories is selfbalancing and even though some agents might
crash, the algorithm ensures that the simulation proceeds correctly on every execution
place and the work is equally distributed among the surviving agents.

33

3.1. SIMULATION OF A MP ALGORITHM BY MAWHEN AGENTS MIGHT CRASH

Algorithm 4 AnSimulate [13]

Phase 0:
Each agent α executes algorithm 2 to construct partial spanning tree Tα, which is
the agent's territory.This leads to a spanning forest of k trees, where each vertex
v ∈ V (G) belongs to exactly one Tα, for some agent α.
Let nα be the size of Tα.
Agent α traverses Tα and executes algorithm Dp on p ∈ Tα. α updates statep and
if messagem needs to be sent through port j, α appends (m.j) to TBD queue.

for Phase i ≥ 1: do
Step 1: Agent α ∈ A (if alive) does a dfs traversal on tree Tα and on each

execution place p ∈ Tα it visits:
if TBDp ̸= ∅ then

α delivers the messages of TBDp

if statep = "processing" then
α continues with the local computations of algorithm Dp

if in− buf ̸= ∅ then
α receives the messages from in− buf

if TBD = ∅ and in− buf = ∅ then
statep ←′ TERM ′

fStatep = Finished

Write DONE(i, nα) on whiteboardp
if ANNEXEDπ0(α) = (j, nβ , pathto(e

′))1 then
α traverses pathto(e′) to arrive to node u and sets traversedu(e′)← "T "
nα ← nα + nβ

Tα ← Tα + {e′}+ Tβ

ANNEXEDπ0(α) = NULL
Go to step 3

Step 2: Agentα ∈ A starts a dfs traversal of its territory Tα. During the traversal
for each external edge (i.e. e ∈ E such that traversedu(e) = NT for some u ∈ Tα)
it traverses the edge e = {u, v}, and reads DONE(j, nβ)

if j < i or (j = i and nβ < nα) then
Go to homebase of β ∈ A (by following fatherlinks)
if ANNEXEDhomebaseβ = NULL then

ANNEXEDhomebaseβ ← (i, nα, pathto(e))
nα ← nα + nβ

Tα ← Tα + {e}+ Tβ

Step 3: Agent α ∈ A updates territory Tα to include all territories it annexed
and those annexed by the agents it defeated.

The fatherlink of each node in Tα is updated and nα is modified accordingly.
if fStateu = "Finished" ∀u ∈ Tα then

Execute termination detection algorithm 5
else

Go to phase i+ 1

1pathto(e′) is the path that contains edge labels from π0(α) to e′

34

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Algorithm 5 Termination Detection [13]

for r=1 to k do do
if ∃u ∈ Tα such that fState ̸= "Finished" then

return false
else

fStateu ← "Finished(r)", ∀u ∈ Tα

for each e = {u, v} ∈ E such that u ∈ Tα, traversedu(δu(v)) = "NT " do
traverse e to arrive at v ∈ Tβ , β ∈ A
if fStatev ̸= "Finished" then

return false
else if fState = "Finished(j)" and j < r then

go to homebaseβ
if fStatehomebaseβ ̸= "Finished(r)" then

fStatehomebaseβ ← "Finished(r)"
merge Tα and Tβ

if r = k then
return true

Proposition 3.1. [13] LetD be a message passing algorithm implemented on the mes
sage passing system (P, C, λ), where C = (V,E, δ). Then algorithm AnSimulate 4
implemented on mobile agent system (A, P, S, π0, λ

′), where S = (V,E, δ) and at
most |A| − 1 = k − 1 agents crash, simulates algorithm D.

Proof. By the construction of the simulation algorithm 4 we note that for every execu
tion E of algorithm 4 in the mobile agent system (A, P, S, π0, λ

′) where at most k− 1
agents crash:

• ∀u ∈ V ∃α ∈ A such that u ∈ Tα in phase 0.

• ∀u ∈ V ∃α ∈ A such that u ∈ Tα in phase i > 0, where A is the set of alive
agents.

• at least one agent survives and
⋃

α∈A Tα = V , where A is the set of alive agents.

Therefore, exists an equivalent execution ED of algorithm D in the message passing
system (P,C, λ), since the algorithm 4 ensures that at least one agent will survive and
correctly continue the simulation.

Termination
Lemma 3.2. [13] Let D be a message passing algorithm implemented on the mes
sage passing system (P, C, λ), where C = (V,E, δ). If algorithm D has the termina
tion property then the simulation algorithm 4 implemented on the mobile agent system
(A, P, S, π0, λ

′), where S = (V,E, δ) and at most k − 1 agents crash, terminates
explicitly.

Proof. Algorithm 4 simulates algorithmD, therefore for every execution E of algorithm
4 there exists an equivalent execution ED of D.

If algorithm D terminates implicitly or explicitly then all processes eventually be
come passive in ED and ∀u ∈ P there is no applicable event. Hence, there exists a
time in execution E such that all simulated events of algorithm D have been executed

35

3.1. SIMULATION OF A MP ALGORITHM BY MAWHEN AGENTS MIGHT CRASH

and there is no applicable simulated event for every u ∈ P. Therefore the termination
detection algorithm 5 will return true, since every message has been delivered and there
are no messages in transit.

Hence the simulation algorithm 4 terminates explicitly.

Complexity
Space Complexity

Proposition 3.3. Let D = (⊢p)p∈P be a message passing algorithm implemented on
the message passing system (P,C, λ), where C = (V,E, δ). Let A be the simulation
mobile agent algorithm 4 and S = C. Then the local space complexity of each agent
is:

LocMemAg(α,A,S) = O
(
|V | · log∆+ max

m∈M
|m|

)
where∆ = maxu∈V deg(u) and |m| is the size in bits of messagem ∈M and the local
space complexity of each execution place is:

LocMemWB(p,A,S) = O
(
(∆) +MSG(D, C) + LocMem(D, C)

)
whereMSG(D, C) is the message complexity and LocMem(D, C) is the local space
complexity of algorithm D implemented on communication system C.

Proof. The local memory requirements of each agent and execution place is similar
with the proof of proposition 2.8

Move Complexity

Proposition 3.4. Let D = (⊢p)p∈P be a message passing algorithm implemented on
the message passing system (P,C, λ), where C = (V,E, δ). Let A be the simulation
mobile agent algorithm 4 and S = C. Then themove complexity of each agent α ∈ A
is:

Move(α,A,S) = O
(
(|E|+ |V | · k) ·MSG(D, C)

)
. Therefore the move complexity is for all the messages exchanged in algorithm D is
O
(
(|E| + |V | · k) ·MSG(D, C)

)
, where MSG(D, C) is the message complexity of

algorithm D.

Proof. The complexity overhead of algorithm 4 AnSimulate is O((|E| + |V |k)) for
each message exchanged in algorithm D, where |E| is the number of edges, |V | is the
number of nodes in the graph, k is the initial number of mobile agents andMSG(D, C)
is the total number of messages exchanged in the message passing algorithm D.

Fault Tolerant simulation of Message Passing Algorithms in the non
Anonymous setting
In the non anonymous case, where agents and execution places have unique identifiers,
the authors of [13] proposed the faulttolerant algorithm DisSimulate, to simulate
any message passing algorithm by a mobile agent system, which is more efficient in
terms of agents moves. The overall agent moves of DisSimulate is O((|E| + |V | ·
MSG(D, C)) · k), where |V | is the number of processes/execution places, |E| is the
number of links, k = |A| is the total number of agents andMSG(D, C) is the number of

36

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

messages exchanged in the message passing algorithmD on the communication system
C.

This was later improved by Gotoh et. al. in [19], where they proposed a fault
tolerant algorithm for the nonanonymous case that simulates any message passing al
gorithm with O((|E| +MSG(D, C)) · f) total agent moves, where m is the number
of links, MSG(D, C) is the number of messages exchanged in the message passing
algorithm and f ≤ k − 1 is an upper bound on the number of crashed agents.

3.2 Always Dead Processes inMP (ADPMP) and Black
holes in MA (BHMA)

3.2.1 MP Model with Always dead Processes (ADP)

In the message passing model an Always dead process (ADP) (or initially dead pro
cess [17] or initial failures) is a type of benign failure. An always dead process is a
process that does not execute a single step of the algorithm [32]. A message passing
model with always dead processes is defined by (P, C, D, λ) where:

• P, C, λ are as defined in section 1.2

• D ⊊ P is a set of always dead processes or faulty processes.

• P \D is the set of correct or non faulty processes.

Message Passing algorithm with always dead processes

A message passing algorithm with always dead processes is defined as in section 1.2
with the modifications that ∀d ∈ D, d does not execute any event, hence the local
algorithm Dd will have no events and the state(d) will remain the initial state λ(d) .
Without loss of generality, we can assume that every messagem that is sent to and ADP
is ignored and is removed from the list of messages in transmission. This is modelled
as an ignore event:

(λ(d), in, m) ⊢d (λ(d), 0, ⊥)

where λ(d) is the initial state of process d, in is the port through whichm is received.
M ←M \ {p,m, d} where p ∈ P is such that δd(p) = in

The termination property is modified to depend only to correct processes, regardless
of the faulty behavior of the always dead processes.

The interaction of an always dead process with the message passing communication
system is depicted in figure 3.1. Every message that arrives to the always dead process
from the communication system is ignored. Therefore without loss of generality, the
interface of the message passing system contains also the ignore events of the always
dead processes, as depicted in figure 3.2

37

3.2. ALWAYS DEAD PROCESSES IN MP (ADPMP) AND BLACK HOLES IN MA
(BHMA)

Always dead process
d ∈ D

Message Passing
Communication System

C = G(V,E, δ)

Ignore event
process d receives messagem
through port in and ignores it
(λ(d), in,m) ⊢b (λ(d), 0,⊥)

Figure 3.1: The interface of an Always Dead process with the message passing com
munication system. When a messagem is received by d ∈ D, it is ignored and the state
of the process d doesn't change.

Message Passing System

Receive event
process p /∈ D receivesm

through port in
(c, in,m) ⊢p (d, 0,⊥)

Send event
process p /∈ D sendsm

through port out
(c, 0,⊥) ⊢p (d, out,m)

Ignore event
ADP process d ∈ D
receives messagem

through port in and ignores it
(λ(d), in,m) ⊢b (λ(d), 0,⊥)

Figure 3.2: The interface of a Message passing system with always dead process. The
inputs of the message passing system are the send events and the outputs are the receive
events and the ignore events.

3.2.2 MA Model with Black holes (BH)

In the mobile agent model a black hole (BH) is a type of stationary host attack. More
precisely, a black hole is a stationary process located at an execution place b ∈ P that
destroys every agent that visits b, without leaving any observable trace to the surviving
agents.

Amobile agent systemwith a set of black holes is defined as (A, P, B, S, π0, λ)where:

• A, P, S, λ are defined as in section 1.3.

• B ⊊ P is a set of black holes that destroy any visiting agent without leaving any
trace.

• P \ B is the set of safe execution places

• π0 : A→ P \ B agents are initially located on safe nodes/execution places.

38

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Mobile Agent Algorithm with black holes

A mobile agent algorithm with a set of black holes is defined as in section 1.3 with the
following modifications:

• The set QA of possible states of the agents contains a special terminal state s
BH

that indicates that an agent died when visiting a black hole b ∈ B

• When agent α ∈ A visits a black hole b ∈ B the only applicable event is the
destroy event:

(s, q
BH

, in) ⊢αb (s
BH

, q
BH

, 0)

where s is the old state of agent α ∈ A, q is the old state of b ∈ B, in is the port
through which α arrived to b, s

BH
is the new and terminal state of α and q′ is

the new state of b ∈ B and there is no other applicable event that involves agent
α ∈ A

• after a destroy event of agent α ∈ A on black hole b ∈ B:
M←M \ {(p′, α, b)} where p′ ∈ P is such that δp(p′) = in
π(α)←⊥
A← A \ {α}

• The termination property is modified to depend only to the surviving agents, i.e.
agents that are not destroyed by the black hole.

The interaction of a black hole b ∈ B with the mobile agent communication system
is depicted in figure 3.3. Every agent that arrives to the black hole from the navigation
system is destroyed. Therefore without loss of generality, the interface of the message
passing system contains also the destroy events of the black hole, as depicted in figure
3.4

Black Hole
b ∈ B

Mobile agent
Navigation System
S = G(V,E, δ)

Destroy event
agent α arrives at black hole b ∈ B
through port in and is destroyed
(s, q

BH
, in) ⊢ab (s

BH
, q

BH
, 0)

Figure 3.3: The interface of a Black Hole with the mobile agent navigation system.
When an agent α ∈ A arrives at b ∈ B, it is destroyed, without leaving any trace.

39

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

Mobile Agent System

Arrive event
agent α arrives at p /∈ B

through port in
(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p /∈ B

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Destroy event
agent α arrives at b ∈ B

through port in and gets destroyed
(s, q

BH
, in) ⊢αb (s

BH
, q

BH
, 0)

Figure 3.4: The interface of a Mobile agent system with black holes. The inputs of
the mobile agent navigation system are the depart events and the outputs are the arrive
events and the destroy events.

3.3 Simulations among BHMA and ADPMP model

3.3.1 Simulation of a BHMA algorithm by an ADPMP algorithm
AMobile agent algorithm, resilient to a set of black holes |B|, where at most k−1 =
|A| − 1 agents are destroyed, can be simulated by a message passing system with a
set D of at most |B| always dead processes. The idea of the simulation is similar with
section 2.1. In the case that in the message passing system a process p ∈ P \D sends
a message/token to an always dead process, the message is ignored but the simulation
algorithm remains resilient, since this corresponds to the arrival and destruction of an
agent to a black hole in the mobile agent algorithm. Therefore, since in the mobile agent
algorithm at most k− 1 agents are destroyed by the black holes, then in the simulation
algorithm, the simulation will proceed correctly despite the loss of the tokens sent to
always dead processes.

Furthermore, it is possible to simulate black holes by always dead processes. When
an agent arrives at a black hole, the only applicable event is the destroy event, where
the agent is destroyed, so in the simulation by an always dead process every incoming
message is ignored, and the state of the always dead process does not change.

More formally, let (A, P, B, S, π0, λ) be a mobile agent system with a set of black
holes B, where S = (V,E, δ) is the navigation subsystem and A = (⊢αp)α∈A, p∈P. The
mobile agent algorithmA can be simulated in the message passing system (P,C,D, λ′)
in algorithm D defined as in section 2.1 with the following modifications:

• Each non faulty process p ∈ P \D of the message passing system corresponds
to a safe execution place p ∈ P \ B of the mobile agent system and executes
algorithm Dp as defined in section 2.1.

• Each always dead process b ∈ D of the message passing system corresponds to
a black hole b ∈ B.

• If a token t(α), α ∈ A is sent to an always dead process, then it is ignored.

• Without loss of generality we can assume that when a message/token is sent to
an always dead process in the simulation algorithm D then it is removed from
the setM of messages in transit.

Proposition 3.5. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented
on the mobile agent system with black holes (A, P, B, S, π0, λ). Let D = (Dp)p∈P

40

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

be the message passing algorithm defined above on the message passing system with
always dead processes (P, C, D λ′).
Then algorithm D of the message passing system (P,C,D, λ′) simulates algorithm A
of the mobile agent system with respect to the non faulty processes.

Proof. Let ED be an execution of algorithm Dp, p ∈ P in the message passing system
(P, C, D, λ′), f the simulation relation and h the events' mapping described above. By
the construction of algorithm Dp from algorithm A of the system (A, P, B, S, π0, λ)
we note that:

1. f(λ′) ∩ IA ̸= ∅

2. If s = (statei,Mi), for some i ∈ N is a reachable configuration of D, u ∈
f(s), u = (stateAj ,Mj , πj),∈ N is a reachable configuration of A and π is an
applicable event on s that changes the state from s to s′ = (statei+1,Mi+1)
then:

• If π is a send event from p ∈ P , where statei(p) = (q, 1, r) ̸= (q
BH

, 1, r)
to p′ ∈ P :

((q, 1, r), 0,⊥) ⊢p ((q′, 0, ♯), out, r′)

where statei+1(p) = (q′, 0, ♯) andMi+1 = Mi ∪ {(p, r′, p′)} then for the
depart event π′ of A:

(r, q, 0) ⊢αp (r′, q′, out)

on the execution place p ∈ P with stateAj (p) = q ̸= q
BH

, stateAj (α) = r,
πj(α) = p and stateAj+1(p) = q′, stateAj+1(α) = r′, Mj+1 = Mj ∪
{(p, α, p′)}, πj+1(α) =⊥, we have that

u′ = (stateAj+1,Mj+1, πj+1) ∈ f(s′)

h(π′) = π

• If π is a receive event of p ∈ P , where statei(p) = (q, 0, ♯) ̸= (q
BH

, 0, ♯)
from p′ ∈ P

((q, 0, ♯), in, r) ⊢p ((q′, 1, r′), 0,⊥)

where statei+1(p) = (q′, 1, r′) andMi+1 = Mi \ {(p′, r, p)} then for the
arrive event π′ of A:

(r, q, in) ⊢αp (r′, q′, 0)

on the execution place p ∈ P with stateAj (p) = q, stateAj (α) = r ,
πj(α) =⊥ and stateAj+1(p) = q′, stateAj+1(α) = r′, Mj+1 = Mj \
{(p′, α, p)}, πj+1(α) = p, we have that

u′ = (stateAj+1,Mj+1, πj+1) ∈ f(s′)

h(π′) = π

• Ifπ is an internal event of p ∈ P ,where statei(p) = (q, 1, r) ̸= (q
BH

, 1, r):

((q, 1, r), 0,⊥) ⊢p ((q′, 1, r′), 0,⊥)

41

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

where statei+1(p) = (q′, 1, r′) and Mi+1 = Mi then for the internal
event π′ of A:

(r, q, 0) ⊢αp (r′, q′, 0)

on the execution place p ∈ P with stateAj (p) = q, stateAj (α) = r ,
πj(α) = p and stateAj+1(p) = q′, stateAj+1(α) = r′, Mj+1 = Mj ,
πj+1(α) = p, we have that

u′ = (stateAj+1,Mj+1, πj+1) ∈ f(s′)

h(π′) = π

• If π is an ignore event of p ∈ D from p′ ∈ P :

((q
BH

, 0, ♯), in, r) ⊢p ((q
BH

, 0, ♯), 0,⊥)

where statei(p) = statei+1(p) = (q
BH

, 0, ♯), andMi+1 = Mi\{(p′, r, p)}
then for the destroy event π′ of A:

(r, q, in) ⊢αp (r′, q′, 0)

on the execution place p ∈ P with stateAj (p) = stateAj+1(p) = q
BH

,
stateAj (α) = r , πj(α) = πj+1(α) =⊥ and , Mj+1 = Mj \ {(p′, α, p)},
we have that

u′ = (stateAj+1,Mj+1, πj+1) ∈ f(s′)

h(π′) = π

Therefore, since |D| ≤ |B|, for any applicable event π we have that there exists
an execution segment EA of A such that: h(trace(EA)) = π

Hence, by definition 1.14 the message passing system (P, C, D, λ′) simulates the mo
bile agent system (A, P, B, S, π0, λ)

Simulation of a BH by an ADP

In the simulation of a Mobile Agent Algorithm by a Message Passing System, it is
possible to simulate the black holes by an always dead process. In this case the initial
state of the always dead processes is (q

BH), 0, ♯) and the destroy event of agent α ∈ A
by a black hole b ∈ B:

(s, q
BH

, in) ⊢αb (s
BH

, q
BH

, 0)

is mapped in the message passing system as an ignore event of b ∈ D in algorithm D:

((q
BH

, 0, ♯), in, s) ⊢b ((qBH
), 0, ♯), 0, ⊥)

We note that after the destroy event agent α terminates and won't be involved in any
other event. In the simulation the destroy event is not translated as an event since token
t(α) will be ignored by b and there will be no other event involving token t(α). The
simulation of a black hole by an always dead process is depicted in figure 3.6

42

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Termination

Lemma 3.6. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on the
mobile agent system with blackholes (A, P, B, S, π0, λ). Let D = (Dp)p∈P be the
message passing algorithm defined above on the message passing system with always
dead processes (P, C, D λ′). If algorithm A has the termination property then algo
rithm D has the termination property.

Proof. Algorithm D simulates algorithm A with respect to the faulty processes, there
fore for every execution ED of D with a set of always dead processesD there exists an
equivalent execution EA of A with a set of blackholes B.

If algorithm A terminates implicitly then all agents that are not destroyed by the
black holes eventually become passive in EA and ∀α ∈ A located at p ∈ P \ B there
is no applicable event of the relation ⊢αp . By the mapping of events in the simulation
message passing algorithmD it is implied that ∀p ∈ P \D there is no applicable event
of the relation ⊢p on the execution ED. Hence D terminate implicitly.

If algorithm A terminates explicitly then at least one agent α ∈ A located at p ∈
P \ B detects termination in EA ; i.e. that all execution places have their final values.
By the construction of D, process p ∈ P \D with token t(α) detects termination ; i.e.
that all processes have their final values. Hence D terminates explicitly.

Remarks: The simulation of a mobile agent algorithmA of the mobile agent system
to a message passing algorithm D of the message passing system as described above is
similar to the simulation in section 2.1. By the construction of the simulation algorithm
D there is a correspondence between thewhiteboardp, p ∈ P\B and the local memory
of the corresponding process p ∈ P \D, between notebookα, of mobile agent α ∈ A
and the messages exchanged in the message passing algorithm D and between the set
of blackholes B and the set of always dead processes D.

A mobile agent algorithm A that tolerates t black holes has the requirement that
at least one agent survives and completes the problem requirements. Therefore, in the
simulation algorithm D processes will complete the problem requirements by sending
at most k − 1 messages to the faulty process.

Complexity
Message Complexity

Proposition 3.7. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
black holes implemented on the mobile agent system (A, P, B, S, π0, λ), where |B| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with always dead processes (P, C, D, λ′), where |D| ≤ t.
Then the total number of messages exchanged during the execution of D is:

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

whereMove(α,A,S) is the move complexity of agent α ∈ A in the execution of A.
The total number of messages sent to the set of always dead processesD is at most k1,
where k = |A|.
The total size of messages exchanged is

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(αA,S)

43

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

where LocMemAg(αA,S) is the local space complexity of agent α ∈ A, i.e. the size
of notebook of α.

Proof. The proof is similar with the proof of proposition 2.3 with the modification that
if in the simulation algorithmD there is a send event to an always dead process b ∈ D,
then in algorithm A agent α ∈ A arrives to black hole b ∈ B and is destroyed.

Time Complexity

Proposition 3.8. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
black holes implemented on the mobile agent system (A, P, B, S, π0, λ), where |B| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with always dead processes (P, C, D, λ′), where |D| ≤ t and C = S.
The time complexity of algorithm D is:

Time(D, C) = Time(A,S)

where Time(A,S) is the time complexity of mobile agent algorithm A on the naviga
tion system S.

Proof. The proof is similar with the proof of proposition 2.4

Space Complexity

Proposition 3.9. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
black holes implemented on the mobile agent system (A, P, B, S, π0, λ), where |B| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with always dead processes (P, C, D, λ′), where |D| ≤ t and C = S.
Then the local space complexity of algorithm D is:

LocMem(D, C) = max
p∈P

{
LocMemWB(p,A,S)

}
+max

α∈A

{
LocMemAg(α,A,S)

}
where LocMemWB(p,A,S) is the local space complexity of execution place p ∈ P
and LocMemAg(α,A,S) is the local space complexity of agent α ∈ A of algorithm
A on the navigation system S.
The total space complexity of algorithm D is

Mem(D, C) =
∑
p∈P

LocMemAg(p,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Proof. The proof is similar with the proof of proposition 2.5

The simulation is summarised in tables 3.1, 3.2 and figure 3.5, and the simulation
of black holes by always dead processes is summarised in figure 3.6. The complexity
of the simulation is summarised in table 3.3

44

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Table 3.1: Simulation of Mobile Agent Algorithm A with black holes by a Message
Passing Algorithm D with always dead processes

Mobile Agent Model with black holes Message Passing Model
with always dead processes

System: (A, P, B, S, π0, λ) System: (P, C, D, λ′)

S = (V, E, δ) navigation subsystem C = (V, E, δ) communication subsystem
P or V : execution places, P or V : asynchronous processes

equipped with a whiteboard
E : migration ports E : communication channels
δu : N

G
(u)→ [1, degG(u)] : u ∈ V δu : N

G
(u)→ [1, deg(u)] : u ∈ V

port labelling function port labelling function
λ : initial states of places and agents λ′ : initial states of processes

λ′(p) =

{
(λ(p), 1, λ(α)), if π0(p) = α

(λ(p), 0, ♯), otherwise
, p ∈ P

A: set of k asynchronous mobile agents. k tokens
π0 : A→ V initial placement of agents. π0 : initial placement of tokens.
π : A→ V location of agents. π : location of tokens.

Black hole b ∈ B ⊊ P: Always dead process b ∈ D ⊊ P :

a stationary process that a process that does not execute
destroys any incoming agent a single step of the algorithm.
s
BH

: the state of the destroyed agent state(b) = λ′(b) during the execution of D

Mobile agent algorithm A Simulation message passing algorithm A

QA : set of possible states of α ∈ A M = QA \ {sBH
}: set of possible messages

QP: set of possible states of p ∈ P Q = QP × {0, 1} ×QA ∪ {♯} \ {sBH
}:

set of possible states of p ∈ P
IA ⊆ QA \ {sBH

}: set of initial states of α I = IP × {0, 1} × IA ∪ {♯}:
IP ⊆ QP: set of initial states of p ∈ P set of initial states of p ∈ P

stateA(p), p ∈ P state(p) =

stateA(α), α ∈ A =

{
(stateA(p), 1, stateA(α)), π(p) = α

(stateA(p), 0, ♯), otherwise
p ∈ P \D

M: multiset of agents in transit M = M: multiset of messages in transit

45

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

Table 3.2: Simulation of Mobile Agent Algorithm A with black holes by a Message
Passing Algorithm D with always dead processes

Mobile Agent Model with black holes Message Passing Model
with always dead processes

Events of the relation ⊢αp of A Events of the relation ⊢p of D
h : events(A)→ events(D)

if p ∈ P \ B, α ∈ A: if p ∈ P \D:

departure event: send event:
(s, q, 0) ⊢αp (s′, q′, out)

(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 0, ♯), out, s′

)
arrival event: receive event:

(s, q, in) ⊢αp (s′, q′, 0)
(
(q, 0, ♯), in, s

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
α remains at p: internal event:

(s, q, 0) ⊢αp (s′, q′, 0)
(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
if p ∈ B if p ∈ D

destroy event: ignore event:
(s, q

BH
, in) ⊢αp (s

BH
, q

BH
, 0) ((q

BH
, 0, ♯), in, s) ⊢p ((q

BH
), 0, ♯), 0, ⊥)

Table 3.3: Complexity of the Simulation of the Mobile Agent AlgorithmA with Black
Holes by Message Passing Algorithm D with Always Dead Processes

Message
Complexity

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

Bit
Complexity

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

Time
Complexity

Time(D, C) = Time
(
A,S

)

Local Space
Complexity

LocMem(D, C) = max
p∈P
{LocMemWB(α,A,S)}+max

α∈A
{LocMemAg(α,A,S)}

Total Space
Complexity

Mem(D, C) =
∑
p∈P

LocMemWB(α,A,S) +
∑
α∈A

LocMemAg(α,A,S)

46

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Sim
Mobile Agent system

Message Passing system

Arrive event
agent α arrives at p /∈ B

through port in
(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p /∈ B

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Destroy event
agent α arrives at b ∈ B

through port in and gets destroyed
(s, q

BH
, in) ⊢αb (s

BH
, q

BH
, 0)

Receive event
process p /∈ D receivesm = s

through port in
((q, 0, ♯), in, s) ⊢p ((q′, 1, s′), 0,⊥)

Send event
process p /∈ D sendsm = s′

through port out
((q, 1, s), 0,⊥) ⊢p ((q′, 0, ♯), out, s′)

Ignore event
process b ∈ D receives and ignores

m = s through port in
((q

BH
, 0, ♯), in, s) ⊢b ((qBH

, 0, ♯), 0,⊥)

Figure 3.5: Simulation of Mobile agent system with black holes by a Message Passing
systemwith always dead processes, where the inputs of the mobile agent system (depart
events) are transformed into inputs of the message passing system (send events) and the
outputs of the message passing system (receive or ignore events) are transformed into
outputs of the mobile agent system (arrive or destroy events). Running the simulation
algorithm on top of the message passing system with always dead processes produces
the same appearance as does running the algorithm on top of the mobile agent system
with black holes.

47

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

Black Hole
b ∈ B

Sim
Always Dead Process

b ∈ D

Message Passing
Communication System

S = G(V,E, δ)

Destroy event
agent α arrives at black hole b ∈ B
through port in and gets destroyed
(s, q

BH
, in) ⊢ab (s

BH
, q

BH
, 0)

Ignore event
process b ∈ D receives and ignores

m = s through port in
((q

BH
, 0, ♯), in, s) ⊢b ((qBH

, 0, ♯), 0,⊥)

Figure 3.6: Simulation of Black Hole b ∈ B of the Mobile Agent system by always
dead process b ∈ D of the Message Passing system. The output event (ignore event) of
the Message Passing communication system to the always dead process is transformed
into an output event (destroy event) of the always dead process to the black hole. The
simulation of the Black Hole b ∈ B by the always dead process b ∈ D produces the
same appearance to the system as the Black Hole

3.3.2 Simulation of an ADPMP algorithm by a ΒHMA algorithm
LetD be a message passing algorithm on the system (P, C, D, λ) such that in every

execution of D the total number of messages sent to always dead processes is at most
k − 1,for some k ∈ N. If we wish to simulate algorithm D on top of a mobile agent
system with black holes (A, P, B, S, π0, λ

′), where S = (V,E, λ′), |A| ≥ k, and
|D| ≤ |B|, the mobile agents should be able to move on the navigation subsystem and
execute the local message passing algorithm Dp on each execution place p ∈ P. Due
to the presence of black holes in the system, the partial graph traversal of algorithm 2
cannot be applied, since some mobile agents might be destroyed by a black hole during
the partial graph traversal of algorithm 2.

In order to overcome this problem, each agent α ∈ Awill execute the local message
passing algorithmDp on p ∈ P and at the same time expand the partial spanning tree Tα

each time they simulate the send events of algorithm Dp to unvisited execution places.
Additionally, we have to ensure that even if an agent α ∈ A is destroyed by a blackhole,
the execution places p ∈ Tα are assigned to another alive agent to simulate them. For
this reason we will modify algorithm 4 AnSimulate of [13], to simulate a message
passing algorithm D that sends at most k − 1 messages to always dead processes in a
mobile agent system with at least k agents and |B| ≤ |D|.

48

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Algorithm 6 Simulation of a Message Passing algorithm D in a Mobile Agent System
with Always Dead processes

Initially:
traversedu(δu(v))← NULL, ∀u, v such that (u, v) ∈ E(G)
fatherlinku ← NULL, ∀u ∈ V (G)
fatherlinkπ0(α) ← −1, ∀α ∈ A
π(α)← π0(α), ∀α ∈ A
Tα ← {π0(α)}, ∀α ∈ A

for Phase i ≥ 1: do
Step 1: Agent α ∈ A does a dfs traversal of Tα and executes the local algorithm

Du on each u ∈ Tα

while TBDu ̸= ∅ do
< u, v, m >← TBDu.dequeue()
if traversedu(v) ̸= "T " and traversedu(v) ̸= "NT " then

traversedu(v)← "exploring"
π(α)← v ▷ agent α migrates to v
in− bufv.enqueue(< u, v,m >)
if fatherlinkv ̸= NULL then

traversedv(δv(u))← "NT " ▷ edge (u, v) is safe and (u, v) /∈ Tα

π(α)← u ▷ agent α migrates to u
traversedu(δu(v))← "NT "

else
fatherlinkv ← δv(u)
traversedv(δv(u))← "T " ▷ edge (u, v) is safe and (u, v) ∈ Tα

πα ← u ▷ agent α migrates to u
Agent α executes local algorithm Dv on v

Write DONE(i, nα) on whiteboardp
if ANNEXEDπ0(α) = (j, nβ , pathto(e

′))1 then
α traverses pathto(e′) to arrive to node u and sets traversedu(e′)← T
nα ← nα + nβ

Tα ← Tα + {e′}+ Tβ

ANNEXEDπ0(α) = NULL
Go to step 3

Step 2: Agent α ∈ A starts a dfs traversal of its territory Tα. During the
traversal for each external edge (i.e. e ∈ E such that traversedu(e) = "NT " for
some u ∈ Tα) it traverses the edge e = {u, v}, and reads DONE(j, nβ)

if j < i or (j = i and nβ < nα) then
Go to homebase of β ∈ A (by following fatherlinks)
if ANNEXEDπ0(β) = NULL then

ANNEXEDπ0(β) ← (i, nα, pathto(e)
nα ← nα + nβ

Tα ← Tα + {e}+ Tβ

Step 3: Agent α ∈ A updates territory Tα to include all territories it annexed
and those annexed but the agents it defeated.

The fatherlink of each node in Tα is updated and nα is modified accordingly.
if fStateu = "Finished" ∀u ∈ Tα then

Execute termination detection algorithm 5
else

Go to phase i+ 1 49

3.3. SIMULATIONS AMONG BHMA AND ADPMP MODEL

Proposition 3.10. Algorithm 6 of the mobile agent system (P, A, B, S, π0, λ) sim
ulates any message passing algorithm D defined on the system (P, C, D, λ), where
C = S = (V, E, λ) and |B| ≤ |D|, given that in algorithm D at most k − 1 messages
are sent to always dead processes D and that the graph G \D is connected.

Proof. Let EA be an execution of algorithm 6 that simulates message passing algorithm
D.

Claim 1: Every p ∈ P belongs to at least one Tα, α ∈ A.
proof: It suffices to show that every node will be visited by at least one mobile

agent, while simulating the send events. Since the graph G \ D is connected, we can
assume without loss of generality that ∀p ∈ P here exists a subsequence of send events
of execution E from some homebase π0(α), α ∈ A to node p.

Claim 2: For every agent α ∈ A that is destroyed, every p ∈ Tα will be assigned to
an alive agent β ∈ A.

proof: By algorithm 6, when an agent α ∈ A is destroyed by a black hole or is slow
then a neighboring agent will expand his territory to include Tα.

Claim 3: At least one agent α ∈ A survives till the end of the execution of the
simulation algorithm A and the union of the territories of the alive agents at the end of
the algorithm is V .

proof: By algorithm D, at most k − 1 messages are sent to always dead processes.
In the simulation an agent will traverse an unexplored edge {u, v} only if in algorithm
Du u sends a message to v. Therefore at least one agent α ∈ A will survive till the
end of the execution of the simulation algorithmA. Since when an agent is slow or has
been destroyed, another mobile agent takes responsivility of his territory, then by the
end of the algorithm the union of the territories of the alive agents contains all vertices
of graph G. ⋃

α ∈ A
α alive
till the end

V (Tα) = V (G)

Complexity
Agent Complexity

Proposition 3.11. Let A be the simulation algorithm 6 on the message passing algo
rithm D. The minimum number of agents required for algorithm A to be resilient is
Agents(α, S) = k where k − 1 is the maximum number of messages sent to always
dead processes over all executions of algorithm D.

Proof. Algorithm A is resilient if at least one agent survives and completes the simu
lation of algorithm A.

• If |A| = k and |B| ≤ |D| and the number of messages sent to always dead
processes is at most k − 1, then by the proof of proposition 3.10 at least one
agent will survive and complete the simulation of algorithm D.

1pathto(e′) is the path that contains edge labels from π0(α) to e′

50

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

• If |A| = k−1, |B| = |D| and there exists an execution of algorithmD that sends
k − 1 messages to always dead processes, then by running algorithm 6 all the
mobile agent will be eventually destroyed by some black hole.

Therefore the minimum number of agents required is k.

3.4 Crash Failures in MP (CFMP) and Black+ holes in
MA (B+HMA)

3.4.1 MP model with Crash Failures (CF)
In the message passing model a crash failure or crash fault or stopping failure is a

type of benign failure. A crashed process is a process that executed the local algorithm
correctly up to a moment t0 and after time t0 it did not execute a single step of the
algorithm. [23]. We note that an always dead process is a special case of a crash failure
where the time of the crash is at the beggining of the algorithm, t0 = 0.

A message passing model with tcrash failures is defined by (P, C, F, λ) where:

• P, C, λ are as defined in section 1.2

• F ⊊ P, |F | ≤ t is a set of at most tfaulty processes.

Without loss of generality we assume that an adversary can choose to corrupt any subset
F ⊊ P of at most tprocesses and choose the time t0 : F → R of stopping of each of
the corrupted processes.

Message Passing algorithm with Crash Failures

A message passing algorithm with tcrash failures is defined as in section 1.2 with the
following modifications:

• The setQP of possible states of the processes contains a special terminal state cf
that indicates that a process crashed and will not execute any further event.

• The faulty processes are modelled as state machines, where the allowed events
are send, receive, internal event as described in section 1.2, and additionally a
stop event, which is modelled as an input action.

• At time t0(f), a stop event is applied to process f ∈ F , and f stops executing
the local algorithm Df . The stop event is modelled as an input action:

(c, in∗, "crash") ⊢f (cf , 0,⊥)

and arrives from an adversary or from an unspecified external environment through
a special port in∗. In the stop event the adversary changes the current state of
process f ∈ F to cf .

• A stop event can change only the state of process f

• When a message is sent to a crashed process we can assume without loss of gen
erality that it is ignored, since the effect of this action is not seen outside of f ,

51

3.4. CRASH FAILURES IN MP (CFMP) AND BLACK+ HOLES IN MA (B+HMA)

f ∈ F . [23]. Therefore, the only applicable event for process f ∈ F with state
cf is the ignore event:

(cf , in, m) ⊢f (cf , 0,⊥)

where cf is the state of process f ∈ F , in is the port through which the message
m is received.
M ←M \ {(p′,m, f)} where p′ is such that δf (p′) = in

• The termination property is modified to depend only to correct processes, regard
less of the failures of other processes.

The interaction of a crashed process with the message passing communication sys
tem and the external environment is depicted in figure 3.7. The crashed process sends
and receives messages according to the message passing algorithm until the stop event
from the external environment occurs, at time t0. After the stop event every message
that arrives to the always dead process from the communication system is received and
immediately ignored. Therefore without loss of generality, the interface of the message
passing system contains also the ignore events of the crashed processes, as depicted in
figure 3.8.

52

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

External Environment

Crashed Process
f ∈ F

Message Passing
Communication System

C = G(V,E, δ)

Stop event
process f ∈ F receives

"crash" message
through port in∗ and
changes its state to
state(f) = cf

(c, in∗, "crash") ⊢f (cf , 0,⊥)

Receive event
process f ∈ F ,

where state(f) ̸= cf
receives messagem
through port in

(c, in,m) ⊢p (d, 0,⊥)

Send event
process f ∈ F ,

where state(f) ̸= cf
sends messagem
through port out

(c, 0,⊥) ⊢p (d, out,m)

Ignore event
crashed process f ∈ F
where state(f) = cf
receives messagem

through port in and ignores it
(cf , in,m) ⊢f (cf , 0,⊥)

Figure 3.7: The interface of a crashed process with the message passing communication
system. The crashed process f ∈ F executes the algorithm correctly up until the stop
event arrives from the external environment(or the adversary) through the special port
in∗ at time t0, chosen by the adversary. After the stop event, any messagem received
by f ∈ F from the message passing communication system is ignored and the state of
the process f doesn't change.

Message Passing System

Receive event
process p,

where state(p) ̸= cf
receives messagem
through port in

(c, in,m) ⊢p (d, 0,⊥)

Send event
process p,

where state(p) ̸= cf
sends messagem
through port out

(c, 0,⊥) ⊢p (d, out,m)

Ignore event
crashed process f ∈ F
where state(f) = cf
receives messagem

through port in and ignores it
(cf , in,m) ⊢f (cf , 0,⊥)

Figure 3.8: The interface of a Message passing system with crash failures. The inputs
of the message passing system are the send events and the outputs are the receive events
and the ignore events.

53

3.4. CRASH FAILURES IN MP (CFMP) AND BLACK+ HOLES IN MA (B+HMA)

3.4.2 MA Model with Black+ holes (B+H)
In the mobile agent model a black+ hole (B+H) is a type of stationary host attack sim

ilar to the black holemodel defined above. More precisely, a black+ hole is a stationary
process located at an execution place b ∈ P that destroys every agent that visits b at any
time t ≥ t0, without leaving any trace to the surviving agents. Without loss of general
ity we assume that an adversary or an unspecified entity from the external environment
can choose the subset B+ ⊊ P of black+ holes and the time t0 : B+ → R that each
b ∈ B+ will start acting as a black hole. Until time t0(b), b acts as a safe execution place.

A mobile agent system with a set of black+ holes is defined as (A, P, B+, S, π0, λ)
where:

• A, P, S, λ are defined as in section 1.3.

• B+ ⊊ P is a set of black+ holes that destroy any visiting agent without leaving
any trace.

• P \ B+ is the set of safe execution places

• π0 : A→ P \ B+ agents are initially located on safe execution places.

Black hole model is a special case of the Black+ hole model when t0 = 0

Mobile Agent Algorithm with a black+ hole

Amobile agent algorithm with a set of black+ holes is defined as in section 1.3 with the
following modifications:

• The setQA of possible states of the agents contains a special terminal state s
BH

+

that indicates that an agent died when visiting a black hole b ∈ B+.

• The setQP of possible states of the execution places contains a special state q
BH

+

that indicates that the execution place destroys any incoming agent.

• At time t0(b), b ∈ B+ starts acting as a black hole. Without loss of generality
we assume that the adversary changes the state of the execution place to q

BH
+

by invoking the black+ hole event. The black+ hole event modelled as an input
action from the external environment as follows:

("black+", q, in∗) ⊢b (♯, q
BH

+ , 0)

where "black+" is a special state indicating the change of state of the execution
place, q ∈ QP \ {q

BH
+ } is the old state of b ∈ B+, ♯ is a null state, q

BH
+ is the

new state of b ∈ B+ and in∗ is a special port through which the black+ hole event
arrives from the external environment.

• When agent α ∈ A visits a black+ hole b ∈ B+ at time t ≥ t0(b) the only
applicable event is the destroy event:

(s, q
BH

+ , in) ⊢αb (s
BH+ , q

BH
+ , 0)

where s is the old state of agent α ∈ A, q
BH

+ is old state of b ∈ B+, in is the
port through which α arrived to b, s

BH+ is the new and terminal state of α and
there is no other applicable event that involves agent α ∈ A

54

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

• after a destroy event of agent α ∈ A on black hole b ∈ B+:
M←M \ {(p′, α, p)} where p′ ∈ P is such that δp(p′) = in
π(α)←⊥
A← A \ {α}

• The termination property is modified to depend only to the surviving agents, i.e.
agents that are not destroyed by the black+ hole.

The interaction of a Black+ Hole with the mobile agent navigation system and the
external environment is depicted in figure 3.9. The Black+ Hole behaves as a non mali
cious execution place up until the time that the Black+ Hole event occurs. Every agent
α ∈ A that arrives to the from the navigation system is destroyed without leaving any
trace. Therefore without loss of generality, the interface of the mobile agent system
contains also the destroy events of the Black+ Hole, as depicted in figure 3.10.

External Environment

Black + Hole
b ∈ B∗

Mobile Agent
Navigation System
C = G(V,E, δ)

Black+ Hole event
The Black+ Hole b ∈ B+

receives a "black+" message
through port in∗ and
changes its state to
state(b) = q

BH+

("black+", q, in∗) ⊢b (♯, q
BH

+ , 0)

Arrive event
agent α ∈ A,

arrives at b ∈ B+

state(b) ̸= q
BH+

through port in
(s, q, in) ⊢αb (s′, q′, 0)

Depart event
agent α ∈ A,

departs from b ∈ B+,
state(b) ̸= q

BH+

through port out
(s, q, 0) ⊢αb (s′, q′, out)

Destroy event
agent α ∈ A

arrives at b ∈ B+

where state(b) = q
BH+

through port in and gets destroyed
(s, q

BH+ , in) ⊢αb (s
BH+ , qBH+ , 0)

Figure 3.9: The interface of a Black+ Hole with the mobile agent navigation system.
The inputs of the Black+ Hole are the arrive events, and the outputs are the send events.
After the Black+ Hole event occurs as input from the external environment the inputs
of the Black+ Hole are only the destroy events.

55

3.5. SIMULATION OF A B+HMA ALGORITHM BY A CFMP ALGORITHM

Mobile Agent System

Arrive event
agent α arrives at p,

where state(p) ̸= q
BH+

through port in
(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p,
where state(p) ̸= q

BH+

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Destroy event
agent α arrives at b ∈ B+

where state(b) = q
BH+

through port in and gets destroyed
(s, q

BH+ , in) ⊢αp (s
BH+ , qBH+ , 0)

Figure 3.10: The interface of a Mobile agent system with black+ holes. The inputs of
the mobile agent system are the depart events and the outputs are the arrive events and
the destroy events.

3.5 Simulation of a B+HMA algorithm by a CFMP al
gorithm

Amobile agent algorithm with black+ holes can be simulated in the message passing
system with crash failures. The simulation is very similar with the simulation presented
in 3.3.1 if we replace the always dead processes with crash failure and assume that the
mobile agent algorithm A tolerates black+holes. If in the mobile agent algorithm A
agentα ∈ A visits the black+hole b ∈ B+ after time t0(b) it is destroyed without leaving
any trace, while in the simulation in the message passing system when a message is sent
to a crashed process b ∈ F after time t0(b) it is destroyed and the sender has no evidence
that the receiver b is faulty. Therefore agents don't know if agent α has died or delayed
to return from visiting node u, while in the simulation, neighbouring processes don't
know if process u is faulty or has delayed to respond.

Let (A, P, B+, S, π0, λ) be a mobile agent system with a set of black+ holes B+,
where S = (V,E, δ) is the navigation subsystem and A = (⊢αp)α∈A, p∈P. The mobile
agent algorithm A can be simulated in the message passing system (P, C, F, λ′) in
algorithm D as in section 2.1 with the following modifications:

• Each non faulty process p ∈ P \ F of the message passing system corresponds
to a safe execution place p ∈ P \ B+ of the mobile agent system and executes
algorithm Dp as defined in section 2.1.

• Each crash failure process b ∈ F of the message passing system corresponds to
a black+ hole b ∈ B+.

• The ignore event of a token t(α) by a crashed process:

(cf , in, s) ⊢b (cf , 0, ⊥)

where cf = (q
BH+ , 0, ♯), and in is the port through which token t(α) with state

s is received, has similar effect with the destroy event of an agent α by black+
hole b ∈ B+:

(s, q
BH+ , in) ⊢αb (s

BH+ , qBH+ , 0)

since after the ignore event token t(α) will not be involved in any other event
and so will agent agent α after the destroy event.

56

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Proposition 3.12. LetA = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented on
the mobile agent system with black+ holes (A, P, B+, S, π0, λ). LetD = (Dp)p∈P be
the message passing algorithm defined above on the message passing systemwith crash
failures (P, C, F, λ′). Then algorithm D of the message passing system simulates
algorithm A of the mobile agent system.

Proof. Similarly with the proof of proposition 3.5 with the additional remarks that:

1. |F | ≤ |B+|

2. there exists an execution EA of A that the time that a process p ∈ F crashes is
the same as the time that the corresponding execution place p ∈ B+ becomes a
black hole.

Simulation of B+H by a crashed process

Black + holes can be simulated by crash failures. In this case, the black+ hole event,
that an execution place becomes a black+ hole:

("black", q, in∗) ⊢b (♯, q
BH

+ , 0)

is simulated by a stop event, that a process b crashes:

((q, 0, ♯), in∗, "crash") ⊢b ((q
BH

+ , 0, ♯), 0, ⊥)

Therefore, the destroy event of an agent α by a black+ hole b:

(s, q
BH

+ , in) ⊢αb (s
BH

+ , q
BH

+ , 0)

is simulated as an ignore event of token t(α)

((q
BH

+ , 0, ♯), in, s) ⊢b ((q
BH

+ , 0, ♯), 0,⊥)

Again, after the destroy event agent α will not be involved in any other event and token
t(α) will be ignored and no other event will involve token t(α).

Termination

Lemma 3.13. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm on the mobile agent
system with black+ holes implemented (A, P, B+, S, π0, λ). Let D = (Dp)p∈P be
the message passing algorithm defined above on the message passing systemwith crash
failures (P, C, F, λ′). If algorithm A has the termination property then algorithm D
has the termination property.

Proof. Similar with the proof of lemma 3.6

57

3.5. SIMULATION OF A B+HMA ALGORITHM BY A CFMP ALGORITHM

Complexity
Message Complexity

Proposition 3.14. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates
t black+ holes implemented on the mobile agent system (A, P, B+, S, π0, λ), where
|B+| ≤ t. Let D = (Dp)p∈P be the message passing algorithm defined above on the
message passing system with crash failures (P, C, F, λ′), where |F | ≤ t and C = S.
Then the total number of messages exchanged during the execution of D is:

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

whereMove(α,A,S) is the total number of moves of agent α ∈ A in the execution of
A. The total number of messages sent to the set of faulty processes F is at most k− 1,
where k = |A|.

The total size of messages exchanged is

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

where LocMemAg(α,A,S) is the local space complexity of agent α ∈ A, i.e. the size
of notebook of α.

Proof. If in the simulation algorithmD there is a send event for process p ∈ P \F and
token t(α), α ∈ A then in algorithm A agent α ∈ A departs from the execution place
p ∈ P \ B+. The size of each message t(α) in D equals the size of the notebookα of
the corresponding agent α or state(α).

If in the simulation algorithm D there is a send event to a crashed process b ∈ D,
then in algorithm A agent α ∈ A arrives to black+ hole b ∈ B+ and is destroyed.

Time Complexity

Proposition 3.15. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates
t black+ holes implemented on the mobile agent system (A, P, B+, S, π0, λ), where
|B+| ≤ t. Let D = (Dp)p∈P be the message passing algorithm defined above on the
message passing system with crash failures (P, C, F, λ′), where |F | ≤ t and C = S.
Then the time complexity of algorithm D is:

Time(D, C) = Time(A,S)

where Time(A,S) is the time complexity of mobile agent algorithm A on the naviga
tion system S.

Proof. The proof is similar with the proof of proposition 2.4

Space Complexity

Proposition 3.16. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates
t black+ holes implemented on the mobile agent system (A, P, B+, S, π0, λ), where
|B+| ≤ t. Let D = (Dp)p∈P be the message passing algorithm defined above on the
message passing system with crash failures (P, C, F, λ′), where |F | ≤ t and C = S
and C = S. Then the local space complexity of algorithm D is:

LocMem(D, C) = max
p∈P

LocMemWB(p,A,S) +max
α∈A

LocMemAg(α,A,S)

58

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

where LocMemWB(p,A,S) is the local space complexity of execution place p ∈ P
and locMemAg(α,A,S) is the local space complexity of agent α ∈ A of algorithmA
on the navigation system S. The total space complexity of algorithm D is:

Mem(D, C) =
∑
p∈P

LocMemWB(p,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Proof. The proof is similar with the proof of proposition 2.5

The simulation presented is summarised in tables 3.4, 3.5 an figure 3.11. The simu
lation of a Black+ Hole by a Crashed process is depicted in figure 3.12. The complexity
of the simulation is summarised in table 3.6.

Table 3.4: Simulation of Mobile Agent Algorithm A with black+ holes by Message
Passing Algorithm D with crash failures

Mobile Agent Model with black+ holes Message Passing Model
with crash failures

System: (A, P, B+, S, π0, λ) System: (P, C, F, λ′)

S = (V, E, δ) navigation subsystem C = (V, E, δ) communication subsystem
P or V : execution places, P or V : asynchronous processes

equipped with a whiteboard
E : migration ports E : communication channels
δu : N

G
(u)→ [1, degG(u)] : u ∈ V δu : N

G
(u)→ [1, deg(u)] : u ∈ V

port labelling function port labelling function
λ : initial states of places and agents λ′ : initial states of processes

λ′(p) =

{
(λ(p), 1, λ(α)), if π0(p) = α

(λ(p), 0, ♯), otherwise
, p ∈ P

A: set of k asynchronous mobile agents. k tokens
π0 : A→ V initial placement of agents. π0 : initial placement of tokens.
π : A→ V location of agents. π : location of tokens.

Black+ hole b ∈ B+ ⊊ P: Faulty process b ∈ F ⊊ P :

a stationary process that destroys a process that does not execute
any incoming agent after time t0(b) a single step of the algorithm after time t0(b)
s
BH+ : the state of the destroyed agent state(b) = sc = (q

BH+ , 0, ♯) after time t0(b)

Mobile agent algorithm A Simulation message passing algorithm A

QA : set of possible states of α ∈ A M = QA \ {sBH+}: set of possible messages
QP: set of possible states of p ∈ P Q = QP × {0, 1} ×QA ∪ {♯} \ {sBH+}:

set of possible states of p ∈ P
IA ⊆ QA \ {sBH+}: set of initial states of α I = IP × {0, 1} × IA ∪ {♯}:
IP ⊆ QP: set of initial states of p ∈ P set of initial states of p ∈ P

stateA(p), p ∈ P state(p) =

stateA(α), α ∈ A =

{
(stateA(p), 1, stateA(α)), π(p) = α, p ∈ F

(stateA(p), 0, ♯), otherwise
M: multiset of agents in transit M = M: multiset of messages in transit

59

3.5. SIMULATION OF A B+HMA ALGORITHM BY A CFMP ALGORITHM

Table 3.5: Simulation of Mobile Agent Algorithm A with black+ holes by a Message
Passing Algorithm D with crash failures

Mobile Agent Model with black+ holes Message Passing Model
with crash faults

Events of the relation ⊢αp of A Events of the relation ⊢p of D
h : events(A)→ events(D)

if p ∈ P \ B+, α ∈ A: if p ∈ P \ F :

departure event: send event:
(s, q, 0) ⊢αp (s′, q′, out)

(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 0, ♯), out, s′

)
arrival event: receive event:

(s, q, in) ⊢αp (s′, q′, 0)
(
(q, 0, ♯), in, s

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
α remains at p: internal event:

(s, q, 0) ⊢αp (s′, q′, 0)
(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
if p ∈ B+ and time t ≥ t0(p) if p ∈ F and time t ≥ t0(p)

stateA(p) = q
BH+ state(p) = (q

BH+ , 0, ♯)

and the only applicable event is the and the only applicable event is the
destroy event: ignore event:

(s, q
BH+

, in) ⊢αp (s
BH+ , qBH+

, 0)
(
(q

BH+ , 0, ♯), in, s
)
⊢p

(
(q

BH+ , 0, ♯), 0, ⊥
)

Table 3.6: Complexity of the Simulation of the Mobile Agent Algorithm with Black+
Holes A by Message Passing Algorithm D with crashed processes

Message
Complexity

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

Bit
Complexity

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

Time
Complexity

Time(D, C) = Time
(
A,S

)

Local Space
Complexity

LocMem(D, C) = max
p∈P
{LocMemWB(α,A,S)}+max

α∈A
{LocMemAg(α,A,S)}

Total Space
Complexity

Mem(D, C) =
∑
p∈P

LocMemWB(α,A,S) +
∑
α∈A

LocMemAg(α,A,S)

60

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Sim
Mobile Agent system

Message Passing system

Arrive event
agent α arrives at p,

where state(p) ̸= q
BH+

through port in
(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p,

state(p) ̸= q
BH+

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Destroy event
agent α arrives at b ∈ B+ at time ≥ t0

where state(p) = q
BH+

through port in and gets destroyed
(s, q

BH+ , in) ⊢αb (s
BH+ , qBH+ , 0)

Receive event
process p,

where state(p) ̸= (q
BH+ ,0,♯)

receives messagem = s
through port in

((q, 0, ♯), in, s) ⊢p ((q′, 1, s′), 0,⊥)

Send event
process p,

where state(p) ̸= (q
BH+ , 0, ♯)

sends messagem = s′

through port out
((q, 1, s), 0,⊥) ⊢p ((q′, 0, ♯), out, s′)

Ignore event
process b ∈ F ,

where state(p) = (q
BH+ , 0, ♯)

receives and ignores
m = s through port in

((q
BH+ , 0, ♯), in, s) ⊢b ((qBH+ , 0, ♯), 0,⊥)

Figure 3.11: Simulation of Mobile agent system with black+ holes by a Message Pass
ing system with crash failures, where the inputs of mobile agent system (depart events)
are transformed into inputs of the message passing system (send events) and the outputs
of the message passing system (receive or ignore events) are transformed into outputs
of the mobile agent system (arrive or destroy events), while the ignore events are trans
formed into destroy events. Running the simulation algorithm on top of the message
passing system with crash failures produces the same appearance as does running the
algorithm on top of the mobile agent system with black+ holes.

61

3.6. OMISSION FAILURES IN MP (OFMP) AND GRAY HOLES IN MA (GHMA)

External Environment

Black+ Hole
b ∈ B+

Sim
Crashed Process

b ∈ F

Message Passing
Communication System

S = G(V,E, δ)

Arrive event
agent α arrives at b

where state(b) ̸= q
BH+

through port in
(s, q, in) ⊢αb (s′, q′, 0)

Depart event
agent α departs from b,
where state(b) ̸= q

BH+

through port out
(s, q, 0) ⊢αb (s′, q′, out)

Destroy event
agent α arrives at black+ hole b ∈ B+,

where state(b) = q
BH+

through port in and gets destroyed
(s, q

BH+ , in) ⊢ab (s
BH+ , qBH+ , 0)

Stop event
process b ∈ F receives

"crash" message
through port in∗ and
changes its state to
state(b) = cf

(c, in∗, "crash") ⊢b (cf , 0,⊥)

Receive event
process b, where

state(b) ̸= (q
BH+ , 0, ♯)

receives messagem = s
through port in

((q, 0, ♯), in, s) ⊢b ((q′, 1, s′), 0,⊥)

Send event
process b, where

state(b) ̸= (q
BH+ , 0, ♯)

sends messagem = s′

through port out
((q, 1, s), 0,⊥) ⊢b ((q′, 0, ♯), out, s′)

Ignore event
process b ∈ F

where state(b) = (q
BH+ , 0, ♯)

receives and ignores
m = s through port in

((q
BH+ , 0, ♯), in, s) ⊢b ((qBH+ , 0, ♯), 0,⊥)

Black+ Hole event
The Black+ Hole b ∈ B+

receives a "black+" message
through port in∗ and
changes its state to
state(b) = q

BH+

("black+", q, in∗) ⊢b (♯, q
BH

+ , 0)

Figure 3.12: Simulation of black+ holes by crashed processes.
The input event of the black+ hole (black+ hole event) is transformed to input event of
the crashed process (crash event) and the output event of the crashed process (ignore
event) is transformed to output event of the black+ hole (destroy event) . The simulation
of black+ hole by crashed process produces the same appearance to the system as the
black+ hole

The simulation of a mobile agent algorithm A to a message passing algorithm D, for a
mobile agent system to a message passing system as described above is be the similar to
the simulation in section 2.1. Most problems in the mobile agent system with a black+
hole have the requirement that at least one agent survives. Therefore, the meaning of
the simulation in the message passing model is to achieve a specific goal, but send up
to k − 1 messages to the faulty process.

3.6 Omission Failures in MP (OFMP) and Gray holes
in MA (GHMA)

3.6.1 MP model with Omission Failures (OF)
In the message passing model an omission failure (OF) is a type of benign failure,

that was introduced in [28]. A process with omission failure might skip some steps of
the algorithm and then continue the execution of the algorithm. [32]. We note that an
always dead processes and crash failures are special cases of omission failures, where
the process skips all the steps of the algorithm after time t0.

Amessage passingmodel with tomission failures is defined by (P, C, O, λ)where:

62

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

• P, C, λ are as defined in section 1.2

• O ⊊ P, |O| ≤ t is a set of at most tfaulty processes.

Without loss of generality we assume that an adversary can choose to corrupt any subset
O ⊊ P of at most tprocesses and choosewhich steps of the algorithm the faulty process
will omit.

Message Passing algorithm with Omission Failures

A message passing algorithm with tomission failures is defined as in section 1.2 with
the following modifications:

• The set QP of possible states of the processes contains a special state co that
indicates that a process crashed temporarily and is not currently executing the
steps of the algorithm.

• The faulty processes are modelled as state machines, where the allowed events
are send, receive, internal event as described in section 1.2, and additionally a
stop and a restart event, which are modelled as input actions.

• The stop event is modelled as an input action:

(c, in∗, "crash") ⊢f (co, 0,⊥)

and arrives from an adversary or from an unspecified external environment through
a special port in∗. In the stop event the adversary changes the current state of
process f ∈ O to co. A stop event can change only the state of process f ∈ O.

• When a message is sent to a crashed process we can assume without loss of gen
erality that it is ignored, since the effect of this action is not seen outside of f ,
f ∈ F . [23]. Therefore, the only applicable event for process f ∈ F with state
cf is the ignore event:

(co, in, m) ⊢f (co, 0,⊥)

where co is the state of process f ∈ F , in is the port through which the message
m is received.
M ←M \ {(p′,m, f)} where p′ is such that δf (p′) = in.

• The resume event is modelled as an input action:

(co, in
∗, "resume") ⊢f (c, 0,⊥)

and arrives from an adversary or from an unspecified external environment through
a special port in∗. In the stop event the adversary changes the current state co of
process f ∈ O to c ∈ QP \ {co}. A resume event can change only the state of
process f ∈ O.

• The termination property is modified to depend only to correct processes, regard
less of the failures of other processes.

63

3.6. OMISSION FAILURES IN MP (OFMP) AND GRAY HOLES IN MA (GHMA)

The interaction of an omission failure with the message passing communication
system and the external environment is depicted in figure 3.13. The crashed process
sends and receives messages according to the message passing algorithm until the stop
event from the external environment occurs. After the stop event every message that
arrives to the always dead process from the communication system is received and
immediately ignored. When the resume event arrives from the external environment,
the state of the process changes to the state of the process before the stop event and the
process continues executing the message passing algorithm correctly. The adversary
can send the "stop" and "resume" events to the process repeatedly, according to any
strategy. Therefore without loss of generality, the interface of the message passing
system contains also the ignore events of the omission failures, as depicted in figure
3.14.

External Environment

Omission Failure Process
f ∈ O

Message Passing
Communication System

C = G(V,E, δ)

Stop event
process f ∈ O receives

"crash" message
through port in∗ and
changes its state to
state(f) = co

(c, in∗, "crash") ⊢f (co, 0,⊥)

Resume event
process f ∈ O receives
"resume" message

through port in∗ and
changes its state to
state(f) = c ̸= co

(co, in
∗, "resume") ⊢f (c, 0,⊥)

Receive event
process f ∈ O,
state(f) ̸= co

receives messagem
through port in

(c, in,m) ⊢f (d, 0,⊥)

Send event
process f ∈ O,
state(f) ̸= co

sends messagem
through port out

(c, 0,⊥) ⊢f (d, out,m)

Ignore event
crashed process f ∈ O
where state(f) = co
receives messagem

through port in and ignores it
(co, in,m) ⊢f (co, 0,⊥)

Figure 3.13: The interface of an omission failure process with the message passing
communication system. The faulty process f ∈ O executes the algorithm correctly up
until the stop event arrives from the external environment(or the adversary) through
the special port in∗. After the stop event, any message m received by f ∈ F from
the message passing communication system is ignored and the state of the process f
doesn't change. When a resume event arrives from the external environment through
the special port in∗ the process continues to execute the algorithm and send and receive
messages from and to the communication system.

64

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Message Passing System

Receive event
process p,

where state(p) ̸= co
receives messagem
through port in

(c, in,m) ⊢p (d, 0,⊥)

Send event
process p,

where state(p) ̸= co
sends messagem
through port out

(c, 0,⊥) ⊢p (d, out,m)

Ignore event
crashed process f ∈ O
where state(f) = co
receives messagem

through port in and ignores it
(co, in,m) ⊢f (co, 0,⊥)

Figure 3.14: The interface of a Message Passing system with omission failures. The
inputs of the message passing system are the send events and the outputs are the receive
events and the ignore events.

3.6.2 MA Model with Gray holes (GH)
In the mobile agent model a gray hole (GH) is a type of stationary host attack similar

to the black hole model. A gray hole is a stationary process located at an execution
place g ∈ P that can choose whether and when to act as a black hole or a safe node.
Without loss of generality we assume that an adversary or an unspecified entity from
the external environment can choose the subset G ⊊ P of gray holes and when each
g ∈ G will act as a black hole or a safe node.

Amobile agent systemwith a set of gray holes is defined as (A, P, G, S, π0, λ)where:

• A, P, S, λ are defined as in section 1.3.

• G ⊊ P is a set of gray holes that can choose whether to behave as black holes or
safe execution places.

• P \G is the set of safe execution places.

• π0 : A→ P \G agents are initially located on safe execution places.

Black+ hole model, and subsequently the black hole model, is a special case of the Gray
hole model, if the malicious host behaves only as a black hole at any time t ≥ t0

Mobile Agent Algorithm with a gray hole

A mobile agent algorithm with a set of gray holes is defined as in section 1.3 with the
following modifications/additions:

• The set QA of possible states of the agents contains a special terminal state s
GH

that indicates that an agent was destroyed when visiting a gray hole g ∈ G

• The setQP of possible states of the execution places contains a special state qGH

that indicates that the execution place destroys any incoming agent.

• Without loss of generality, we assume that the decision of a gray hole to act as a
black hole or a safe node is modelled as an input action from the external envi
ronment. The gray hole event is modelled as:

("gray", q, in∗) ⊢g (♯, q
GH

, 0)

65

3.6. OMISSION FAILURES IN MP (OFMP) AND GRAY HOLES IN MA (GHMA)

where "gray" is a state that indicates that the execution place will start destroying
any incoming agent, ♯ is a null state, q ∈ QP \ {qGH

} is the old state of g ∈ G,
q
GH

is the new state of g ∈ G and in∗ is a special port through which the gray
hole event arrives from the external environment.
The safe node event, that a gray hole g ∈ G with state q

GH
becomes a safe

execution place is modelled as:

("safe", q
GH

, 0) ⊢g (♯, q′, 0)

where "safe" is a state that indicates that the gray hole will act as a safe node, ♯
is a null state, q

GH
is old state of g ∈ G and q′ ∈ QP \ {qGH

}.

• When agent α ∈ A visits a gray hole g ∈ G with state q
GH

the only applicable
event is the destroy event:

(s, q
GH

, in) ⊢αg (s
GH

, q
GH

, 0)

where s is the old state of agent α ∈ A, q
GH

is old state of g ∈ G, in is the port
through which α arrived to g, s

GH
is the new and terminal state of α and there is

no other applicable event that involves agent α ∈ A

• after a destroy event of agent α ∈ A on gray hole g ∈ G:
M←M \ {(p′, α, p)} where p′ ∈ P is such that δp(p′) = in
π(α)←⊥
A← A \ {α}

• The termination property is modified to depend only to the surviving agents, i.e.
agents that are not destroyed by the gray hole.

The interaction of a Gray Hole with the mobile agent navigation system and the
external environment is depicted in figure . The Gray Hole behaves as a non malicious
execution place up until the time that the Gray Hole event occurs. After the "Gray Hole
event", every agentα ∈ A that arrives to the Gray Hole g ∈ G from the navigation
system is destroyedwithout leaving any trace. When the "SafeNode event" arrives from
the external environment, the gray hole g ∈ G behaves again as a safe execution place.
The adversary can invoke the "Gray Hole event" and the "safe node event" according
to any strategy. Therefore without loss of generality, the interface of the mobile agent
system contains also the destroy events of the Black+ Hole, as depicted in figure 3.16

66

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

External Environment

Gray Hole
g ∈ G

Mobile Agent
Navigation System
C = G(V,E, δ)

Gray Hole event
The Gray Hole g ∈ G

receives a "gray" message
through port in∗ and
changes its state to
state(b) = q

GH

("gray", q, in∗) ⊢g (♯, q
GH

, 0)

Safe Node event
The Gray Hole g ∈ G

receives a "safe" message
through port in∗ and
changes its state to
state(g) = q′

("safe", q
GH

, in∗) ⊢g (♯, q′, 0)

Arrive event
agent α ∈ A,

arrives at g ∈ G
state(g) ̸= q

GH

through port in
(s, q, in) ⊢αg (s′, q′, 0)

Depart event
agent α ∈ A,

departs from g ∈ G,
state(g) ̸= q

GH

through port out
(s, q, 0) ⊢αg (s′, q′, out)

Destroy event
agent α ∈ A

arrives at g ∈ B+

where state(g) = q
GH

through port in and gets destroyed
(s, q

GH
, in) ⊢αg (s

GH
, q

GH
, 0)

Figure 3.15: The interface of a Gray Hole with the mobile agent navigation system.
The inputs of the Gray Hole from the navigation system are the arrive events and the
destroy events, and the outputs are the send events. The inputs of the Gray Hole from
the external environment are the "safe node event" and the "gray hole event". After the
"Gray Hole event" occurs as input from the external environment the inputs of the Gray
Hole from the navigation system are only the destroy events, and after the "safe node
event" the inputs are the arrive events and the outputs are the depart

Mobile Agent System

Arrive event
agent α arrives at p

where state(p) ̸= q
GH

through port in
(s, q, in) ⊢αp (s′, q′, 0)

Depart event
agent α departs from p
where state(p) ̸= q

GH

through port out
(s, q, 0) ⊢αp (s′, q′, out)

(s, q
BH

, in) ⊢αp (s
BH

, q
BH

, 0)

Destroy event
agent α arrives at g ∈ G,
where state(g) = q

BH

through port in and gets destroyed
(s, q

GH
, in) ⊢αp (s

GH
, q

GH
, 0)

(s, q
GH

, in) ⊢αp (s
GH

, q
GH

, 0)

Figure 3.16: The interface of a Mobile agent system with gray holes. The inputs of the
mobile agent system are the depart events and the outputs are the arrive events and the
destroy events.

67

3.7. SIMULATION OF A GHMA ALGORITHM BY AN OFMP ALGORITHM

3.7 Simulation of a GHMA algorithm by an OFMP
algorithm

Similarly with sections 3.3.1 and 3.5 a gray hole resilient mobile agent algorithm can
be simulated in the message passing model with omission failures. In the simulation if
in the mobile agent algorithm A agent α ∈ A visits the gray hole hole g ∈ G that acts
currently as black hole, it is destroyed without leaving any trace, while in the simulation
in the message passing systemwhen a message is sent to a process with omission failure
g ∈ O, the receiving event will be omitted and the sender has no evidence that the
receiver g is faulty. Therefore agents don't know if agent α has died or delayed to
return from visiting node g, while in the simulation, neighbouring processes don't know
if process g received the message or has delayed to respond.

Let (A, P, G, S, π0, λ) be a mobile agent system with a set of gray holesG, where
S = (V,E, δ) is the navigation subsystem and A = (⊢αp)α∈A, p∈P. The mobile agent
algorithmA can be simulated in themessage passing system (P, C, O, λ′) in algorithm
D as in section 2.1 with the following modifications:

• Each non faulty process p ∈ P \ O of the message passing system corresponds
to a safe execution place p ∈ P \ G of the mobile agent system and executes
algorithm Dp as defined in section 2.1.

• Each omission failure process g ∈ O of the message passing system corresponds
to a gray hole g ∈ G.

• The ignore event of token(α) by a faulty process g ∈ O:

(cf , in, s) ⊢g (cf , 0, ⊥)

has similar effect with the destroy event of an agent α by gray hole g ∈ G:

(s, q
GH

, in) ⊢αg (s
GH

, q
GH

, 0)

since after the ignore event t(α) will not be involved in any other event in a
similar way that agent α after been destroyed will not participate in any other
event.

Proposition 3.17. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm implemented
on the mobile agent system with gray holes (A, P, G, S, π0, λ). Let D = (Dp)p∈P

be the message passing algorithm defined above on the message passing system with
omission failures (P, C, O, λ′). Then algorithm D of the message passing system
simulates algorithm A of the mobile agent system.

Proof. Similarly with the proof of proposition 3.5 with the additional remarks that:

1. |O| ≤ |G|

2. there exists an execution EA ofA that the times that a process p ∈ O crashes and
resumes the execution are the same as the times that the corresponding execution
place p ∈ G behaves as a black hole or a safe execution place.

68

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Simulation of a GH by OF

Gray holes can be simulated by omission failures. In this case:

• The gray hole event of a gray hole g ∈ G:

("gray", q
GH

, in∗) ⊢g (♯, q
GH

, 0)

is simulated in the message passing model as an stop event:

(c, in∗, "stop") ⊢g (co, 0, ⊥)

where c = (q, 0, ♯), co = (q
GH

, 0, ♯) and in∗ is the special port through which
the gray hole event arrives from the external environment.

• The safe node event of a gray hole g ∈ G:

("safe", q
GH

, in∗) ⊢g (♯, q′, 0)

is simulated in the message passing model as an resume event:

(co, in
∗, "resume") ⊢g (c, 0, ⊥)

where co = (q
GH

, 0, ♯), c = (q′, 0, ♯) and in∗ is the special port through which
the gray hole event arrives from the external environment.

• The destroy event of an agent α ∈ A by a gray hole g ∈ G:

(s, q
GH

, in) ⊢αg (s
GH

, q
GH

, 0)

is simulated in the message passing model as an ignore event:

(co, in, s) ⊢g (co, 0, ⊥)

where co = (q
GH

, 0, ♯), and in is the port through which token t(α) with state s
is received.
We note that after the destroy event agent α terminates and won't be involved in
any other event. In the simulation, token t(α) will arrive at g and will be ignored
by the faulty process b and there will be no other event involving token t(α).

The simulation is depicted in figure 3.18

Termination

Lemma 3.18. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t gray
holes implemented (A, P, G, S, π0, λ), where |G| ≤ t. Let D = (Dp)p∈P be the
message passing algorithm defined above on the message passing systemwith omission
failures (P, C, O, λ′), where |O| ≤ t and C = S. If algorithm A has the termination
property then algorithm D has the termination property.

Proof. The proof is similar with the proof of lemma 3.6

69

3.7. SIMULATION OF A GHMA ALGORITHM BY AN OFMP ALGORITHM

Complexity
Message Complexity

Proposition 3.19. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
gray holes implemented on the mobile agent system (A, P, G, S, π0, λ), where |G| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with omission failures (P, C, O, λ′), where |O| ≤ t and C = S.

Then the total number of messages exchanged during the execution of algorithm
D is:

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

where Move(α,A,S) is the move complexity of agent α ∈ A in the execution of A.
The total number of messages sent to the set of faulty processesO is at most k1, where
k = |A|. The total size of messages exchanged is

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

where LocMemAg(α,A,S) is the local complexity of agent α ∈ A, i.e. the size of
notebook of α.

Proof. If in the simulation algorithmD there is a send event for process p ∈ P \O and
token t(α), α ∈ A then in algorithm A agent α ∈ A departs from the execution place
p ∈ P \G. The size of each message t(α) in D equals the size of the notebookα of the
corresponding agent α or state(α).

If in the simulation algorithm D there is a send event to a process with omission
failure g ∈ O, then in algorithmA agent α ∈ A arrives to gray hole g ∈ G and is either
destroyed or is executed normally.

Time Complexity

Proposition 3.20. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
gray holes implemented on the mobile agent system (A, P, G, S, π0, λ), where |G| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with omission failures (P, C, O, λ′), where |O| ≤ t and C = S. Then
the time complexity of algorithm D is:

Time(D, C) = Time(A,S)

where Time(A,S) is the time complexity of mobile agent algorithm A.

Proof. The proof is similar with the proof of proposition 2.4

Space Complexity

Proposition 3.21. Let A = (⊢αp)a∈A, p∈P be a mobile agent algorithm that tolerates t
gray holes implemented on the mobile agent system (A, P, G, S, π0, λ), where |G| ≤
t. Let D = (Dp)p∈P be the message passing algorithm defined above on the message
passing system with omission failures (P, C, O, λ′), where |O| ≤ t and C = S.
Then the local space complexity of algorithm D is:

LocMem(D, C) = max
p∈P

LocMemWB(p,A,S) +max
α∈A

LocMemAg(α,A,S)

70

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

where LocMemWB(p,A,S) is the local space complexity of execution place p ∈ P
and LocMemAg is the local space complexity of agent α ∈ A of algorithm A on the
navigation system S.
The total space complexity of algorithm D is:

Mem(D, C) =
∑
p∈P

LocMemWB(p,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Proof. The proof is similar with the proof of proposition 2.5

The simulation is summarised in tables 3.7, 3.8 and figures 3.17. The simulation
of Gray Holes by omission failures is depicted in figure 3.18. The complexity of the
simulation is summarised in table 3.9

Table 3.7: Simulation of Mobile Agent AlgorithmA with gray holes by Message Pass
ing Algorithm D with omission failures

Mobile Agent Model with gray holes Message Passing Model
with omission failures

System: (A, P, G, S, π0, λ) System: (P, C, O, λ′)

S = (V, E, δ) navigation subsystem C = (V, E, δ) communication subsystem
P or V : execution places, P or V : asynchronous processes

equipped with a whiteboard
E : migration ports E : communication channels
δu : N

G
(u)→ [1, degG(u)] : u ∈ V δu : N

G
(u)→ [1, deg(u)] : u ∈ V

port labelling function port labelling function
λ : initial states of places and agents λ′ : initial states of processes

λ′(p) =

{
(λ(p), 1, λ(α)), if π0(p) = α

(λ(p), 0, ♯), otherwise
, p ∈ P

A: set of k asynchronous mobile agents. k tokens
π0 : A→ V initial placement of agents. π0 : initial placement of tokens.
π : A→ V location of agents. π : location of tokens.

Gray hole g ∈ G ⊊ P: Faulty process g ∈ O ⊊ P :

a stationary process that chooses whether a process that might skip
to act as a black hole or a safe execution place to execute some steps of the algorithm
s
GH

: the state of the destroyed agent state(g) = so = (q
GH

, 0, ♯)

Mobile agent algorithm A Simulation message passing algorithm A

QA : set of possible states of α ∈ A M = QA \ {sGH
}: set of possible messages

QP: set of possible states of p ∈ P Q = QP × {0, 1} ×QA ∪ {♯} \ {sGH
}:

set of possible states of p ∈ P
IA ⊆ QA \ {sGH

}: set of initial states of α I = IP × {0, 1} × IA ∪ {♯}:
IP ⊆ QP: set of initial states of p ∈ P set of initial states of p ∈ P

stateA(p), p ∈ P state(p) =

stateA(α), α ∈ A =

{
(stateA(p), 1, stateA(α)), π(p) = α, p ∈ F

(stateA(p), 0, ♯), otherwise
M: multiset of agents in transit M = M: multiset of messages in transit

71

3.7. SIMULATION OF A GHMA ALGORITHM BY AN OFMP ALGORITHM

Table 3.8: Simulation of Mobile Agent AlgorithmA with gray holes by Message Pass
ing Algorithm D with Omission failures

Mobile Agent Model with gray holes Message Passing Model
with omission faults

Events of the relation ⊢αp of A Events of the relation ⊢p of D
h : events(A)→ events(D)

if p ∈ P \G, α ∈ A: if p ∈ P \O:

departure event: send event:
(s, q, 0) ⊢αp (s′, q′, out)

(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 0, ♯), out, s′

)
arrival event: receive event:

(s, q, in) ⊢αp (s′, q′, 0)
(
(q, 0, ♯), in, s

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
α remains at p: internal event:

(s, q, 0) ⊢αp (s′, q′, 0)
(
(q, 1, s), 0, ⊥

)
⊢p

(
(q′, 1, s′), 0, ⊥

)
if p ∈ G: if p ∈ O:

gray hole event: stop event:
(♯, q, in∗) ⊢p (♯, q

GH
), 0) ((q, 0, ♯), in∗, "crash") ⊢p ((q

BH
, 0, ♯), 0, ⊥)

safe node event: resume event:
(♯, q

GH
), in∗) ⊢p (♯, q, 0) ((q

GH
), 0, ♯), in∗, "resume") ⊢p ((q′, 0, ♯), 0, ⊥)

if p ∈ G and stateA(p) = q
GH

if p ∈ O and state(p) = co = (q
BH

, 0, ♯)

the only applicable event is the and the only applicable event is the
destroy event: ignore event:

(s, q
GH

, in) ⊢αp (s
GH

, q
GH

, 0)
(
(q

GH
, 0, ♯), in, s

)
⊢p

(
(q

GH
, 0, ♯), 0, ⊥

)

72

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

Table 3.9: Complexity of the Simulation of the Mobile Agent AlgorithmA byMessage
Passing Algorithm D

Message
Complexity

MSG(D, C) =
∑
α∈A

Move(α,A,S) = TotalMove(A,S)

Bit
Complexity

Bit(D, C) =
∑
α∈A

Move(α,A,S) · LocMemAg(α,A,S)

Time
Complexity

Time(D, C) = Time
(
A,S

)

Local Space
Complexity

LocMem(D, C) = max
p∈P
{LocMemWB(α,A,S)}+max

α∈A
{LocMemAg(α,A,S)}

Total Space
Complexity

Mem(D, C) =
∑
p∈P

LocMemWB(α,A,S) +
∑
α∈A

LocMemAg(α,A,S)

Sim
Mobile Agent system

Message Passing system

Arrive event
agent α arrives at p
through port in

(s, q, in) ⊢αp (s′, q′, 0)
q ̸= q

GH

Depart event
agent α departs from p

through port out
(s, q, 0) ⊢αp (s′, q′, out)

Destroy event
agent α arrives at g ∈ G,
when state(g) = q

BH

through port in and gets destroyed
(s, q

GH
, in) ⊢αg (s

GH
, q

GH
, 0)

Receive event
process p receivesm = s

through port in
((q, 0, ♯), in, s) ⊢p ((q′, 1, s′), 0,⊥)

q ̸= q
GH

Send event
process p sendsm = s′

through port out
((q, 1, s), 0,⊥) ⊢p ((q′, 0, ♯), out, s′)

Ignore event
process g ∈ O

with state(g) = (q
GH

, 0, ♯) receives
and ignoresm = s through port in

((q
GH

, 0, ♯), in, s) ⊢g ((q
GH

, 0, ♯), 0,⊥)

Figure 3.17: Simulation of Mobile agent system with gray holes by a Message Passing
system with omission failures, where the inputs of mobile agent system (depart events)
are transformed into inputs of the message passing system (send events) and the outputs
of the message passing system (receive or ignore events) are transformed into outputs of
themobile agent system (arrive or destroy events). Running the simulation algorithm on
top of the message passing systemwith omission failures produces the same appearance
as does running the algorithm on top of the mobile agent system with gray holes.

73

3.7. SIMULATION OF A GHMA ALGORITHM BY AN OFMP ALGORITHM

Ex
te
rn
al
En
vi
ro
nm

en
t

G
ra
y
H
ol
e

g
∈
G

Si
m

O
m
is
si
on

Fa
ilu
re

g
∈
O

M
es
sa
ge

Pa
ss
in
g

C
om

m
un
ic
at
io
n
Sy
st
em

S
=

G
(V

,E
,δ
)

A
rr
iv
e
ev
en
t

ag
en
tα

ar
ri
ve
sa
tg

w
he
re

st
a
te
(g
)
̸=

q G
H

th
ro
ug
h
po
rt
in

(s
,q
,i
n
)
⊢α g

(s
′ ,
q′
,0
)

D
ep
ar
te
ve
nt

ag
en
tα

de
pa
rt
sf
ro
m

g
,

w
he
re

st
a
te
(g
)
̸=

q G
H

th
ro
ug
h
po
rt
ou

t
(s
,q
,0
)
⊢α g

(s
′ ,
q′
,o
u
t)

D
es
tr
oy

ev
en
t

ag
en
tα

ar
riv
es
at
gr
ay

ho
le
g
∈
G
,

w
he
re

st
a
te
(g
)
=

q G
H

th
ro
ug
h
po
rt
in
an
d
ge
ts
de
st
ro
ye
d

(s
,q

G
H
,i
n
)
⊢a g

(s
G

H
,q

G
H
,0
)

St
op

ev
en
t

pr
oc
es
sg
∈
O
re
ce
iv
es

"c
ra
sh
"
m
es
sa
ge

th
ro
ug
h
po
rt
in

∗
an
d

ch
an
ge
si
ts
st
at
e
to

st
a
te
(g
)
=

c o
=

(q
G

H
,0
,♯
)

(c
,i
n
∗ ,
"c
ra

sh
")
⊢ g

(c
f
,0
,⊥

)

R
ec
ei
ve

ev
en
t

pr
oc
es
sg

,w
he
re

st
a
te
(g
)
̸=

(q
G

H
,0
,♯
)

re
ce
iv
es
m
es
sa
ge

m
=

s
th
ro
ug
h
po
rt
in

((
q,
0,
♯)
,i
n
,s
)
⊢ g

((
q′
,1
,s

′)
,0
,⊥

)

Se
nd

ev
en
t

pr
oc
es
sp

,w
he
re

st
a
te
(p
)
̸=

(q
G

H
,0
,♯
)

se
nd
sm

es
sa
ge

m
=

s′

th
ro
ug
h
po
rt
ou

t
((
q,
1,
s)
,0
,⊥

)
⊢ g

((
q′
,0
,♯
),
ou

t,
s′
)

Ig
no
re

ev
en
t

pr
oc
es
sg
∈
O

w
he
re

st
a
te
(g
)
=

(q
G

H
,0
,♯
)

re
ce
iv
es
an
d
ig
no
re
s

m
=

s
th
ro
ug
h
po
rt
in

((
q G

H
,0
,♯
),
in
,s
)
⊢ b

((
q G

H
,0
,♯
),
0,
⊥
)

G
ra
y
H
ol
e
ev
en
t

Th
e
G
ra
y
H
ol
e
g
∈
G

re
ce
iv
es
a
"g
ra
y"

m
es
sa
ge

th
ro
ug
h
po
rt
in

∗
an
d

ch
an
ge
si
ts
st
at
e
to

st
a
te
(g
)
=

q G
H

("
g
ra

y
",

q,
in

∗)
⊢ g

(♯
,
q G

H
,
0
)

Sa
fe
N
od
e
ev
en
t

Th
e
gr
ay

ho
le
g
∈
G

re
ce
iv
es
a
"s
af
e"
m
es
sa
ge

th
ro
ug
h
po
rt
in

∗
an
d

ch
an
ge
si
ts
st
at
e
to

st
a
te
(g
)
=

q′

("
sa
f
e"
,
q G

H
,
in

∗)
⊢ g

(♯
,
q′
,
0)

R
es
um

e
ev
en
t

pr
oc
es
sg
∈
O
re
ce
iv
es

"r
es
um

e
m
es
sa
ge

th
ro
ug
h
po
rt
in

∗
an
d

ch
an
ge
si
ts
st
at
e
to

st
a
te
(g
)
=

c
=

(q
′ ,
0,
♯)

((
q G

H
,0
,♯
),
in

∗ ,
"r
es
u
m
e"
)
⊢ g

((
q′
,0
,♯
),
0,
⊥
)

Figure 3.18: Simulation of gray holes by omission failures. The input events of the
gray hole, "gray hole event" and "safe node event", from the external environment are
transformed to input events of the omission failure, "stop event" and "resume event"
respectively. The input events of the omission failure, "ignore event" and "receive
event", from the communication system are transformed into "input events" of the gray
hole, "destroy event", and "arrive event" respectively and the output event of the gray
hole, "depart event" to the omission failure is transformed into an output event of the
omission failure, "send event" to the communication system.

74

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

3.8 Summarizing tables of the simulations
The simulations described between the mobile agent model and the message passing
model and vice versa together with the complexity overhead are presented in the fol
lowing tables.

3.8.1 Simulation of MP Algorithms by MA systems

Table 3.10: Table of simulations of asynchronous message passing algorithm D by
mobile agent systems. We denote as |E| the total number of edges of G, |V | = |P |
the number of processes, k = |A| the number of agents in the mobile agent system,
f the total number of crashed agents and MSG(D, C) the total number of messages
exchanged in the message passing algorithm D

Si
m
ul
at
io
n
of
M
es
sa
ge

A
ge
nt

M
ov
e

Lo
ca
lS
pa
ce

Lo
ca
lS
pa
ce

Pa
ss
in
g
A
lg
or
ith
m
s

C
om

pl
ex
ity

C
om

pl
ex
ity

C
om

pl
ex
ity

C
om

pl
ex
ity

by
m
ob
ile

ag
en
ts

A
g
en

ts
(A

,S
)

M
ov

e(
A
,S
)

L
oc
M

em
W

B
(A

,S
)

L
oc
M

em
A
g
(A

,S
)

M
P
by

M
A
[9
]

|A
|=

k
≥

1
ag
en
ts

♯
cr
as
he
d
ag
en
ts
≤

k
−

1
O
(|E|

+
M

S
G
(D

,C
)
·|
V
|)

O
(∆

)
+

M
S
G
(D

,C
)
+

L
oc
M

em
(D

,C
)

O
(|V
|l
og

∆
+
m
ax

m
∈
M
|m
|)

Sy
nc
hr
on
ou
sM

P
by

M
A

"
O
(T

im
e(
D
,C

)
·|
V
|+
|E
|)

"
"

M
P
by

M
A
w
ith

ag
en
tc
ra
sh
es
[1
3]

"
O
((|E
|+
|V
|·k

)·M
S
G
(D

,C
))

"
"

M
P
by

M
A
w
ith

ag
en
tc
ra
sh
es
[1
3]

(n
on
a
no
ny
m
ou
s)

"
O
((|E
|+
|V
|·M

S
G
(D

,C
))
·k
)

"
"

M
P
by

M
A
w
ith

f
ag
en
tc
ra
sh
es
[1
9]

(n
on
a
no
ny
m
ou
s)

|A
|=

k
≥

1
ag
en
ts

♯
cr
as
he
d
ag
en
ts
=

f
≤

k
−

1

O
((|E
|+

M
S
G
(D

,C
))
·f

)
"

"

M
P
w
ith

A
D
P
by

B
H
M
A

|A
|≥

k
≥

1
ag
en
ts

D
se
nd
s
≤

k
−

1

m
es
sa
ge
st
o
A
D
P

|B
|=
|D
|

O
((|E
|+
|V
|·k

)·M
S
G
(D

,C
))

"
"

75

3.8. SUMMARIZING TABLES OF THE SIMULATIONS

3.8.2 Simulation of MA Algorithms by MP systems

Table 3.11: Table of simulations of asynchronous mobile agent algorithms A by mes
sage passing systems. We denote as s(α), α ∈ A, the number of moves of agent α ∈ A
in mobile agent algorithm A

Si
m
ul
at
io
n
of
M
ob
ile

M
es
sa
ge

B
it

Ti
m
e

Sp
ac
e

A
ge
nt
A
lg
or
ith
m
s

C
om

pl
ex
ity

C
om

pl
ex
ity

C
om

pl
ex
ity

C
om

pl
ex
ity

by
M
es
sa
ge

pa
ss
in
g
Sy
st
em

s
M

S
G
(D

,C
)

B
it
(D

,C
)

T
im

e(
D
,C

)
M

em
(D

,C
)

M
A
by

M
P
[9
]

∑ α
∈
A

M
ov

e(
α
,A

,S
)

∑ α
∈
A

(M
ov

e(
α
,A

,S
)
·L

oc
M

em
A
g
(α

,A
,S
)) T

im
e(
A
,S
)

∑ p
∈
P

L
oc
M

em
W

B
(p
,A

,S
)
+
∑ α

A

L
oc
M

em
A
g
(α

,A
,S

)

B
H
M
A
by

M
P
w
ith

A
D
P

∑ α
∈
A

M
ov

e(
α
,A

,S
)

∑ α
∈
A

(M
ov

e(
α
,A

,S
)
·L

oc
M

em
A
g
(α

,A
,S
)) T

im
e(
A
,S
)

∑ p
∈
P

L
oc
M

em
W

B
(p
,A

,S
)
+
∑ α

A

L
oc
M

em
A
g
(α

,A
,S

)

B
+ H

M
A
by

M
P
w
ith

C
F

∑ α
∈
A

M
ov

e(
α
,A

,S
)

∑ α
∈
A

(M
ov

e(
α
,A

,S
)
·L

oc
M

em
A
g
(α

,A
,S
)) T

im
e(
A
,S
)

∑ p
∈
P

L
oc
M

em
W

B
(p
,A

,S
)
+
∑ α

A

L
oc
M

em
A
g
(α

,A
,S

)

G
H
M
A
by

M
P
w
ith

O
F

∑ α
∈
A

M
ov

e(
α
,A

,S
)

∑ α
∈
A

(M
ov

e(
α
,A

,S
)
·L

oc
M

em
A
g
(α

,A
,S
)) T

im
e(
A
,S
)

∑ p
∈
P

L
oc
M

em
W

B
(p
,A

,S
)
+
∑ α

A

L
oc
M

em
A
g
(α

,A
,S

)

76

CHAPTER 3. SIMULATIONS AMONG ADVERSARIAL MA AND MP MODELS

3.9 Discussion
In the simulations presented we could not obtain a simulation relation of a message
passing algorithm with crash or omission failures by a mobile agent system with black+
holes or gray holes. The reason is that in order to obtain such a simulation relation the
mobile agents need to find a suitable route to traverse the graph and execute the local
algorithm. Since the malicious hosts are black+ holes or gray holes, it is an open ques
tion whether the mobile agents can find such a route, execute the local message passing
algorithm on every execution place and guarantee that at least one agent survives at the
end of the execution and all execution places have been executed.

Therefore, it is of great importance to see whether under several assumptions it is
possible to obtain these simulations relations. We note that if the number k of mobile
agents is strictly larger than the maximum degree ∆ of the graph/communication sys
tem and there is at most one malicious host (black+ or gray hole), then we could obtain
a simulation relation of a message passing algorithm with one crash or omission fail
ures by mobile agent model with one black+ or gray hole respectively, by combining
algorithm 6 with the cautious walk technique presented in [14].

Another open question is whether there exists a simulation relation between the
Red Hole Mobile agent model [5] and the Byzantine Message Passing Model. While
the two systems seem at first to have many common properties, the correspondence
of events of the systems is not straight forward as well as the way that mobile agents
will move along the graph besides the presence of red holes and execute the message
passing algorithm Furthermore, the simulations presented in the previous chapters were
focused in the LOCAL and ASYNC model. It would be of great interest to analyse the
simulations of message passing algorithms by mobile agents of sections2.3, 3.1, 3.3.2
in the CONGEST model and compare complexity overhead between the LOCAL, the
ASYNC and the CONGEST model.

77

3.9. DISCUSSION

78

CHAPTER4
INSTANTIATIONS

4.1 Problem Definitions

The simulations presented in sections 3.3.1 and 3.3.2 can be used to design MP algo
rithms andMA algorithms by already existingMA algorithm andMP algorithm respec
tively. In order to do that we have to define a correspondence between the problems of
the message passing systems and the mobile agent systems.

A problem specification P is defined by a set of input states in(P), a set of output
states out(P) and a set of allowable sequences seq(P) of input and output states.

Mobile Agent Gathering Problem and Leader Election Problem in the Message
Passing System

In theMobile Agent Gathering or simply gathering problem, on a mobile agent sys
tem (A, P, F,S, π0, λ), F ∈ {B,B+,G} such that the initial locations of the agents
are distinct, π0 : A → P is an injection, all the surviving mobile agents should gather
at a single execution place p ∈ P.

In the Leader Election problem, on a message passing system (P,C, T, λ′), T ∈
{D, F, O} an algorithm D solves the leader election problem if all terminal states are
elected or not elected and in every admissible execution exactly one processor termi
nates with elected state and all the remaining processors with notelected state. The
conditions that should be satisfied are the safety condition, where processes never dis
agree and the liveness condition, where all processes should eventually agree to only
one leader.

If algorithm A solves the gathering problem, then all surviving agents gather at
a single execution place and therefore at the end of the simulation algorithm a single
process gathers all the tokens and is elected a leader, and all other processes are not
leaders.

If algorithm D solves the leader election problem, then eventually one processes is
elected as leader and all other processes are not leaders, therefore in the simulation of
D in the mobile agent system all surviving agents can gather at the execution place that
corresponds to the leader process.

79

4.1. PROBLEM DEFINITIONS

Black/Black+/Gray Search Problem and the Locating the Faulty Process Problem

In the Black/Black+/Gray Search (BHS/B+HS/GHS) problem, on a mobile agent sys
tem (A, P, F,S, π0, λ), F ∈ {B,B+,G} the mobile agents A, (that can be initially
colocated, π0(α) = p ∈ P, ∀α ∈ A or distinctly located, π0 : A→ P is an injection),
all surviving agents identify the position of the black/black+/gray/red hole.

In theFaulty Process Location problem, on amessage passing system (P,C, T, λ′),
T ∈ {D, F, O}, all processes identify the location of the faulty process(crash failure,
omission failure, byzantine failure).

If algorithm A solves the Black/Black+/Gray Search problem, then all surviving
agents know the location of the malicious host, therefore in the simulation in the mes
sage passing system, at least one process has a token that knows the position of the
faulty process and by broadcasting it he can notify all the processes about the location
of the faulty process.

If Algorithm D solves the Faulty Process Location problem, then eventually all
processes know the location of the faulty process and therefore in the simulation of D
in the mobile agent system all surviving agents know the location of the malicious host.

PeriodicDataRetrieval Problem in themobile agentmodelwithBlack/Black+/Gray
Holes and Periodic Data Collection Problem in the message passing Model with
Always Dead Processes/Crash/Omission Failures

In the periodic data retrieval problem [21, 5] we assume that each execution place
generates an infinite sequence of data over time. The agents aim in delivering the data
from the safe nodes to the homebase. An algorithm A is correct for the periodic data
retrieval problem on the mobile agent system (A,P,F,S, π0, λ), F ∈ {B,B+,G} if
for every execution E of A for every execution place p ∈ P and for every time t there
exists a time t′ > t such that the homebase contains all data that where generated by p
up to time t.

In the periodic data collection problem we assume that each process generates an
infinite sequence of data over time. The processes aim in sending the data to some
specially marked processes. An algorithm D is correct for the periodic data retrieval
problem on the message passing system (P,C, T, λ′), T ∈ {D, F, O} is for every
execution E ofD for every process p ∈ P and for every time t there exists a time t′ > t
such that the specially marked processes has received all data that where generated by
p up to time t.

If algorithm A is correct for the the Periodic Data Retrieval problem, then ∀p ∈
P, t > 0 ∃ t′ > t such that the homebase contains all data generated by p up to time t.
Therefore in the simulation ofA in the message passing system ∀p ∈ P, t > 0∃ t′′ > t
such that the homebase contains all data generated by p up to time t.

If algorithmD is correct for the Periodic Data Collection problem, then ∀p ∈ P, t >
0 ∃ t′ > t such that the homebase contains all data generated by p up to time t. Therefore
in the simulation of D in the mobile agent system ∀p ∈ P, t > 0 ∃ t′′ > t such that the
homebase contains all data generated by p up to time t.

Consensus problem in the Message Passing Model and Coordination problem in
the Mobile Agent Model

In the Consensus problem in a message passing system (P,C, T, λ′), T ∈ {D, F, O}
processes should agree on a common course of actions. Each process has an input value

80

CHAPTER 4. INSTANTIATIONS

xi and should produce an output or decision yi. A solution to the consensus problem
should satisfy the following:

• termination: For every admissible execution each process pi ∈ P outputs a
decision value yi.

• agreement: For every execution if yi, yj are outputs of processes pi, pj ∈ P \
F, i ̸= j then yi = yj .

• validity: For every execution if xi = v, ∀pi ∈ P and process pi outputs decision
value yi then yi = v.

In the Coordination problem in a mobile agent system (A, P,F,S, π0, λ), F ∈
{B,B+,G}mobile agents should agree on a common value and write at the whiteboard
of each execution place the agreed value. Each execution place pi ∈ P has an input
value xi and after the termination of the algorithm should produce an output or decision
value yi. A solution to the coordination problem should satisfy the following:

• termination: For every admissible execution each execution place pi ∈ P out
puts a decision value yi.

• agreement: For every execution if yi, yj are outputs of processes pi, pj ∈ P \F
then yi = yj .

• validity: For every execution of xi = v, ∀pi ∈ P and process pi outputs a
decision value yi, then yi = v.

If algorithm D solves consensus in the message passing system, then all non faulty
processes agree and decide on a common value and therefore in the simulation in the
mobile agent system all execution places have the same value after the termination of
the simulation, and the termination, agreement and validity conditions are satisfied.

If algorithmA solves the coordination problem in the mobile agent system, then all
execution places eventually have the same value on their whiteboards, therefore in the
simulation in the message passing system all processes agree on a common value and
the termination, agreement and validity conditions are satisfied.

kset Consensus problem in the Message Passing Model and kset
Coordination problem in the Mobile Agent Model
The kset Consensus is a generalization of the consensus and agreement problem and
was introduced in [10]. In the kset Consensus problem in a message passing system
(P,C, T, λ′), T ∈ {D,F,O} each process has an input value xi and should produce
an output or decision yi. A solution to the kset consensus problem should satisfy the
following:

• termination: For every admissible execution each process pi ∈ P outputs a
decision value

• kagreement: For every execution the set of values decided by correct processes
has size at most k.

• validity: For every execution, the decision value of any correct process must be
an input of some correct process.

81

4.1. PROBLEM DEFINITIONS

In the kset Coordination problem in amobile agent system (A,P,F,S, π0, λ), F ∈
{B,B+,G} each execution place pi ∈ P has an input value xi and after the termination
each execution place should have a decision value yi. A solution to the kset coordina
tion problem should satisfy the following:

• termination: For every admissible execution each execution place pi ∈ P out
puts a decision value yi.

• kagreement: For every execution the set of values decided by correct processes
has size at most k.

• validity: For every execution the decision value of any safe execution place must
be an input of some safe execution process.

If algorithmD solves kset consensus in the message passing system, then all non faulty
processes agree and decide on at most k distinct values and therefore in the simulation
in the mobile agent system all execution places have at most k distinct values after the
termination of the simulation, and the termination, kagreement and validity conditions
are satisfied.

If algorithm A solves the kcoordination problem in the mobile agent system, then
all execution places eventually have at most k distinct values on their whiteboards,
therefore in the simulation in the message passing system all processes agree on at
most k distinct values and the termination, kset agreement and validity conditions are
satisfied.

Renaming problem

The renaming problem is a special case of coloring problems and was introduced in [3].
The renaming problem, in the message passing system (P,C, T, λ′), T ∈ {D, F, O}
processes have unique identifiers from a large domain and each processor pi ∈ P should
pick a new name yi from a smaller domain [1, . . . ,M]. An algorithm that solves the
renaming problem should satisfy termination: that each process pi ∈ P eventually
decides on a yi ∈ [1, . . . ,M] and uniqueness: that ∀pi, pj ∈ P, i ̸= j, yi ̸= yj .

In the renaming problem in themobile agent system (A, P,F,S, π0, λ),F ∈ {B,B+,G}
execution places have unique identifiers from a large domain and mobile agents should
pick new identifiers for each execution place from a smaller domain [1, . . . ,M]. An
algorithm that solves the renaming problem should satisfy termination: that each exe
cution place pi ∈ P eventually gets a new name yi ∈ [1, . . . ,M] and uniqueness: that
∀pi, pj ∈ P, i ̸= j, yi ̸= yj .

If algorithm D solves the renaming problem in the message passing system, then
every process eventually acquires a new unique name, and therefore in the simulation
in the mobile agent system every execution place eventually gets a new unique name
from [1, . . . ,M] that satisfies the termination and uniqueness properties.

If algorithmA solves the renaming problem in the mobile agent system, then every
execution place eventually gets a new unique name, and therefore in the simulation in
the mobile agent system every process decides on a new name from the smaller domain
[1, . . . ,M] that satisfies the termination and uniqueness properties.

82

CHAPTER 4. INSTANTIATIONS

Table 4.1: Correspondence between problems in the message passing and in the mobile
agent system

Problems in Message Passing Problems in Mobile Agent

Leader Election Mobile Agent Gathering
Identify/Locate the faulty processes Black/Black+/Red hole Search
Periodic Data Collection Periodic Data Retrieval
Topology discovery Problem Graph exploration by mobile agents
Consensus Coordination
kset Consensus kset Coordination
Renaming Renaming

4.2 Positive Results
In the following sections wewill present how to use the simulations presented to acquire
positive and impossibility results by already existing results of the literature.

4.2.1 Positive results on ADP and BH model
Lemma 4.1. [14] The Mobile Agent Gathering Problem can be solved in the mobile
agent system (A,P,B,S, π0, λ), where |B| = 1, S is an oriented ring, k ≥ 3 and agents
know the number k of agents in the system in time 3n− 6 and 3k ·

∑k
i=1(n− i) total

agent moves.

Corollary 4.2. The Leader Election Problem can be solved in the message passing sys
tem with one always dead process (P,C,D, λ′), where C is an oriented ring, λ′(v) ={
(λ(v), 1, λ(α)), if v is the homebase of agent α,
(λ(v), 0, ♯), otherwise

, and processes know the number

of tokens k, in 3n− 6 time units and with 3k ·
∑k

i=1(n− i) total messages exchanged.

Proof. By applying lemma 4.1 to the simulation relation presented in section 3.3.1

Theorem 4.3. [15] TheMobile Agent Gathering problem of k−2 agents can be solved
in the mobile agent system (A,P,B,S, π0, λ), where |B| = 1, S is an anonymous ori
ented ring, agents know |P| = n and |A| = k ≥ 4 in 8(n − 2) time steps and with
4n2 + nk − k2/2 +O(n) +O(k2) agent moves.

Corollary 4.4. The Leader Election Problem can be solved in the message passing
system with one always dead process (P,C,D, λ′), where C is an anonymous oriented

ring λ′(v) =

{
(λ(v), 1, λ(α)), if v is the homebase of agent α,
(λ(v), 0, ♯), otherwise

, processes know

the number |P | = n, k processes have initially token and at most 2 messages are sent
to always dead processes in 8(n−2) time steps andwith 4n2+nk−k2/2+O(n)+O(k2)
message complexity.

Proof. By applying theorem 4.3 to the simulation relation presented in section 3.3.1.

83

4.2. POSITIVE RESULTS

Theorem4.5. [16] TheBHS problem can be solved in themobile agent system (A,P,B,S, π0, λ),
where |B| = 1 and agents don't know the graph topology, inO(n2)moves using∆+1
agents, where ∆ is the maximum degree of the graph.

Corollary 4.6. The problem of locating the faulty process in the message passing sys

tem (P,C,D, λ′), whereλ′(v) =

{
(λ(v), 1, λ(α)), if v is the homebase of agent α,
(λ(v), 0, ♯), otherwise

,|D| =

1 and processes don't know the graph topology can be solved in with O(n2) total mes
sages exchanged.

Proof. By applying theorem 4.5 to the simulation presented in section 3.3.1

Theorem 4.7. [17] There exists a protocol that solves consensus problem in the asyn
chronous message passing system (P,C,D, λ′), in which all non faulty processes reach
a common decision, the communication system C is a complete graph, provided that
the number of always dead processes is |D| < |P |/2.

Corollary 4.8. There exists a protocol that solves the coordination problem in the mo
bile agent system (A,P,B,S, π0, λ), where the navigation subsystem S is complete
graph, the number of black holes is |B| < |P|/2 and the number of mobile agents in the
system is |A| = |D| · (|P | − |D|) ≤ |P|2

4 .

Proof. We note that since the graph C of the protocol of theorem 4.7 is complete it has
exactly |D| · (|P | − |D|) edges between always dead processes and correct processes.
Therefore, we can assume without loss of generality that the protocol of theorem 4.7
sends at most |D| · (|P |− |D|)messages to always dead processes, since by modifying
the algorithm of theorem 4.7 such that a process sends a second message to a neigh
boring process only if it has previously received a message from this process produces
the same output. Then running the simulation algorithm 6 on the algorithm of theorem
4.7 solves the problem of coordination in the mobile agent system (A,P,B,S, π0, λ)

where S = C, |B| = |D| < |P |/2 and |A| = |D| · (|P | − |D|) + 1 ≤ |P |2
4

4.2.2 Positive Results on OF and GH
Theorem 4.9. [5] There exists an algorithm that solves the periodic data retrieval prob
lem in an undirected labelled and oriented ring S in (A,P,G,S, π0, λ), where |A| = 4,
|G| = 1.

Corollary 4.10. There exist an algorithm that solves the periodic data collection prob
lem in the message passing model (P,C,O, λ′), |O| = 1 that sends at most 3 messages
to the crashed process.

Proof. By applying theorem 4.9 to proposition 3.17.

84

CHAPTER 4. INSTANTIATIONS

Table 4.2: Summary of positive results
Lemma 4.1 Corollary4.2
MA gathering problem can be solved MP Leader Election problem can be solved
in an oriented ring with one BH given that in an oriented ring with one ADP given that
k = |A| ≥ 3 and agents know k, k ≥ 3 processes have initially a token,
in time 3n− 6 and in 3n− 6 time and
3k ·

∑k
i=1(n− i) total agent moves 3k ·

∑k
i=1(n− i) total messages exchanged

Theorem 4.3 Corollary 4.4
MA gathering problem can be solved MP Leader Election problem can be solved
in an anonymous oriented ring with one BH in an anonymous oriented ring with one ADP
given that k = |A| ≥ 4, given that k ≥ 4 processes have initially token,
k − 2 agents gather, at most 2 messages are sent to ADP
and agents know n, in 8(n− 2) time steps and processes know n, in 8(n− 2) time steps and
4n2 + nk − k2/2 +O(n) +O(k2) agent moves 4n2 + nk − k2/2 +O(n) +O(k2) msgs exchanged
Theorem 4.5 Corollary4.6
BHS problem can be solved ADLP problem can be solved
in a MA system with one BH in a MP system with one ADP
when agents don't know the topology, when processes don't know the topology
in O(n2) moves using∆+ 1 agents with O(n2) message complexity and∆+ 1
where |∆| = maxu∈V |NG(u)| processes have initially a token.
Theorem 4.7 Corollary 4.8
Consensus can be solved in asynchronous Coordination problem can be solved in
MP system with less than n/2 ADP asynchronous MA system with less than n/2 BH
in complete graphs and |A| = |D| · (|P | − |D|) ≤ |P|2

4 in complete graphs
Corollary 4.9 Corollary 4.10
∃ Algorithm that solves periodic data ∃ algorithm that solves periodic data collection
retrieval problem in an undirected in an undirected labelled and oriented ring
labelled and oriented ring with one omission faulty process, that
with |A| = k = 4 agents and one GH sends at most 3 messages to the faulty process.

4.3 Impossibility Results

4.3.1 Impossibility results on ADP and BH model

Simulations are a very powerful tool, not only because they allow us to transfer the
positive results of one model to another, but also because they allow us to claim impos
sibility results.

In sections 3.3.1 and 3.3.2 we proved that the message passing system with al
ways dead processes (P, C, D, λ′) simulates the mobile agent system with black holes
(A,P,B,S, π0, λ), with respect to the non faulty execution places processes, where

λ′(v) =

{
(λ(v), 1, λ(α)), if v is the homebase of agent α,
(λ(v), 0, ♯), otherwise

and that themobile agent

system (A,P,B,S, π0, λ) simulates the message passing system (P, C, D, λ′′), with
respect to the non faulty processes execution places, where λ(v) = λ′′(v), v ∈ P.
Therefore we can prove that if there does not exist an algorithm that solves problem Π
in the mobile agent system with black holes, then the problem Π cannot be solved in
the message passing system with always dead processes, and vice versa.

Proposition 4.11. Let Π be a problem defined on the mobile agent system with black
holes (A,P,B,S, π0, λ). If there does not exist deterministic algorithm to achieve the
specifications of Π in (A,P,B,S, π0, λ), then problem Π cannot be solved in the mes
sage passing system with always dead processes (P, C, D, λ′), where C = S =

85

4.3. IMPOSSIBILITY RESULTS

(V, E, δ), λ′(v) =

{
(λ(v), 1, λ(α)), if v is the homebase of agent α,
(λ(v), 0, ♯), otherwise

and at most

|A| − 1 messages are sent to always dead processes.

Proof. Suppose for contradiction that there exists a message passing algorithm D that
solvesΠ in (P, C, D, λ′), where the total number of messages sent to the always dead
processes are at most |A| − 1. By algorithm 6, algorithm D is simulated by algorithm
A in the mobile agent system (A,P,B,S, π0, λ). Since algorithm D achieves problem
Π specifications, then algorithm A achieves problem Π specifications, which yields
contradiction.

Proposition 4.12. Let Π be problem defined on the message passing system with al
ways dead processes (P, C, D, λ′), where the set of states of the processes is Q =
Q1×{0, 1}×Q2, whereQ1, Q2 are set of states andλ′ : P → I1×{0, 1}×I2, I1 ⊆ Q1,

I2 ⊆ Q2 and λ′(v) =

{
(q, 1, s), q ∈ I1, s ∈ I2 or,
(q, 0, ♯), q ∈ I1, ♯ null

. If there does not exist deter

ministic algorithm that achieves the specifications ofΠ in (P, C, D, λ′), then problem
Π cannot be solved in the mobile agent system with black holes (A,P,B,S, π0, λ),
where |A| =

∣∣{λ′(v) | u ∈ P ∧ λ′(v) = (q, 1, s), q ∈ Q1, s ∈ Q2}
∣∣ = k, |P| = |P |,

|D| = |B|, S = C = (V, E, δ), QP = Q1, QA = Q2, IP = I1, IA = I2 and
λ(v), v ∈ P and λ(α), α ∈ A are such that (λ(v), 1, λ(α)) = λ′(v), v ∈ P and
π0(α) = v, or (λ(v), 0, ♯) = λ′(v), v ∈ P

Proof. Suppose for contradiction that there exists a mobile agent algorithm A, that
solves Π on the system (A, P, B, S, π0, λ), where S = C and λ(v) = λ(v), v ∈ P .
Then, by the simulation 3.3.1, algorithm A can be simulated in the message passing
system (P, C, D, λ′). Therefore, the simulation of A in the message passing system
solves Π, that is a contradiction.

Therefore, by propositions 4.11 and 4.12 we have that the mobile agent system
(A, P, B, S, π0, λ) and the message passing system (P, C, D, λ′) are computation
ally equivalent.

Instantiations/Examples

The propositions presented in the previous section can be used to acquire and transfer
impossibility results from one model to the other. The expression "It is impossible
to solve problem Π" means that there does not exist deterministic algorithm A that
correctly terminates for problem Π.

Lemma 4.13. [14, 16] If |A| = 1 the BHS problem cannot be solved.

Corollary 4.14. There does not exist deterministic algorithm that solves the Always
Dead Process Location in the message passing system (P, C, D, λ′), where λ is as
described in proposition 4.11, |D| = 1 that sends no messages to d ∈ D.

Proof. By applying claim 4.13 to proposition 4.11

Lemma 4.15. [14, 16, 12] If |A| > 1, execution places have unique identifiers λ and
agents do not know the size of the navigation subsystem, the BHS problem is impossible
since it is impossible for the agents to distinguish between a black hole and a slow link
or agent.

86

CHAPTER 4. INSTANTIATIONS

Corollary 4.16. There does not exist deterministic algorithm that solves the problem
of locating an always dead process in the message passing system (P,C,D, λ′),where
λ is as described in proposition 4.11, processes have unique identifiers, but there is no
knowledge of the size of the communication system.

Proof. By applying claim 4.15 to proposition 4.11

Corollary 4.17. [14, 16] It is impossible to verify whether or not there exists a black
hole using explicit termination in a ring.

Corollary 4.18. It is impossible to verify whether there exists an always dead process
using explicit termination in a ring.

Proof. By applying corollary 4.17 to proposition 4.11

Corollary 4.19. [16] If the navigation graph S has a vertex cut, it is impossible to solve
BHS problem.

Corollary 4.20. If the communication graphC has a vertex cut it is impossible to solve
the Always Dead Process Location problem.

Proof. By applying corollary 4.19 to proposition 4.11

Theorem 4.21. [16] There is a graph G = (V,E, λ) with maximum vertex degree
3 ≤ ∆ ≤ n− 4 such that without topological information, any algorithm for the Black
Hole Search problem in arbitrary networks requires at least∆+ 1 agents in G.

Corollary 4.22. There is a graph G = (V,E, λ) with maximum vertex degree 3 ≤
∆ ≤ n − 4 such that without topological information, any algorithm for the always
dead process location problem in arbitrary networks sends at least ∆ messages in the
always dead process in G.

Proof. By applying theorem 4.21 to proposition 4.11

Proposition 4.23. [17] There is no deterministic algorithm that solves consensus in the
message passing system (P, C, D, λ′), where λ is as described in proposition 4.12,
when the number of the always dead processes is |D| > |P |/2.

Corollary 4.24. There is no deterministic algorithm that solves coordination problem
in the mobile agent system (A,P,B,S, π0, λ) when the number of black holes is |B| >
|P|/2.

Proof. By applying proposition 4.23 to proposition 4.12

Table 4.3 summarizes some impossibility results that can be obtained by already
known results and the propositions 4.11 and 4.12, as a consequence of the simulations
presented in sections 3.3.1 and 3.3.2.

87

4.3. IMPOSSIBILITY RESULTS

Table 4.3: Summary of impossibility results

Black Hole Mobile Agent System Message Passing with Always Dead

Lemma 4.13 Corollary4.14
BHS problem cannot be solved ADPL problem cannot be solved
with only one agent. without sending any messages to ADP.
Lemma 4.15 Corollary4.16
BHS problem cannot be solved ADPL problem cannot be solved
if agents don't know n 1. if processes don't know n.
Corollary 4.17 Corollary 4.18
It is impossible to verify whether It is impossible to verify whether
there exists a BH in a ring there exists an ADP in a ring
using explicit termination. using explicit termination.
Corollary 4.19 Corollary 4.20
If the graph has a vertex cut If the graph has a vertex cut
it is impossible to solve BHS problem. it is impossible to solve ADPL problem.
Theorem 4.21 Corollary 4.22
It is impossible to solve BHS problem It is impossible to solve ADPL problem
when |A| ≤ ∆. 2 and send at most ∆− 1 messages to BHS. 2
Corollary 4.24 Proposition 4.23
It is impossible to solve coordination problem It is impossible to solve consensus
when |B| > |P|/2 when |D| > |P |/2

4.3.2 Impossibility results on CF and B+H model
Proposition 4.25. LetΠ be problem defined on the message passing system with crash
failures (P, C, F, λ′), where the set of states of the processes isQ = Q1×{0, 1}×Q2,
where Q1, Q2 are set of states and λ′ : P → I1 × {0, 1} × I2, I1 ⊆ Q1, I2 ⊆ Q2

and λ′(v) =

{
(q, 1, s), q ∈ I1, s ∈ I2 or,
(q, 0, ♯), q ∈ I1, ♯ is null state

. If there does not exist deterministic

algorithm that achieves the specifications ofΠ in (P, C, F, λ′), then problemΠ cannot
be solved in the mobile agent systemwith black holes (A,P,B+,S, π0, λ), where |A| =∣∣{λ′(v) | u ∈ P ∧ λ′(v) = (q, 1, s), q ∈ Q1, s ∈ Q2}

∣∣ = k, |P| = |P |, |F | = |B+|,
S = C = (V, E, δ), QP = Q1, QA = Q2, IP = I1, IA = I2 and λ(v), v ∈ P
and λ(α), α ∈ A are such that (λ(v), 1, λ(α)) = λ′(v), v ∈ P and π0(α) = v, or
(λ(v), 0, ♯) = λ′(v), v ∈ P

Proof. Suppose for contradiction that there exists a mobile agent algorithm A, that
solves Π on the system (A, P, B+, S, π0, λ), where S = C and λ(v) = λ(v), v ∈
P . Then, by the simulation 3.5, algorithm A can be simulated in the message passing
system (P, C, F, λ′). Therefore, the simulation of A in the message passing system
solves Π, that is a contradiction.

Instantiations/Examples

Theorem4.26. [17] There is no deterministic algorithm that solves the consensus prob
lem in the message passing system (P,C, F, λ′) with even one crash failure.

1n is the number of vertices of the graph
2∆ is the maximum degree of the graph

88

CHAPTER 4. INSTANTIATIONS

Corollary 4.27. There is no deterministic algorithm that solves the coordination prob
lem in the mobile agent system (A,P,B+,S, π0, λ).

Proof. By applying theorem 4.26 to proposition 4.25.

Theorem 4.28. [1] If |F | < n − 1, the sum of the messages in the failure free runs
of any tresilient protocol for synchronous binary synchronous consensus/Byzantine
Agreement on the system (P,C, F, λ′) under crash failures is at least n+ t− 1.

Corollary 4.29. There is no tresilient protocol that solves the synchronous binary
coordination problem for |B+| < n− 1, in the system (A,P,B+,S, π0, λ), that in the
failure free runs the total number of agent moves are less than n+ t− 2.

Proof. By applying theorem 4.28 to proposition 4.25 with the modifications of section
2.2 .

Theorem 4.30. [20] There is no deterministic algorithm that solves the renaming prob
lem in the message passing system (P,C, F, λ′), where |P | = n+1, |F | = f the range
of input names of processes is ≥ 2n− 1 and the range of output names of processes is
≤ n+ f − 1.

Corollary 4.31. There is no deterministic algorithm that solves the renaming problem
in the mobile agent system (A,P,B+,S, π0, λ), where |P| = n + 1, |B+| = f , the
range of input names of execution places is≥ 2n− 1 and the range of output names of
processes is ≤ n+ f − 1.

Proof. By applying theorem 4.30 to proposition 4.25.

Proposition 4.32. [20, 7, 30] There is no deterministic algorithm that solves the kset
consensus problem in the message passing system (P,C, F, λ′), when |F | ≥ k.

Corollary 4.33. There is no deterministic algorithm that solves the kset coordination
problem in the mobile agent system (A,P,B+,S, π0, λ), when |B+| ≥ k.

Proof. By applying proposition 4.32 to proposition 4.25.

Table 4.4: Summary of impossibility results on CF and B+H model

Message Passing with Crash Failures Black+ Hole Mobile Agent System

Theorem 4.26 Corollary4.27
∄ deterministic algorithm for the consensus ∄ deterministic algorithm for the coordination
problem with even one crash failure. problem even with one Black+ Hole
Theorem 4.28 Corollary 4.29
The sum of messages in the failure free runs ∄ tresilient protocol that solves
of any tresilient protocol for synchronous synchronous bunary coordination problem
binary consensus/Byzantine Agreement that in the failure free runs the total number
under crash failures is at least n+ t− 1 of agent moves are less than n+ t− 2
Theorem 4.30 Corollary 4.31
∄ deterministic algorithm for the renaming ∄ deterministic algorithm for the renaming
problem when |P | = n+ 1, |F | = f and problem when |P| = n+ 1, |B+| = f and
and the range of input names is ≥ 2n− 1 the range of input names is ≥ 2n− 1 and
the range of output names is ≤ n+ f − 1 the range of output names is ≤ n+ f − 1
Proposition 4.32 Corollary 4.33
∄ deterministic algorithm for the ∄ deterministic algorithm for the
kset consensus when |F | ≥ k kset coordination when |B+| ≥ k

89

4.4. CONCLUSION

4.3.3 Impossibility results on OF and GH model
Proposition 4.34. LetΠ be problem defined on the message passing system with crash
failures (P, C, O, λ′), where the set of states of the processes isQ = Q1×{0, 1}×Q2,
where Q1, Q2 are set of states and λ′ : P → I1 × {0, 1} × I2, I1 ⊆ Q1, I2 ⊆ Q2

and λ′(v) =

{
(q, 1, s), q ∈ I1, s ∈ I2 or,
(q, 0, ♯), q ∈ I1, ♯ is null state

. If there does not exist deterministic

algorithm that achieves the specifications ofΠ in (P, C, O, λ′), then problemΠ cannot
be solved in the mobile agent system with black holes (A,P,G,S, π0, λ), where |A| =∣∣{λ′(v) | u ∈ P ∧ λ′(v) = (q, 1, s), q ∈ Q1, s ∈ Q2}

∣∣ = k, |P| = |P |, |O| = |G|,
S = C = (V, E, δ), QP = Q1, QA = Q2, IP = I1, IA = I2 and λ(v), v ∈ P
and λ(α), α ∈ A are such that (λ(v), 1, λ(α)) = λ′(v), v ∈ P and π0(α) = v, or
(λ(v), 0, ♯) = λ′(v), v ∈ P

Proof. Suppose for contradiction that there exists a mobile agent algorithm A, that
solves Π on the system (A, P, G, S, π0, λ), where S = C and λ(v) = λ(v), v ∈
P . Then, by the simulation 3.7, algorithm A can be simulated in the message passing
system (P, C, O, λ′). Therefore, the simulation of A in the message passing system
solves Π, that is a contradiction.

4.4 Conclusion
In this thesis we studied the simulation relations between the message passing model
and the mobile agent model, under various assumptions about the types of faults of
the two models. The simulations presented are a useful tool to obtain positive and
impossibility results from onemodel to the other and to design algorithms for onemodel
using an already existing algorithm of the other model. Simulations can also be used
when designing algorithms that run into complex models, while they are designed into
simpler models.

The simulations presented in this thesis give us a tool to do trade offs based on the
number of available resources(processes) and the ability of mobility of the resources
and in designing algorithms. For example, in the case of testing the performance of a
distributed algorithm, a set of kmobile agents can simulate a set of n (k < n) stationary
agents and vice versa, which can be very helpful in algorithmic design.

Lastly, the simulations of the adversary and its capabilities, that were presented can
be used in studying and analysing adversarial strategy and testing the performance of
an algorithm according to any adversarial strategy.

90

BIBLIOGRAPHY

[1] Eugene S. Amdur, Samuel M. Weber, and Vassos Hadzilacos. ``On the Mes
sage Complexity of Binary Byzantine Agreement under Crash Failures''. In:Dis
tributed Comput. 5.4 (1992), pp. 175–186. DOI: 10.1007/BF02277665. URL:
https://doi.org/10.1007/BF02277665.

[2] Hagit Attiya, Amotz BarNoy, and Danny Dolev. ``Sharing Memory Robustly in
MessagePassing Systems''. In: J. ACM 42.1 (1995), pp. 124–142. ISSN: 0004
5411. DOI: 10.1145/200836.200869. URL: https://doi.org/10.1145/
200836.200869.

[3] Hagit Attiya, Amotz BarNoy, Danny Dolev, Daphne Koller, David Peleg, and
Radiger Reischuk. ``Achievable cases in an asynchronous environment''. In: 28th
Annual Symposium onFoundations of Computer Science (sfcs 1987). 1987, pp. 337–
346. DOI: 10.1109/SFCS.1987.5.

[4] Hagit Attiya and Jennifer L. Welch. Distributed computing fundamentals, sim
ulations, and advanced topics (2. ed.) Wiley series on parallel and distributed
computing. Wiley, 2004. ISBN: 9780471453246.

[5] Evangelos Bampas, Nikos Leonardos, Euripides Markou, Aris Pagourtzis, and
Matoula Petrolia. ``Improved periodic data retrieval in asynchronous rings with
a faulty host''. In: Theor. Comput. Sci. 608 (2015), pp. 231–254. DOI: 10.1016/
j.tcs.2015.09.019. URL: https://doi.org/10.1016/j.tcs.2015.
09.019.

[6] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. ``Can we
elect if we cannot compare?'' In: SPAA 2003: Proceedings of the Fifteenth An
nual ACM Symposium on Parallelism in Algorithms and Architectures, June 79,
2003, San Diego, California, USA (part of FCRC 2003). ACM, 2003, pp. 324–
332. DOI: 10.1145/777412.777469.

[7] Elizabeth Borowsky and Eli Gafni. ``Generalized FLP Impossibility Result for
TResilient Asynchronous Computations''. In: Proceedings of the TwentyFifth
Annual ACM Symposium on Theory of Computing. STOC '93. San Diego, Cal
ifornia, USA: Association for Computing Machinery, 1993, pp. 91–100. ISBN:
0897915917. DOI: 10.1145/167088.167119. URL: https://doi.org/10.
1145/167088.167119.

91

https://doi.org/10.1007/BF02277665
https://doi.org/10.1007/BF02277665
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://doi.org/10.1109/SFCS.1987.5
https://doi.org/10.1016/j.tcs.2015.09.019
https://doi.org/10.1016/j.tcs.2015.09.019
https://doi.org/10.1016/j.tcs.2015.09.019
https://doi.org/10.1016/j.tcs.2015.09.019
https://doi.org/10.1145/777412.777469
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/167088.167119

BIBLIOGRAPHY

[8] Elizabeth Borowsky, Eli Gafni, Nancy Lynch, and Sergio Rajsbaum. ``The BG
Distributed Simulation Algorithm''. In: Distributed Computing 14 (July 2001),
pp. 127–146. DOI: 10.1007/PL00008933.

[9] Jérémie Chalopin, Emmanuel Godard, Yves Métivier, and Rodrigue Ossamy.
``Mobile Agent Algorithms Versus Message Passing Algorithms''. In: Princi
ples of Distributed Systems, 10th International Conference, OPODIS 2006, Bor
deaux, France, December 1215, 2006, Proceedings. Vol. 4305. Lecture Notes
in Computer Science. Springer, 2006, pp. 187–201. DOI: 10.1007/11945529\
_14.

[10] Soma Chaudhuri. ``Agreement is harder than consensus: Set Consensus prob
lems in totally Asynchronous Systems''. In: Proceedings of the 9th Annual ACM
Symposium on Principles of distributed Computing. 1990, pp. 311–324.

[11] Sandro Coretti, Juan Garay, Martin Hirt, and Vassilis Zikas. ``ConstantRound
AsynchronousMultiParty Computation Based onOneWay Functions''. In:Pro
ceedings, Part II, of the 22nd International Conference on Advances in Cryptol
ogy ASIACRYPT 2016 Volume 10032. Berlin, Heidelberg: SpringerVerlag,
2016, pp. 998–1021. ISBN: 9783662538890. DOI: 10.1007/978- 3- 662-
53890-6_33. URL: https://doi.org/10.1007/978-3-662-53890-6_33.

[12] Jurek Czyzowicz, Dariusz R. Kowalski, Euripides Markou, and Andrzej Pelc.
``Complexity of Searching for a BlackHole''. In:Fundam. Informaticae 71 (2006),
pp. 229–242.

[13] ShantanuDas, Paola Flocchini, Nicola Santoro, andMasafumiYamashita. ``Fault
Tolerant Simulation ofMessagePassingAlgorithms byMobileAgents''. In: Struc
tural Information and Communication Complexity, 14th International Collo
quium, SIROCCO 2007, Castiglioncello, Italy, June 58, 2007, Proceedings.
Vol. 4474. Lecture Notes in Computer Science. Springer, 2007, pp. 289–303.
DOI: 10.1007/978-3-540-72951-8_23.

[14] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. ``Mo
bile Search for a Black Hole in an Anonymous Ring''. In: DISC. 2001.

[15] Stefan Dobrev, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. ``Mul
tiple Agents RendezVous in a Ring in Spite of a Black Hole''. In: Principles of
Distributed Systems. Ed. by Marina Papatriantafilou and Philippe Hunel. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 34–46. ISBN: 9783540
278603.

[16] StefanDobrev, Paola Flocchini, Giuseppe Prencipe, andNicola Santoro. ``Search
ing for a black hole in arbitrary networks: optimal mobile agents protocols''. In:
Distributed Computing 19 (2006), pp. 1–99999.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. ``Impossibility
of Distributed Consensus with One Faulty Process''. In: J. ACM 32.2 (1985),
pp. 374–382. ISSN: 00045411. DOI: 10.1145/3149.214121. URL: https:
//doi.org/10.1145/3149.214121.

[18] Juan A. Garay and YoramMoses. ``Fully polynomial Byzantine agreement in t +
1 rounds''. In: Proceedings of the twentyfifth annual ACM symposium on Theory
of Computing (1993).

92

https://doi.org/10.1007/PL00008933
https://doi.org/10.1007/11945529_14
https://doi.org/10.1007/11945529_14
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/978-3-540-72951-8_23
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121

BIBLIOGRAPHY

[19] Tsuyoshi Gotoh, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Ma
suzawa. ``How to Simulate MessagePassing Algorithms in Mobile Agent Sys
tems with Faults''. In: Stabilization, Safety, and Security of Distributed Systems
 19th International Symposium, SSS 2017, Boston, MA, USA, November 58,
2017, Proceedings. Vol. 10616. Lecture Notes in Computer Science. Springer,
2017, pp. 234–249. DOI: 10.1007/978-3-319-69084-1_16.

[20] Maurice Herlihy and Nir Shavit. ``The Asynchronous Computability Theorem
for tResilient Tasks''. In: Proceedings of the TwentyFifth Annual ACM Sympo
sium on Theory of Computing. STOC '93. San Diego, California, USA: Associ
ation for Computing Machinery, 1993, pp. 111–120. ISBN: 0897915917. DOI:
10.1145/167088.167125. URL: https://doi.org/10.1145/167088.
167125.

[21] Rastislav Královič and Stanislav Miklík. ``Periodic Data Retrieval Problem in
Rings Containing a Malicious Host''. In: Structural Information and Communi
cation Complexity. Ed. by Boaz PattShamir and Tınaz Ekim. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 157–167. ISBN: 9783642132841.

[22] Ajay D. Kshemkalyani andMukesh Singhal.Distributed Computing: Principles,
Algorithms, and Systems. 1st ed. USA: CambridgeUniversity Press, 2008. ISBN:
0521876346.

[23] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996. ISBN: 1
558603484.

[24] Nancy A. Lynch and Mark R. Tuttle. ``Hierarchical Correctness Proofs for Dis
tributed Algorithms''. In: Proceedings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing. PODC '87. Vancouver, British Columbia,
Canada: Association for ComputingMachinery, 1987, pp. 137–151. ISBN: 089791239X.
DOI: 10.1145/41840.41852. URL: https://doi.org/10.1145/41840.
41852.

[25] EuripidesMarkou andWei Shi. ``Dangerous Graphs''. In:Distributed Computing
by Mobile Entities: Current Research in Moving and Computing. Ed. by Paola
Flocchini, Giuseppe Prencipe, and Nicola Santoro. Cham: Springer International
Publishing, 2019, pp. 455–515. ISBN: 9783030110727. DOI: 10 . 1007 /
978-3-030-11072-7_18. URL: https://doi.org/10.1007/978-3-
030-11072-7_18.

[26] Gil Neiger and Sam Toueg. ``Automatically increasing the faulttolerance of dis
tributed algorithms''. In: Journal of Algorithms 11.3 (1990), pp. 374–419. ISSN:
01966774. DOI: https://doi.org/10.1016/0196- 6774(90)90019-
B. URL: https://www.sciencedirect.com/science/article/pii/
019667749090019B.

[27] David Peleg.Distributed Computing: A LocalitySensitive Approach. Society for
Industrial and Applied Mathematics, 2000. ISBN: 0898714648. DOI: 10.1137/
1.9780898719772. URL: https://epubs.siam.org/doi/abs/10.1137/
1.9780898719772.

[28] Kenneth J. Perry and Sam Toueg. ``Distributed agreement in the presence of
processor and communication faults''. In: IEEE Transactions on Software Engi
neering SE12.3 (1986), pp. 477–482. DOI: 10.1109/TSE.1986.6312888.

93

https://doi.org/10.1007/978-3-319-69084-1_16
https://doi.org/10.1145/167088.167125
https://doi.org/10.1145/167088.167125
https://doi.org/10.1145/167088.167125
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/41840.41852
https://doi.org/10.1145/41840.41852
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/10.1007/978-3-030-11072-7_18
https://doi.org/https://doi.org/10.1016/0196-6774(90)90019-B
https://doi.org/https://doi.org/10.1016/0196-6774(90)90019-B
https://www.sciencedirect.com/science/article/pii/019667749090019B
https://www.sciencedirect.com/science/article/pii/019667749090019B
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772
https://epubs.siam.org/doi/abs/10.1137/1.9780898719772
https://epubs.siam.org/doi/abs/10.1137/1.9780898719772
https://doi.org/10.1109/TSE.1986.6312888

BIBLIOGRAPHY

[29] Michel Raynal. FaultTolerant MessagePassing Distributed Systems: An Algo
rithmic Approach. Jan. 2018. ISBN: 9783319941400. DOI: 10.1007/978-
3-319-94141-7.

[30] Michael Saks and Fotios Zaharoglou. ``WaitFree kSet Agreement is Impossi
ble: The Topology of Public Knowledge''. In: Proceedings of the TwentyFifth
Annual ACM Symposium on Theory of Computing. STOC '93. San Diego, Cali
fornia, USA: Association for Computing Machinery, 1993, pp. 101–110. ISBN:
0897915917. DOI: 10.1145/167088.167122. URL: https://doi.org/10.
1145/167088.167122.

[31] Tomoko Suzuki, Taisuke Izumi, Fukuhito Ooshita, Hirotsugu Kakugawa, and
ToshimitsuMasuzawa. ``Moveoptimal gossiping amongmobile agents''. In:Theor.
Comput. Sci. 393.13 (2008), pp. 90–101. DOI: 10.1016/j.tcs.2007.11.
007. URL: https://doi.org/10.1016/j.tcs.2007.11.007.

[32] Gerard Tel. Introduction to Distributed Algorithms. 2nd. USA: Cambridge Uni
versity Press, 2001. ISBN: 0521794838.

94

https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1145/167088.167122
https://doi.org/10.1145/167088.167122
https://doi.org/10.1145/167088.167122
https://doi.org/10.1016/j.tcs.2007.11.007
https://doi.org/10.1016/j.tcs.2007.11.007
https://doi.org/10.1016/j.tcs.2007.11.007

	Distributed Computing Models
	Introduction
	Message Passing Model (MP)
	Mobile Agent Model (MA)
	Simulations

	Simulations among honest MA and MP models
	Simulation of ΜA Algorithm by a MP System
	Simulation of synchronous ΜA Algorithm by a synchronous MP System
	Simulation of a MP Algorithm by a MA System
	Simulation of synchronous ΜP Algorithm by a synchronous MA System

	Simulations among adversarial MA and MP models
	Simulation of a MP Algorithm by MA when agents might crash
	Always Dead Processes in MP (ADP-MP) and Black holes in MA (BH-MA)
	Simulations among BH-MA and ADP-MP model
	Crash Failures in MP (CF-MP) and Black+ holes in MA (B+H-MA)
	Simulation of a B+H-MA algorithm by a CF-MP algorithm
	Omission Failures in MP (OF-MP) and Gray holes in MA (GH-MA)
	Simulation of a GH-MA algorithm by an OF-MP algorithm
	Summarizing tables of the simulations
	Discussion

	Instantiations
	Problem Definitions
	Positive Results
	Impossibility Results
	Conclusion

	Bibliography

