
2

A Survey of Zero-Knowledge Succinct
Non-Interactive Arguments with
preprocessing

Nikitas Paslis
AL1.20.0010

Examination committee:
Aris Pagourtzis, School of Electrical and Computer
Engineering, National Technical University of Athens
Stathis Zachos, School of Electrical and Computer
Engineering, National Technical University of Athens
Petros Potikas, School of Electrical and Computer
Engineering, National Technical University of Athens

Supervisor:
Aris Pagourtzis, Professor,
School of Electrical and Computer
Engineering
National Technical University of Athens

ABSTRACT

In this thesis we study the notion of zero-knowledge succinct non-interactive argu-
ments (zkSNARGs) with preprocessing. Given an arithmetic circuit C, public input x,
private input w and public output y, a zkSNARG constitutes a protocol that allows a
computationally bounded party, called prover, to convince another, called verifier, that
C(x,w) = y, i.e. the circuit with inputs x,w evaluates to y, without the verifier gaining
any more information beyond the validity of the computation. Moreover, the prover is
not required to interact with anyone in order to generate the proof that the verifier will
check, while the produced proof is also succinct, i.e. short to store and quick to verify.
Finally, these protocols are universal, in the sense that they can be used for any circuit
up to a pre-determined bound on their size, while also being updatable, meaning that
their SRS can be updated in a verifiable manner by any user.

We present the current landscape of the theory of preprocessing universal and up-
datable zkSNARKs, which advocates for constructing them in a modular way, sepa-
rating the information theoretic component of the construction from the cryptographic
primitive that is used for the compiling phase. The information theoretic part is a poly-
nomial holographic proof (PHP) [Cam+20] for the NP-complete language of Rank 1
Constraint Systems (R1CS), while the cryptographic primitive is a polynomial commit-
ment scheme [KZG10].

Furthermore, we examine the bottleneck of the recent constructions, called Check-
able Subspace Sampling (CSS) [RZ21], separately and give constructions for it that
achieve different efficiency trade-offs. Finally, we present Basilisk [RZ21], which
achieves the smallest proof size in the literature.

ΣΎΝΟΨΗ

Σεαυτή τη διπλωματική εργασία μελετάμε την έννοια των μηδενικής-γνώσεις συνοπτικών
μη-διαλογικών επιχειρημάτων (zkSNARGs) με προεπεξεργασία. Δοθέντος ενός αριθμητικού
κυκλώματος C, δημόσιας εισόδου x, ιδιωτικής εισόδου w και δημόσιας εξόδου y, ένα
zkSNARG αποτελεί ένα πρωτόκολλο το οποίο επιτρέπει σε ένα υπολογιστικά φραγμένο
συμμετέχοντα, ονόματι αποδεικνύοντας, να πείσει έναν άλλο, ονόματι επαληθευτής,
ότι C(x,w) = y, δηλαδή ότι το κύκλωμα με εισόδους x,w αποτιμάται σε y, χωρίς
ο επαληθευτής να αποκομμίσει οποιαδήποτε πληροφορία πέρα από την εγκυρότητα
του υπολογισμού. Επιπλέον, ο αποδεικνύοντας δεν απαιτήται να αλληλεπιδράσει με
οποιονδήποτε για τη δημιουργία της απόδειξης που ο επαληθευτής θα ελέγξει, ενώ
η παραγώμενη απόδειξη είναι συνοπτική, δηλαδή μικρής χωρητικότητας και γρήγορα
επαληθεύσιμη. Τέλος, τα πρωτόκολλα αυτά είναι καθολικά, υπό την έννοια ότι δουλεύουν
για οποιοδήποτε κύκλωμα εώς ένα προκαθορισμένο όριο στο μέγεθος του, ενώ είναι
επίσης επικαιροποιήσιμα, εννοώντας ότι τα SRS τους μπορούν να επικαιροποιηθούν
μέσω ενός επαληθεύσιμου τρόπου από οποιονδήποτε χρήστη.

Παρουσιάζουμε το τρέχον τοπίο της θεωρίας των καθολικών και επικαιροποιήσιμων
zkSNARGs με προεπεξεργασία, το οποίο συνηγορεί για την κατασκευή τους με αρθρωτό
τρόπο, διαχωρίζοντας το πληροφοριοθεωρητικό σκέλος της κατασκευής από το κρυπτογραφικό
θεμελιακό στοιχείο που χρησιμοποιείται κατά τη σύνταξη. Το πληροφοριοθεωρητικό
κομμάτι είναι μια πολυωνυμική ολογραφική απόδειξη [Cam+20] για την NP-πλήρη
γλώσσα των Βαθμού 1 Συστημάτων Περιορισμών, ενώ το κρυπτογραφικό θεμελιακό
στοιχείο είναι ένα σχήμα πολυωνυμικών δεσμέυσεων [KZG10].

Επιπρόσθετα, εξετάζουμε το υπολογιστικό κώλυμα των πρόσφατων κατασκευών,
ονόματι ελέγξιμη δειγματοληψία υποχώρου [RZ21], ξεχωριστά και δίνουμε κατασκευές
αυτού που επιτυγχάνουν διαφορετικούς συμβιβασμούς απόδοσης. Τέλος, παρουσιάζουμε
τοBasilisk [RZ21], το οποίο επιτυγχάνει το μικρότερο μέγεθος απόδειξης στη βιβλιογραφία.

CONTENTS

1 Introduction 1
1.1 Interactive Proof systems and Zero-Knowledge 1
1.2 Complexity classes that admit Zero-Knowledge IPs 2
1.3 Efficiency metrics . 2
1.4 ZK-SNARKs with pre-processing 3

2 Preliminaries 7
2.1 Schwartz-Zippel lemma . 7
2.2 Bilinear groups . 8
2.3 Lagrange Polynomial basis . 8
2.4 Assumptions . 9
2.5 zkSNARks . 10

3 Polynomial Commitments 13
3.1 Towards efficient polynomial commitment schemes 14
3.2 Polynomial Commitment schemes in Marlin [Chi+19] 15
3.3 Definitions for polynomial commitments 16
3.4 Overview of the construction in Marlin 18
3.5 PC scheme construction in the AGM 19
3.6 Proofs of properties . 20

4 Constraint Systems 29

5 Polynomial Holographic Proofs 35
5.1 Checkable Subspace Sampling . 37

6 Using Lagrange polynomials to prove Hadamard Product and Inner Prod-
uct relations 39

7 PHP for R1CS-lite' from simpler blocks 41
7.1 From CSS to Linear Argument . 41
7.2 From Linear Argument to R1CS-lite' 43
7.3 Adding Zero-Knowledge . 43

i

CONTENTS

8 Checkable Subspace Sampling [RZ21] 45
8.1 Overview . 45
8.2 CSS Argument for Simple Matrices 47
8.3 CSS argument for Sparse Matrices 48
8.4 CSS Argument for Sums of Simple Matrices 49

9 Concrete construction of zkSNARK: Basilisk [RZ21] 51

Bibliography 55

ii

CHAPTER 1
INTRODUCTION

1.1 Interactive Proof systems and Zero-Knowledge
"The Knowledge of London", or simple "the Knowledge", is an examination system
designed for taxi drivers in London, United Kingdom. Every aspiring taxi driver must
undergo training for an extensive period of time, lasting between 2 to 4 years, in order to
memorise all the landmarks, streets and places in a 6 mile radius of the Chairing Cross.
As part of the examination, the candidate is requested to situate two arbitrary points
and find the best route between them without the aid of a map or any other technology.
This examination is repeated over the years to assure that the aspiring driver has the
necessary Knowledge for the position.

Alice believes she can beat the Knowledge and can find better route than Bob, the
Knowledge examiner. Alice, trying to protect the fruits of her hard work, does not want
to reveal to Bob what the actual route is, but rather she merely wants to convince him
that she knows one. For this part, Bob does not believe her until she can prove it to him.

Whether Alice's desire can be fulfilled gives birth to the following question: Is
it possible to create a procedure, that can convince someone about the validity of a
statement, without him gaining any knowledge beyond the statement's validity? While
considering this question in the mid 80's, Goldwasser, Micali and Rackoff observed that
it regards settings where there is some short of interaction between two parties. This
observation led them to defining, in their landmark paper [GMR89], the complexity
class of Interactive Proofs (IP).

Informally, an IP is a protocol that allows one party, the prover, to convince another,
the verifier about the validity of a statement. There are two main properties an IP must
satisfy:

• Completeness states that if the prover and verifier follow the protocol, the verifier
accepts the validity of a true statement.

• Soundness guarantees that the prover cannot deceive the verifier into accepting
the validity of a false statement, even if the prover deviates arbitrarily from the
instructions of the protocol.

1

1.2. COMPLEXITY CLASSES THAT ADMIT ZERO-KNOWLEDGE IPS

We can strengthen the soundness property, by considering knowledge soundness (IP
of knowledge), which guarantees that whenever the prover convinces the verifier, then
he knows a witness that attests to the validity of the statement.

Given an interactive proof, the answer to the previous question corresponds to
whether or not the protocol satisfies the following property:

• Zero knowledge prevents the verifier to learn anything from an execution of the
protocol, apart from the validity of the statement.

Thus, a zero-knowledge interactive proof of knowledge is a cryptographic protocol
that allows Alice to convince Bob she has the necessary Knowledge, without disclosing
any additional information about it. This is a powerful cryptographic primitive that can
be used in many security applications, whenever it is desired to strike a balance be-
tween verifiability of information and secrecy. Examples of these applications include
manipulation of healthcare data, cloud computing, and public-ledger technologies, e.g.
blockchains.

1.2 Complexity classes that admit Zero-Knowledge IPs
Much of the early work on IPs and zero-knowledge was devoted in identifying the
classes of languages that admit these kinds of protocols, with what properties and un-
der which cryptographic assumptions. Goldreich, Micali and Wigderson [GMW91]
constructed a computational zero-knowledge (bounded verifier) proof forNP , by con-
structing one for the language of 3-COLORABILITY, based on the existence of one-
way functions. Their results were generalized in [IY87], where under the same as-
sumptions and verifier bounds they construct zero-knowledge proofs for the whole IP.
Pairing this with the celebrated result by A.Shamir [Sha92], that IP=PSPACE, we get
computational zero-knowledge proofs for PSPACE.

Over the last three decades, different constructions have emerged, many of which
offer zero-knowledge even against unbounded verifier (perfect zero-knowledge). How-
ever, unless the Polynomial Hierarchy collapses, NP-complete languages cannot have
IP wchich are both sound against unbounded prover and zero-knowledge unbounded
verifier [For99]. Therefore, when designing a proof system for NP languages, one must
choose between perfect soundness and computational soundness. Proof systems that are
sound against computationally bounded provers are called arguments.

1.3 Efficiency metrics
Zero-knowledge proofs are ubiquitous in cryptography. For instance they are used in
constructions of digital signatures, public-key encryption schemes, voting and auction-
ing systems, e-cash, secure multiparty computation (MPC), and verifiable outsourced
computation. Unfortunately, they are an expensive component of all of these, and it is
therefore important for them to be as efficient as possible. Aside from the flavours of
their different properties, zero-knowledge proofs can be compared with respect to their
efficiency, with the main metrics used to measure their performance being interaction,
communication and computational complexity.

The interaction of a proof system measures the number of messages that the prover
and verifier exchange. Different constructions require different amounts of interaction

2

CHAPTER 1. INTRODUCTION

and work on the subject has shown lower bounds on the amount of interaction needed
to construct proof systems with different properties for various classes of languages.
Nevertheless, these lower bounds can be circumvented by assuming the existence of
an honestly generated common reference string (CRS), which is shared between prover
and verifier. Another way of minimising interaction between prover and verifier is to
apply a general transformation to an interactive proof system and turn it into a non-
interactive one. This methodology was first illustrated by Fiat and Shamir [FS87], who
showed how any public-coin proof system (i.e. the verifier's messages are only random
coins) can be transformed into a non-interactive one, where the prover creates the proof
of the statement to be verified, without any interaction.

The communication complexity of a proof system corresponds to the overall size
of the messages exchanged between prover and verifier and it is usually measured with
respect to either the size of the instance, e.g. circuit size, or the size of the witness.
Again different constructions achieve different communication complexity, although
results from [GK96] show that sublinear communication in unlikely to be achievable
for proof systems with statistical soundness.

Fortunately, things are different for arguments, as Kilian [Kil92] constructed the
first zero-knowledge argument system with constant round of interaction and poly-
logarithmic communication cost, by getting the prover to construct a probabilisticaly
checkable proof (PCP) and hash it using Merkle tree to produce short proof for the ver-
ifier. But this approach has not been fruitful, as PCPs are expensive to compute. In the
non-interactive setting, Micali [Mic94] constructed the first argument with sublinear
size using the Fiat-Shamir transform. Both of these novel constructions leverage the
computational bound of the prover in order to construct proof systems that are succinct

Kilian's work inspired the creation of interactive oracle proofs (IOP) [BCS16], which
constitutes a generalization of IP and PCP. In an IOP the verifier does not read the mes-
sages outputted by the prover in their entirety, but rather has oracle access to them and
can make probabilistic queries to them, leading to reduction in the communication cost
of the argument.

Having low verifier complexity can be important even if we are not interested in
zero-knowledge and even for languages in P, as is the case of verifiable computation.
Verifiable computation has taken two distinct flavours in the literature: in the first the
prover wishes to prove that he has correctly computed a public function on private
inputs, e.g. private database searches; in the second the verifier wishes to offload a
large computation on public inputs to a more powerful prover.

1.4 ZK-SNARKs with pre-processing
In the last decade, mainly due to the increasing demand in public-ledger technologies
which require minimizing storage of data and time to verify proofs, there has been
a growing interest in zero-knowledge proof systems that additionally are succinct and
non-interactive, the so-called zkSNARKs. These are computationally-sound proof sys-
tems that are succinct, in that their proofs are short and efficient to verify, i.e. the proof
size and verification time should be constant or polylogarithmic in the length of the
non-deterministic witness.

In circuit-based arguments for general computations the verifier must at least read
the statement to be proven which includes both the description of the computation (i.e.
the circuit) and its input (i.e. public input). But this already is not succinct, because

3

1.4. ZK-SNARKS WITH PRE-PROCESSING

by reading the whole circuit, the verifier runs linearly in the size of the computation.
One way to solve this problem is create preprocessing zkSNARKs, which leverage the
notion of holography. Here the verifier (or more generally the relation encoder or
indexer) generates an encoding of the circuit C. He does that once and for all. This
encoding then can be used at any time to verify an unbounded number of proofs for
the computation C. This is indeed a succinct system: while the encoding creation does
depend on |C|, verification does not.

In contexts with many verifiers, e.g. blockchains, the SRS generation requires a
trusted setup. Solutions that minimize this trust (e.g. MPC secure against dishonest
majority) are often expensive and impractical to be carried out for every single compu-
tation. Tomitigate this problemGroth et. al [Gro+18] introduced themodel of universal
and updatable SRS. An SRS is universal if it can be used to generate and verify proofs
for all circuits up to some bound (e.g. number of multiplication gates). An SRS is up-
datable if any user can add randomness to it and a sequence of updates makes it secure
if at least one user acted honestly. Groth et al. [Gro+18] proposed the first such proof
system, although the SRS size is quadratic to the maximum number of supposed mul-
tiplication gates, as well as having quadratic verification and update time. In contrast,
recent works have achieved SRS that is linear in the largest supported circuit, first of
its kind being Sonic [Mal+19]. Moreover, PLONK [GWC19], Marlin [Chi+19], LU-
NAR [Cam+20] and Basilisk [RZ21] achieve proving time concretely faster than that
of Sonic while also retaining constant-size proofs.

The current landscape of preprocessing zkSNARKs with universal SRS - mod-
ular paradigm. There is an important trend in cryptography, that advocates for con-
structing protocolos in a modular way. One reason for doing so is the fact that, by
breaking complicated protocols into simpler steps, they become easier to analyze, while
also gives a straightforward way to compare the efficiency and ideas of different pro-
tocols. Thus, breaking the constructions in its simplest building blocks is essential to
keep track of advancement in this evergrowing area.

Towards this goal, building efficient cryptoraphic arguments works in two distinct
steps. First construct an information-theoretic protocol in an abstract model, e.g. in-
teractive proofs, Probabilistically Checkable Proofs (PCPs), Interactive Oracle Proofs
(IOPs). In the second step, apply a cryptographic compiler that, taking an abstract pro-
tocol as input, transforms in into an efficient computationally sound argument via a
cryptographic primitive. This approach has been adopted explicitly or implicitly in
most recent works on UaU zkSNARKs. There the information theoretic part is an
algebraically-flavored variant of IOPs (e.g. Algebraic Holographic IOPs in [Chi+19],
Polynomial Holographic IOPs in [Cam+20], [RZ21]), while the cryptographic primitive
are polynomial commitments [KZG10]. Using different types of polynomial commit-
ments in the compiling phase will lead to zkSNARKs with different trade-offs.

The overview of these constructions can be seen as follows:

• Run the setup algorithm to produce the SRS.

• Starting with a general computation over a finite field, create an arithmetic argu-
ment for verifying the validity of the computation.

• Preprocess the matrices of the constraints, encoding them as polynomials and
give oracle access to them to the verifier.

4

CHAPTER 1. INTRODUCTION

• Transform the constraint system to a PHP, i.e. move from relations between ma-
trices and vectors to equations between prover and encoder polynomials.

• The prover commits to the polynomials and gives oracle access to them to the
verifier.

• The verifier validates (with high probability) the correctness of the computation
by querying both sets of polynomials at random points and checking that the
equations hold for these evaluations.

Of course, this will lead to a succinct interactive argument of knowledge. Tomake it
non interactive, since the verifier is public-coin, one can use the Fiat-Shamir transform
[FS87].

5

1.4. ZK-SNARKS WITH PRE-PROCESSING

6

CHAPTER 2
PRELIMINARIES

We denote by [n] the set {1, . . . , n} ⊆ N. We use boldface for vectors and matrices.
For a matrix M, |M| is the number of non-zero entries. For a set S, |S| is its cardi-
nality and denote x ← S a sampling of a random x ∈ S. We use F for fields, G for
groups, and F[X] for the ring of univariate polynomials with coefficients from F, and
F[X1, X2, . . . , Xn] for polynomials in n variables. Given a finite set S, we denote FS

the set of vectors indexed by elements in S. For n ∈ N we write Fn instead of F[n].
We denote by λ ∈ N a security parameter.
For vectors a, b ∈ Fn, we write a · b for their inner product. We also write a ◦ b for
their Hadamard product, i.e. (a1b1, a2b2, . . . , anbn).

2.1 Schwartz-Zippel lemma

Lemma 2.1. Let P ∈ F[X1, . . . , Xn] be a non-zero polynomial of total degree d ≥ 0
over a field F. Let S be a finite subset of F and let r1, . . . , rn be uniformly random
elements of S. Then

Pr[P (r1, . . . , rn) = 0] ≤ d
|S|

Corollary 2.2. Let P ∈ F[X1, . . . , Xn] be a non-zero polynomial over a field F and
d the maximum degree of X1. Let S be a finite subset of F and let r1 be a uniformly
random element of S. Then

Pr[P (r1, X2 . . . , Xn) = 0] ≤ d
|S|

Corollary 2.3. Let P1, P2 ∈ F[X] be two non-zero polynomials over F of degrees
d1, d2 respectively. Then for a uniformly random element r ∈ F, it holds that:

P1(r) = P2(r)⇒ Pr[P1(X) = P2(X)] ≥ 1− max(d1,d2)
|F|

7

2.2. BILINEAR GROUPS

2.2 Bilinear groups
Throughout the constructions we use a bilinear group sampler, which is a probabilis-
tic polynomial-time algorithm SampleGrp, that on input a security parameter λ (repre-
sented in unary), outputs a tuple ⟨group⟩ = (G1,G2,GT , q, G,H, e)whereG1,G2,GT

are groups of prime order q ∈ N, G,H are generators of G1,G2 respectively and
e : G1 ×G2 → GT is a non-degenerate, efficiently computable bilinear map. We will
use additive notation for the group operations. For the map, it holds that e(G1, G2) is
a generator of GT and also that e(γG1,βG2) = e(G1, G2)γβ . We will also use the
following notation for group elements:

[γ]α := γGα for α ∈ {1, 2, T}.

With this notation G1 = [1]1, G2 = [1]2 and e([γ]1, [β]2) = e([1]1, [1]2)γ,δ = [γβ]T

2.3 Lagrange Polynomial basis
Let F be a finite field and H ⊂ F and suppose H = {hi}mi=1, for some canonical
order. Consider the vanishing polynomial in H, t(X) ∈ Fm[X] which is such that
t(hi) = 0, ∀hi ∈ H. Clearly t(X) =

∏m
i=1(X − hi) is of mini. Then, the quotient

ring F[X]/(t(X)) is an m-dimensional vector space over F. Consider now the follow-
ing m polynomials of degree m-1:

λi =
∏

i ̸=j
X−hj

hi−hj

Denote λ(X) = (λ1(X), . . . ,λm(X)). For all i ∈ [m] it holds that

λi(hj) =

{
1 if j = i

0 else

Claim: The λi's are linearly independent over F. This is easy to see, as taking an F-
linear combination of these polynomials with coefficients {ai}mi=1 ∈ Fm and evaluating
at hi, we get ai = 0.
Thus {λi(X)}mi=1 is a basis for the F-vector space of polynomials with degree < m.
Now considering these polynomials in the ring F[X]/(t(X)), we get the following
properties:

(1)∀i ̸= j ∈ [m] : λi(X) · λj(X) ≡ 0(mod(t(X)))
(2)∀i ∈ [m] : λ2

i (X) ≡ λi(X)(mod(t(x)))

Thus, for

a(X) = aᵀ · λ(X) =
∑m

i=1 ai · λi(X)
b(X) = bᵀ · λ(X) =

∑m
i=1 bi · λi(X)

we have

a(X) · b(X) = (
∑m

i=1 ai · λi(X)) · (
∑m

i=1 bi · λi(X)) ≡
∑m

i=1 ai · bi · λi(X) ≡∑m
i=1 (a ◦ b)

ᵀ · λ(X)(mod(t(X)))

8

CHAPTER 2. PRELIMINARIES

Assume now that H is a multiplicative subgroup of F. Since the cardinality of H
is m, we have that ∀i ∈ [m] : hm

i = 1 and that these are exactly the x ∈ F such that
xm = 1 Thus, the vanishing polynomial at H has the form

t(X) = Xm − 1

Also, using the Vieta formulae we have the following get the following regarding the
i-th Lagrange polynomial

λi(X) = hi
m

(Xm−1)
(X−hi)

λi(0) =
1
m

Thus, in the case where H is a multiplicative subgroup of F, both the vanishing poly-
nomial at H as well as the Lagrange basis polynomials have a compact representation
which can be computed in O(logm) field operations. This is a critical point, as these
can be computed by the verifier without sacrificing the succinctness of the proof system.

2.4 Assumptions

The construction of the polynomial commitment scheme (and subsequently of the zk-
SNARK) will achieve its security in the Algebraic GroupModel (AGM) [FKL17]. This
model replaces specific knowledge assumptions (such us Power Knowledge of Expo-
nent Assumptions). In AGM all algorithms are modeled as algebraic, meaning that
whenever the algorithm outputs a group element G, it must also provide a description
of it based on the group elements it already has. Formally:

Definition 2.4 ([FKL17]). (algebraic algorithm). Let G be a cyclic group of prime
order q and Aalg a probabilistic algorithm run on initial inputs including description
of G. During its execution Aalg may interact with oracles or other parties and receive
further inputs including obliviously sampled group elements (which it cannot sample
itself). Let L ∈ Gn be the list of all group elements Aalg has already received such
that all other inputs it has been given do not depend in any way on group elements.
We call Aalg algebraic if whenever it outputs a group element G ∈ G it also outputs a
vector a = [ai]ni=1 ∈ Fn

q such that G =
∑n

i=1 aiLi. The coefficients a are called the
'representation' of G with respect to L, denoted G := ⟨a,L⟩.

Definition 2.5 ([Cho+06]). The StrongDiffie-HellmanAssumption (SDH) states that
for every efficient adversary A and degree bound d ∈ N the following probability is
negligible in λ:

Pr

⎡

⎢⎢⎣C = [1
β+c]1

∣∣∣∣∣∣∣∣

⟨group⟩ ← SampleGrp(1λ)
β ← Fq

Σ← {[βi]1}di=0, [β]2}
(c, C)← A(⟨group⟩,Σ)

⎤

⎥⎥⎦

9

2.5. ZKSNARKS

2.5 zkSNARks
LetR be a family of universal relations. Given a relation R ∈ R and an instance x we
call w a witness for x if (x,w) ∈ R,L(R){x|∃w : (x,w) ∈ R} is the language of all the
x that have a witness w in the relation R, while L(R) is the language of all the pairs
(x,R) such that x ∈ L(R).

Definition 2.6. A Universal Succinct Non-Interactive Argument of Knowledge is a tu-
ple of PPT algorithms (KetGen,KeyGenD, Prove,Verify, Simulate) such that:

• (srsu, τ) ← KeyGen(R): On input a family of relations R,KeyGen outputs a
universal structured common reference string srsu and a trapdoor τ ;

• srsR ← KeyGenD(srsu,R) : On input R ∈ R, this algorithm outputs a relation
dependent SRS that includes srsu;

• π ← Prove(R, srsR, (x,w)) : On input the relation srsR and a pair (x,w) ∈ R, it
outputs a proof π;

• 1/0← Verify(srsR, x,π): Verify takes an input srsR, the instance x and the proof
and produces a bit expressing acceptance (1), or rejection (0);

• πsim ← Simulate(R, τ, x) : The simulator has the relation R, the trapdoor τ and
the instance x as inputs and it generates a simulated proof πsim;

and that satisfies the properties of completeness, succinctness and ϵ-knowledge sound-
ness as defined below.

Definition 2.7. Completeness holds if an honest prover will always convince an honest
verifier. Formally, ∀R ∈ R, (x,w) ∈ R,

Pr

⎡

⎣Verify(srsR, x,π) = 1

∣∣∣∣∣∣

(srsu,τ)← KeyGen(R)
srsR ← KeyGenD(srsu,R)
π ← Prove(R, srsR, (x,w))

⎤

⎦ = 1

Definition 2.8. Succinctness holds if the size of the proof π is poly(λ + log|w|) and
Verify runs in time poly(λ+ |x|+ log|w|).

Definition 2.9. ϵ-knowledge soundness captures the fact that a cheating prover cannot,
with probability at most ϵ, creat a proof π accepted by the verification algorithm unless
it has a witness w such that (x,w) ∈ R. Formally, for all PPT adversaries A, there
exists a PPT extractor E such that:

Pr

⎡

⎢⎢⎢⎢⎣
(x,w) /∈ R ∧ Verify(srsR, x,π) = 1

∣∣∣∣∣∣∣∣∣∣

(srsu, τ)← KeyGen(R)
R← A(srsu)

srsR ← KeyGenD(srsu,R)
(x,π)← A(R, srsR)
w← E(srsR, x,π)

⎤

⎥⎥⎥⎥⎦
≤ ϵ

10

CHAPTER 2. PRELIMINARIES

Definition 2.10. (KeyGen,KeyGenD, Prove,Verify, Simulate) is zero-knowledge (a
zkSNARK) if for all R ∈ R, instances x and PPT adversaries A.

Pr

⎡

⎣A(R.srsR,π) = 1

∣∣∣∣∣∣

(srsu, τ)← KeyGen(R)
srsR ← KeyGenD(srsu,R)
πsim ← Simulate(R, τ, x)

⎤

⎦ ≈

Pr

⎡

⎣A(R.srsR,πsim) = 1

∣∣∣∣∣∣

(srsu, τ)← KeyGen(R)
srsR ← KeyGenD(srsu,R)
πsim ← Simulate(R, τ, x)

⎤

⎦

Definition 2.11. A universal zkSNARK is updatable if anyone can update its SRS in
a verifiable manner by adding his own randomness.

Definition 2.12. A family of polynomial time computable relations R is field de-
pendent if each R ∈ R, specifies a unique finite field. More precisely, for any pair
(x,w) ∈ R, x specifies the same finite field FR (simply denoted as F if there is no am-
biguity).

11

2.5. ZKSNARKS

12

CHAPTER 3
POLYNOMIAL COMMITMENTS

Commitment schemes (CS) emulate real world envelopes, i.e. they allow a party to
conceal a message, with the ability to later reveal it, while being unable to change it.
Thus, they can be thought of as functions C, that can have the following properties:

• Binding. It is hard (impossible) to find messages m1,m2 such that C(m1) =
C(m2).

• Hiding. It is hard (impossible), given commitments c1, c2 to anymessagesm1,m2

to distinguish which corresponds to which.

A commitment scheme given by a function that fulfils these properties is called com-
putationally (perfectly) binding CS and computationally (perfectly) hiding CS, respec-
tively. Note that a CS cannot be perfectly binding and perfectly hiding simultaneously.

In the context of interactive oracle proof, where the prover constructs oracles which
the verifier can query in order to decide the correctness of a statement, commitments
play a crucial part. This is because, by making the prover publish commitments to the
oracles he constructs it opens a way to validate that the answers the verifier receives are
consistent with the oracles, i.e. the prover did not change the oracles during the proof.

For the construction of pre-processing zkSNARKs, the witness to a statement is
modified to witness polynomials that satisfy some set of polynomial equations between
them and publicly known ones. Now, the Schwartz-Zippel lemma tells us that if a
polynomial equation over a field is satisfied when the polynomials are evaluated at a
random point, then the equation holds in general with probability 1 − d/|F|, where
d is the maximum degree. The basic idea is that, these witness polynomials will be
constructed by the prover as oracles and later the verifier can query them at a random
point, in order to be convinced about the statement with high-probability. In order to
enforce the prover to stick to his original oracle polynomials and not change them along
the way, we make him publish commitments to them.

That being said, by leveraging the algebraic flavor of the information theoretic part
of the zkSNARKs (e.g. PHPs), what we need for the compiler is a cryptographic
primitive that we call polynomial commitment scheme. By using different commit-
ment schemes for the compiler, we end up with zkSNARK constructions with different
properties.

13

3.1. TOWARDS EFFICIENT POLYNOMIAL COMMITMENT SCHEMES

Informally, a polynomial commitment scheme [KZG10] allows a prover to produce
a commitment c to a univariate polynomial p ∈ F[X], and later "open" p(X) at any
point z ∈ F, providing also an evaluation proof π showing that the opened value is
consistent with the polynomial "contained" in c at z.

A straightforward polynomial commitment scheme works as follows:

• Pick a cyclic group G = ⟨g⟩ of order q.

• To commit to a polynomial f(X) = a0 + a1X + . . .+ anXn, produce commit-
ments to coefficients, c0 = ga0 , c1 = ga1 , . . . , cn = gan and publish them.

• For input an evaluation point x ∈ Zq , output the evaluation u = f(x) and eval-
uation proof π = ⊥

• To verify that an input u is the evaluation of the polynomial corresponding to a
given commitment at x, calculate c0cx1cx

2

2 . . . cx
n

n and check if it equals gu.

The PC scheme is perfectly binding, because by sending commitment to the coefficient
of the polynomial, the prover gives the ability to the verifier to evaluate the polynomial
at any point, but this evaluation is hidden in the exponent. Then, for a given evaluation
point, the only way for the prover to pass the test is to actually send f(x), as this is
the only exponent that will produce the same element the verifier computes. The main
drawback of this natural construction is that the size of the commitment grows linearly
with the degree of the committed polynomials, which makes it impractical. Thus turn-
ing this informal goal into a formal definitions requires some care.

3.1 Towards efficient polynomial commitment schemes
When constructing a polynomial commitment scheme we place strong efficiency re-
quirements, namely we require that the commitment, evaluation proof length and veri-
fication are much smaller than the polynomial itself, e.g. polylog(d). To achieve these
efficiency standards, some initialization phase must take place, where a common refer-
ence string (CRS) is created. Of course, by embedding structure we can hope for less
costly scheme, but this comes with a prize in security, as to produce structured refer-
ence string (SRS) trust must be put on some party. Another way of trading security for
efficiency, is by constructing schemes that are secure based on assumptions about the
computational power of the adversary.

Different schemes provide different trade-offs between efficiency and security. FRI
polynomial commitment scheme [VP19] uses hash functions and Reed-Solomon codes,
to achieve single element commitment, proof of evaluation size and verification of
O
(
log2(d)

)
, while also being transparent, i.e. does not require trusted setup, while

also being post-quantum secure. Based on the inner product argument (IPA) with the
folding technic introduced by Bootle et al. [Boo+16] and later inproved in Bulletproofs
[Bün+17], transparent single element polynomial commitment schemes can be build
with CRS size d,O(d) verification time, log(d) size evaluation proof, while if we use a
SRS the construction of [Bün+19] requires

√
d SRS size and log(d) verification time.

Finally, in [KZG10] they propose a construction in the SRS model using elliptic curves

14

CHAPTER 3. POLYNOMIAL COMMITMENTS

and pairings, that achieves the best efficiency results, namely a commitment and evalu-
ation proof consist of a single element, and verification is done through a single pairing,
while also keeping an SRS of size d.

Furthermore, a critical point in the construction of these schemes is how they ensure
that an adversary that produces a validating tuple of commitment-evaluation-proof ac-
tually knows a polynomial that respects a certain bound that gives rise to the said tuple.
This is the notion of extractability.

Another thing to take into consideration is that, in many applications of polynomial
commitments, an adversary may need to produce commitments to multiple polynomials
within a round of interaction or across multiple rounds. Then he may need to reveal
values of all of these polynomials at one point or different locations. This motivates
the following considerations. First, we should rely on a single set of public parameters,
even if the polynomials to be committed differ in degree. Secondly, it is desirable to
have a batching mechanism for the commitments as well as the evaluation proofs to
save on communication costs.

3.2 Polynomial Commitment schemes inMarlin [Chi+19]

Because of the aforementioned, in Marlin [Chi+19] they introduce an enhanced version
of the polynomial commitments introduced in [KZG10], that captures the desired prop-
erties. Their definition of a polynomial commitment scheme PC consists of a tuple of
algorithms PC=(Setup,Trim,Commit,Open,Check). The setup algorithm is probabilis-
tic and takes as input a security parameter and maximum degree boundD, and outputs
public parameters pp that contain the description of a finite field F. The "trimming"
algorithm then deterministically specializes these parameters for a set of given degree
bounds and outputs a commiter key ck and a receiver key rk. The sender then can in-
voke the commit algorithm with input ck and a list of polynomials p with respective
degree bounds d, generating a set of commitments c. Then, on input a query setQ, the
sender can use the opening algorithm to produce an evaluation proof π that convinces
the receiver that the polynomials inside the commitment respect their degree bounds
and also that the claimed evaluations u are correctly computed. Then, the receiver can
use the check algorithm to validate the proof.

Also, they present two different commitment schemes that solve under different
assumptions the problem of "knowing a polynomial corresponding to a commitment".
The first construction works in the standardmodel under knowledge assumptions, while
the second one works in the Algebraic Group Model. Moreover, they first build these
schemes to support one degree bound (the maximum one) and evaluation at one point
for all the polynomials. Afterwords, they extend these constructions to support multiple
degree bounds and evaluation at different points. For simplicity, we only present the
construction at the Algebraic Group Model and we omit its aforementioned extensions.
A reason for this is because for the purpose of zkSNARKs we will assume that the
adversary is algebraic and also all the polynomials are of maximum degree and we will
evaluate them all at one point. Also, for the zkSNARKs, we won't need the polynomial
commitment scheme to be hiding (as this is achieved in a different way) but we present
this extension because of its usefulness in different settings.

15

3.3. DEFINITIONS FOR POLYNOMIAL COMMITMENTS

3.3 Definitions for polynomial commitments
Definition 3.1. A polynomial commitment scheme over a field family F is a tuple of
algorithms PC = (Setup, Trim, Commit, Open, Check) with the following syntax.

• PC.Setup(1λ, D)→ pp. On input a security parameter λ (in unary), and a max-
imum degree bound D ∈ N, PC.Setup samples public parameters pp. The pa-
rameters contain the description of a finite field F ∈ F .

• PC.Trimpp(1λ, b) → (ck, rk). Given oracle access to public parameters pp, and
on input a security parameter λ (in unary), and degree bounds b, PC.Trim deter-
ministically computes a key pair (ck, rk) that is specialized to b.

• PC.Commit(ck, p, d;ω) → c. On input ck, univariate polynomials p = [pi]ni=1

over the field F, and degree bounds d = [di]ni=1 with deg(pi) ≤ di ≤ D,
PC.Commit outputs commitments c = [ci]ni=1 to the polynomials p = [pi]ni=1.
The randomness ω = [ωi]ni=1 is used if the commitments c = [ci]ni=1 are hiding.

• PC.Open(ck, p, d, Q, ξ;ω)→ π.On iput ck, univariate polynomials p = [pi]ni=1,
degree bounds d = [di]ni=1, a query set Q consisting of tuples (i, z) ∈ [n] × F,
and opening challenge ξ, PC.Open outputs an evaluation proof π. The random-
ness ω must equal the one previously used in PC.Commit.

• PC.Check(rk,c, d,Q, u,π, ξ) ∈ {0, 1}. On input rk, commitments c = [ci]ni=1,
degree bounds d = [di]ni=1, query set Q consisting of tuples (i, z) ∈ [n]× F, al-
leged evaluations u = (u(i,z))(i,z)∈Q, evaluation proof π, and opening challenge
ξ, PC.Check outputs 1 if π attests that, for every (i, z) ∈ Q, the polynomial pi
committed in ci has degree at most di and evaluates to u(i,z) at z

The polynomial commitment scheme satisfies the properties of completeness and
extractability defined below.
The polynomial commitment scheme is (perfectly) hiding if it satisfies the hiding prop-
erty defined below.

Definition 3.2. (Completeness). For every maximum degree bound D ∈ N and effi-
cient adversary A,

Pr

⎡

⎢⎢⎢⎢⎢⎢⎣

deg(p) ≤ d ≤D
⇓

PC.Check(rk,c, d,Q, u,π, ξ) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)
(p, d,Q, ξ,ω)← A(pp)

(ck, rk)← PC.Trimpp(1λ, d)
c← PC.Commit(ck, p, d;ω)

u← p(Q)
π ← PC.Open(ck,p, d,Q, ξ,ω)

⎤

⎥⎥⎥⎥⎥⎥⎦
= 1

Informally, PC is extractable if for every maximum degree D and every efficient
sender adversary A who produces degree bound d, a commitment c, evaluation u and
evaluation proof π such that PC.Check accepts, there exists a corresponding extracor
EA that outputs a polynomial of degree at most d that "explains" c so that p(z) = u.

16

CHAPTER 3. POLYNOMIAL COMMITMENTS

Definition 3.3. (Extraxtability). For every maximum degree bound D ∈ N and effi-
cient adversary A there exists an efficient extractor E such that for every round bound
e ∈ N, efficient public-coin challenger C, efficient query sampler Q and efficient ad-
versary B = (B1,B2) the probability below is negligibly close to 1 (as a function of λ):

Pr

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PC.Check(rk, c, d,Q, u,π, ξ)= 1
⇓

deq(p) ≤ d ≤D and u = p(Q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← PC.Setup(1λ, D)

For i = 1, . . . , r :
ρi ← C(pp,i)

(ci, di)← A(pp, [ρj]ij=1)
pi ← E(pp,[ρj]ij=1)

Q← Q(pp, [ρj]rj=1)
(u, st)← B1(pp,[ρj]rj=1, Q)
Sample opening challenge ξ

π ← B2(st, ξ)
Set [ci]ni=1 := [ci]ri=1, [pi]

n
i=1 := [pi]ri=1, [di]

n
i=1 := [di]ri=1

ck, rk← PC.Trimpp(1λ, [di]ni=1)
Define the set of queried polynomials T := {i ∈ [n] | (i, z) ∈ Q}

Set c := [ci]i∈T , p := [pi]i∈T , d := [di]i∈T

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

There are two notions of efficiency we require for PC. First, the time required to
commit to a polynomial and then create an evaluation proof, should be proportional to
its degree and not the maximum supported degree. Secondly, on the receiver's side, the
commitment size, proof size and time to verify an evaluation should independent of the
degrees of the polynomials.

Definition 3.4. (Efficiency).We say that a polynomial commitment scheme is:

• degree− efficient if the time to run PC.Open is proportional to the maximum
degree max(d) (as opposed to the maximum supported degree D). In particular
this implies that |ck| = O(max(d))λ.

• succinct if the size of the commitments, the size of the evaluation proofs, and
the time to check an opening are all independent of the degree of the commit-
ted polynomials. That is, |c| = n · poly(λ) · polylog(d), |π| = |Q| · poly(λ) ·
polylog(d), |rk| = O(n)λ, and time(Check) = (n+ |Q|) · poly(λ) · polylog(d).

The hiding property of PC states that commitments and proofs of evaluation re-
veal no information about the committed polynomial beyond the publicly stated degree
bound and evaluation itself. Informally, PC is hiding if there exists an efficient simu-
lator that outputs simulated commitments and evaluation proofs that cannot be distin-
guished from their real counterparts by any malicious distinguisher that only knows the
degree bound and the evaluation.

Definition 3.5. (Hiding).There exists a polynomial-time simulatorS = (Setup,Commit,Open)
such that, for every maximum degree bound D ∈ N, and efficient adversary A =
(A1,A2,A3), the probability that b=1 in the following two experiments is identical:

17

3.4. OVERVIEW OF THE CONSTRUCTION IN MARLIN

Real(1λ, D,A) :

1. pp← PC.Setup(1λ, D).

2. Letting c0 = ⊥, for i = 1, . . . , r

(a) (pi, di, hi)← A1(pp, c0, c1, . . . , ci−1)

(b) (cki, rki)← PC.Trimpp(1λ, di)

(c) If hi = 0 sample commitment
randomness ωi

(d) If hi = 1 set randomness ωi to ⊥

(e) ci ← PC.Commit(cki, pi, di,ωi)

3. c := [ci]ri=1, p :=
[pi]ri=1, d := [di]ri=1,ω := [ωi]

r
i=1

4. (ck, rk)← PC.Trimpp(1λ, b)

5. ([Qj]τj=1, [ξj]
τ
j=1, st) ←

A2(pp, c)

6. For j ∈ [τ],πj ←
PC.Open(ck,p, d,qj , ξj ;ω)

7. b← A3(st,[π]τj=1)

Ideal(1λ, D,A) :

1. (pp, trap)← S.Setup(1λ, D)

2. Letting c0 := ⊥, for i = 1, . . . , r

(a) (pi, di, hi)← A1(pp,c0, c1, . . . , ci−1)

(b) (cki, rki)← PC.Trimpp(1λ, di)
(c) If hi = 0, sample randomness ωi and compute

simulated commitments
ci ← SCommit(trap,di;ωi)

(d) If hi = 1, set ωi :=
⊥ and compute (real)
commitments ci ←
PC.Commit(cki, pi, di;ωi)

3. c := [ci]ri=1, p :=
[pi]ri=1, d := [di]ri=1,
ω := [ωi]ri=1

4. (ck, rk)← PC.Trimpp(1λ, d)

5. ([Qj]τj=1, [ξj]
τ
j=1, st) ←

A2(pp, c)

6. Zero out hidden polynomials
p′ := [hipi]ri=1

7. For j ∈ [τ],πj ←
S.Open(trap,p′, p(Qj), d, Qj , ξj ;ω)

8. b← A3(st,[π]τj=1)

3.4 Overview of the construction in Marlin
We present a polynomial commitment scheme for a single degree boundD ∈ N and for
query set Q that consists only of a single element z ∈ Fq . The scheme breaks into two
constructions, one that produces non-hiding commitments which we call nhPCs and
another that includes the texts in blue which we call phPCs for hiding commitments.

The setup phase samples a cryptographically secure bilinear group and then samples
a committer key ck and receiver key rk for a given degree bound D. The ck consists
of powers of the trapdoor β ∈ Fq encoded in the first group and also another element
γ ∈ Fq multiplied by the powers of β encoded in the first group, which is going to
be used to make the commitment hiding. The receiver key rk consists of the group
elements (D, ⟨group⟩, [γ]1, [β]2). Note that the SRS is updatable, meaning that anyone
can produce another one from it by adding his own randomness thus minimizing trust.
A way to do this, is by taking the SRS and a δ ∈ Fq and multiplying each element
of the SRS by the appropriate power of δ as well as providing a proof that he did this
correctly done, e.g. the division of consecutive elements in the SRS have the same
discrete logarithm.

To commit to a polynomial p ∈ Fq[X], the sender computes c := [p(β)]1 (adding

18

CHAPTER 3. POLYNOMIAL COMMITMENTS

another polynomial to make it hiding). To prove that the committed polynomial evalu-
ates tou at a point z, we rely to the fact that the expressionw(X) := (p(X)−u)/(X−z)
is a polynomial if and only if p(z) = u. Otherwise, it is a rational function and the com-
mitment to it (which is the proof of evaluation π) cannot be computed using ck.

To verify the proof of evaluation, we use the bilinearmapping property (i.e. e([α]1, [α2) =
e([1]1, [1]2)α·α

′
) to check that the equality e(c− [u]1, [1]2) = e(π, [β]2 − [z]2) holds.

To commit to multiple polynomials at once, the sender requests from the receiver a
random field element ξ, which he uses to take a linear combination of the polynomials:
p =

∑n
i=1 ξ

ipi and generates a proof of evaluation π for this polynomial. The receiver
verifies the proof by using the fact that the commitments are additively homomorphic.
The receiver computes c =

∑n
i=1 ξ

ici and u =
∑n

i=1 ξ
iui and checks that the pair-

ing equation holds for c,π, u. Completeness of this batched check is immediate, while
soundness follows from the fact that if any polynomial does not match its evaluation,
then the combined polynomial will not match its evaluation with high probability due
to Schwartz-Zippel lemma.

3.5 PC scheme construction in the AGM
Setup. On input a security parameter λ (in unary), and a maximum degree boundD ∈
N, PCs.Setup samples public parameters (ck, rk) as follows. Sample a bilinear group
⟨group⟩ ← SampleGrp(1λ), and parse ⟨group⟩ as a tuple (G1,G2,GT , q, G,H, e).
Sample random elements β, γ ∈ Fq . Then compute the vector

Σ :=

(
[1]1 [β]2 [β2]1 . . . [βD]1
[γ]1 [γβ]1 [γβ2]1 . . . [γβD]1

)
∈ G2D+2

1

Set ck := (group⟩,Σ) and rk := (D, ⟨group⟩, [γ]1, [β]2), and then output the public
parameters (ck, rk). These public parameters will support polynomials over the field
Fq of degree at most D.

Commit. On input ck, univariate polynomialsp := [pi]ni=1 overFq and randomness
ω := [ωi]ni=1, PCs.Commit outputs commitments c := [ci]ni=1 that are computed as fol-
lows. If for any pi ∈ p, deg(pi) > D, abort. Else, for each i ∈ [n], if ωi is not ⊥,
then obtain randomunivariate polynomial p̄i of degree deg(pi) from ωi, otherwise p̄i
is set to be a zeropolynomial. For each i ∈ [n], output ci := [pi(β)]1 +[γp̄i(β)]1. Note
that because pi and p̄i have degree at mostD, the above terms are linear combinations
of terms in ck.

Open. On input ck, univariate polynomials p := [pi]ni=1 over Fq , evaluation point
z ∈ Fq , opening challenge ξ ∈ Fq , and randomness ω := [ωi]ni=1, which is the same
randomness used for PCs.Commit, PCs.Open outputs an evaluation proof π ∈ G1 that
is computed as follows. If for any pi ∈ p, deg(pi) > D, abort. For each i ∈ [n],
if ωi is not ⊥, then obtain random univariate polynomial p̄i of degree deg(pi) from
ωi, otherwise p̄i is set to be a zero polynomial. Then compute the linear combination
of polynomials p(X) :=

∑n
i=1 ξ

ipi(X) and p̄(X) :=
∑

ξip̄i(X). Compute witness
polynomialsw(X) := p(X)−p(z)

X−z and w̄(X) := p̄(x)−p̄(z)
X−z . Set w := [w(β)]1+[γw̄(β)]1

∈ G1 and ū := p̄(z) ∈ Fq . The evaluation proof is π := (w, ū).

19

3.6. PROOFS OF PROPERTIES

Check. On input rk, commitments c := [ci]ni=1, evaluation point z ∈ Fq , al-
leged evaluations u := [ui]ni=1, evaluation proof π := (w, ū), and randmness ξ ∈
Fq, PCs.Check proceeds as follows. Compute the linear combination C :=

∑n
i=1 ξ

ici.
Then compute the linear combination of evaluations u :=

∑n
i=1 ξ

iui, and check the
evaluation proof via the equality e(C − [u]1−[γū]1,H) = e(w, [β]2 − [z]2).

3.6 Proofs of properties

Completeness. Fix any maximum degree bound D and efficient adversary A. Let
(ck, rk) be any key pair output by the algorithm PCs.Setup(1λ,D) constructed above.
The keys contain a description ⟨group⟩ of a bilinear group of some prime order q, which
in particular induces a field Fq .
Let A(ck, rk) select polynomials p = [pi]ni=1 over Fq , location z ∈ Fq and opening
challenge ξ ∈ Fq . We only need to consider adversariesA that make choices for which
deg(p) ≤ D. Now consider commitments c = [ci]ni=1 and evaluation proof π that are
all computed according to the construction above.
We need to show that, for correct evaluations u := p(z),

PCs.(Check)(rk,c,z, u,π, ξ)= 1.

This amounts to arguing that the pairing equation holds.

e(C − [u]1 − [γū]1, [1]2) = e(
n∑

i=1

ξici −
n∑

i=1

ξi[ui]1 − [γp̄(z)]1, [1]2)

= e([
n∑

i=1

ξipi(β) + γ
n∑

i=1

p̄i(β)−
n∑

i=1

ξipi(z)− γp̄(z)]1, [1]2)

= e([p(β)− γp̄(β)− p(z)− γp̄(z)]1, [1]2)

= e([w(β)(β − z) + γw̄(β)(β − z)]1, [1]2)

= e([w(β)]1 + [γw̄(β)]1, [β]2 − [z]2)

= e(w, [β]2 − [z]2)

Succinctness. For a list of n polynomials, the scheme PCs requires 2nG1 elements
for the commitment and one G1 element and one Fq elementfor the evaluation proof,
while the time to check this proof requires two variable-base multi-scalar multiplica-
tions of size n and two pairings.

20

CHAPTER 3. POLYNOMIAL COMMITMENTS

Extractability [Chi+19].

Theorem3.6. If the bilinear group sampler SampleGrp satisfies SDH assumption against
algebraic adversaries, nhPCs and phPCs achieve extractability against algebraic adver-
saries.

Definition 3.7. PCs satisfies evaluation binding if for every maximum degreeD ∈ N
and efficient adversary A = (A1,A2) the following probability is negligible in the
security parameter λ:

Pr

⎡

⎢⎢⎢⎢⎣

u ̸= u′
∧

PCs.Check(rk,c, z, u,π, ξ)= 1
∧

PCs.Check(rk,c, z, u,π′, ξ)= 1

∣∣∣∣∣∣∣∣∣∣

(ck, rk)← PCs.Setup(1λ,D)
(c, z, u, u′, st)← A1(ck, rk)
Sample opening challenge ξ

(π,π′)← A2(st, ξ)

⎤

⎥⎥⎥⎥⎦

Lemma 3.8. If the bilinear group sampler SampleGrp satisfies the SDH, nhPCs and
phPCs achieve evaluation binding.

We don't expect a computationally bounded adversary to be able to produce two
different evaluations for a fixed commitment, because this amounts to being able to
perform "division" with powers of β, γ, which can't happen (he is bounded to perform
only linear algebra computations with the elements of the SRS). Thus, we should be
able to use a succesful adversary against evaluation binding to output elements that in-
clude some kind of "division" with the unknown parameters.

Proof. Suppose for contradiction that there exists a maximum degree boundD and an
efficient adversary A = (A1,A2) that breaks evaluation binding with non-negligible
probability. We show that either A can be used to break DL with non-negligible prob-
ability or that we can A to construct an efficient adversary B that breaks SDH with
non-negligible probability. Since SDH assumption implies DL assumption, in either
case we obtain a contradiction that SDH holds with respect to SampleGrp. We define
B as follows.

21

3.6. PROOFS OF PROPERTIES

B(⟨group⟩,Σ) :
1 : Parse Σ as {[βi]1}Di=1, [β]2}
2 : Sample a← Fq, γ ← F∗

q , and set

ck = (⟨group⟩,{[βi]1, [γβ
i]1}ni=0)

rk = (⟨group⟩,[γ]1, [β]2)
3 : Compute (c, z, u, u′, st)← A1(ck, rk)
4 : Sample random opening challenge ξ ∈ Fq

5 : Compute (π,π′)← A2(st,ξ)
6 : Parse (π,π′) as ((w, ū), (w′, ū′)), u as [ui]

n
i=1, u′ as [u′

i]
n
i=1

7 : Compute u =
n∑

i=1

ξiui, u′ =
n∑

i=1

ξiu′
i

8 : If [z]1 = [β]1 :

choose a ∈ Fq \ {z}, output (a, [
1

z + a
]1) breaking SDH

9 : Else if ([z]1 ̸= [β]1) ∧ (w ̸= w′) :

output (−z, 1
u′ − u+ γ(ū′ − ū)

(w − w′)) breaking SDH

10 : Else abort.

First, we show that if either predicate in Step 8 or Step 9 is satisfied, then B does
in fact break SDH. Next, we show that one of these predicates is satisfied with non-
negligible probability when A breaks evaluation binding. We do this by showing that
if B aborts but A still succeeds, then A can be used to solve the discrete logarithm
problem in SampleGrp with non-negligible probability.

B succeeds if predicates are satisfied. If A outputs z = β, then B can construct
an arbitary solution to the SDH problem. If on the other hand (β ̸= z)∧(w ̸= w′), then
if A breaks evaluation binding, by construction of PCs.Check the following equations
must hold:

e(C − [u]1 − [γū]1, [1]2) = e(w, [β]2 − [z]2) (3.6.1)

e(C − [u′]1 − [γū′]1, [1]2) = e(w′, [β]2 − [z]2) (3.6.2)

Since (β ̸= z) ∧ (w ̸= w′) the LHS of the equations are not equal, giving us that
u′ − u + γ(ū′ − ū) ̸= 0. Assuming some µ, δ, δ′ ∈ Fq such that C = [µ]1, w =
[δ]1, w′ = [δ′]1, then substracting the above equations and using the properties of the
bilinear map, we get:

22

CHAPTER 3. POLYNOMIAL COMMITMENTS

(u′ − u+ γ(ū′ − ū))e([1]1, [1]2) = (δ − δ′)(β − z)e([1]1, [1]2)⇒
1

β − z
e([1]1, [1]2) =

1

u′ − u+ γ(ū′ − ū)
(δ − δ′)e([1]1, [1]2)⇒

e([
1

β − z
]1, [1]2) = e(

1

u′ − u+ γ(ū′ − ū)
(w − w′), [1]2)⇒

1

u′ − u+ γ(ū′ − ū)
(w − w′) = [

1

β − z
]1 ⇒

(−z, 1

u′ − u+ γ(ū′ − ū)
(w − w′)) breaks SDH

Probability that predicates are satisfied. We analyze the probability with which
B aborts. The predicates are not satisfied exactly when (β ̸= z)∧ (w = w′). From the
equations of PCs.Check this breaks down in the following two cases:

• Case 1: ū ̸= ū′. Then from the equations we get u′ − u+ γ(ū′ − ū) = 0. This
gives us γ = u−u′

ū′−ū breaking the discrete logarithm assumption.

• Case 2: ū = ū′. In this case, from the equations it must hold that u = u′. Since
u ̸=�u then the polynomial

∑n
i=1 X

n(ui−u′
i) is not the 0 polynomial, sampling

ξ ∈ Fq that is a root of it (and thus getting u = u′) occurs with probability at
most n

q .

Hence, we conclude that if (β ̸= z) ∧ (w = w′) with non-negligible probability
and A still succeeds, then A can be used to break DL with non-negligible probability,
which cannot occur if SDH is hard for SampleGrp.
Thus, if A succeeds, then with non-negligible probability either β = z, or (β ̸= z) ∧
(w ̸= w′), which in turn implies that B breaks SDH, contradicting our assumption.

23

3.6. PROOFS OF PROPERTIES

Lemma 3.9. If the bilinear group sampler SampleGrp satisfies the SDH assumption
against algebraic adversaries, nhPCs and phPCs achieve extractability against algebraic
adversaries.

From the previous lemma, if a scheme satisfies the SDH assumption, it also achieves
evaluation binding. Now, an algebraic adversary can only succeed with non-negligible
probability against extractability only if he can produce an accepting evaluation that
doesn't correspond to the evaluation of the given polynomials. We show that the latter
cannot occur except if the evaluation binding property fails.

Proof. Fix any efficient, algebraic adversaryAalg and maximum degree boundD ∈ N.
We construct an efficient extractor EAalg for the polynomial commitment scheme that
succeeds with overwhelming probabiiity. In each round i ∈ [r] algorithm EAalg pro-
ceeds as follows. We denote by k the number of group elements output by the adversary
Aalg .

EAalg (ck, rk,[ρj]ij=1

1 : Parse ck as (⟨group⟩,Σ).

2 : Parse Σ as
(

[1]1 [β]1 [β2]1 . . . [βD]1
[γ]1 [γβ]1 [γβ2]1 . . . [γβD]1

)

3 : Set Σ1 := ([1]1, [β]1, [β
2]1, . . . , [β

D]1)

4 : Set Σ2 := ([γ]1, [γβ]1, [γβ
2]1, . . . , [γβ

D]1)

5 : Invoke the adversary:[⟨aj,Σ1⟩+ ⟨bj,Σ2⟩kj=1]← Aalg(ck, rk;[ρj]ij=1)

6 : Set X := (1, X, . . . , XD)

7 : For each j in [k], define polynomials pj(X) := ⟨aj,X⟩ ∈ Fq[X] and p̄j := ⟨bj , X⟩ ∈ Fq[X]

8 : For each j in [k], let the randomness ωj be the coefficients of p̄j

9 : Output the polynomials p = [pj]
k
j=1 and randomness ω := [ωj]

k
j=1

For a given public-coin challenger C, efficient adversary B := (B1,B2), efficient
query sampler Q, and round bound r ∈ N, the extractor EAalg can fail with non-
negligible probability only if there exists a polynomial whose claimed evaluation is
incorrect. We will show that if nhPCs and phPCs satisfy evaluation binding, then all
evaluations a correct with overwhelming probability.
Assume that EAalg outputs polynomials that do not match the claimed evaluations with
non-negligible probability µ(λ), then we can use (Aalg,B1,B2), the public-coin chal-
lenger C and the query samplerQ to construct the following adversary A′ = (A′

1,A′
2)

that succeeds in breaking evaluation binding with the same non-negligible probability
µ(λ).

24

CHAPTER 3. POLYNOMIAL COMMITMENTS

A′
1(ck, rk) :

1 : For i = 1, . . . , r :

(a) Obtain challenge: ρi ← C(ck, rk, i)

(b) Obtain commitments: ci ← Aalg((ck, rk,[ρj]ij=1)

(c) Extract polynomials and randomness: (pi,ωi)← EAalg (ck, rk,[ρj]
i
j=1)

2 : Sample query set: Q← Q(ck, rk,[ρj]ij=1)

3 : Set [ci]ni=1 := [ci]ri=1, [pi]
n
i=1 := [pi]

r
i=1, [ωi]

n
i=1 := [ωi]

r
i=1

4 : Parse Q as T × {z} for some T ⊆ [n] and z ∈ F
5 : Set c := [ci]i∈T , p := [pi]i∈T ,ω := [ωi]i∈T

6 : (c, stB)← B1(ck, rk,[ρj]kj=1, Q)

7 : Compute alternate evaluations u′ := p(z)
8 : Set st = (c,z, u, u′, stB)
9 : Output (c,z, u, u′, st)

A′
2(st,ξ) :

1 : Parse st as (ck, rk,p,z,ω, stB)
2 : Obtain proof of evaluation: π ← B2(stB, ξ)
3 : Compute alternate proof: π′ ← PCs.Open(ck,p,z, ξ;ω)
4 : Output (π,π′)

Since the extractor successfully extracts each polynomial and the randomness, and
since PCs satisfies completeness,A′

2 should be able to produce an alternate valid proof
π′ that is also accepted by PCs.Check. Thus, if A breaks polynomial extractability
with non-negligible probability by producing valid proofs for incorrect evaluations,
then A′ = (A′

1,A′
2) breaks evaluation binding of PCs with non-negligible probability,

contradicting the assumption.

Lemma 3.10 ([Chi+19]). phPCs is perfectly hiding.

The phPCs scheme achieves the hiding property against even unbounded adver-
saries, because of the masking polynomial �p(X). Intuitively, it doesn't matter how
many evaluations an adversary gets for the polynomials p(X),�p(X), he cannot deduce
an evaluation for an unqueried point, because there are two polynomials contributing
to the commitment. The proof of hiding uses trapdoor simulation and argues that since
there is a way to produce an accepting proof without having any knowledge of the poly-
nomial, there is no way an adversary can get information about the polynomial from an
accepting proof.

Proof. We describe a polynomial-time simulator S such that, for every maximum de-
gree bound D and efficient adversary A = (A1,A2,A3), the adversary cannot distin-
guish between the real and ideal world experiments.
We will leverage the fact that by knowing the "trapdoor" the simulator can create the

25

3.6. PROOFS OF PROPERTIES

evaluation proof for arbitary values with respect to the commitment. We build the sim-
ulator as follows:

S.Setup(1λ, D) :

1 : Run PCs.Setup(1λ, D), get trap = (ck, rk,β, γ)
2 : Output (ck, rk, trap)

S.Commit(trap, k;ω)
1 : Parse ω as [ωi]

k
i=1

2 : For i = 1, . . . , k :

(a) Obtain random polynomials p̄i(X) from ωi

(b) Compute ci = [γp̄i(β)]1

3 : Output c = [ci]
k
i=1

S.Open(trap,p, u,Q, ξ;ω) :

1 : Parse p := [pi]
n
i=1, u := [ui]

n
i=1, ω := [ωi]

n
i=1

2 : Parse Q as T × {z}, for T ⊆ [n], z ∈ Fq

3 : For i ∈ T :

(a) if ωi ̸= ⊥ :

(i) Compute ci ← S.Commit(trap, 1;ωi)

(ii) Obtain the random polynomial p̄i(X) from ωi

(iii) Set ūi = p̄i(z)−
ui

γ

(b) Else ωi = ⊥
(i) Compute ci ← PCs.Commit(ck,pi;⊥)
(ii) Set ūi = 0

4 : Compute ū =
n∑

i=1

ξiūi, u =
n∑

i=1

ξiui, C =
n∑

i=1

ξici

5 : If z ̸= β :

Compute w =
1

β − z
C − [

u+ γū
β − z

]1

6 : Else z = β :

Set w = [0]1

7 : Output π = (w.ū)

Associated with each pi output by A there is an independently and randomly sam-
pled degree D polynomial p̄i defined by ωi. We define a polynomial p̄i′ such that in
the real world, p̄i′ := p̄i, whereas in the ideal world, if hi = 0 (hence ωi ̸= ⊥), then
p̄i′ :=

pi(X)
γ , and p̄i′ := 0 otherwise. Then each p̄i′ is independently and randomly dis-

tributed if the corresponding polynomial is required to be hiding. It follows that these
polynomials are identically distributed in both worlds. Moreover, since S.Setup uses

26

CHAPTER 3. POLYNOMIAL COMMITMENTS

PCs.Setup to generate (ck,rk), we see that (ck,rk) is also identically distributed.
We claim that upon fixing (ck,rk) and�p′, the resulting c is given by a deterministic
function in p(β), and for query point z the corresponding proof π is given by a deter-
ministic function in (p(z), z, ξ). Since these deterministic functions are parametrized
by ck,rk, and�p′, which we have shown are identically distributed in both worlds, it
follows that the outputs of these functions will also be identically distributed, and thus
the two worlds are indistinguishable even by unbounded adversaries.
We will show that the following equations hold in both worlds:

C = [p(β)]1 + [γp̄′(β)]1

ū =
n∑

i=1

ξip̄i
′(z)

w =

{
1

β−zC − [u+γū
β−z]1, if z ̸= β

[0]1, if z = β

Indistinguishability of commitments.
Real world.

ci = [pi(β)]1 + [γp̄i(β)]1 = [pi(β)]1 + [γp̄i
′]1

Ideal world.

p̄i
′(X) = p̄i(X)− pi(X)

γ
⇒ p̄i(X) = p̄i

′(X) +
pi(X)

γ

So we get the following:

ci = [γp̄i(β)]1 = [γ(p̄i
′(β) +

pi(β)

γ
)]1 = [pi(β)]1 + [γp̄i

′]1

Indistinguishability of evaluation proofs.
Real world.

ū =
n∑

i=1

ξip̄i(z) =
n∑

i=1

ξip̄i
′(z)

Ideal world.

ū =
n∑

i=1

ξiūi

=
n∑

i=1

ξi(p̄i(z)−
ui

γ

=
n∑

i=1

ξi(p̄i
′(z) +

pi(z)

γ
− ui

γ
)

=
n∑

i=1

ξip̄i
′(z)

27

3.6. PROOFS OF PROPERTIES

Real world.

w =[w(β)]1 + [γw̄(β)]1

= [
p(β)− p(z)

β − z
]1 + [

γp̄(β)− γp̄(z)

β − z
]1

= [
p(β) + γp̄(β)

β − z
]1 − [

p(z) + γp̄(z)

β − z
]1

=
1

β − z
C − [

u+ γū

β − z
]1

Also, note that if z = β then w, w̄ are not undefined but rather 0.
Ideal World.
w already has the desired form.
We conclude that no adversary can distinguish between the two worlds.

28

CHAPTER 4
CONSTRAINT SYSTEMS

Definition 4.1. An arithmetic circuit C over a field F, set of public inputs x1, . . . , xn

and set of witness inputs w1, . . . , wm is a directed acyclic graph as follows. Every
node in it with indegree zero is called an input gate and is labeled by either a public
input xi, a field element or a witness input. Every other gate is labeled by either +
indicating summation of the incoming values or × indicating multiplication. Gates
with no outgoing wires are called output gates. The maximum supported number of
input wires of gates is called the fan-in of the circuit, while the maximum number of
output wires of gates is called the fan-out.

Definition 4.2 (Arithmetic Circuit Satisfiability). Let F be a finite field. The universal
arithmetic circuit satisfiability relation RC is the set of triples (C, (x, y),w, where C :
Flin × Flwit → Flout is an arithmetic circuit with lin public inputs, lwit private inputs,
and lout public outputs, such that C(x,w) = y.

Every arithmetic circuit over a field can be transformed into a system of linear alge-
bra constraints, called R1CS (and its variants). The basic idea is the following: By cre-
ating a vector that contains 1F, the public and private inputs, the public outputs as well
as the outputs of the multiplication gates of the circuit, two matrices can be constructed
for the specified circuit, that, together with the vector, create a constraint system that
whenever it is satisfied for a vector the circuit is also satisfied for the assignment to
the input variables and vice versa. These matrices characterize the left and right inputs
to multiplication gates. This characterization of arithmetic circuit satisfiability comes
in handy, as we can borrow tricks from linear algebra to create efficient proof systems
for proving the satisfiability of the circuit. Another reason is that vectors can be natu-
rally encoded as polynomials, giving also the opportunity to pair them with polynomial
commitments.

Definition 4.3 (R1CS [Cam+20]). Let F be a finite field and m,l,s ∈ N be positive
integers. The universal relationRR1CS is the set of triples

(R, x,w) := ((F,m, l, s,F,G,O), x,w)

where F,G,O ∈ Fm×m, max{||F||, ||G||, ||O||} ≤ s, x ∈ Fl−1,w ∈ Fm−l and for

29

c := (1, x,w) it holds

(F · c) ◦ (G · c) = O · c (4.0.1)

Definition 4.4 (R1CS-lite [Cam+20]). Let F be a finite field and m,l,s ∈ N be positive
integers. The universal relationRR1CS−lite is the set of triples

(R, x,w) := ((F,m, l, s,F,G), x,w)

where F,G ∈ Fm×m, max{||F||, ||G||} ≤ s, the first l rows of G are
(−1, 0, ..., 0) ∈ F1×m, x ∈ Fl−1,w ∈ Fm−l, and for c := (1, x,w), it holds

(F · c) ◦ (G · c) = c (4.0.2)

Wewill also use the following equivalent formulation, whichwewill callR′
R1CS−lite

[RZ21]:

(R, x,w) := ((F, s,m, l,F,G), x, (a′, b′))

where F,G ∈ Fm×m, x ∈ Fl−1, a′, b′ ∈ Fm−l,max{||F||, ||G||} ≤ s, and for
a :=(1, x, a′), b := (1, b′) it holds:

(
I 0 −F
0 I −G

)⎛

⎝
a
b

a ◦ b

⎞

⎠= 0 (4.0.3)

Definition 4.5 (LongR1CS-lite [Cam+20]). Let F be a finite field and m,l,s ∈ N be
positive integers. The universal relationRLongR1CS−lite is the set of triples

(R, x,w) := ((F,m, l, s,F,G), x, (a′, b′, c′))

where F,G ∈ Fm×m, max{||F||, ||G||} ≤ s, x ∈ Fl−1, a′, b′, c′ ∈ Fm−l, and for
a := (1, x, a′), b := (1, b′), c := (1, x, c′), it holds

a ◦ b = c ∧ a+ F · c = 0 ∧ b+G · c = 0 (4.0.4)

Lemma 4.6 ([Cam+20]). Let R (resp. R̂) be a LongR1CS-lite (resp. R1CS-lite) re-
lation with matrices {F,G}. Then for any x ∈ Fl−1 it holds x ∈ L(R) if and only if
x ∈ L(R̂).

Proof. (⇒) Let (a′, b′, c′) be a witness for x ∈ L(R). By definition of LongR1CS-lite
it holds that F · (a ◦ b) ◦G · (a ◦ b) = a ◦ b for a :=(1, x, a′) and b := (1, b) and also
the first l rows of G are (−1, 0, . . . , 0) ∈ F1×m . Then, w := a′ ◦ b′ is a witness for
x ∈ L(R), as (1, x,w) = a ◦ b.

30

CHAPTER 4. CONSTRAINT SYSTEMS

(⇐)Let ĉ′ be awitness for x ∈ L(R), that is for ĉ :=(1, x, ĉ′) it holds ĉ = F · ĉ ◦G · ĉ.
Let ~a := −F · ĉ, ~b := −G · ĉ and c′ := ĉ′ and let a′, b′ be the last m-l rows of ã, b̃ re-
spectively.
By the satisfiability of R1CS-lite we have that

⎛

⎝
1
x
c′

⎞

⎠ = ĉ = F · ĉ ◦G · ĉ = ~a ◦ ~b =

(
a′′
a′
)
◦
(
b′′
b′
)

which implies that c′ = a′ ◦ b′ and thus for a := (1, x, a′), b := (1, b′), and c :=
(1, x, c′), the Hadamard product constraint of R1CS-lite must hold.
Finally, from the definition of the first l rows of G it holds that ~b = (1, b′) and thus
~a = (1, x, a′). Therefore, for a, b as above the linear constraints of R1CS-lite are also
satisfied.
This concludes the proof that (a′, b′, c′) is a satisfying witness for x ∈ L(R).

Theorem 4.7 ([Cam+20]). Let C : Flin × Flwit → Flout be an arithmetic circuit with
N multiplication gates. Then, there exists an R1CS − lite{L,R} ∈ Fn×n with l =
lin+ lout+1, n = l+N ′, whereN ′ = N + lwit, such that for any x, ∃w :C(x,w) = y
only if ∃w′ that makes (1, x, y) accepted by {L,R}.

Proof. We do the proof by building matrices for the LongR1CS-lite relation. By the
equivalence of R1CS-lite and LongR1CS-lite shown in the previous lemma, this shows
a reduction to R1CS-lite. Note that in the definition, we regard the private inputs of the
non-deterministic circuit as multiplication gates.
Our goal is to define a, b, c and matrices L,R such that the satisfiability of C can be
expressed as follows:

⎧
⎪⎨

⎪⎩

a+ L · c = 0
b+ R · c = 0
a ◦ b = c

(4.0.5)

with a =(1, x, y, a′), b = (1, b′) and c =(1, x, y, c′).
Partition [n] into Iin = {2, . . . , lin+1}, Iout = {lin+2, . . . , l}, Imid = {l+1, . . . , n}.
Label all the multiplication gates of C with integers in Imid, and for every such multi-
plication gate j, denote by aj , bj , cj its left input, right input,output respectively. Then
the consistency of every multiplication gate can be checked as:

∀j ∈ Imid :

⎧
⎪⎨

⎪⎩

aj + Lj · c = 0

bj + Rj · c = 0

aj · bj − cj = 0

31

for approprite row vectors Lj ,Rj which express the linear subcircuits for the left and
right input wires. An arithmetic circuit is made of fan-in 2 sum gates, fan-in 2 multi-
plication gates and multiplication by a constant gates. However, we can equivalently
batch together the addition gates and multiplication by constant gates and consider cir-
cuits of fan-in 2 multiplication gates, whose inputs a linear combination of the outputs
of the already computed multiplication gates and input gates. More in detail, a multi-
plication gate can be described by a list of coefficients l0, . . . , lk (the left inputs) and a
list of coefficients r0, . . . , rk′ (the right inputs) for values k, k′ ∈ N and computes the
function that maps (x1, . . . , xk, y1, . . . , yk′) (outputs of multiplication gates and input
gates) to (

∑k
i=1 lixi + l0) · (

∑k′

i=1 riyi + r0). Moreover, in the circuit C the inputs of
the gates with label j are connected to the outputs of k + k′ distinct gates with indexes
j1, . . . , jk+k′ . The row vectors of of Lj and Rj are thus defined as:

Lj,i :=

⎧
⎪⎨

⎪⎩

−l0 if i = 1

−la if ∃a : i = ja
0 else

Rj,i :=

⎧
⎪⎨

⎪⎩

−r0 if i = 1

−ra if ∃a : i = jk+a

0 else

Next, we add constraints for the public outputs:

∀j ∈ Iout :

⎧
⎪⎨

⎪⎩

aj + Lj · c = 0

bj − c1 = 0

aj · bj − cj = 0

The first and second constraints check correctness of outputs obtained from possible
linear subcircuits on multiplication gates outputs, namely gates of the form

∑
i lixi for

constraints l1, . . . , lk and input variables x1, . . . , xk. The row vectors Lj for j ∈ Iout
are thus defined as:

Lj,i :=

{
−la if ∃a : i = ja
0 else

Finally, recalling that a = (1, x, y, a′), b = (1, b′) and c =(1, x, y, c′) we can add the
following (dummy) constraints for the public inputs:

∀j ∈ {1} ∪ Iin :

⎧
⎪⎨

⎪⎩

aj − cj = 0

bj − c1 = 0

aj · bj − cj = 0

We conclude by showing how to define matricesL,R such that all the constraints above
are compactly represented by the equation.

32

CHAPTER 4. CONSTRAINT SYSTEMS

L =

⎛

⎜⎜⎜⎝

−Ilin+1 | 0
Llin+2

...
Ln

⎞

⎟⎟⎟⎠

To define matrixRwe use an auxiliary l×nmatrix Ewhere each row is the unit vector
e1 ∈ Fn.

E =

⎛

⎜⎝
1 . . . 0 . . . 0

...
1 . . . 0 . . . 0

⎞

⎟⎠ , R =

⎛

⎜⎜⎜⎝

−E
Rl+1
...
Rn

⎞

⎟⎟⎟⎠

Example. Wewill now give an example of converting a computation to LongR1CS-
lite. Assume we wish to perform the following computation:

5x1x2w1(x1 + x2)(x2x3 + x3w1)

For some x1, x2.x3.w1 ∈ F. Then, regarding x1, x2, x3 as the public inputs, w1 as the
private inputs and as y the public output of the computation, this amounts to computing
the circuit below.

The total amount ofmultiplication (by non-constant) gates are 5. Denoting a′1, a′2, a′3, a′4, a′5,
the left inputs to multiplication gates, b′1, b′2, b′3, b′4, b′5, we need to define vectors a =
(1, x1, x2, x3, y, w1, a′1, a

′
2, a

′
3, a

′
4, a

′
5),

33

b = (1, 1, 1, 1, 1, 1, b′1, b
′
2, b

′
3, b

′
4, b

′
5), c = (1, x1, x2, x3, y, w1, c′1, c

′
2, c

′
3, c

′
4, c

′
5) such

that the constraints of LongR1CS-lite hold.
To do so observe that:

a′1 = x2 b′1 = x3

a′2 = x3 b′2 = w1

a′3 = x1 b′3 = x1 + x2

a′4 = c′3 b′4 = c′1 + c′2
a′5 = c′4 b′5 = 5c′2

Now we can can use these values to compute the L.R matrices of the relation. Specifi-
cally we have the following matrices:

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 −1
0 0 0 0 0 −1 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 −5 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

34

CHAPTER 5
POLYNOMIAL HOLOGRAPHIC PROOFS

Polynomial Holographic Proofs (PHP) [Cam+20] constitute the information theoretic
part of the construction. They are a generalization of Algebraic Holographic Proofs
(AHP) introduced in [Chi+19]. A proof system for a relation is holographic if the veri-
fier does not read the full description of the relation, but rather has access to an encoding
of the statement produced by some holographic relation encoder, also called indexer,
that outputs oracle polynomials in the offline phase. This is a crucial step to achieve
succinctness, because bymerely reading the description of the circuit the verifier's work
becomes linear. A PHP consists of an interaction between a verifier and a prover send-
ing oracle polynomials (which the verifier does not see), followed by a decision phase
in which the verifier outputs a set of polynomial identities to be checked on the prover's
and indexer's polynomials (such as a(X)b(X)−z · c(X) = 0) for orancle polynomials
a, b, c and some scalar z), as well as a set of degree tests (e.g. deg(a(X) < D).

Definition 5.1. (Polynomial Holographic IOPs (PHP)). A polynomial Holographic
IOP for a family of field-dependent relationsR is a tuple PHP = (rnd, n,m, d, ne,I,P,V),
where rnd, n,m, d, ne : {0, 1}∗ → N are polynomial-time computable functions, and
I,P,V are three algorithms that work as follows:

• Offline phase: The encoder or indexer I(R) is executed on a relation descrip-
tion R, and it returns n(0) polynomials {p0,j})j = 1n(0) ∈ F[X] encoding the
relation R and where F is a field specified by R.

• Online phase: The prover P(R, x,w) and the verifier VI(R)(x) are executed for
rnd(|R|) rounds, the prover has a tuple (R, x,w) ∈ R, and the verifier has an
instance x and oracle access to the polynomials encoding R. In the i-th round, V
sends a message ρi ∈ F to the prover, and P replies with m(i) messages {πi,j ∈
F}m(i)

j=1 , and n(i) oracle polynomials {pi,j ∈ F[X]}\(i)j=1, such that deg(pi,j <
d(|R|,i, j).

• Decision phase: After the rnd(|R|)-th round, the verifier outputs two sets of
algebraic checks of the following type:

35

– Degree checks: to check a bound on the degree of the polynomials sent by
the prover. More in detail, let np =

∑rnd(|R|)
k=1 n(k) and let p1, . . . , pnp be the

polynomials sent by P . The verifier specifies a vector of integers d ∈ Nnp ,
which satisfies the following condition

∀k ∈ [np] : deg(pk) ≤ dk.

– Polynomial checks: to verify that certain polynomial identities hold be-
tween the oracle polynomials and the message sent by the prover. Let
n∗ =

∑rnd(|R|)
k=0 n(k) and m∗ =

∑rnd(|R|)
k=0 m(k), and denote by (p1, . . . , pn∗)

and (π1, . . . ,πn∗) all the oracle polynomials (including the ones send by
the encoder) and all the messages sent by the prover. The verifier can
specify a list of ne tuples, each of the form (G, u1, . . . , un∗), where G ∈
F[X,X1, . . . , Xn∗ , Y1, . . . , Ym∗] and everyuk ∈ F[X].Then a tuple (G, u1, . . . , un∗)
is satisfied if and only F (X) ≡ 0 where

F (X) := G(X, {pk(uk(X))}k=1,...,n∗ , {πk}k=1,...,n∗)

The verifier accepts if and only if all the checks are satisfied.

Definition 5.2. A PHP is complete if for any triple (R, x,w) ∈ R, the checks returned
by VI(R after interacting with the honest prover P(R, x,w), are satisfied with proba-
bility 1.

Definition 5.3. A PHP is ϵ-sound if for every relation-instance tuple (R, x) /∈ L(R)
and polynomial time prover P∗ we have

Pr
[
⟨P∗,VI(R)(x)⟩ = 1

]
≤ ϵ

Definition 5.4. A PHP is ϵ-knowledge sound if there exists a polynomial time knowl-
edge extractor E such that for any prover P∗, relation R, instance x and auxiliary input
z we have

Pr
[
(R, x,w) ∈ R : w← EP∗

(R, x,z)
]
≥ Pr

[
⟨P∗(R, x,z),VI(R(x)⟩ = 1

]
− ϵ

where E has oracle access toP∗, it can query the next message function ofP∗ (and also
rewind it) and obtain all the messages and polynomials returned by it.

Definition 5.5. A PHP is ϵ-zero-knowledge if there exists a PPT simulator S such that
for every triple (R, x,w) ∈ R, and every algorithm V∗, the following random variables
are within ϵ-statistical distance:

View(P((R, x,w),V∗) ≈c View(SV∗
(R, x)),

where View(P((R, x,w),V∗) consists of V∗'s randomness, P 's messages (which do
not include the oracles) and V∗'s list of checks, while View(SV∗

(R, x)) consists of
V∗'s randomness followed by S 's output, obtained after having straightline access to
V∗, and V∗'s list of checks.

The following definition captures the fact that zero-knowledge should hold even
when the verifier has a access to a bounded amount of evaluations of the polynomials
that contain information about the witness. This fine-grained characterization, formal-
ized in Lunar [Cam+20], allow for aminimization of the requirements needed to achieve
zero-knowledge. A straightforward compiler from PHPs to zkSNARKs would require

36

CHAPTER 5. POLYNOMIAL HOLOGRAPHIC PROOFS

hiding polynomials; this requirement can be relaxed by leveraging the fact that the ver-
ifier does not need to see "many" evaluations of the oracle polynomials, but rather a
bounded number of them to be convinced.

Let Q be a list of queries; we say that Q is (b, C)-bounded for b ∈ Nnp and for
C a PT algorithm, if for every i ∈ [np], |{(i, z) ∈ Q}| ≤ bi, and for all (i, z) ∈
Q, C(i, z) = 1.

Definition 5.6. A PHP is (b,C)-zero-knowledge if for every triple (R, x,w) ∈ R,
and every (b,C)-bounded listQ, the following random variables are within ϵ statistical
distance:

(View)(P(F,R, x,w),V), (pi(z))(i,z)∈Q) ≈ϵ S(F,R, x,V(F, x),Q),

where the pi(X) are the polynomials returned by the prover.

Definition 5.7. A PHP is honest-verifier zero-knowledge with query bound b if there
exists a PT algorithmC such that PHP is (b,C)-zero-knowledge and for all i ∈ N, Pr[C(i, z) = 0]
is negligible, where z is uniformly sampled over F.

5.1 Checkable Subspace Sampling
In a Checkable Subspace Sampling (CSS) argument, the prover and verifier interac-
tively agree on a polynomialD(X) representing a vector d in the row space of a matrix
M. The core of the protocol is that D(X) is calculated as a linear combination of en-
codings of the rows ofM with coefficients determined by the verifier, but he does not
need to calculate the polynomial himself (this would result in a non-succinct argument).
Instead, the prover can calculateD(X) and then convince the verifier that it was com-
puted correctly, according to the verifiers' coins.

Essentially a CSS scheme is similar to a PHP for the relation RM, except that the
statement (cns,D(X)) is decided interactively and the verifier has only oracle access
to the polynomialD(X). A CSS can be used as a building block in a PHP and the result
will also be a PHP.

Definition 5.8. (Checkable Subspace Sampling,CSS). A checkable subspace sam-
pling argument over a field F defines some Q,m ∈ N, a set of admissible matrices
M, a vector of polynomials β(X) ∈ (F[X])m, a coinspace C, a sampling function
Smp :C ← FQ, and a relation:

RCSS,F =

{
(M, cns,D(X)) : M ∈M ⊂ FQ×m, D(X) ∈ F[X], cns ∈ C

s = Smp(cns), and D(X) = sᵀMβ(X)

}

For anyM ∈M, it also defines

RM =
{
(cns,D(X)) : (M, cns, D(X)) ∈ RCSS,F

}

It consists of three algorithms:

• ICSS is the indexer: in an offline phase, on input (F,M) returns a setWCSS of
n(0) polynomials {p0,j(X)}n(0)j=1 ∈ F[X]. The algorithm is run once for eachM.

37

5.1. CHECKABLE SUBSPACE SAMPLING

• Prover and Verifier proceed as in a PHP, namely, the verifier sends field ele-
ments to the prover and has oracle access to the polynomials outputted by both
the indexer and the prover; this phase is run in two different stages:

– Sampling: PCSS and VCSS engage in an interactive protocol. In some
round, the verifier sends cns ← C, and the prover replies with D(X) =
sᵀMβ(X), for s = Smp(cns).

– ProveSampling: PCSS and VCSS engage in another interactive protocol
to prove that (cns,D(X)) ∈ RM.

• When the proving phase is concluded, the verifier outputs a bit indicating accep-
tance or rejection.

We require a CSS argument to satisfy the following security definitions:
Perfect Completeness. If both prover and verifier are honest the output of the protocol
is 1:

Pr
[
⟨PCSS(F,M, cns),VWCSS

CSS (F)⟩ = 1
]
= 1

where the probability is taken over the random coins of the prover and verifier.

The soundness of the CSS argument will ensure that the vector is sampled as spec-
ified by the coins of the verifier, so the prover cannot influence its distribution.

Soundness. Acheckable subspace sampling argument (ICSS,PCSS,VCSS) IS ϵ-sound
if for allM and any polynomial time prover P∗

CSS:

Pr
[
D∗(X) ̸= sᵀMβ(X)

∣∣∣∣
(cns,D∗(X))← Sampling⟨P∗

CSS(F,M, cns),VWCSS

s = Smp(cns)⟨P∗
CSS(F,M, cns),VWCSS

CSS (F)⟩ = 1

]
≤ ϵ

For a CSS argument to be useful, we additionally need that the distribution induced
by the sampling function is sufficiently "good". This geometric property is captured by
the Elusive Kernel property.

Definition 5.9. A CSS argument is ϵ-elusive kernel if

∀t ∈ FQ, t ̸= 0 : Pr[s · t = 0 | s = Smp(cns); cns← C] ≤ ϵ

38

CHAPTER 6
USING LAGRANGE POLYNOMIALS TO PROVE
HADAMARD PRODUCT AND INNER PRODUCT

RELATIONS

We now present how, by encoding vectors using the Lagrange basis, one can prove
Hadamard and Inner Product relations between the vectors.

For anyP1(X) ∈ F[X], we see thatP1(X) ≡ P2(X)(mod(t(X))), where P2(X) :=∑m
i=1 P1(h1)·λi(X). EvaluatingP2 at a pointu ∈ F\Hwe getP2(u) =

∑m
i=1 P1(h1)·

λi(u), that is, the sum of the evaluations of Pi at {hi}mi=1 scaled by {λi(u)}mi=1. The
idea is, we can multiply by a normalizing polynomial to get rid of these scalars.

Theorem 6.1 (Generalized Sumcheck.). Let H be an arbitrary subset of some finite
field F and t(X) the vanishing polynomial at H. For any P (X) ∈ F[X], S ⊂ H, and
any u ∈ F, u /∈ H,

∑
s∈S P (s) = σ if and only if there exist polynomials H(X) ∈

F[X], R(X) ∈ F≤m−2[X] such that

P (X)NS,u(X)− σ = (X − u)R(X) + t(X)H(X)

where NS,u(X) =
∑

s∈S λs(X) and λs(X) is the Lagrange polynomial associated to
s and the set H.

Proof. From the previous discussion we have that

P (X)NS,u(X)− σ =

(
∑

h∈H
P (h)λh(X))(

∑

s∈S

λs(u)
−1λs(X))− σ ≡

(
∑

s∈S

P (s)λs(u)
−1λs(X))− σ(mod(t(X))

Setting Q(X) = (
∑

s∈S P (s)λs(u)−1λs(X)) − σ, we see that Q(X) has degree at
mostm− 1, it is congruent to P (X)NS,u(X)− σ and that Q(u) =

∑
s∈S P (s)− σ.

Thus,
∑

s∈S P (s) = σ if and only if Q(X) is divisible by X − u and the theorem
follows.

39

Lemma 6.2. If S = H is a multiplicative subgroup of F, NH,0(X) = m

Proof. NH,0(X) =
∑m

i=1 λi(0)−1λi(X) = m
∑m

i=1 λi(X) = m

From the previous lemma and theorem we get the univariate sumcheck.

Theorem6.3 (Univariate Sumcheck). IfH is amultiplicative subgroup ofF,
∑

h∈H P (h) =
σ if and only if there exist polynomialsR(X),H(X)with ð(R(X)) ≤ m−2 such that

P (X)m− σ = XR(X) + t(X)H(X) (6.0.1)

Hadamard product relation. From the previous discussion, if we encode a,b,c as
A(X) = aᵀλ(X), B(X) = bᵀλ(X), C(X) = cᵀλ(X), then it holds that a ◦ b = c if
and only if A(X)B(X)− C(X) = H(X)t(X) for some H(X) ∈ F[X].

Theorem 6.4 (Inner Product Polynomial Relation.). For some k ∈ N, let y =
(y1, . . . , yk), yi = (yij), d = (d1, . . . , dk) be two vectors in Fkm, yi, di ∈ Fm, and
H a multiplicative subgroup of F of order m. Then, y · d − σ if and only if there exist
H(X), R(X) ∈ F[X], R(X) of degree at most m-2 such that the following relation
holds:

Y(X) · D(X)− σ

m
= XR(X) + t(X)H(X) (6.0.2)

whereY(X) = (Y1(X), . . . , Yk(X)) is a vector of polynomials of arbitary degree such
thatYi(hj) = yij for all i = 1, . . . , k, j = 1, . . . ,m, andD(X) = (D1(X), . . . , Dm(X))
is such that Di(X) = dᵀi λ(X).

Proof. Since Yi(hj) = yij , for all i, j, Yi(X) = yᵀi λ(X)(mod(t(X))). Thus, from the
aforementioned properties of the Langrange basis, Yi(X)Di(X) ≡ (yi◦di)ᵀλ(X)(mod(t(X))).
Hence,

Y(X) · D(X) =
∑k

i=1 Yi(X)Di(X) =
∑k

i=1(yi ◦ di)ᵀλ(X) =

(
∑k

i=1(yi ◦ di)ᵀ)λ(X)(mod(t(X)))

By the previous theorem, ((
∑k

i=1(yi ◦di)ᵀ)λ(X))m−σ is divisible by X if and only if
the sum of the coordinates of

∑k
i=1(yi ◦ di) is σ. The j-th coordinate of

∑k
i=1(yi ◦ di)

is
∑k

i=1 yijdij , thus the sum of all coordinates is
∑m

j=1

∑k
i=1 yijdij = y · d, which

concludes the proof.

Corollary 6.5. Let k,m, y, d,F,H be as in the inner product theorem and let u ∈
F∗, u /∈ H. Then, y · d = σ if and only if there exist H(X), R(X) ∈ F[X], R(X) of
degree at mostm− 1, such that the following relation holds:

Y(X) · D(X)(X − u)− σ

m
(X − u) = XR(X) + t(X)H(X)(X − u) (6.0.3)

whereY(X) = (Y1(X), . . . Yk(X)) is a vector of polynomials of arbitrary degree suck
that Yi(hj) = yij , for i = 1, . . . , k, j = 1, . . . ,m and D(X) = (D1(X), . . . , Dk(X))
is such that Di(X) = dᵀi λ(X).

40

CHAPTER 7

PHP FOR R1CS-LITE' FROM SIMPLER BLOCKS

7.1 From CSS to Linear Argument

In this section we build a PHP for the universal relation of membership in linear sub-
spaces:

RLA = {(F,W, y) : W ∈ FQ×km, y ∈ Fkms.t.Wy = 0}

using a CSS scheme as a building block. That is given a vector y, the argument allows
to prove membership in the linear spaceW⊥ = {y ∈ Fkm : Wy = 0}. Afterwards, we
build a PHP for R1CS, using the PHP for Linear Argument as a black-box and forcing
the polynomials outputted to satisfy the Hadamard product relation.

To prove y ∈W⊥ a standard way is to let the verifier sample a sufficiently random
vector d in the row space of W and then prove y · d =0. The trick to make this succinct
is to let d be computed by the prover according to the verifier's coins, after y is declared,
through a CSS argument.

The argument goes as follows. The prover sends a vector of polynomials Y(X)
encoding y. The CSS argument is used to delegate to the prover the sampling of dᵀi , i =
1, . . . , k in the row space of Wi. Then the prover sends D(X) together with a proof
that y · d = 0. Because of the soundness property of the CSS argument, the prover
cannot influence the distribution of d, which is sampled according to the verifier's coins.
Therefore, if Y(X) passes the test of the verifier, y is orthogonal to d. By the Elusive
Kernel property of the CSS argument, d will be sufficiently random. As it is sampled
after y is declared, this will imply that y ∈W⊥.

41

7.1. FROM CSS TO LINEAR ARGUMENT

Offline Phase: ILA(F,W) : For i = 1, . . . , k, run the indexer ICSS on input (F,Wi), to obtain
the setWCSSi and outputWLA = ∪k

i=1WCSSi .

Online Phase: PLA : On input a witness y ∈WY ⊂ (Fm)k, output Y(X), such that Yi(hj) =
yij
PLA and VLA run in parallel k instances of CSS argument, with inputs (F,Wi) and F,
respectively, and where the verifier is given oracle access to WCSSi . The output is a
set {(cns, Di(X))}ki=1, where cns are the same for all k instances. Define D(X) =
(D1(X), . . . , Dk(X)).

PLA : Outputs Rt(X) ∈ F≤m−2[X], Ht(X) such that

Y(X) · D(X) = XRt(X) + t(X)Ht(X) (7.1.2)

Decision Phase: Accept if and only if (1) deg(Rt) ≤ m− 2, (2) Vi
CSS accepts (cns,Di(X)),

and (3) the following equation holds: Y(X) · D(X) = XRt(X) + t(X)Ht(X)

Theorem 7.1. When instantiated using a CSS scheme with perfect completeness, the
previous PHP for membership inW⊥ has perfect completeness.

Proof. By definition, D(X) = (sᵀW1λ(X), . . . , sᵀWkλ(X)), for s = Smp(cns).
Thus, D(X) is the polynomial encoding of d = (sᵀW1, . . . , sᵀWk) = sᵀW. There-
fore, for y ∈W⊥, we get d · y = sᵀWy = 0. By the aforementioned characterization
of the inner product, this implies the existence of polynomialsHt(X), Rt(X) satisfying
the verification equation.

Theorem 7.2. Let CSS be ϵ−sound and ϵ′-Elusive Kernel. Then for any polynomial
time adversary A against the soundness of the PHP:

Adv(A) ≤ ϵ′ + kϵ

Further, the PHP satisfies 0-knowledge soundness.

Proof. Let Y∗(X) = (Y ∗
1 (X), . . . , Y ∗

k (X)) be the output of a cheating P∗
LA and y∗ =

(y∗1 , . . . , y∗k) the vector such that Y ∗
i (hj) = y∗ij . As a direct consequence of the previous

theorems, Y∗(X) ·D(X) = XRt(X) + t(X)Ht(X) only if y∗ · d = 0, where d is the
unique vector such that D(X) = (dᵀ1λ(X), . . . , dᵀkλ(X)).
Now, the soundness of the CSS scheme guarantees that, for each i, the result of sampling
Di(X) corresponds to the sample coins sent by the verifier, except with probability ϵ.
Thus, the chances that the prover can influence the distribution ofD(X) so that y∗d = 0
are at most kϵ. Excluding this possibility, a cheating prover can try to craft y∗ in the
best possible way to maximize the chance that y∗d = 0. Since dᵀ = sᵀW, and in a
successful attack y∗ /∈W⊥, we can bound this possibility by the probability:

maxy∗ /∈W⊥ Pr

⎡

⎣d · y∗ = 0

∣∣∣∣∣∣

cns← C
s = Smp(cns)

d = sᵀW

⎤

⎦ =

maxy∗ /∈W⊥ Pr
[
sᵀWy∗ = 0

∣∣∣∣
cns← C

s = Smp(cns)

]

Since sᵀWy∗ = s · (Wy∗), andWy∗ ̸= 0, this can be bounded by ϵ′ by the elusive ker-
nel property of the CSS scheme.
For knowledge soundness, define the extractor E as the algorithm that runs the prover
and by evaluating Yi(X) in {hj}mj=1 for all i ∈ [k], recovers y. If the verifier accepts
with probability greater than ϵ′ + kϵ, then y is such thatWy = 0 with the same proba-
bility.

42

CHAPTER 7. PHP FOR R1CS-LITE' FROM SIMPLER BLOCKS

7.2 From Linear Argument to R1CS-lite'
We now present a PHP for R1CS-lite', using a PHP for Linear Argument as a build-
ing block and assuming that the outputted polynomials satisfy the Hadamard product
relation.

Offline Phase: Ilite(W,F) runs ILA(W,F) to obtain a list of polynomialsWLA and outputs
Wlite = WLA

Online Phase: Plite(F,W, x, (a′, b′)) defines a =(1, x, a′), b = (1l, b′) and computes
A′(X) = (

∑m
j=l+1 ajλj(X))/tl(X), B′(X) = ((

∑m
j=1 bjλj(X))− 1)/tl(X)

for tl(X) =
∏l

i=1(X − hi). It outputs (A′(X), B′(X)).

Vlite and Plite instantiate VWLA
LA and PLA(F,W, (a, b, a ◦ b)). Let Y(X) =

(A(X), B(X), A(X)B(X)) be the polynomials outputted by PLA in the first round.
Decision Phase: Define Cl(X) = λ1(X) +

∑l−1
j=1 xjλj+1(X) and accepts if and only if (1)

A(X) = A′(X)tl(X) + Cl(X), (2) B(X) = B′(X)tl(X) + 1 and (3) VLA accepts

Theorem 7.3. When instantiated with a complete, sound and knowledge sound linear
argument, the PHP satisfies completeness, soundness and knowledge-soundness.

7.3 Adding Zero-Knowledge
In [RZ21] they show how to add zero-knowledge to the PHP for R1CS-lite' without
sending additional masking polynomials, with a minimal increase to the prover's cost.
Let (bA, bB , bRt , bHt) be the tuple of bounds on the number of polynomial evaluations
seen by the verifier after compiling for the polynomials A(X), B(X), Rt(X),Ht(X).
To commit to a vector y ∈ Fm, we sample some randomness r ∈ Fn, where n is a
function of the bounds to be specified (a small constant when compiling). The cardinal
og H is denoted m̃ here. The encoding of the vector (y, r) is done in the usual way.
The main idea is of [RZ21] is to consider related randomness for A(X), B(X) so that
the additional randomness sums to 0 and so does not interfere with the inner product
argument. Their nover approach is to enforce this behaviour on the prover by adding
additional constraint toW.

Offline Phase: For m̃ = m+ n, the matrix of constraints is:

W̃ =

⎛

⎝
Im 0m×n 0m×m 0m×n −F 0m×n

0m×m 0m×n Im 0m×n −G 0m×n

0ᵀm 1ᵀn 0ᵀm 1ᵀn 0ᵀm 0ᵀn

⎞

⎠

Online Phase: Plite samples ra ← Fn, rb ← Fn conditioned on
∑n

i=1 ra,i+ rb,i = 0
and uses ~a := (1, x, a′, ra), ~b := (1l, b′, rb), to construct Ã(X) and B̃(X), Ã′(X) and
B̃′(X) as before.

Theorem 7.4. With the previous modification the PHP is perfectly complete, sound,
knowledge-sound, perfect zero-knowledge and (bA, bB , bRt , bHt) - bounded honest-
verifier zero-knowledge if
n ≥ (bA + bB + bRt + bHt + 1)/2, and n ≥ max(bA, bB).

Proof. For completeness, the additional constraint makes sure that
∑n

i=1 ra,i + rb,i =
0, and an honest prover chooses the randomness so that this holds. Moreover, the sum-
check theorem together with this equation, makes sure that the randomness does not
affect divisibility at 0 of (Ã(X), B̃(X), Ã(X)B̃(X)) · D(X)(mod(t(X))).
For soundness, observe that ~W(~aᵀ, ~bᵀ, (~a ◦ ~b)ᵀ) = 0 is equivalent to (1) a = F(a ◦ b),

43

7.3. ADDING ZERO-KNOWLEDGE

(2) b = G(a ◦ b) and (3)
∑n

i=1 ra,i + rb,i = 0, for a :=(1, x, a′), b := (1l, b′). This
is because the first two blocks of constraints have 0s in the columns corresponding to
ra, rb and the other way around for the last constraint. Therefore, by the soundness of
the linear argument

∑n
i=1 ra,i + rb,i = 0, and the randomness does not affect divisi-

bility at 0 of (A(X), B(X), A(X)B(X))ᵀ · D(X)(mod(t(X))).
Perfect zero-knowledge of the PHP follows from the fact that, all messages in the CSS
procedure contain only public information and the rest of information are oracle poly-
nomials.
For the honest-verifier bounded zero-knowledge, the simulator gets access to the ran-
dom tape of the honest verifier and receives x and the coins of the CSS scheme, as well
as a list of its checks. It creates honestly all the polynomials of the CSS argument, since
they are independent of the witness.
For an oracle query at some point γ, the simulator samples uniform random values
A′

γ , B
′
γ , Rγ,t ∈ F and declares them as A′(γ), B′(γ), Rt(γ). It then defines the rest

of the values to be consistent with them. More in detail, let D(X)ᵀ = sᵀWλ(X) =
(Da(X), Db(X), Dab(X)) be the output of the CSS argument. Then the simulator sets:

Aγ = A′
γtl(γ) +

l∑

i=1

xiλi(γ)Bγ = B′
γtl(γ) + 1 (7.3.1)

pγ = Da(γ)Aγ +Db(γ)Bγ +Dab(γ)AγBγHtγ = (pγ − γRt,γ)/t(γ) (7.3.2)

The simulator keeps a table of the computed values to answer consistently the oracle
queries.
Now, since the verifier is honest and |H| is assumed to be a fraction of the field elements,
we can assume that the verifier chooses a γ ∈ F \ H. In this case, the polynomial
encoding of ra, rb acts as a masking polynomial forA′(X), B′(X), Rt(X),Ht(X) and
taking into account that

∑n
i=1 ra,i+rb,i = 0 to have the same distribution it suffices to

take 2n−1 ≥ bA+bB+bRt+bHt , and n ≥ max(bA, bB) as stated in the theorem.

44

CHAPTER 8
CHECKABLE SUBSPACE SAMPLING [RZ21]

8.1 Overview
We focus our attention now to construction of CSS arguments for the matrix of R1CS-
lite', namely:

W =

(
I 0 −F
0 I −G

)
∈ F2m×3m

A fundamental observation made in [RZ21] is that the matrix W can be seen as a
matrix with three blocks (Wa,Wb,Wc) and sampling in each of these blocks must be
done separately (using the same coins from the verifier), as the prover needs to receive
(Da(X), Db(X), Dc(X)) to do the inner product with (A(X), B(X), C(X)), where
C(X) = A(X)B(X). A naive approach is to obtain these polynomials by running one
CSS scheme for each of the matrices, but a more careful approach can save elements in
communication complexity:

1. For a matrix of 2m rows, we can split it into two blocks of m rowsM =

(
M1

M2

)

, use the same CSS argument for each marrix with the smae coins and com-
bine them to save on communication. More in detail, if s = Smp(cns), and
D1(X) = sᵀM1λ(X) and D2(X) = sᵀM2λ(X), are the polynomials associ-
ated to M1,M2, the argument is modified so that it sends D1(X) + zD2(X)
for some challenge z chosen by the verifier. Note that this polynomial equals
(sᵀ, zsᵀ)Mλ(X), that is, it corresponds to a CSS argument where the sampling
coefficients depend on z also. It is important to note here that since this modifi-
cation corresponds to implicitly constructing a CSS argument forM1+zM2, it is
not always the case that this can be done. The first reason is that the polynomials
computed by the indexer of the CSS argument for the matrices must be able to
be combined upon receiving z to a CSS indexer polynomial forM1 + zM2, and
secondly that M1 + zM2 must be an admissible matrix for the CSS argument.
We will see later that these conditions are met for sparse matrices and matrices
with at most V non-zero entries per column.

45

8.1. OVERVIEW

2. When a block of sizem×m is trivial, i.e. either 0 or I, the correspondingD(X)
is either zero or can be opened by the verifier. Indeed, when the block is 0 so
is the resulting polynomial, and when it is I ∈ Fm×m, the value of D(y) will
end up being (t(x)y − xt(y)) where x are the verifier coins, and thus can be
computed by the verifier in O(logm) field operations. Thus, whenWa,Wb are
as in R1CS-lite', we can use the approach of (a) to cut them into blocks ofm×m
size and then the verifier can openDa(X), Db(X) himself, so there is no use for
a CSS scheme to prove correct sampling.

After the previous discussionwe need to turn our focus to constructing CSS schemes
for matrices M ∈ Fm×m and then use one for each block of W. We will give in this
section CSS arguments presented in [RZ21] for different types of sparse matrices. Two
different constructions are going to be presented:

• A construction that works for general sparse matrices.

• A construction that assumes a maximum bound on the non-zero elements of a
column of the matrix.

For this section we consider two disjoint sets of roots of unity,H,K. ForH we will
use the established notation. for K, assume a canonical order and let K, kl, µl, u(X)
be its cardinal, the l-th element, the l-th Lagrange basis polynomial associated toK and
the vanishing polynomial respectively.

MatricesM ∈ Fm×m can be naturally encoded as a bivariate polynomialP (X,Y) =
a(Y)ᵀMβ(X), for some a(Y) ∈ F[Y]m,β(X) ∈ F[X]m, which can be thought of as
a zipping of the rows followed by a zipping of the columns. Then, for some x ∈ F:

P (X,x) = a(x)ᵀMβ(X) =
∑m

i=1 ai(x)m
ᵀ
i β(X)

That is, the polynomial P (X,x) is a linear combination of the polynomials associ-
ated to the rows of M via the encoding defined by β(X) with coefficients ai(x). This
suggests to construct a CSS scheme where, in the proving phase, the verifier sends the
challenge x and the prover replies withD(X) = P (X,x) and subsequently in the prov-
ing phase, the prover convinces the verifier thatD(X) is correctly computed according
to the coins x.

In Marlin, Lunar and [RZ21] they set a(Y) = λ(Y),β(X) = λ(X). The common
strategy used was introduced by [Mal+19] and goes as follows: the verifier samples a
challenge y ∈ F, checks that D(y) is equal to a value σ sent by the prover, and that
σ = P (y, x). This proves (with overwhelming probability) that D(X) = P (X,x).
The last step is the most challenging and is in fact the main technical novelty of the
aforementioned works in pre-processing zkSNARKs. In all of them this is achieved by
restricting the set of admissible matrices of the CSS argument.

Assumingwe have amareixM ∈ Fm×m with |M| = K and that its non-zero entries
are ordered, the matrix can be represented as proposed in [Chi+19], by three functions
r : K → [m], c : K → [m], v : K → F, specifying the row, column and value of the
l-th non-zero entry. Then the bivariate polynomial can be written as:

P (X,Y 0 =
∑K

l=1 v(kl)λr(kl)(Y)λc(kl)(X)

46

CHAPTER 8. CHECKABLE SUBSPACE SAMPLING [RZ21]

Then, the authors of [RZ21] observed, that in order to see if P (y, x) is correctly
computed, it can be written as:

P (y, x) = (λr(k1)(x), . . . ,λr(kK)(x)) · (v(k1)λc(k1)(y), . . . , v(kK)λc(kK)(y))

Then defining the low degree extentions of each of these vectors respectively as:

ex(X) =
∑K

l=1 λr(kl)(x)µl(X), ey(X) =
∑K

l=1 v(kl)λc(kl)(y)µl(X)

if the prover can convince the verifier that ex(X), ey(X) are correctly computed,
then he can show that P (y, x) = σ by using the inner product argument to prove that
the sum of ex(X)ey(X)(mod(t(X))) at K is σ.

The key observation made in [RZ21] is that ex(X) = λ(x)ᵀMxµ(X) and ey(X) =
λ(y)ᵀMyµ(X), for some matricesMx,My with at most one non-zero element per col-
umn. Thus to prove they are correctly computed it is sufficient to design a CSS ar-
gument for these simple matrices. The idea behind the construction for these types
of matrices is that given an arbitrary ex(X) =

∑K
l=1 v(kl)λf(kl)(x)µl(X) for some

f : K → [m], we can "complete" the Lagrange λf(kl)(x) with the missing term
(x − hf(kl)) to get the vanishing polynomial t(x). Now, the low degree extension of
these "completing terms" is x− u1(X) = x−

∑K
l=1 hf(kl)µl(X) can be computed by

the indexer

8.2 CSS Argument for Simple Matrices
The basic building block is a CSS argument for matrices M = (mij) ∈ Fm×K with
at most one non-zero value in each column. We define two functions associated to
M, v : K→ F, f : K→ [m]. Given an element kl ∈ K, v(kl) = mf(kl),l ̸= 0, i.e. the
function v outputs the only non zero value of column l and f the corresponding row; if
such a value does not exist set v(kl) = 0 and f(kl) arbitarily. We define the polynomial
P (X,Y) such thatD(X) = P (X,x) as P (X,Y) = λ(Y)Mµ(X).Now, by definition
of the functions v and f, it holds that P (X,Y) = v(kl)λf(kl)(Y)µl(X).

Online phase: ICSS(F,M) outputsWCSS = {u1(X), u2(X)}, where

u1(X) =
∑K

l=1 hf(kl)µl(X), u2(X) = m−1 ∑K
l=1 v(kl)hf(kl)µl(X)

Online Phase: Sampling: VCSS outputs x← F and PCSS sendsD(X) = P (X,x).
ProveSampling: PCSS finds and outputsHu(X) such that:

D(X)(x− u1(X)) = t(x)u2(X) +Hu(X)u(X)

Decision Phase: Accept if and only if (1) degD(X) ≤ K − 1, and (2)D(X)(x− u1(X)) =
t(x)u2(X) +Hu(X)u(X)

Theorem 8.1. The argument satisfies completeness and perfect soundness.

Proof. When evaluated at any kl ∈ K, the RHS of the verification equation becomes
t(x)u2(kl) = t(x)v(kl)hf(kl)m

−1. Now the LHS computes to:

D(kl)(x− u1(kl)) = (v(kl)λf(kl)(x))(x− hf(kl)) = t(x)v(kl)hf(kl)m
−1

For soundness, since the degree of D(X) is at most K − 1 and for ∀kl ∈ K it holds
that D(kl) = v(kl)λf(kl), it holds that D(X) =

∑K
l=1 v(kl)λf(kl)µl(X).

47

8.3. CSS ARGUMENT FOR SPARSE MATRICES

8.3 CSS argument for Sparse Matrices

Offline Phase: ICSS outputsWCSS = (ur(X), u1,c(X), u2,c(X) where:

ur(X) =
∑K

l=1 hr(kl)µl(X)

u1,c(X) =
∑K

l=1 hc(kl)µl(X), u2,c(X) = m−1 ∑K
l=1 v(kl)hc(kl)µl(X)

Online Phase: Sampling: VCSS outputs x← F and P outputsD(X) = P (X,x) for
P (X,Y) =

∑K
l=1 v(kl)λr(kl)(Y)λc(kl)(X).

ProveSampling: VCSS sends y ← F and PCSS outputs σ = D(y) and ex(X), ey(X) where
ex(X) =

∑K
l=1 λr(kl)(x)µl(X), ey(X) =

∑K
l=1 v(kl)λc(kl)(y)µl(X),VCSS sends z ← F

and PCSS computesHu,x(X), Hu,y(X), Ru(X), Hu,x,y(X) such that:
ex(X)(x− ur(X)) = m−1t(x)ur(X) +Hu,x(X)u(X)
ey(X)(y − u1,c(X)) = t(y)u2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y

It also definesHu(X) = Hu,x,y(X)+zHu,x(X)+z2Hu,y(X) and outputs (Ru(X), Hu(X)).
Decision Phase: Accept if and only if (1) deg(Ru) ≤ K − 2, (2)D(y) = σ and (3) for
ix(X) = (x− ur(X)), iy(X) = (y − y1,c(X))

ex(X) + z2iy(X))(ey(X) + zix(X))− z3ix(X)iy(X)− z2t(y)u2,c(X)− σ/K −
zt(x)m−1ur(X)

=
XRu(X) +Hu(X)u(X)

Theorem 8.2. The argument satisfies completeness and ϵ-soundness.

Proof. Completeness follow immediately. For soundness, the prover is showing, in a
batched form, that the following equations are satisfied,

ex(X)(x− ur(X)) = m−1t(x)ur(X) +Hu,x(X)u(X)
ey(X)(y − u1,c(X)) = t(y)u2,c(X) +Hu,y(X)u(X)

Kex(X)ey(X)− σ = XRu(X) + u(X)Hu,x,y

Since all the left terms of the equations are defined before the verifier sends z, by the
Schwartz-Zippel lemma, with all but 3/|F| probability, the verifier accepts if and only
if such Hu,x(X),Hu,y(X), Ru(X),Hu,x,y(X) exist.
If they do, the rest of the proof is a consequence of (1) soundness of the previous pro-
tocol, which implies that ex(X), ey(X) correspond to the correct polynomials modulo
u(X), and (2) the following lemma, which shows that if the last equation is satisfied,
and ex(X), ey(X) are the correct polynomials, then σ = P (y, x). Because the prover
sendsD(X) before receiving y andD(y) = σ, again from the Schwartz-Zippel lemma,
except with negligible probability, it holds that P (X,x) = D(X)

Lemma8.3. Given ex(X), ey(X) such that ex(X) =
∑K

l=1 λr(kl)(x)µl(X), ey(X) =
∑K

l=1 v(kl)λc(kl)(y)µl(X) then P (y, x) =
∑K

l=1 v(kl)λc(kl)(y)λr(kl
(x) = σ if and

only if there exist polynomials Ru(X) ∈ F≤m−2[X],Hu,x,y(X) such that:

ex(X)ey(X)− σ/K = XRu(X) +Hu,x,y(X)u(X)

Proof. Note that ex(X)ey(X) =
∑K

l=1 v(kl)λc(kl)(y)λr(kl)(x)µl(X)(mod(u(X))).
By the univariate sumcheck ex(X)ey(X) − σ/K is divisible by X if and only if
P (y, x) = σ, which concludes the proof.

48

CHAPTER 8. CHECKABLE SUBSPACE SAMPLING [RZ21]

8.4 CSS Argument for Sums of Simple Matrices

We now give a CSS argument for a matrixM ∈ Fm×K that can be written as
∑V

i=1Mi,
each of which has at most one non-zero element in each column. Note that any matrix
with at most V non-zero entries per column can be written this way, and in particular
this holds for constraint matrices coming from circuits with fun-out bounded by V. We
define two functions associated to eachMi, viK → F, fi : K → [m] as in the section
for simple matrices.

Define P (X,Y) = λ(Y)Mµ(X) and D(X) = P (X,x). Using the above de-
fined functions we can write P (X,Y) =

∑V
i=1

∑K
l=1 vi(kl)λfi(kl)(Y)µl(X). Define

Sl = {fi(kl) : i ∈ [V]} and Sc
l = [m] − Sl. The intuition is that, since there are at

most V non zero vi(kl) for each l, we can factor as:

P (kl, x) =
∑V

i=1 vi(kl)λfi(kl)(x) =
∏

s∈Sc
l
(x− hs)Rl(x)

where Rl(X) is a polynomial of degree V − 1. So, to "complete" P (kl, x) to be
a multiple of t(x), we need to multiply it by

∏
s∈Sl

(x − hs), and the result will be
t(x)Rl(x). The trick is that Îl(Y) =

∏
s∈Sl

(Y − hs) and Rl(X) are polynomials
of degrees V, V-1 respectively. So, the indexer can publish the coefficients of these
polynomials in the monomial basis and they can be reconstructed by the verifier with
coefficients 1, x, . . . , xV .

Offline Phase: ICSS(F,M) : Define the polynomials R̂l(Y), Îl(Y), and its coefficients
R̂lj , Îlj

R̂l(Y) = 1
m

∑V
i=1 vi(kl)hfi(kl)

∏
s∈Sl−{fi(kl)}(Y − hs) =

∑V −1
j=0 R̂ljY

j

Îl(Y) =
∏

s∈Sl
(Y − hs) =

∑V
j=0 ÎljY

j

Define

uR̂
j (X) =

∑K
l=1 R̂ljµl(X) uÎ

j (X) =
∑K

l=1 Îljµl(X)

OutuputWCSS = {{uÎ
j (X)}Vj=0, {uR̂

j (X)}V −1
j==0}

Online Phase: Sampling: VCSS outputs x→ F and PCSS computesD(X) = P (X,x)

ProveSampling: PCSS finds and outputsHu(X) such that, if R̂x(X) =
∑V −1

j=0 xjuR̂
j (X) and

Îx(X) =
∑V

j=0 x
jvÎj (X),

D(X)Îx(X) = t(x)R̂x(X) +Hu(X)u(X)

Decision Phase: Accept if and only if (1) deg(D) ≤ K − 1, and (2) D(X)Îx(X) =
t(x)R̂x(X) +Hu(X)u(X)

Theorem 8.4. The previous argument satisfies completeness and perfect soundness.

Proof. When evaluated in any kl ∈ K, the RHS of the verification equation is:

t(x)R̂x(x) =
t(x)
m

∑V
i=1 vi(kl)hfi(kl)

∏
s∈Sl−{fi(kl)}(x− hs)

=
∑V

i=1 vi(kl)
hfi(kl)

m
t(x)

x−hfi(kl)

∏
s∈Sl

(x− hs) =
∏

s∈Sl
(x− hs)

∑V
i=1 vi(kl)λfi(kl)(x)

The LHS of the equation is the same if we substitute the terms, so completeness fol-
lows.

49

8.4. CSS ARGUMENT FOR SUMS OF SIMPLE MATRICES

For soundness, if the verifier accepts D(X), then because Îx(kl) = Îl(x), we get:

D(kl) = Îl(x)
−1t(x)R̂l(x) = (

∏

s∈Sc
l

(x− hs))R̂x(x) =
V∑

i=1

vi(kl)λfi(kl)(x)

We conclude thatD(X) = P (X,x)(mod(u(x))) and since these are both at mostK−1
degree polynomials, soundness is proven.

50

CHAPTER 9
CONCRETE CONSTRUCTION OF ZKSNARK:

BASILISK [RZ21]

For the readers convenience we give a full representation of the zkSNARK construction
Basilisk of [RZ21] for circuits with bounded fan-out, that is, the case where the circuit

can be represented with a matrix W =

(
I 0 −F
0 I −G

)
that is a sum of at most V

simple matrices, i.e. it has at most V non-zero elements per column. This construction
combines the building blocks presented in this paper. More in detail, it runs the CSS
argument for matrices that are sums of simple matrices, instantiates the PHP for linear
argument for the outputs of the CSS scheme and pairs it with the Hadamard product
relation in order to instantiate the PHP for R1CS-lite'. Moreover it expands thematrix of
constraints and the witness vectors, in the way described previously, in order to achieve
zero-knowledge.

As already discussed, since the other blocks of m rows are the identity or the zero

matrices, it suffices to use a CSS argument to sample in the image ofWc = −
(
F
G

)
. For

that, first writeWc =
∑V

i=1

(
Fi

Gi

)
where each

(
Fi

Gi

)
is a simple matrix. As pointed

out, we will implicitly construct the scheme for Ŵ = F + z1G, that can be written as∑V
i=1 Fi+z1Gi, with each summand being a matrix with at most one non-zero element

per column. We define two functions associated to eachWc,i =

(
Fi

Gi

)
. The function

ri : H → [2m] that, given an element hl ∈ H it outputs the row corresponding to
the only non-zero element in column l of matrix Wc,i and the function vi : H → F
that outputs the value of this non-zero entry. For simplicity of notation, we also define
the sets V 1

l = {i ∈ [V] : 1 ≤ ri(hl) ≤ m}, V 2
l = {i ∈ [V] : m + 1 ≤ ri(hl) ≤

2m}, Sl = {{ri(hl) : i ∈ V 1
l } ∪ {ri(hl) −m : i ∈ V 2

l }} and V̂ 1
i = {l ∈ [m] : 1 ≤

ri(hl) ≤ m}, V̂ 2
i = {l ∈ [m] : m+ 1 ≤ ri(hl) ≤ 2m}.

If ι(1) = a, ι(2) = b, ι(3) = c, and for i = 1, 2, k = 1, 2, let (P ′)kι(i)(X,Y) =

λ(Y)ᵀ(W1
ι(i) + z1W2

ι(i))λ(X), and (D′)kι(i)(X) = (P ′)kι(i)(X,x).

Elements in blue are added to achieve zero-knowledge.

51

KeyGen(R: Sample τ ← F and output τ, srsu = ({[τ i]1}m−1
i=0 , {[τ i]1}m+5

i=m , [τ]2).
Choose an arbitrary u ∈ F∗, u /∈ H.

KeyGenD(srsu,W′,w′): ParseW′ = (W′
a,W′

b,W′
c) andW′

c as
(
F 0m×6

G 0m×6

)
, F,G ∈

Fm×m. For i ∈ [V], k = 1, 2 define R̂k
l (Y) and its coefficients R̂k

lj as:

R̂k
l (Y) = 1

m

∑
i∈V k

l
vi(hl)hri(hl)−(k−1)m

∏
s∈Sl−{ri(hl)−(k−1)m}(Y − hs) =

∑V−1
j=0 R̂k

ljY
j ,

Also, let Îl(Y) and Îlj be such that Îl(Y) =
∏

s∈Sl
(Y − hs) =

∑V
j=0 ÎljY

j .

Finally, for j = 0, . . . , V − 1 define uR̂,1
j (X) =

∑m
l=1 R̂

1
ljλl(X), uR̂,2

j (X) =
∑m

l=1 R̂
2
ljλl(X), and, for j = 0, . . . , V uÎ

j (X) =
∑m

l=1 Îljλl(X). Compute [uÎ
j]1 =

[uÎ
j (τ)]1, [u

R̂,1
j]1 = [uR̂,1

j (τ)]1, [u
R̂,2
j]1 = [uR̂,2

j (τ)]1.

Output srsW = (srsu, {[uÎ
j]1}Vj=0, {[u

R̂,1
j]1, [u

R̂,2
j]1}V−1

j=0).
Prove(W, srsW , (x, (a′, b′))) : Sample ra ← F4, rb ← F2 and define a = (x, a′, ra, 1), b = (1, b′, 1, rb
). Then compute A(X) =

∑m+6
j=1 ajλj(X), B(X) =

∑m+6
j=1 bjλj(X), B′(X) =

(B(X)− 1)/(tl(X)
∏4

i=1(X − hm+ 1)) and

A′(X) = ((
∑m+6

j=l+1 ajλj(X))− tl(X))/(tl(X)(X − hm+5)(X − hm+6))

Output π1 = ([A′]1 = [A′(τ)]1, [B′]1 = [B′(τ)]1).
Verify(srsW , x,π1) : Send x, z1, z2 ← F.
Prove(W, srsW , (x, (a′, b′)), x, z,z2) : For i = 1, 2, 3 let D′

ι(i)(X) = (D′)1ι(i)(X) +

z1(D′)2ι(i)(X). Let Da(X) = D′
a(X) + z21

∑m+6
j=m+1 λj(X) , Db(X) = D′

b(X) +

z21
∑m+6

j=m+1 λj(X) and Dc(X) = D′
c(X).

Find R(X),H1(X),H2(X) such that:

A(X)Da(X)(X − u) +B(X)Db(X)(X − u)−Dc(X)A(X)B(X)(X − u) =
XR(X) + t(X)H1(X)(X − u)

and, if R̂x(X) =
∑V−1

j=0 xj(uR̂,1
j (X) = z1u

R̂,2
j (X)) and Îx(X) =

∑V
j=0 x

juÎ
j (X),

Dc(X)Îx(X) = t(x)R̂x(X) +H2(X)t(X).

Output π2 = ([Dc]1 = [Dc(τ)]1, [H]1 = [H(τ)]1 + z2[H(τ)]1, [R]1 = [R(τ)]1.
Verify(srsW , x,π1,π2) : Send y, γ ← F.
Prove(W, srsW , (x, a′, b′)), x, z1, z2, y, γ) : Define σ = Dc(y) and, for

E(X) = A(y)Da(y)(y − u) +B(X)Db(y)(y − u) + σ(−A(y)B(X)(y − u) +
z2Îx(X))− yR(X)− z2t(x)R̂x(X)− t(y)H(X)(y − u)

p(X) = (A(X), Dc(X), E(X)) andd = (m−1,m−1,m−1), calculate ([w]1, (α,σ, 0))←
PC.Open(srsu, p(X), d, y, γ)
Output π3 = ([w]1, (α,σ)).
Verify (srsW , x,π1,π2,π3) :Define s = α+γσ andDa = Db = (t(x)y−xt(y))/(x−

52

CHAPTER 9. CONCRETE CONSTRUCTION OF ZKSNARK: BASILISK [RZ21]

y)−
∑m+6

j=m+1 λj(x)λj(x) . Compute [A]1 = ([A′]1(y−hm+5)(y−hm+6)+1)tl(y)+
∑l

i=1 xi[λi(τ)]1, [B]1 = ([B′]1tl(y)
∏4

i=1(y−hm+i)+1), [R̂x]1 =
∑V−1

j=0 xj([uR̂,1
j]1+

z1[u
R̂,2
j]1), [Îx]1 =

∑V
j=0 x

j [uÎ
j]1 and

[p]1 = [A]1 + γ[Dc]1 + γ2(αDa + z1Db[B]1 + σ(−α[B]1(y − u) + z2[Îx]1)−
y[R]1 − z2t(x)[R̂x]1 − t(y)[H]1(y − u))

Output 1 if and only if

e([p]1 − [s]1, [1]2) = e([w]1, [τ − y]2).

53

54

BIBLIOGRAPHY

[FS87] Amos Fiat and Adi Shamir. ``How to prove yourself: Practical solutions
to identification and signature problems''. אנגלית. In: Advances in Cryptol-
ogy—CRYPTO 1986 - Proceedings. Ed. by AndrewM. Odlyzko. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics). Publisher Copy-
right: © 1987, Springer-Verlag Berlin Heidelberg.; null ; Conference date:
11-08-1986 Through 15-08-1986. Springer Verlag, 1987, pp. 186–194.
ISBN: 9783540180470. DOI: RyXRyydfj@89y@9ddkR@dnRk.

[IY87] Russell Impagliazzo andMoti Yung. ``DirectMinimum-KnowledgeCom-
putations.'' In: vol. 293. Aug. 1987, pp. 40–51. DOI: RyXRyydfj@89y@
93R39@kn9.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. ``The Knowledge Complex-
ity of Interactive Proof Systems''. In: SIAM J. Comput. 18.1 (Feb. 1989),
pp. 186–208. ISSN: 0097-5397. DOI: RyXRRjdfykR3yRk. URL: ?iiTb,
ff/QBXQ`;fRyXRRjdfykR3yRk.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. ``Proofs That Yield
Nothing but Their Validity or All Languages in NPHave Zero-Knowledge
Proof Systems''. In: J. ACM 38.3 (July 1991), pp. 690–728. ISSN: 0004-
5411. DOI: RyXRR98fRRe3k8XRRe38k. URL: ?iiTb,ff/QBXQ`;fRyX
RR98fRRe3k8XRRe38k.

[Kil92] Joe Kilian. ``A Note on Efficient Zero-Knowledge Proofs and Arguments
(Extended Abstract)''. In: Proceedings of the Twenty-Fourth Annual ACM
Symposium on Theory of Computing. STOC '92. Victoria, British Columbia,
Canada: Association for ComputingMachinery, 1992, pp. 723–732. ISBN:
0897915119. DOI: RyXRR98fRkNdRkXRkNd3k. URL: ?iiTb,ff/QBX
Q`;fRyXRR98fRkNdRkXRkNd3k.

[Sha92] Adi Shamir. ``IP = PSPACE''. In: J. ACM 39.4 (Oct. 1992), pp. 869–877.
ISSN: 0004-5411. DOI: RyXRR98fR9e838XR9eeyN. URL: ?iiTb,ff
/QBXQ`;fRyXRR98fR9e838XR9eeyN.

55

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48184-2_4
https://doi.org/10.1007/3-540-48184-2_4
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/116825.116852
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609
https://doi.org/10.1145/146585.146609

BIBLIOGRAPHY

[Mic94] S. Micali. ``CS Proofs''. In: Proceedings of the 35th Annual Symposium
on Foundations of Computer Science. SFCS '94. USA: IEEE Computer
Society, 1994, pp. 436–453. ISBN: 0818665807. DOI: RyXRRyNfa6*aX
RNN9Xje8d9e. URL: ?iiTb,ff/QBXQ`;fRyXRRyNfa6*aXRNN9X
je8d9e.

[GK96] Oded Goldreich and Hugo Krawczyk. ``On the Composition of Zero-
Knowledge Proof Systems''. In: SIAM Journal on Computing 25 (Jan.
1996). DOI: RyXRyydf"6#yyjkyj3.

[For99] Lance Fortnow. ``The Complexity of Perfect Zero-Knowledge''. In: Con-
ference Proceedings of the Annual ACM Symposium on Theory of Com-
puting 5 (Apr. 1999). DOI: RyXRR98fk3jN8Xk39R3.

[Cho+06] Sherman S. M. Chow et al. ``Ring Signatures without Random Oracles''.
In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security. ASIACCS '06. Taipei, Taiwan: Associa-
tion for Computing Machinery, 2006, pp. 297–302. ISBN: 1595932720.
DOI: RyXRR98fRRk33RdXRRk33eR. URL: ?iiTb,ff/QBXQ`;fRyX
RR98fRRk33RdXRRk33eR.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. ``Constant-Size
Commitments to Polynomials and Their Applications''. In: Advances in
Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security. Vol. 6477.
Lecture Notes in Computer Science. Springer, 2010, pp. 177–194. DOI:
RyXRyydfNd3@j@e9k@Rdjdj@3nRR. URL: ?iiTb,ffrrrXB�+`XQ`;f
�`+?Bp2f�bB�+`vTikyRyfe9ddRd3fe9ddRd3XT/7.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive
Oracle Proofs. Cryptology ePrint Archive, Paper 2016/116. ?iiTb,ff
2T`BMiXB�+`XQ`;fkyRefRRe. 2016. URL: ?iiTb,ff2T`BMiXB�+`X
Q`;fkyRefRRe.

[Boo+16] Jonathan Bootle et al. Efficient Zero-Knowledge Arguments for Arithmetic
Circuits in the Discrete Log Setting. Cryptology ePrint Archive, Paper
2016/263. ?iiTb , f f 2T`BMi X B�+` X Q`; f kyRe f kej. 2016. URL:
?iiTb,ff2T`BMiXB�+`XQ`;fkyRefkej.

[Bün+17] Benedikt Bünz et al. Bulletproofs: Short Proofs for Confidential Trans-
actions and More. Cryptology ePrint Archive, Paper 2017/1066. ?iiTb,
ff2T`BMiXB�+`XQ`;fkyRdfRyee. 2017. URL: ?iiTb,ff2T`BMiX
B�+`XQ`;fkyRdfRyee.

[FKL17] Georg Fuchsbauer, EikeKiltz, and Julian Loss.The AlgebraicGroupModel
and its Applications. Cryptology ePrint Archive, Paper 2017/620. ?iiTb,
ff2T`BMiXB�+`XQ`;fkyRdfeky. 2017. URL: ?iiTb,ff2T`BMiX
B�+`XQ`;fkyRdfeky.

[Gro+18] Jens Groth et al. Updatable and Universal Common Reference Strings
with Applications to zk-SNARKs. Cryptology ePrint Archive, Paper 2018/280.
?iiTb , f f 2T`BMi X B�+` X Q`; f kyR3 f k3y. 2018. URL: ?iiTb , f f
2T`BMiXB�+`XQ`;fkyR3fk3y.

56

https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1007/BFb0032038
https://doi.org/10.1145/28395.28418
https://doi.org/10.1145/1128817.1128861
https://doi.org/10.1145/1128817.1128861
https://doi.org/10.1145/1128817.1128861
https://doi.org/10.1007/978-3-642-17373-8_11
https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf
https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/620
https://eprint.iacr.org/2017/620
https://eprint.iacr.org/2017/620
https://eprint.iacr.org/2017/620
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2018/280
https://eprint.iacr.org/2018/280

BIBLIOGRAPHY

[Bün+19] Benedikt Bünz et al. Proofs for Inner Pairing Products and Applications.
Cryptology ePrint Archive, Paper 2019/1177. ?iiTb,ff2T`BMiXB�+`X
Q`;fkyRNfRRdd. 2019. URL: ?iiTb,ff2T`BMiXB�+`XQ`;fkyRNf
RRdd.

[Chi+19] Alessandro Chiesa et al. Marlin: Preprocessing zkSNARKs with Univer-
sal and Updatable SRS. Cryptology ePrint Archive, Paper 2019/1047.
?iiTb,ff2T`BMiXB�+`XQ`;fkyRNfRy9d. 2019. URL: ?iiTb,ff
2T`BMiXB�+`XQ`;fkyRNfRy9d.

[GWC19] Ariel Gabizon, Zachary J.Williamson, andOana Ciobotaru.PLONK: Per-
mutations over Lagrange-bases for Oecumenical Noninteractive argu-
ments of Knowledge. Cryptology ePrint Archive, Paper 2019/953. ?iiTb,
ff2T`BMiXB�+`XQ`;fkyRNfN8j. 2019. URL: ?iiTb,ff2T`BMiX
B�+`XQ`;fkyRNfN8j.

[Mal+19] MaryMaller et al. Sonic: Zero-Knowledge SNARKs from Linear-Size Uni-
versal and Updateable Structured Reference Strings. Cryptology ePrint
Archive, Paper 2019/099. ?iiTb,ff2T`BMiXB�+`XQ`;fkyRNfyNN.
2019. URL: ?iiTb,ff2T`BMiXB�+`XQ`;fkyRNfyNN.

[VP19] Alexander Vlasov and Konstantin Panarin. Transparent Polynomial Com-
mitment Scheme with Polylogarithmic Communication Complexity. Cryp-
tology ePrint Archive, Paper 2019/1020. ?iiTb,ff2T`BMiXB�+`XQ`;f
kyRNfRyky. 2019. URL: ?iiTb,ff2T`BMiXB�+`XQ`;fkyRNfRyky.

[Cam+20] Matteo Campanelli et al. Lunar: a Toolbox for More Efficient Universal
and Updatable zkSNARKs and Commit-and-Prove Extensions. Cryptol-
ogy ePrint Archive, Paper 2020/1069. ?iiTb,ff2T`BMiXB�+`XQ`;f
kykyfRyeN. 2020. URL: ?iiTb,ff2T`BMiXB�+`XQ`;fkykyfRyeN.

[Beh+21a] Pourandokht Behrouz et al. ``Designated-Verifier Linkable Ring Signa-
tures''. In: Information Security and Cryptology - ICISC 2021 - 24th In-
ternational Conference, Seoul, South Korea, December 1-3, 2021, Re-
vised Selected Papers. Ed. by Jong Hwan Park and Seung-Hyun Seo.
Vol. 13218. Lecture Notes in Computer Science. Springer, 2021, pp. 51–
70. DOI: RyXRyydfNd3@j@yjR@y33Ne@9$nj. URL: ?iiTb,ff/QBX
Q`;fRyXRyydfNd3@j@yjR@y33Ne@9W8*nj.

[Beh+21b] Pourandokht Behrouz et al. ``Designated-Verifier Linkable Ring Signa-
tures''. In: Information Security and Cryptology - ICISC 2021 - 24th In-
ternational Conference, Seoul, South Korea, December 1-3, 2021, Re-
vised Selected Papers. Ed. by Jong Hwan Park and Seung-Hyun Seo.
Vol. 13218. Lecture Notes in Computer Science. Springer, 2021, pp. 51–
70. DOI: RyXRyydfNd3@j@yjR@y33Ne@9$nj. URL: ?iiTb,ff/QBX
Q`;fRyXRyydfNd3@j@yjR@y33Ne@9W8*nj.

[Gro+21] Panagiotis Grontas et al. ``Publicly auditable conditional blind signatures''.
In: J. Comput. Secur. 29.2 (2021), pp. 229–271. DOI: RyXjkjjfC*a@
R3Rkdy. URL: ?iiTb,ff/QBXQ`;fRyXjkjjfC*a@R3Rkdy.

[RZ21] Carla Ràfols and Arantxa Zapico. An Algebraic Framework for Univer-
sal and Updatable SNARKs. Cryptology ePrint Archive, Paper 2021/590.
?iiTb , f f 2T`BMi X B�+` X Q`; f kykR f 8Ny. 2021. URL: ?iiTb , f f
2T`BMiXB�+`XQ`;fkykRf8Ny.

57

https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/099
https://eprint.iacr.org/2019/1020
https://eprint.iacr.org/2019/1020
https://eprint.iacr.org/2019/1020
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2020/1069
https://eprint.iacr.org/2020/1069
https://doi.org/10.1007/978-3-031-08896-4%5C_3
https://doi.org/10.1007/978-3-031-08896-4%5C_3
https://doi.org/10.1007/978-3-031-08896-4%5C_3
https://doi.org/10.1007/978-3-031-08896-4%5C_3
https://doi.org/10.3233/JCS-181270
https://doi.org/10.3233/JCS-181270
https://doi.org/10.3233/JCS-181270
https://eprint.iacr.org/2021/590
https://eprint.iacr.org/2021/590
https://eprint.iacr.org/2021/590

	Introduction
	Interactive Proof systems and Zero-Knowledge
	Complexity classes that admit Zero-Knowledge IPs
	Efficiency metrics
	ZK-SNARKs with pre-processing

	Preliminaries
	Schwartz-Zippel lemma
	Bilinear groups
	Lagrange Polynomial basis
	Assumptions
	zkSNARks

	Polynomial Commitments
	Towards efficient polynomial commitment schemes
	Polynomial Commitment schemes in Marlin MARLIN
	Definitions for polynomial commitments
	Overview of the construction in Marlin
	PC scheme construction in the AGM
	Proofs of properties

	Constraint Systems
	Polynomial Holographic Proofs
	Checkable Subspace Sampling

	Using Lagrange polynomials to prove Hadamard Product and Inner Product relations
	PHP for R1CS-lite' from simpler blocks
	From CSS to Linear Argument
	From Linear Argument to R1CS-lite'
	Adding Zero-Knowledge

	Checkable Subspace Sampling RZ21
	Overview
	CSS Argument for Simple Matrices
	CSS argument for Sparse Matrices
	CSS Argument for Sums of Simple Matrices

	Concrete construction of zkSNARK: Basilisk RZ21
	Bibliography

