
Sorting and Selection Problems in Partially
Ordered Sets

Merkouris Papamichail
AL1.20.0018

Examination committee:
Stavros Kolliopoulos, DIT, NKUA.
Ioannis Emiris, DIT, NKUA.
Archontia Giannopoulou, DIT, NKUA.

Supervisor:
Stavros Kolliopoulos, Professor,
Department of Informatics and
Telecommunications,
National and Kapodistrian University of
Athens.





ABSTRACT

In this thesis we present some results from the literature regarding sorting and selec
tion problems in partially ordered sets. In the sorting problem we are given a partially
ordered set U and access to an oracle function c : U × U → {�,�, 6∼}. We are able to
compare two elements ofU , only by querying the oracle function. Our goal is to retrieve
the underlying unknown partial order. In the kselection problem, we are required to
find the ksmallest elements in the same setting. In particular we examine two models,
the WidthBased Model [1] and the Forbidden Comparisons Model [2]. In the Width
BasedModel we are additionally given an upper boundw on the width of the underlying
poset. The main result we present in this setting is the queryoptimal Entropy Sort algo
rithmwithO(n logn+nw) query complexity, but exponential overall time [1]. We also
examine some randomised and deterministic algorithms in this setting for the selection
problem. On the other hand, the Forbidden Comparisons Model, the oracle function is
defined slightly differently, i.e. c : U × U → {�,�,⊥}, where c(a, b) =⊥ when we
are not allowed to compare the two elements a, b; we deduce their relation (if possible)
through transitivity. We are also given an undirected comparison graph G = (V,E),
where there exists the edge {a, b} if the two elements can be compared, i.e. c(a, b) 6=⊥.
Moreover, we denote with q the number of missing edges, i.e. q =

(|V |
2

)
− |E|. In this

setting we present the algorithm in [3] withO((q+n) log(n2/q)) query complexity and
O(nω) time complexity, where ω is the exponent of the matrix multiplication. Lastly,
we examine the special cases of chordal and comparability graphs, where we present
an algorithm, also due to [3], with O(n logn) query and O(nω) time complexity, re
spectively.





ΣΥΝΟΨΗ

Σε αυτή την εργασία παρουσιάζουμε κάποια αποτελέσματα από την βιβλιογραφία σχε
τικά με προβλήματα ταξινόμησης και επιλογής σε μερικώς διατεταγμένα σύνολα. Στο
πρόβλημα ταξινόμησης μας δίνεται ένα μερικώς διατεταγμένο σύνολο U και, επιπλέον,
μια συνάρτηση μαντείου c : U × U → {�,�, 6∼}. Έχουμε την δυνατότητα να συ
γκρίνουμε δύο στοιχεία του U , μόνο μέσω ερωτημάτων στη συνάρτηση μαντείου. Ο
σκοπός μας είναι να ανακατασκευάσουμε την υποκείμενη, άγνωστη μερική διάταξη.
Στο πρόβλημα kεπιλογής, μας ζητείτε να βρούμε τα kμικρότερα στοιχεία στο ίδιο
πλαίσιο. Ειδικότερα, εξετάζουμε δύο μοντέλα, το Μοντέλο Φραγμένου Πλάτους [1]
και το Μοντέλο Απαγορευμένων Συγκρίσεων [2]. Στο Μοντέλο Φραγμένου Πλάτους
μας δίνεται επιπλέον ένα άνω φράγμα w στο πλάτος της μερικής διάταξης. Το κύριο
αποτέλεσμα που εξετάζουμε, σε αυτό το πλαίσιο, είναι ο βέλτιστος, ως προς τα ερωτή
ματα, Αλγόριθμος Entropy Sort, μεO(n logn+nw) πολυπλοκότητα ερωτημάτων αλλά
εκθετική πολυπλοκότητα χρόνου. Επιπλέον, εξετάζουμε κάποιους τυχαιοκρατικούς και
ντετερμινιστικούς αλγορίθμους σε αυτό το πλαίσιο για το πρόβλημα επιλογής. Από την
άλλη πλευρά, στο πλαίσιο του Μοντέλου Απαγορευμένων Συγκρίσεων, η συνάρτηση
μαντείου ορίζεται κάπως διαφορετικά, δ.δ. c : U × U → {�,�,⊥}, όπου c(a, b) =⊥
όταν δεν μας επιτρέπεται να συγκρίνουμε τα δύο στοιχεία a, b∙ συμπεραίνουμε αυτές
τις σχέσεις (αν υπάρχουν) μέσω της μεταβατικότητας. Μας δίνεται, επίσης, ένα μη
κατευθυνόμενο γράφημα συγκρίσεων G = (V,E), όπου υπάρχει η ακμή {a, b} αν τα
δύο στοιχεία μπορούν να συγκριθούν, δ.δ. c(a, b) 6=⊥. Επιπλέον, με q συμβολίζουμε
τον αριθμό των ακμών που λείπουν, δ.δ. q =

(|V |
2

)
− |E|. Σε αυτό το πλαίσιο

παρουσιάζουμε τον αλγόριθμο από το [3] με O((q + n) log(n2/q)) πολυπλοκότητα
ερωτημάτων και O(nω) χρονική πολυπλοκότητα, όπου ω είναι ο εκθέτης του πολλα
πλασιασμού πινάκων. Τέλος, εξετάζουμε τις ειδικές περιπτώσεις χορδικών γραφημά
των και γραφημάτων συγκρισιμότηστας, όπου δείχνουμε αλγορίθμους, πάλι από το [3],
με O(n logn) πολυπλοκότητα ερωτημάτων και O(nω) χρονική πολυπλοκότητα.





CONTENTS

Prologue 1

1 Introduction 3
1.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Graphical Representation of a Poset . . . . . . . . . . . . . . 7
1.3.2 kSmallest Elements . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Mirsky’s and Dilworth’s Theorems . . . . . . . . . . . . . . 9

1.4 Sorting and Selection Problems . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Sorting in Totally Ordered Sets . . . . . . . . . . . . . . . . . 12
1.4.2 Selection in Totally Ordered Sets . . . . . . . . . . . . . . . 13

2 Algorithms in Flows, Matchings and Posets 17
2.1 Networks and Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Flow Networks . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Cuts in Networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Hall’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 König’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Finding a Minimum Chain Decomposition . . . . . . . . . . . . . . . 26

3 WidthBased Model: Sorting Algorithms 29
3.1 Representing a poset: The ChainMerge data structure . . . . . . . . . 30
3.2 BinInsertion Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Greedy CounterExample . . . . . . . . . . . . . . . . . . . 33
3.3 Entropy Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Weighted Binary Search . . . . . . . . . . . . . . . . . . . . 35
3.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Merge Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Peeling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 41

i



CONTENTS

3.4.3 Lifting the Known Width Hypothesis . . . . . . . . . . . . . 44
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 WidthBased Model: Selection Algorithms 47
4.1 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Selection Problem . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 kSelection Problem . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Selection Problem . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 kSelection Problem . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Forbidden Comparisons Model 57
5.1 Graph Orientations & Tournaments . . . . . . . . . . . . . . . . . . . 58

5.1.1 Layer Decomposition & Linear Extension . . . . . . . . . . . 60
5.2 Comparability & Comparison Graphs . . . . . . . . . . . . . . . . . 61

5.2.1 Gallai’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Sorting Under Forbidden Comparisons . . . . . . . . . . . . . . . . . 63

5.3.1 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 Comparability Graphs . . . . . . . . . . . . . . . . . . . . . 69

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Conclusion 73

Bibliography 77

Index 81

ii





PROLOGUE

Sorting problems have been in the heart of computer science since its conception in the
middle of twentieth century. A considerable amount of time is spent in undergraduate
courses to study efficient sorting algorithms. In general, these algorithms deal with
totally ordered sets, as a list of integers. Moreover, the notion of efficiency that is
utilized is the worst case time complexity of an algorithm. In this thesis we move in a
different direction from these traditional computer science topics. We will generalize
our setting to include partially ordered sets. Additionally the measure of efficiency
will be the number of calls to an oracle function. For some partially ordered set U , our
algorithms will only have access to an oracle c : U × U → {�,�, 6∼}, returning ” � ”
if a is smaller than, or equal to b, ” � ” if a is greater than b, and ” 6∼ ” if the two
arguments are not related.

We will consider two basic models. The first is due to Daskalakis et al. [1], where
we only have access to the oracle function; we are also given some constantw, an upper
bound on the width of the poset. We examine queryoptimal or timeefficient upper and
lower bounds, with respect to the constant w. We call this setting WidthBased Model.
On the other hand, we consider a model due to Banerjee et al. [2], where we are given
access to the oracle, but also to a comparison graph G = (U , E). We are allowed to
only call the oracle for two elements, that are connected inG. There our parameter will
be q =

(
n
2

)
−|E|, the number of forbidden comparisons. We call this setting Forbidden

Comparisons Model. We will also examine some additional results due to Biswas et al.
[3] in this model.

We organize this thesis as follows. In Chapter 1 we introduce the basic concepts
and notions of partial orders. In this chapter, we prove the elementary theorems on
poset theory of Dilworth and Mirsky regarding the width of a partial order. In Chapter
2 we present the algorithmic aspects of posets based on Ford’s and Fulkerson’s network
flows. There, we present an additional algorithmic proof of Dilworth’s Theorem. Our
proof will induce an algorithm for finding a minimum chain decomposition of a poset.
We use these algorithms as a subroutine in the sequel. In Chapters 3 and 4 we explore
the results of Daskalakis’ paper [1] on the WidthBased Model. In Chapter 3 we con
sider sorting algorithms on posets and examine an optimal algorithm, with respect to
the oracle calls; the Entropy Sort. In Chapter 4 we examine the kselection problem
and its algorithms; we also provide some elementary lower bounds. Subsequently, in
Chapter 5 we examine the results of Banerjee et al. [2] and Biswas et al. [3] on the
Forbidden Comparisons Model. Banerjee’s et al. work present an efficient algorithm

1



CONTENTS

on this model for the sorting problem. On the other hand, the Biswas et al. paper gives
some interesting lower bounds and improvements on Banerjee’s algorithm on special
cases. Lastly, in Chapter 6, we summarize the above results and present some routes
for future work.

This thesis has been written in partial fulfillment of the requirements for Master’s
Degree in Algorithms, Logic, and Discrete Mathematics, of National and Kapodistrian
University of Athens and National Technical University of Athens. I would like to
thank my advisor prof. Stavros Kolliopoulos for his guidance and insights throughout
the writing of this diploma thesis, and for turning my attention to such an intriguing
topic. Additionally, I would like to thank the other two members of the threemember
committee, prof. Ioannis Emiris and prof. Archontia Giannopoulou for directing me to
discover new and exiting areas in my postgraduate studies.

Athens,
September 2022

2



CHAPTER1
INTRODUCTION

In this chapter we discuss some fundamental notions that we will use throughout this
thesis. We begin by formally defining the notion of a relation in Section 1.1. Moreover,
in this section we discuss equivalence, partial and total order relations. In Section 1.2
we introduce the basic concepts and notions of Graph Theory. Graphs will provide
an intuitive way to encode and gain a deeper understanding of a given partial order.
Subsequently, in Section 1.3 we define the discrete structure of a partially ordered set,
the core notion of this essay. There we prove the key theorems of Mirsky and Dilworth
regarding partially ordered sets. Lastly, in Section 1.4 we introduce the algorithmic
setting of our interest and establish the query complexity as a measure of an algorithm’s
efficiency.

1.1 Relations
We begin this section by defining the core mathematical notion of a relation. Next we
focus our attention in relations with interesting properties, such as equivalence, partial
and total order relations. Lastly, we provide an elegant method to compute the transitive
closure on any relation, using matrix multiplication.

Definition 1.1 (Binary Relation). Let U be a finite set. Also, letR ⊆ U×U be a subset
of pairs on U . We call the set of pairsR a binary relation on U .

A binary relation is an abstract notion, that may represent any mathematical relation
between two objects.There are some properties of a binary relation that introduce an
additional order to the relation.

Definition 1.2 (Relation Properties). Let U be a finite set, andR ⊆ U ×U be a binary
relation on U . We define the following properties forR.

1. We call the relationR reflexive, if for every x ∈ U , we have (x, x) ∈ R.

2. We call the relationR symmetric, if for two elements x, y ∈ U , where (x, y) ∈ R,
we have (y, x) ∈ R.

3. We call the relation R antisymmetric, if for two distinct elements x, y ∈ U ,
x 6= y, where (x, y) ∈ R, we have (y, x) /∈ R.

3



1.2. GRAPH THEORY

4. We call the relationR transitive, if for some elements x, y, z ∈ U , where (x, y) ∈
R and (y, z) ∈ R, we have (x, z) ∈ R.

We may use the properties of Definition 1.2 to define equivalence and order rela
tions.

Definition 1.3 (Equivalence Relation). Let U be a finite set, and R≍ ⊆ U × U a
binary relation of U . We call the relation R≍ an equivalence relation, if it is reflexive,
symmetric and transitive.

Definition 1.4 (Order Relations). Let U be a finite set, and R⪯ ⊆ U × U a binary
relation of U . We call the relation R⪯ partial order if it is reflexive, antisymmetric
and transitive. If for every two elements of the universe x, y ∈ U , we have either
(x, y) ∈ R⪯, or (y, x) ∈ R⪯, we will be callingR⪯ a total order on U .

We may enforce the transitive property to any relation, by applying the transitive
closure operator.

Definition 1.5 (Transitive Closure). Let U be a finite set and R ⊆ U × U a binary
relation on U . Let [R] ⊇ R be the smallest super set of R, such that the transitive
property holds. We will be calling [R] the transitive closure of R, while we denote
with [·] the transitive closure operator .

There is a simple and elegant algorithm to compute the transitive closure on any
finite relation. Let R be a binary relation on a finite set U . We denote with AR ∈
{0, 1}|U|×|U| the adjacency matrix of the relationR, i.e.

ax,y =

{
1, if (x, y) ∈ R
0, otherwise

We have that A[R] = A
|U|
R , where the matrix multiplications is applied on the field

of Boolean Algebra, i.e. B = 〈{0, 1},∨,∧〉. In B the logical operation or ∨ replaces
the addition, and the logical operation and ∧ replaces the multiplication. Hence, the
formula that gives us the element ax,y of A2

R becomes,

ax,y =
∨

k∈|U|

(ax,k ∧ ak,y). (1.1)

Equation 1.1 describes the fact that if (x, k) and (k, y) are elements ofR, then (x, y)
should also be an element ofR. Thus we apply the transitivity in elements of ”distance”
two. The reason for multiplying the adjacency matrix n = |U| times with itself, is so
that we connect the elements x1, xn, in a sequence of the form (x1, x2), (x2, x3), . . . ,
(xn−1, xn) in R, i.e. of distance n. If ω is the exponent of the matrix multiplication
complexity O(nω), then the above algorithm consumes O(nω+1) time1.

1.2 Graph Theory
In this section we present some basic definitions and results regarding graphs. These
Graph Theory notions will provide us with the basic mathematical tools, that we will
be using throughout this thesis. We begin our presentation with the formal definition
of a graph.

1Currently the best known algorithm for matrix multiplication is due to Alman and Williams, where ω <
2.37286 [4].

4



CHAPTER 1. INTRODUCTION

Definition 1.6 (Graph). Let V be a finite set, and E be a collection of subsets of V .
We call the pair G = (V,E), a graph, when E contains only subsets of size two, i.e.

E ⊆ {{v, u} | v, u ∈ V }

We will be referring to the elements of V , as vertices or nodes. On the other hand, we
call the elements of E edges. Often, we will denote the set of vertices V (G) and the
set of edges E(G), for a given graph G.

Let G = (V,E) be a graph and v ∈ V some node, we call neighborhood of v, the
set of vertices N(v) that are adjacent to v. We call the number d(v) of the neighbors
of v, degree of v. Similarly, we denote with ∂(v) the set of edges that are incident to
v. An elementary result that connects the sum of degrees of a graph to the number of
edges is known as Handshake Lemma.

Lemma 1.7 (Handshake Lemma). Let G = (V,E) be a graph, then the following is
true. ∑

v∈V

d(v) = 2|E|

Let H = (V ′, E′) be another graph, with V ′ ⊆ V and E′ ⊆ E. We call H a
subgraph of G and denote it withH ⊆ G. A special case of subgraphs are the induced
graphs. Let V ′′ ⊆ V be a subset of vertices, then we denote with G[V ′′] the graph
G′′ = (V ′′, E′′), where E′′ is the maximum subset of edges of E, that have both
endpoint in V ′′. The complementary graph G = (V,E), of some graph G = (V,E),
is the graph that contains all the edges that do not belong in E. Lastly, let F = (Ṽ , Ẽ)
be a graph. We say that F,G are isomorphic if and only if there is some bijection
ϕ : Ṽ → V , such that {v, u} is an edge of G if and only if {ϕ(v), ϕ(u)} is an edge of
F .

We now define some elementary classes of graphs. Let G = (V,E), where we can
write the vertices of V as a sequence v1, v2, . . . , vn where the only edges are between
vi, vi+1 for i ∈ [n − 1]. We call this class of graphs a path , and we will often denote
it with Pn or simply P . On the other hand, let’s assume that there is the sequence
v1, v2, . . . , vn of the vertices, as defined before; but also v1, vn are adjacent. We call
this type of graph a circle or circuit, and denote it with Cn or simply C. Lastly, let
G = (V,E) be a complete graph, in the sense that for every v1, v2 ∈ V , with v1 6= v2
we have {v1, v2} ∈ E. We will be calling such a graph, a clique. We denote the clique
on n vertices withKn.

Observe that the discrete structure of a graph lets us encode the very basic notion of
relation, we just describe which elements of V are related. We provide no information
regarding the nature of the relation. A more informative discrete structure, regarding
the encoding of a relation is a directed graph.

Definition 1.8 (Directed Graph). Let V be a finite set, andA ⊆ V ×V a subset of pairs
on V . We call the pair D = (V,A), a directed graph on V . We call the elements of
V nodes, while the elements of A arcs. Often, we will denote the set of vertices V (D)
and the set of arcs A(D), for a given directed graph D.

All the notions we defined for the undirected graphs are transferred to directed
graphs. Although, in directed graphs we have two notions of degree. Let D = (V,A)
and v some node of D. We call indegree din(v) of v the number of edges of the form
(u, v), for some vertex u. Likewise we call outdegree dout(v) the number of edges of

5



1.3. POSETS

the form (v, u), for some vertex u. Similarly we define the notions of inneighborhood
Nin(v) and outneighborhood . Lastly, we denote with ∂in(v) the ingoing and with ∂out
the outgoing arcs of v.

Note that a directed graphD is essentially just a binary relation on the set of vertices
V , see Definition 1.1. Since the binary relations are the main focus of this essay, the
directed graphs provide a helpful model for our analysis. Observe that a directed graph
allows us to express many important properties of a binary relation. One such example
is the reflexivity, where we add a loop to our graph of the form (v, v) to the set of
arcs. If the underlying relation is symmetric, then we force parallel arcs of the form
(v, u), (u, v). On the other hand, if the underlying relation is antisymmetric, then we
disallow parallel arcs.

1.3 Posets
In this section we introduce the notion of a partially ordered set, or poset, which is the
main focus of this paper. Firstly, we present the formal definition of the poset and other
related terms. Then, we present two important results, due to Dilworth and Mirsky
respectively.

Definition 1.9 (Poset). Let U be a finite set. Also, letR⪯ ⊆ U ×U be a partial order.
We call the pair 〈U ,R⪯〉 a partially ordered set, or poset.

Often, for two elements x, y ∈ U , with (x, y) ∈ R⪯, we will be using the infix
notation, i.e. x � y. When, for two elements x, y ∈ U , we have x � y, but x 6= y, we
will write x ≺ y. Also, when x � y, we will often be saying that x is smaller than y,
or x precedes y. On the other hand, if neither x � y, nor x � y, we call x, y parallel,
and denote it with x ‖ y. Lastly, if two elements x, y are related, i.e. either x � y, or
y � x, we write x ∼ y. Note, that Definition 1.9 allows, multiple minimal or maximal
elements to exist. We give a formal definition.

Definition 1.10 (Maximal/Minimal Element). Let 〈U ,�〉 be a poset on a finite set U .
Letm ∈ U be an element of the poset, wherem � x, for every x ∈ U . We will callm
a minimal element of U , with respect to the relation �. On the other hand, let M ∈ U
be some element, such that M � x, for every x ∈ U . We call M maximal element of
U , with respect to the relation �.

When the partial order� is clear from context, we will just say thatm is a minimal
element of U . Similarly, for a maximal element M of U . If a partial order has a sin
gle minimal element, we call it minimum. Similarly, if a poset has a unique maximal
element, we will be calling it maximum. .

If we restrict our attention to only pairwise related elements of U , we enforce the
behaviour of a total order. On the other hand, we can define subsets of U where no
element relates to another. We give the following definition.

Definition 1.11 (Chain/Antichain). Let 〈U ,�〉 be a poset on a finite set U . Also, let
S ⊆ U be a subset of elements, where for every x, y ∈ S, we either x � y, or y � x.
We will be calling the set S a chain of the poset 〈U ,�〉. On the other hand, we will
calling a subset T ⊆ U , an antichain, if for every x, y ∈ T , neither x � y, nor y � x.

Observe that, since the chains and anticahins are sets, we can (partially) order them
with the subset relation (⊆) and define a maximal chain and a maximal antichain of

6



CHAPTER 1. INTRODUCTION

(a) The directed graph representation of the
poset of Example 1.12.

(b) The Hasse diagram representation of the
poset of Example 1.12.

Figure 1.1: Different representations of the partially ordered set of Example 1.12.

a poset. Note that, in general, two maximal chains will not be of the same size. We
call the maximal chain with the greater cardinality, amaximum chain. Similarly, for the
maximum antichain. For a poset 〈U ,�〉, we will denote with height(U ,�) the number
of elements in a maximum chain. On the other hand, we denote with width(U ,�) the
number of elements in a maximum antichain.

1.3.1 Graphical Representation of a Poset
There are many ways to represent a poset. Perhaps the most straightforward way is with
a directed graph. Let D = (V,A) be a directed graph, where V = U and A = R⪯,
where 〈U ,R⪯〉 be a partial relation. Observe that for every vertex v ∈ V , of the directed
graph D, we would have a loop (v, v) ∈ A, from reflexivity. On the other hand, we
wouldn’t have any parallel arcs, due to antisymmetry. Lastly, for every two arcs of the
form (x, y), (y, z) ∈ A we would have the arc (x, z) ∈ A, due to transitivity.

Observe that encoding a poset with a directed graph contains redundancy. Since,
every vertex will have a loop we can omit these arcs. Also, we may omit the transitive
arcs, since we can deduce them from context. Lastly, if we draw our graph carefully,
in order to draw a vertex x higher than y, if (y, x) ∈ A. This way, we may ”forget” the
directions of the edges. We will call this type of ”graph” a Hasse diagram.

Example 1.12. We follow the example of [5]. Let U = {2, 3, 4, 6, 24, 96, 144}. We
define the poset 〈U , |〉, where | is the ”divides” relation, i.e. a | b if there is a number c,
such that b = c · a. Observe that | is a patial order, since it’s reflective, antisymmetric
and transitive. In Figure 1.1 we give the two different representations of a poset, as a
directed graph and as a Hasse diagram. Observe that 2, 3 are minimal elements, while
24, 96, 144 are maximal. Moreover, the elements 6, 4 are parallel 6 ‖ 4. It is easy to
see that all minimal and all the maximal elements will always be parallel in a poset.

1.3.2 kSmallest Elements
We would like to generalize the notion of minimal elements of Definition 1.10 and talk
about the ksmallest elements of a poset. We will provide a recursive, constructive defi
nition and a ”declarative”, nonconstructive definition. Before we do that, we introduce

7



1.3. POSETS

the notion of a subposet. We give the following definition.

Definition 1.13 (Subposet). Let P = 〈U ,R⪯〉 be a poset on a finite set U , andR⪯ ⊆
U × U be the partial order. Also, let V ⊆ U be a a subset of our universe. We call
subposet, induced on the elements of V the poset P ′ = 〈V,R′

⪯〉 where,

R′
⪯ = {(v1, v2) ∈ V × V | (v1, v2) ∈ R⪯}.

WeR′
⪯ the restriction ofR⪯ on V , and we will denote it withR′

⪯ = R⪯ | V . When its
clear from the context, we will abuse the notation and denote with 〈V,�〉 the subposet
of 〈U ,�〉 to ease the formalization.

Note that the notion of subposet its symmetrical to the notion of the induced graph.
If we represent a poset 〈U ,�〉 with a directed graph D = (U , E), where the edges
represent the � relation, then G[V] will be the representation of the subposet 〈V,�〉.
We now introduce the notion of the ksmallest elements of a poset, which will formalize
and extent our intuition about the k smallest elements in a totally ordered set. We give
the recursive, constructive definition firstly.

Definition 1.14 (kSmallest Elements, Recursive Definition). Let 〈U ,�〉 be a poset
on a finite set U . Also, let be k ≥ 1 be a natural number. With minimal(U ,�)
we denote the minimal elements of the poset 〈U ,�〉. We define the set Sk of the k
smallest elements recursively. In the following definition, U1 = U and Uk = Uk−1 \
minimal(Uk−1,�).

S1 = minimal(U1,�)
Sk = minimal(Uk−1,�)

}
(1.2)

Definition 1.14 extends Definition 1.10; S1 will contain theminimal elements of the
poset. Note that Definition 1.14 is essentially an algorithm for computing the ksmallest
elements. In each iteration, we compute the minimal elements and remove the from the
poset. We repeat this process k times. The set containing the k smallest elements
will consist of the minimal elements of the last iteration. Intuitively, we ”prune” the
poset, from the bottom up. The process of Definition 1.14 will be used in the proofs of
Theorems 1.16 and 1.17 in the sequel. Additionally, we will see some algorithms based
in the above definition in Chapter 4.

For the nonconstructive definition, we introduce the notion of the height of an
element u ∈ U , for a poset 〈U ,�〉. Consider such an element u ∈ U , let C ⊆ U
be a maximal chain in 〈U ,�〉, where for each v ∈ C, we have u � v. We denote
with height(u) = |C| the height of u in 〈U ,�〉. We now proceed with the declarative
definition.

Definition 1.15 (kSmallest Elements, Declarative Definition). Let 〈U ,�〉 be a poset
on a finite set U . Also, let be k ≥ 1 be a natural number. We denote with S′

k the k
smallest elements in 〈U ,�〉 where,

S′
k = {u ∈ U | height(u) = k − 1}. (1.3)

Note that we demand the elements of S′
k to have height k− 1, because we want S1

to contain the minimal elements. The minimal elements of a poset have zero height,
i.e. height(u) = 0. Lastly, observe that the sets Sk, S′

k of the above definitions contain
the same elements. We can prove this fact by induction on k. If u ∈ Sk of Definition
1.14, then there is at least one element v in Uk such that u � v. Otherwise, u would be

8



CHAPTER 1. INTRODUCTION

Figure 1.2: The construction of a chain for the proof of Theorem 1.16.

in Sk−1. Hence, height(u) = height(v) + 1. From the inductive hypothesis, we have
that Sk ⊆ S′

k. For the other direction, note that the maximal chain C, of an element
u, with height height(u) = k − 1, will contain at least one element of each of the sets
S1, S2, . . . , Sk−1.

1.3.3 Mirsky’s and Dilworth’s Theorems
We are now on our way to prove the first important theorem in posets. In particular we
will show two dual theorems, the first is due to Mirsky (1971) [6], while the second due
to Dilworth (1950) [7]. Here we follow the presentation of [8] and give the most recent
result first since it’s much easier to prove.

Theorem 1.16 (Mirsky, 1971). Let 〈U ,�〉 be a poset. If height(U ,�) = n, then, there
is a partition of antichains U = A1 ∪A2 ∪ · · · ∪An.

Proof. We first construct a sequence of disjoint antichains Ai. We construct this se
quence recursively. LetM0 be the set of all maximal elements of U . We set A1 = M0

and U1 = U \M0. If Ui the remaining elements in some level of this recursive pro
cess, let Mi be the set of maximal elements of the poset 〈Ui,�〉. Set Ai+1 = Mi and
Ui+1 = Ui \Mi. Since, U if finite, this process terminates afterm steps and constructs
a decomposition of antichains U = A1∪A2∪· · ·∪Am. It remains to show thatm = n.

Note thatm ≥ n is trivial, since any partition of U into antichains requires at least
n antichains. We need only to show that m ≤ n. We will construct a chain of length
m, since n is the size of the greatest chain we will have proved the claim. We construct
this chain recursively (see Figure 1.2). Let xm ∈ Am. We construct the chain of the
form xi � xi+1 � . . . xm−1 � xm, where xi ∈ Ai. Then, there exists some element
xi−1 ∈ Ai−1, where xi−1 � xi. Else, xi would be a maximal element of Ui−1. A
contradiction, sincexi /∈ Ai−1. There there is a chain of the formx1 � x2 � . . . � xm,
andm ≥ n.

For the theorem of Dilworth we introduce some notation. Let 〈U ,�〉 be a poset
and some element x ∈ U . We denote with L(x) the elements of U , that precede x,
i.e. L(x) = {y ∈ U | y ≺ x}, while L[x] = L(x) ∪ {x}. On the other hand, we
denote with U(x) the elements of U , that succeed x, i.e. U(x) = {y ∈ U | x ≺ y},
while U [x] = U(x) ∪ {x}. Also, we denote with I(x) the elements that are parallel
to x, i.e. I(x) = {y ∈ U | x ‖ y}. Additionally, we expand the above notations on
subsets S ⊆ U . With L(S) we denote all the elements that precede some element of S.

9



1.3. POSETS

Figure 1.3: The construction of a chain partition for Theorem 1.17.

While with U(S) we denote all elements that succeed some element of S. Lastly, with
L[S], U [S], we denote the sets L[S] = L(S)∪ S, and U [S] = U(S)∪ S, respectively.

We are now ready to prove present Dilworth’s theorem.

Theorem 1.17 (Dilworth, 1950). Let 〈U ,R⪯〉 be a poset. If width(U ,R⪯) = n, then
there is a partition of chains U = A1 ∪A2 ∪ · · · ∪An.

Proof. We proceed by induction to the size of the universe |U|. The result is trivial for
|U| = 1. We assume that the hypothesis holds for |U| ≤ k, and we prove the inductive
step for |U| = k + 1. Without loss of generality we assume that width(U ,�) > 1;
otherwise we have the trivial partition U = A1. Furthermore, let C be a non empty
chain, then wemay assume that the subposet 〈U\C,R⪯[U\C]〉 has width at least n−1.
To see this, let’s assume for sake of contradiction that width(〈U\C,R⪯[U\C]〉) = m <
n−1. Form the inductive hypothesis, there is a partition of U \C = C1∪C2∪· · ·∪Cm.
Then, U = C ∪ C1 ∪ · · · ∪ Cm is a partition of U into m + 1 < n chains. Hence, we
arrive to a contradiction, since any partition of U in chains, should contains at least
n chains. On the other hand, if the subposet 〈U \ C,R⪯[U \ C]〉 has width exactly
n − 1, then, from the inductive hypothesis the claim is proved. Therefore, henceforth
we assume that for some non empty chain C, the subposet 〈U \ C,R⪯[U \ C]〉 has
width n.

If there is some isolated element x ∈ X , i.e. I(x) = U \ {x}, then the subposet
〈U \{x},R⪯[U \{x}]〉 has width n−1. From the above argument, we have the desired
partition, from the inductive hypothesis. Hence, we assume that there are no isolated
elements.

Choose a minimal point m, and a maximal point M with m ≺ M . The set C =
{m,M} is a chain. Let Y = U \ C and Q = R⪯[Y ]. Now, width(Y,Q) = n, hence
〈Y,Q〉 contains an antichain A = {a1, a2, . . . , an} of size n. Note that U [A] 6= U ,
sincem /∈ U [A], and L[A] 6= U , sinceM /∈ L[A]. Also, note that L[A] ∩ U [A] = A.

By the inductive hypothesis, we know that we can partition each of U [A] and L[A]

10



CHAPTER 1. INTRODUCTION

(a) Mirky’s Theorem. A decomposition of
the posets in antichains.

(b) Dilworth’s Theorem. A decomposition
of the poset in chains.

Figure 1.4: The figures of Example 1.18. The application of Mirksy’s and Dilworth’s
theorems in the poset of Example 1.12.

into chains, i.e. U [A] = C ′
1 ∪ · · · ∪C ′

n and L[A] = C ′′
1 ∪ · · · ∪C ′′

n . Also, without loss
of generality ai ∈ C ′

i ∩ C ′′
i . This, implies that U = (C ′

1 ∪ C ′′
1 ) ∪ · · · ∪ (C ′

n ∪ C ′′
n) is

the desired partition.

In the next example we show a chain and antichain decomposition of the poset of
Example 1.12.

Example 1.18. We give an example of the poset 〈U , |〉 of Example 1.12, where U =
{2, 3, 4, 6, 24, 96, 144} and | is the divides relation. Observe Figure 1.4a. There, we
have a chain C = {3, 6, 24}, of size three, and a decomposition of the poset in three
chains. On the other hand, in Figure 1.4b, we have an antichain A = {24, 96, 144},
of size three and a decomposition of the posets in three chains. Note that in general
we wouldn’t have width(U ,�) 6= height(U ,�). In this example, width(U ,�) =
height(U ,�) = 3. Observe the duality of Mirsky’s and Dilworth’s theorems.

1.4 Sorting and Selection Problems
In this section we will introduce the main computational problems that we will be con
sidering sorting and selection. We will present these problem in the setting of total
orders, in order to prepare the reader for the generalized version on partial orders, that
we will examine in Chapters 3, 4, and 5. Moreover we introduce query complexity as a
concept of efficiency.

Definition 1.19 (Query Complexity). Consider a finite set U . Let also, c : U × U →
{�,�, 6∼} be a binary function on U that characterizes an ordering relation (partial or
total) R⪯ ⊆ U × U on U . We call c(·, ·) an oracle function of an underlying ordering
relation R⪯ ⊆ U × U . Additionally, consider an algorithm A that cannot compare
two elements of U directly, but uses the oracle function c(·, ·). Let q(n) be the number

11



1.4. SORTING AND SELECTION PROBLEMS

of calls to the oracle c(·, ·), in an input instance of size n. We call q(n) the query
complexity of algorithm A.

The notions of the oracle function c(·, ·) and the query complexity are at the core
of this thesis. For the examined problems, we will try to present queryoptimal algo
rithms and explore the timecomplexity querycomplexity tradeoff that will frequently
appear. Also, note that for an algorithm A, if t(n) and q(n) denote its time and query
complexity respectively, we will always have t(n) ≥ q(n). To understand this re
member that in the traditional timecomplexity setting we count the overall operation
of an algorithm on an input instance of size n, including the calls to the oracle c(·, ·).
Therefore, each lower bound to the query complexity of an algorithm, will be a lower
bound to its time complexity. The relation between the time complexity t(n) and the
query complexity q(n) will be more appeared in Chapter 3, where we will describe a
queryoptimal algorithm, that has exponential time complexity, t(n)� q(n).

1.4.1 Sorting in Totally Ordered Sets

In this subsection we rethinking the traditional problem of sorting a list of integers in
a setting of an oracle function. Imagine we are given a totally ordered set S, and an
oracle function c(·, ·). For two elements x, y ∈ S the oracle c(x, y) will return ≤ if
x ≤ y, or > if x > y. Our goal is to deduce the total order R≤. Moreover we want to
minimize the number of calls to the oracle c(·, ·).

Sorting on Totally Ordered Set

Input: 1. A totally ordered set S.
2. An oracle function c : S × S → {≤, >}.

Output: The total order relationR≤.

As it turns out the well knownMerge Sort [9] is an optimal algorithm, with respect
to oracle calls. It is easy to see, from the way Merge Sort operates, that in each step it
makes a single comparison, or in our setting a single call to the oracle function. Hence,
it makesO(n logn) total calls, where n = |S|. In the next theorem we prove that every
sorting algorithm, in totally ordered sets, must perform Ω(n logn) oracle calls.

Theorem 1.20. Let U a totally ordered set, and c : U × U → {≤, >} an oracle func
tion for the (unknown) total order of S. Also, consider an algorithm that deduces the
underlying total order R≤, and can access the elements of U only through the oracle
function. Such an algorithm must perform Ω(n logn) oracle calls.

Proof. Consider a binary tree, where each internal node correspond to a call to the
oracle c(x, y). The execution of an algorithm will correspond to a rootleaf path. Each
leaf will contain the result of the algorithm, namely the correct (sorted) permutation
of the elements of U . Depending on the choice of the underlying ordering each of the
permutation may appear as a possible outcome of the algorithm. Hence, if |U| = n, our

12



CHAPTER 1. INTRODUCTION

tree will have n! leaves. Since a tree of height h has 2h leaves we have,

2h ≥ n!⇒ h ≥ log(n!)
= log(n(n− 1)(n− 2) · · · (2))

=

n∑
i=2

log i

=

n/2−1∑
i=2

log i+
n∑

i=n/2

log i

≥ 0 +

n∑
i=n/2

log
n

2

=
n

2
· log n

2
= Ω(n logn)

Another way to see the above fact is from an information theoretic perspective.
Since each of then! permutations, uniquely identifying the permutation requires logn! =
Ω(n logn) bits, each comparison yields a single output bit. This way we obtain the de
sired lower bound. For a more in depth presentation of Information Theory and its
connection to posets we refer to [10, 11]. In Chapters 3 and 4, 5 we will prove similar
lower bounds for oracle models in posets.

1.4.2 Selection in Totally Ordered Sets
The other problem that we will examine in this thesis is about finding the smallest or
the kth smallest elements in partially ordered sets. These problems known as Selection
and kSelection problems respectively.

Selection on Totally Ordered Set

Input: 1. A totally ordered set S.
2. An oracle function c : S × S → {≤, >}.

Output: The minimum elementm.

kSelection on Totally Ordered Set

Input: 1. A totally ordered set S.
2. An oracle function c : S × S → {≤, >}.

Output: The kth smallest element s.

There is a naive algorithm, that follows Definition 1.14 for the total orders, and
solves the kSelection problem in kn time. Just select the minimum element each time,
and erase it from the input set. Repeat the process k times. Another straight forward
approach would be to sort the input set in n logn time (and queries) and then select the
desired element. Herewe present amore sophisticatedmethod due to Blum et al. (1973)
[12]. The algorithm we present is known asMedian of Medians and has time and query
complexity of O(n). The algorithm consists of two routines recursively calling each

13



1.4. SORTING AND SELECTION PROBLEMS

Figure 1.5: The structure of theMedian of Medians algorithm for the kSelection prob
lem.

other. We assume at first that there exists a routine that provides us with a ”good” guess
of the median of the input S. Let x be our guess of the median of S. We will partition S
in two sets S≤, S> containing the elements of S that are less or equal to x, and greater
than x, respectively. We would like that our partition be somewhat balanced. Observe
the following algorithm.

Algorithm 1: Select
Input: 1. A set S

2. An oracle function c : S × S → {≤, >}
3. A number k ∈ [n]

Output: The kth smaller element of S
1 x← GuessMedian(S, c(·, ·))
2 S≤ ← ∅, S> ← ∅
3 for each s ∈ S :
4 if c(s, x) = ” ≤ ” then
5 S≤ ← S≤ ∪ s

6 else
7 S> ← S> ∪ s

8 if |S≤| > k then
9 return Select(S≤, c(·, ·), k)
10 else
11 return Select(S>, c(·, ·), k − |S≤|)

Note that in Algorithm 1 we make O(n) calls to oracle. In order to make a good
guess of the median, we will divide S into groups of 5 elements. We find the median
for each group. Then we find the median of medians of the groups and return it as our
guess (see Figure 1.5). We will demand that our guess will partition S into S≤, S> with
|S≤|, |S>| ≤ 0.7n. We will prove this claim in the sequel; now we formalize the above
idea in the following algorithm.

Observe the key idea of the above routines. We use the routine GuessMedian, to
implement Select, and vise versa. Note that C has n/5 elements, hence we have n/5
iterations of the forloop nAlgorithm 2. For each iteration we compute the exact median
among 5 elements, in constant 52 = 25 time and query complexity. Therefore, the time

14



CHAPTER 1. INTRODUCTION

Algorithm 2: GuessMedian
Input: 1. A set S

2. An oracle function c : S × S → {≤, >}
Output: A guess x on the median of S, such that |S≤|, |S>| ≤ 0.7n.

1 Partition S in to groups of 5 elements, and collect them into
C = {C1, C2, . . . , Cℓ}.

2 B ← ∅
3 for each Ci ∈ C :
4 Findmi the (exact) median of Ci, using the oracle c(·, ·).
5 B ← B ∪mi

6 return Select(B, c(·, ·), n/10)

and query complexity of Algorithm 2 will be n/5 = O(n).2 We now prove the core
claim, regarding the quality of our guess of the median.

Claim 1.21. Let S a finite set, with |S| = n. Also, let x be the guess of Algorithm 2
about the median of S. We partition S to S≤ = {s ∈ S | s ≤ x} and S> = {s ∈ S |
s > x}. We have |S≤|, |S>| ≤ 0.7n.

Proof. Let B = {m1,m2, . . . ,mℓ} and C = {C1, C2, . . . , Cℓ} be the sets as defined
in Algorithm 2. For each median of a group mi, where mi ≤ x, Ci will contribute 3
elements to S≤. Similarly, each median mi with mi > x will contribute 3 elements
to S>. Since x is the median of B, we will have n

10 mi smaller than x and n
10 mi

greater than x. Hence, we have |S≤|, |S>| ≥ 3
10n. Because, |S≤| + |S>| = n, then

|S≤| = n− |S>| and |S≤| ≤ 7
10n. Similarly, we get |S>| ≤ 7

10n.

From Claim 1.21 and the fact that GuessMedian makes n/5 iterations, we get the
follow recursive formula for the time and query complexity of Algorithm 1.

T (n) ≤ T

(
1

5
n

)
+ T

(
7

10
n

)
+ λn, (1.4)

for some constant λ. Solving (1.4), by induction, will give us the expected O(n)
in time and query complexity. In Chapter 5 we will utilise the same philosophy in a
sorting algorithm on posets.

A lower bound to the problem of kSelection in total orders is given in Theorem
1.22, due to Fussenger and Gabow (1979) [13]. We present here this theorem without
a proof and we refer to [13] for a full presentation. In Chapter 4 we use this theorem to
sketch a proof for a lower bound for the kSelection problem in partial orders.

Theorem1.22. The number of queries required to find the set of the k smallest elements
of an nelement total order is at least n− k + log

((
n

k−1

)
/k
)

2Here, we assume that n is divisible by 10, we can raise this assumption by taking the floor ⌊n/10⌋,
without harming our analysis. We avoid that, to ease our notation.

15



1.4. SORTING AND SELECTION PROBLEMS

16



CHAPTER2
ALGORITHMS IN FLOWS, MATCHINGS AND

POSETS

In this chapter we explore the algorithmic perspective of Dilworth’s theorem and un
ravel the surprising connection of posets to flow networks. In Section 2.1 we introduce
the fundamental notions of flows networks, we also present the Ford’s and Fulkerson’s
algorithm for finding an optimal flow. In Section 2.2 we define a new class of graphs,
the bipartite graphs and discuss its connection to flow networks. We establish the no
tion of matchings in bipartite graphs and use Ford’s and Fulkerson’s algorithm to find
a maximum matching. Lastly, in Section 2.3 we use the results of the previous section
to provide an algorithmic proof of Dilworth’s theorem. Our algorithm will use flow
networks to compute a minimum decomposition of a poset into chains.

2.1 Networks and Flows
In this section we discuss flow networks and some related fundamental results. We
define the notion of flow network and present the problem ofMaximum Flow. We give
Ford’s and Fulkerson’s algorithm [14] for solving this problem. We will also introduce
the problem of finding a Minimum Cut in network. We discuss the duality of those
problem and the fundamentalMaximum Flow Minimum Cut theorem in the area.

2.1.1 Flow Networks
We begin with a definition of flow networks. A flow network is a directed graph where
each arc has a capacity and each edge receives a flow. The amount of flow on an edge
cannot exceed the capacity of the arc. Also, there is a single node which produces flow,
the source, and a single node which consumes it, the sink. The main sources for this
section are [15, 16], and we refer the reader to these textbooks for a more indepth
presentation. We give the following formal definition.

Definition 2.1 (Flow Network). Let D = (V,A) be a directed graph and s, t ∈ V be
two nodes called source and sink, respectively, with din(s) = 0 and dout(t) = 0. Also,
let c : A → R≥0 the capacity of each edge. We call the tuple N = 〈D, s, t, c〉 a flow
network.

17



2.1. NETWORKS AND FLOWS

We next define the notion of flow, or flow function on a network. The flow function
captures the intuition of a liquid flowing through a network of pipes. We give a formal
definition.

Definition 2.2 (Flow). Let N = 〈D, s, t, c〉 be a flow network, on the directed graph
D = (V,A), with capacity function c(·), source s ∈ V and sink t ∈ V . We call a flow
on the network N a function f : A→ R≥0, which respects the following axioms.

1. (Capacity Condition) For each arc a ∈ A, we have 0 ≤ f(a) ≤ c(a).

2. (Conservation Condition1) For each node v ∈ V \ {s, t}, we have∑
u∈Nin(v)

f(u, v) =
∑

u∈Nout(v)

f(v, u) (2.1)

For a network N = 〈D, s, t, c〉 and a flow function f : A → R≥0, we define the
value of the flow, as

v(f) =
∑

v∈Nout

f(s, v).

Note that from the second axiom in Definition 2.2, the above sum quantifies the total
flow in our network. Intuitively, v(f) will be the volume of the liquid flowing in our
network. InMaximum Flow Problem we are required to find some valid flow function
f(·) that maximizes v(f).

Maximum Flow Problem
Input: A flow network N = 〈D, s, t, c〉

Output: A valid flow function f : A → R≥0 respecting Definition 2.2, maxi
mizing v(f).

Before we present an algorithm for solving the above problem, we need to define
the notion of a residual network.

Definition 2.3. Let N = 〈D, s, t, c〉 be a flow network and f : A → R≥0 be a valid
flow function. We define the residual network Nf = 〈Df , s, t, cf 〉 as follows.

1. V (Df ) = V (D), i.e. the set of the vertices remains the same.

2. For each arc a = (u, v) ∈ A(D) with f(a) < c(a), having c(a) − f(a)
”residual” units of flow, we add arc a = (u, v) to Nf with capacity cf (a) =
c(a)− f(a). We call these arc, forward. .

3. For each arc a = (u, v) ∈ A(D) with f(a) > 0, there are f(a) unit of flow that
we can negate, driving flow in the opposite direction. Thus, we add the backward
arc a′ = (v, u) to Nf , with capacity cf (a′) = f(a).

The notion of residual network captures the options we have in order to modify an
existing flow. In fact, our algorithm will do exactly that; we will start with some initial
flow f and in each iteration we will enhance our solutions, using the residual network.
In Figure 2.1 we present a flow network. with an initial flow function and its residual
network .

1Note the similarity with Kirchhoff’s first law on electrical circuits; ”the algebraic sum of currents in a
network of conductors meeting at a point is zero”.

18



CHAPTER 2. ALGORITHMS IN FLOWS, MATCHINGS AND POSETS

(a) A flow network. With light blue
we denote the given flow f . We have
v(f) = 20

(b) The residual network, for the given
flow.

Figure 2.1: A network with an existing flow, on the left; and its residual network, on
the right.

We are now ready to present Ford’s and Fulkerson’s algorithm. The algorithm will
consists of two routines. The first routine Augment (presented in Algorithm 3) will take
as input a give flow f and an augmenting path in the residual network. The routine
will follow this path in order to increase the flow along its way. The second routine
Max-Flow (presented in Algorithm 4), will just call Augment iteratively, while there
are available augmenting path in the residual graph, while updating the flow function
and computing the new residual network. The function bottleneck(P, f) will return
the minimum residual capacity along P .

Algorithm 3: Augment
Input: 1. A residual network Nf .

2. The corresponding flow function f .
3. a path P ⊆ Nf .

Output: An updated flow f , of increased value.
1 b← bottleneck(P, f)
2 for each a ∈ A(P ) :
3 if a is a forward arc then
4 f(a)← f(a) + b

5 else
6 f(a)← f(a)− b

7 return f

A complete analysis of Ford’s and Fulkerson’s algorithm is beyond the scope of
this thesis. Again we refer to [15, 16] for a more substantial analysis. Also, we will
leave the discussion regarding the optimality of the solution for the next subsection.
We note here that indeed the value of the flow is increased in each call of the Augment
routine, since the flow can’t exceed the total capacity C =

∑
a∈A c(a), the algorithm

will terminate after a finite number of steps. Regarding the complexity of the algorithm,
we give the following theorem, without a proof.

19



2.1. NETWORKS AND FLOWS

Algorithm 4:MaxFlow
Input: A flow network N = 〈D, s, t, c〉.
Output: A maximum flow for N .

1 Initialize f(a)← 0, for every arc a ∈ A(D).
2 Compute the residual network Nf .
3 while there is an augmenting s, tpath in Nf do
4 Let P be an augmenting path.
5 f ′ ← Augment(Nf , f, P )
6 f ← f ′

7 Compute the new residual network Nf .
8 return f

Theorem 2.4. LetN = 〈D, s, t, c〉 be a flow network. We also assume that the network
has integer capacities, i.e. c : A → Z≥0. Algorithm 4 computes a valid flow f in
O(mC) time.

We conclude this introduction to network flows with a remark regarding the inte
grality of the problem. Observe that, from the way Algorithm 4 works, if we have
integer capacities, the resulting flow will also be integer. This fact is often referred to
as Integral Flow Theorem; leaving the claim regarding the optimallity for the future,
we give the following theorem. Again we omit any proof and constrain ourselves to an
intuitive explanation, for a complete proof we refer to [16].

Theorem 2.5 (Integral Flow Theorem). If the capacities of a network are integers, then
exists an integral maximum flow.

2.1.2 Cuts in Networks
We continue this section, by introducing the notion of cuts in a network. Cuts will
helps us define a more precise upper bound to the total flow of a network. We give the
following definition.

Definition 2.6 (Cut). Let N = 〈D, s, t, c〉 be a flow network, on the directed graph
D = (V,A), with capacity function c(·), source s ∈ V and sink t ∈ V . We call an
s, tcut a partition of the nodes in two sets S, T , with s ∈ S, t ∈ T , and S ∪ T = V ,
while S ∩T = ∅. We denote an s, tcut with (S, T ), while we have for the capacity of
the cut that,

c(S, T ) =
∑

a∈∂out(S)

c(a)

Note that an s, tcut (S, T ) is a set of arcs going from S to T . In theMinimum Cut
Problem we are required to find an s, tcut with the minimum capacity.

Minimum Cut Problem
Input: A flow network N = 〈D, s, t, c〉.

Output: A cut (S, T ), with S, T ⊆ V (D), and s ∈ S, t ∈ T with the minimal
capacity c(S, T ).

In Figure 2.2 we depict a network and theminimum s, tcut. Observe that this cut is
an upper bound to the value of the maximum flow v(f) ≤ c(S, T ). In particular each

20



CHAPTER 2. ALGORITHMS IN FLOWS, MATCHINGS AND POSETS

Figure 2.2: An example of a network cut (S, T ), with capacity c(S, T ) = 20.

cut, will be an upper bound to any feasible flow value. Hence, if v a feasible flow value
and c a capacity of a cut in the same network, we have v ≤ c. If v⋆ is a maximum
flow, and c⋆ a minimum capacity, we get v⋆ ≤ c⋆. Evidently, the reverse inequality
also holds. This fact is known asMaximumFlow MinimumCut Theorem.

Theorem 2.7 (MaximumFlow MinimumCut). Let N be a a network. Also, let v⋆
be the value of a maximum flow and c⋆ be the capacity of a minimum cut on the same
network N . We have that,

v⋆ = c⋆. (2.2)

From Theorem 2.7 we get the optimality of Algorithm 4. Also, we can refine the
computational complexity given by Theorem 2.4, with modifying the C, to be the min
imum s, tcut. We don’t provide a formal proof of Theorem 2.7. For a full analysis we
refer to [16]. We also note that with some prostprocessing, we can also get a minimum
cut using Algorithm 4.

Theorem2.8. LetN = 〈D, s, t, c〉 be a flow network. Given amaximum flow function
f⋆ we can compute a minimum cut inO(m) time. Moreover, the setS⋆ of the minimum
cut (S⋆, T ⋆), will be the subset of vertices S⋆ ⊆ V (D) which have a path from the
source s in the residual network Nf .

Before we conclude this brief discussion on network flows we give a Linear Pro
gramming argument, to support theMaximum FlowMinimumCut Theorem. In actual
ity the Minimum Cut problem is a dual linear program of the Maximum Flow problem.
Therefore, we can get the Equation 2.2 as an immediate consequence of the Strong Du
ality Theorem of Linear Programming. From linear programming we can also get a
polynomial time algorithm for computing a maximum flow or a minimum cut, despite
that we presented the classic Ford’s and Fulkerson’s algorithm as a more intuitive ap
proach. In the following section, we will use network theory in order to prove Hall’s
and Königs Theorems, regarding bipartite graphs.

2.2 Matchings
We begin this section by defining another class of graphs, the bipartite graphs. We
introduce here the bipartite graphs as undirected graphs but all of our observations are
transferable in the directed graph setting. We give the following definition.

Definition 2.9 (Bipartite Graphs). Let G = (V,E) be a graph. We call G a bipartite
graph is there is a partition of the nodes in two sets X,Y ⊆ V , with X ∪ Y = V and
X ∩ Y = ∅; but there are no edges inside G[X] and G[Y ].

21



2.2. MATCHINGS

LetG = (V,E) be a bipartite graph, withX,Y be a partition of the nodes respecting
the conditions of Definition 2.9, we callX,Y the parts of the bipartite graph. We often
use the notation G = (X ] Y,E) to denote a bipartite graph with parts X,Y . A key
property of bipartite graphs is that they cannot have odd circles. Observe that in a
circle of a bipartite, the nodes will be of alternating parts of the graphs. Hence, in an
odd circle we would have, necessarily two nodes edge connected of the same part. A
contradiction. On the other hand, if we have only even circles in a graph, we can always
partition its nodes in two parts2. Thus, we give the following proposition.

Proposition 2.10. A graph G = (V,E) is a bipartite graph, if and only if has no odd
circles.

We now define some key notions in bipartite graphs and graph theory. We call some
set of nodes I ⊆ V with no interior edges, namely the induced graphG[I] has no edges,
an independent set ofG. Hence, in the above definition bothA,B are independent sets
of G. On the other hand, let C ⊆ V be a set of nodes, such that for each edge e, either
e is inside C, or is adjacent to some node of C. We call C a vertex cover ofG. Observe
that, if C is a vertex cover, then V \ C is an independent set and vice versa. Again,
both parts X and Y of a bipartite graph are vertex covers of the graph.

In the Minimum Vertex Cover problem, we are required to find a vertex cover of
minimum size. For some graph G we denote the size of the minimum vertex cover
with ν(G).

Minimum Vertex Cover
Input: A graph G = (V,E).
Output: A vertex cover X ⊆ V , of minimum size.

A core notion in bipartite graphs is amatching. A matchingM is a subset of disjoint
edges, i.e. for every e1, e2 ∈ M , we have e1 ∩ e2 = ∅. In the Maximum Matching
Problem, we are required to find a maximum matching in a bipartite graph. Let U ⊆ V
be a subset of vertices of a graph. We say that a matching M covers U , if for every
vertex v ∈ U there is some edges e ∈ M , such that v ∈ e. We say that a graph
G = (V,E) has a perfect matching if there is some matchingM⋆ ⊆ E that covers V .

In theMaximumMatching problem, we are required to find amatching of maximum
size. For some graph G we denote the size of a maximum matching with τ(G).

Maximum Matching
Input: A graph G = (V,E).
Output: A matchingM ⊆ E, of maximum size.

Staying in the spirit of the previous section, we will unravel the connection between
the Minimum Vertex Cover and Maximum Matching problems in bipartite graphs. We
will see that ν(G) = τ(G) in Königs Theorem. Before that, we will explore the connec
tion ofmatchingwith flow networks, and prove theHall’s Theorem for perfect matching
in bipartite graphs. In both cases, our proofs will be constructive and provide an algo
rithm for finding a maximum matching and a minimum vertex cover respectively. Our
foundation will be Ford’s and Fulkerson’s Algorithm 4.

2We can ”color” the nodes of each circle with alternating colors, e.g. red and blue. If we have only even
circles, we will not have an edge with its endpoints having the same color. The parts of the bipartite graph,
will be the color classes.

22



CHAPTER 2. ALGORITHMS IN FLOWS, MATCHINGS AND POSETS

2.2.1 Hall’s Theorem
Hall’sMarriage Theorem3 gives a sufficient and necessary condition for the existence of
a perfect matching in bipartite graphs. There are a few ways to prove Hall’s Theorem,
here we follow the presentation of [15] and use the Maximum Flow Minimum Cut
Theorem (Theorem 2.7)

Theorem 2.11 (Hall’s Marriage Theorem, 1935). Let G = (X ] Y,E) be a bipartite
graph, with |X| = |Y |, then there is a perfect matching, if and only if for every subset
of vertices A ⊆ X , |A| ≤ |N(A)|.

Before we give the proof of Theorem 2.11, we describe a reduction from the prob
lem of Maximum Matching in Bipartite Graphs, to the problem of Maximum Flow in
Networks. Starting from a bipartite graph G = (X ] Y,E) we create a network N as
depicted in Figure 2.3. Firstly, we orient all the edges ofG fromX to Y . Next, we add
a new vertex s and an arc (s, x) for every vertex x ∈ X . Subsequently, we another new
vertex t and an arc (y, t) for each vertex y ∈ Y . Lastly, we set the capacity of each arc
of N equal to 1. From the construction of the network N , the conservation condition
2.1, and the Integral Flow Theorem (see Theorem 2.5) we get the following Lemma.

Lemma 2.12. Let G a bipartite graph and N its corresponding network, then G has a
maximummatching of size k, if and only if N hasmaximum flow of value k. Moreover,
the edges in a maximum matchingM are exactly the edges of non zero flow in N .

(a) A bipartite graph G.
(b) The corresponding network N of the bipartite
graph. All arcs have capacity of 1, and are oriented
from left to right.

Figure 2.3: The reduction from a bipartite graph to a network.

We now present the proof of Theorem 2.11. Here, we follow the proof in [15].

Proof of Theorem 2.11. [⇒] We assume that there is a perfect matching in G. Then,
naturally, for every A ⊆ X , we would have |A| ≤ |N(A)|; otherwise there would
always remain some element of A unmatched.

[⇐] For this direction, we assume that for every subset of nodes A ⊆ X , has at
least |A| neighbors. We prove that there is a perfect matching. From Lemma 2.12 it
suffices to show that the corresponding network N admits maximum flow of value n.

3Proved by the English Mathematician Philip Hall in 1935 [17].

23



2.2. MATCHINGS

(a) A minimum cut. With light blue we de
note set A′, of the cut (A′, B′). With light
green we denote the set A = A′ ∩X .

(b) The state of the cut after we include y
in A′. With light orange we denote the set
Y ∩A′, while with red we denoteX ∩B′.

Figure 2.4: The network N corresponding to a bipartite graph G = (X ] Y,E) of
Theorem 2.11. With light blue we denote the first part of a minimum cut (A′, B′). All
the arcs have capacity of 1.

For sake of contradiction, we assume that the maximum flow is less than n, and we will
find some set A, with |N(A)| < |A|.

From Maximum Flow Minimum Cut Theorem (Theorem 2.7) we know that there
exist a minimum cut (A′, B′) with capacity less than n. Note that A′ will contain the
source s, and it could contain vertices from both X,Y . We set A = X ∩ X ′ and we
will show that |N(A)| < |A|. We claim that we can modify the cut (A′, B′) in order
to ensure that N(A) ⊆ A′. Let y ∈ N(A) be a vertex that belongs to B′ (see Figure
2.4a). We claim that moving y fromB′ toA′ will not increase the cut’s capacity. When
moving y from B′ to A′ the arc (y, t) will traverse the cut, increasing the capacity by
one. On the other hand, previously there would be at least one arc of the form (x, y),
with x ∈ A, since y ∈ N(A). Thus, at least one of the (x, y) arcs no longer traverse
the cut. Therefore the total capacity of the cut cannot be increased.

We will examine now the capacity of the minimum cut (A′, B′), whereN(A) ⊆ A′

as depicted in Figure 2.4b. Since all the neighbors of A belong to A′, we have that the
only arcs leaving A′, either are outgoing arcs of the source s, or are ingoing arcs to the
sink t. Thus, for the capacity of the cut we have,

c(A′, B′) = |X ∩B′|+ |Y ∩A′|. (2.3)

Observe that |X ∩ B′| = n − |A| and |Y ∩ A′| ≥ |N(A)|. From our assumption that
c(A′, B′) < n, we get,

n− |A|+ |N(A)| ≤ |X ∩B′|+ |Y ∩A′| = c(A′, B′) < n. (2.4)

Comparing the first and the last term of the above inequality we have that |N(A)| > |A|.

Form Theorem 2.11 and the above discussion we get an algorithm for finding a
maximum matching in a bipartite graph G. Firstly, we construct the corresponding
network N . We find a maximum flow on N . A maximum matching M will include
the edges e of G, that correspond to arcs a of N with f(a) = 1.

24



CHAPTER 2. ALGORITHMS IN FLOWS, MATCHINGS AND POSETS

Figure 2.5: The network of König’s Theorem 2.13. With dark orange we denote the
edges of a maximum matching, while with purple we denote the vertices of a minimum
vertex cover.

2.2.2 König’s Theorem
In this subsection we will prove König’s Theorem. We will build upon our work in
the previous subsection, more precisely the proof of König’s Theorem expands on the
construction of Theorem 2.11, that relates bipartite graphs with flows.

Theorem 2.13 (König, 1931). LetG = (X ]Y,E) a bipartite graph. Also letM ⊆ E
a maximum matching and C ⊆ V a minimum vertex cover on G. We have |M | = |C|,
or

ν(G) = τ(G) (2.5)

Proof. Consider the construction of Theorem 2.11. LetN = 〈D, s, t, c〉 be the network
corresponding to the to the bipartite graph G, and (A′, B′) a minimum cut. If A =
A′ ∩X we assume that N(A) ⊆ A′. LetM ⊆ E with,

M = {(x, y) ∈ A(D[X ∪ Y ]) | f(x, y) = 1}

for some maximum flow f . Note that in M we consider only the arcs that correspond
to edges of the bipartite graph. We also define the set,

C = (X ∩B′) ∪ (Y ∩A′)

Since N(A) ⊆ A′ the minimum cut is only comprised of arcs going from s to
(X ∩ B′) and from (Y ∩ A′) to t, see Figure 2.5. Hence, following Equation 2.3, we
have,

|C| = |X ∩B′|+ |Y ∩A′| = c(A′, B′) = |M |. (2.6)

Lastly, observe that C is a vertex cover, as any arc that is not incident to vertices from
X ∩B′ and Y ∩A′ must be incident to a pair of vertices from A to B′ \A′. A contra
diction, since N(A) ⊆ A′.

Again, since we can use Ford’s and Fulkerson’s algorithm to obtain a maximum
matching, with minimal post processing we can compute a minimum vertex cover. In
the following section, we use Theorem 2.13 to compute a minimum decomposition of
a poset into chains and prove Dilworth’s Theorem.

25



2.3. FINDING A MINIMUM CHAIN DECOMPOSITION

(a) A poset on five elements. With red and
blue we denote a minimum decomposition
into two chains. With orange, we denote a
maximum antichain.

(b) The corresponding bipartite graph of the
poset on the left. With red and blue we de
note the edges of a a maximum matching.
With purple we denote a minimum vertex
cover.

Figure 2.6: A poset on five elements and the corresponding bipartite graph.

2.3 Finding a Minimum Chain Decomposition

In this section we will reprove Dilworth’s theorem using Königs Theorem 2.13. Note
that, since our prove of König’s Theorem of the previous section was constructive,
this new proofs of Dilworth’s Theorem 1.17 will give us an algorithm to compute a
minimum decomposition of a posets to chains. Additionally our algorithm will be able
to find a maximum antichain. Our main source for this section is Ford’s and Fulkerson’s
textbook [14].

We begin by proving a construction of a bipartite graph, from a given partially
ordered set. Let 〈U ,�〉 be a poset on some universe U , |U| = n. We construct the
bipartite graph G = (U ] U ′, E), where U ′ is a copy of our universe U . If U =
{u1, u2, . . . , un} we denote the elements of U ′ as U ′ = {u′

1, u
′
2, . . . , u

′
n}. For some

ui ∈ U and u′
j ∈ U , with i 6= j we have {ui, u

′
j} ∈ E if ui � u′

j . See Figure 2.6,
we will explore the connection of chains. antichains, matching and vertex covers in the
sequel.

We proceed to our first Lemma connecting the size of amatching to a decomposition
into chains of a poset.

Lemma 2.14. Let 〈U ,�〉 be a partially ordered set, with |U| = n, andG = (U]U ′, E)
be the corresponding bipartite graph. Also, let M ⊆ E a matching of G. Then, there
exists a decomposition∆ of 〈U ,�〉 into chains, such that,

|M |+ |∆| = n. (2.7)

Proof. LetM be the matching, where

M = {{ui1 , u
′
j1}, {ui2 , u

′
j2}, . . . , {uin , u

′
jn}}.

Thus,
i1 � j1, i2 � j2, . . . , in � jn.

26



CHAPTER 2. ALGORITHMS IN FLOWS, MATCHINGS AND POSETS

Wegather (”glue”) together the elements of {i1, j1, i2, j2, . . . , in, jn} into chains greed
ily4. Let ∆ be the resulting decomposition. If there is an element k ∈ U that does not
belong to {i1, j1, i2, j2, . . . , in, jn}, we add it to∆ as a singleton chain. We denote the
chains of∆ with ℓj . We observe that,

n =

|∆|∑
j=1

|ℓj | =
|∆|∑
j=1

(ℓj − 1) + |∆| (⋆)= |M |+ |∆|

Where the equation (⋆) holds, because a path of ℓ vertices has ℓ− 1 edges.

We can observe an example of Lemma 2.14 in Figure 2.6. Note that in the poset
of Figure 2.6a we have a minimum chain decomposition of size two. On the other
hand, in the bipartite graph of Figure 2.6b there is a maximum matching of size three.
Lastly, note that in the proof of Lemma 2.14 we would glue together the edges {3, 5′}
and {1, 3′} of Figure 2.6b. We proceed to our next Lemma connecting the size of a
maximum antichain and a minimum vertex cover.

Lemma 2.15. Let 〈U ,�〉 be a partially ordered set, with |U| = n, andG = (U]U ′, E)
be the corresponding bipartite graph. Also, let X ⊆ U ∪ U ′ be a proper5 vertex cover,
and U ⊆ U be an antichain of 〈U ,�〉. Then it holds that,

|X|+ |U | = n. (2.8)

Proof. Let ϕ : U ∪ U ′ → U be a function that maps the nodes of the bipartite graph
G = (U]U , E) to the corresponding elements of the poset 〈U ,�〉. Also, letX ⊆ U∪U ′

be a proper vertex cover of the bipartite graph G, where

X = {u1, u2, . . . , uℓ, u
′
1, u

′
2, . . . , u

′
k}

We observe that the elements of X correspond to different elements of U . In other
words, there are no x, y ∈ X , where ϕ(x) = ϕ(y). For sake of contradiction we
assume that there are such elements x, y ∈ X , with ϕ(x) = ϕ(y). Since X is a proper
vertex cover, there is some u′ /∈ X , such that {u′, x} ∈ E; similarly there is some
u /∈ X , such that {y, u} ∈ E. Because, ϕ(x) = ϕ(y) and the transitivity property of
the poset there is the edge {u′, u} ∈ E in the bipartite graph. Moreover, {u′, u} is not
covered by X . A contradiction. Hence, all the elements ofX are distinct.

Now, let U = U \ X . Since X is a vertex cover, U would be an independent set
of G. Thus, the elements of U would be unrelated in the poset 〈U ,�〉. This concludes
our proof.

We now present an alternative proof of Dilworth’s Theorem, based on the work of
this chapter.

Theorem 2.16 (Dilworth, 1950). Let 〈U ,R⪯〉 be a poset. If width(U ,R⪯) = w, then
there is a partition of chains U = A1 ∪A2 ∪ · · · ∪Aw.

4Note that the decomposition resulting from the ”gluing” of the mathching’s edges is unique. We can only
”glue” together edges of the form {u1, u′

2}, {u′
2, u3}. If we stop the ”gluing” earlier we won’t be having a

decomposition.
5Namely, U \X ̸= ∅ and U ′ \X ̸= ∅. Note that we can always assume a proper vertex cover, without

loss of generality.

27



2.3. FINDING A MINIMUM CHAIN DECOMPOSITION

Proof. We get Dilworth’s theorem as an immediate result of Lemmas 2.14, 2.15 and
König’s Theorem 2.13. Let M⋆ be a maximum matching, X⋆ be a minimum vertex
cover. Also, let ∆⋆, U⋆ be the corresponding sets of the poset 〈U ,�〉. We would have
|M⋆| = ν(G) and |X⋆| = τ(G) . For (2.7) we have ν(G) + |∆⋆| = n, or |∆⋆| =
n − ν(G). On the other hand, from (2.8) we have |U⋆| = n − τ(G). Since, König’s
Theorem states that ν(G) = τ(G), we have the required result.

This concludes our presentation of the algorithmic aspect of Dilworth’s Theorem on
posets. We will be using the algorithm proposed in the proof of Lemma 2.7 heavily in
the next chapters as a subroutine for finding a poset’s minimum chain decomposition.

28



CHAPTER3
WIDTHBASED MODEL: SORTING ALGORITHMS

In this chapter we introduce the WidthBased Model. This model was introduced in a
Daskalakis et al. paper [1] in 2011. In this setting we are given an oracle function c : U×
U → {�,≤, 6∼}, of an underlying poset 〈U ,�〉, and some constant w ≥ width(U ,�)
an upper bound to the width of our poset. Our goal is to reconstruct the unknown partial
order using theminimum number of oracle calls. In the next chapter, we stay in the same
setting and consider the kSelection problem.

Sorting on Poset (WidthBased Model)

Input:

1. A partially ordered set U .
2. An oracle function c : U × U → {�,≤, 6∼}, of a partial order
relation � on U .
3. A constant w ∈ N, with width(U ,�) � w.

Output: The partial order relation �.

We can derive a lower bound on the query complexity of the above problem using
the following result due to Brightwell and Goodfall [18].

Theorem 3.1 (Brightwell and Goodfall [18], 1996). Let Nw(n) be the number of par
tially ordered sets on n elements and width at most w. We have,

n!

w!
4n(w−1)n−24w(w−1) ≤ Nw(n) ≤ n!4n(w−1)n−(w−2)(w−1)/2ww(w−1)/2 (3.1)

Using the above Theorem 3.1 and Theorem 4.5, which we present in the next chap
ter, we establish a lower bound on the number of queries required to sort a poset. Note
that, as we shall see, Theorem 4.5 states that w+1

2 n−w queries are required to find the
minimal elements of a poset.

Theorem 3.2. Any algorithm which sorts a poset a poset of width at most w on n
elements requires Ω(n(logn+ w)) queries.

Proof. From Theorem 3.1, if w = o
(

n
logn

)
, then Nw(n) = Θ(n logn + wn); hence

Ω(n(logn+w)) queries are required information theoretically for sorting (see Section
1.4). On the other hand, let w = Ω

(
n

logn

)
. Theorem 4.5 gives a lower bound of

29



3.1. REPRESENTING A POSET: THE CHAINMERGE DATA STRUCTURE

Ω(wn) queries for finding minimal elements of a poset. Since sorting is at least as
hard as finding the minimal elements, it follows that Ω(wn) queries are necessary for
sorting. In this case, wn = Ω(n logn+ wn).

We organize this chapter as follows. In Section 3.1 we give a data structure rep
resenting a poset. This data structure will be the output of our algorithms. In Section
3.2 we present a first algorithm for sorting called BinInsertion Sort with O(wn logn)
oracle queries, due to Faigle and Túran [19]. In Section 3.3 we modify BinInsertion
Sort to obtain the Entropy Sort algorithm of asymptotically optimal query complex
ity O(n(logn + w)). This optimal algorithm is due to Daskalakis et al. [1]. Sub
sequently, in Section 3.4, we present a timeefficient variant of Merge Sort in poset,
with O(wn log(n/w)) query complexity and O(w2n log(n/w)) running time. Lastly,
in Section 3.5 we provide a summary of this chapter.

3.1 Representing a poset: The ChainMerge data struc
ture

In this section we will establish the ChainMerge data structure, for encoding a poset.
Our algorithms will output this data structure as a result. As we shall see we will be
able to obtain all the information of the poset by querying this data structure. Namely,
for two elements a, b ∈ U , we can answer a query c(a, b) in constant time. Essentially,
ChainMerge will be a directed variation of a Hasse diagram. We built our data structure
from a chain decomposition of a poset.

Let C = {C1, C2, . . . , Cw} be a chain decomposition of a poset 〈U ,�〉. We assume
that the decomposition C is given as a set of totally ordered arrays. Let xi ∈ U be
an element of the ith chain Ci. We store in our data structure a record of the form
〈i | x1, x2, . . . , xi−1, xi+1, . . . , xw〉. Namely, an index to the ith chain, and w − 1
indices to the largest elements, smaller than xi, from each chain. In Figure 3.1, we
present the Hasse diagram of the Example 1.18 and the corresponding ChainMerge
data structure. The performance of the data structure is characterized by the following
lemma.

Lemma 3.3. Given a query oracle for a poset 〈U ,�〉 and a chain decomposition C
into w chains, building the ChainMerge data structure has query complexity and time
complexity O(wn), where |U| = n. Given ChainMerge data structure, the relation of
any pair of the elements can be found in constant time.

Proof. We will construct the records 〈i | y1, y2, . . . , yi−1, yi+1, . . . , yw〉, of all the
elements of the ith chain, by simultaneously scanning the chains Ci and the rest of the
chain C1, . . . Ci−1, Ci+1, . . . , Cw. The scan begins with the smallest element of the
chain Ci, and the smallest elements of the other chains. Let xi be the current element
of Ci and y1, . . . , yi−1, yi+1, yw the current elements of each of the other chains. At
each step, we query whether xi dominates any of the elements yj . If so, we store an
index to yj and consider the next element in Cj . Else, we keep the jth position in the
above record empty, i.e. yj ← nul and stop considering this chain. This way, we make
w iterations, at each iteration, we consider (in the worst case) all the elements of the
other chains. Hence, for the query and time complexity we have O

(
w
∑

j ̸=i |Cj |
)
=

O(wn).

30



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

(a) The Hasse diagram of Example
1.18.

(b) The corresponding ChainMerge
data structure.

Figure 3.1: The Hasse diagram of Example 1.18 and the corresponding ChainMerge
data structure, represented as a directed graph. The arcs represent an index.

Let x, y ∈ U , with x ∈ Ci and y ∈ Cj . The lookup operation works as follows. If
i = j we simply do a comparison of the indices of x and y in Ci, as in case of a total
order. If i 6= j, then we look up the index of the largest element of Cj that is dominated
by x; this is greater than (or equal to) the index of y inCj if and only if x � y. If x 6� y,
then we look up the index of the largest element ofCi that is dominated by y; this index
is greater than (or equal to) the index of x in Ci if and only if y � x. If neither x � y
nor x ≺ y, then x 6∼ y.

From Lemma 3.3 and the general discussions, our algorithms will be composed of
two main steps. Consider a poset 〈U ,�〉. Firstly, we find a chain decomposition of
size w, where width(U ,�) ≤ w the parameter of our model. Then, we construct the
ChainMerge data structure as described in Lemma 3.3.

3.2 BinInsertion Sort
Before we present the optimal algorithm, with respect to the number of queries, due to
Daskalakis et al., in this section we examine a more intuitive approach. A natural idea
would be to sequentially insert elements into a subset poset, while maintaining a chain
decomposition of the latter into a number of chains that is at most the upper boundw on
the width of the poset to be constructed. A straightforward implementation of this idea
is to perform a binary search on every chain of the decomposition in order to figure
out the relationship of the elements being inserted with every element of that chain
and, ultimately, with all the elements of the current poset. We call this algorithm Bin
Insertion Sort and was firstly presented by Faigle and Túran in 1985 [19]. We present
BinInsertion Sort in Algorithm 5.

Observe that in Step 17 of Algorithm 5 we do not need additional queries to the
oracle, since we have constructed the whole poset in P ′. Also note that in Steps 7, 16
we can find a chain decomposition using flows as we described in Chapter 2. From
Theorem 2.4 we can find a minimum chain decomposition in O(mn) time, where n =
|U| and m = |R⪯|. For the time complexity of Algorithm 5, note that we have n

31



3.2. BININSERTION SORT

Algorithm 5: BinInsertion Sort
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
Output: A ChainMerge data structure for 〈U ,�〉.

1 Let e be an arbitrary element of U .
2 P ′ ← 〈{e},∅〉 // The current poset.
3 U ′ ← {e},R′

⪯ ← ∅
4 U ← U \ e // The set of unsorted elements.
5 while U 6= ∅ do
6 Choose an element e ∈ U ,U ← U \ e.
7 Find a decomposition C = {C1, C2, . . . , Cq} of P ′, of width q ≤ w.
8 // Do Binary Serach in each chain.
9 for i ∈ {1, 2, . . . , q} do
10 Let Ci = {ei1, ei2, . . . , eiℓi} the ith chain.
11 Do binary search, in order to find the smaller element (if any) that

dominates e.
12 Do binary search, in order to find the greater element (if any) that is

dominated by e.
13 From the above binary searches we deduce the relationships between e and

the elements of C.
14 Add toR′ all the relationships of e with elements of U ′.
15 U ′ ← P ′ ∪ e
16 P ′ ← 〈U ′,R⪯〉
17 Find a decomposition C of P ′

18 Construct the ChainMerge data structure from P ′ and C. // No additional
queries.

19 return ChainMerge(P ′, C)

32



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

iterations. In each iteration we find a minimum chain decomposition in O(nm) time
and perform O(w) binary searches of time O(logn). Therefore, we have O(n(nm +
w logn)) = O(n2m+w logn) time. On the other hand, we can come up with an upper
bound to the number of relationships m, if we observe that at least two elements are
incomparable between two distinct chains in a minimum chain decomposition. Hence
we have,

m = |R⪯| = O

((
n

2

)
−
(
w

2

))
= O(n2 − w2).

Thus, for the time complexity we get,

O(n2m+ w logn) = O(n4 − n2w2 + w logn) (3.2)

Since inO(n2) time we can reconstruct naively the whole Hasse diagram, a (rightfully)
curious reader would wonder why we got ourselves in so much trouble for an inefficient
algorithm. This is because the naive algorithm will also make O(n2) queries. We give
the next Lemma for the query complexity of Algorithm 5.

Lemma 3.4 (Faigle and Túran [19], 1985). Algorithm 5 sorts any partial order 〈U ,�〉
of width at most w on n elements with O(wn logn) oracle queries.

Proof. The correctness of Algorithm 5 should be clear from its description. Also, it is
not hard to see that the number of oracle queries includes by the algorithm for insert
ing each element is O(w logn). Note that in order to find a minimum chain decom
position we don’t make additional queries. Therefore, the total number of queries is
O(nw logn).

3.2.1 Greedy CounterExample

Before we close this section argue about the necessity of the flow algorithm of Chapter
2 in each iteration of Algorithm 5. Why should we recompute a chain decomposition
in each iteration? Couldn’t we update the existing decomposition? As it turns out,
a naive incremental algorithm for updating an existing chain decomposition wouldn’t
work. Let C be an existing decomposition, while e is a new element after we induced
all its relationships from Steps 9 to 12. We need to find some chain C ∈ C, whose all
elements are related to e. If there is such chain, we just add e toC. Otherwise, we create
a new chain {e}. In order to prove the correctness of this greedy algorithm, we have
to argue that if q the size of the greedy chain decomposition, then q = width(U ,�).
Observe Figure 3.2. Let C = {C1, C2} be our existing chain decomposition, as shown
in Figure 3.2a. The greedy algorithm would add e in a singleton chain, resulting in a
decomposition of size 3. On the other hand, in Figure 3.2b we show the optimal chain
decomposition of size 2.

Thus we concluded our discussion about the first sorting algorithm in posets. Also,
we noted the tradeoff between time and query complexity. FromTheorem 3.2 we know
that Algorithm 5 is not optimal. In the next section we modify Algorithm 5 in order to
show an optimal algorithm, with respect to the number of queries. There the timequery
tradeoff will become more apparent. Lastly, note our last remark regarding a greedy
incremental chain decomposition algorithm. In Section 3.4 we devise an incremental,
nontrivial, algorithm for finding a minimum chain decomposition.

33



3.3. ENTROPY SORT

(a) An existing chain decomposition. (b) The minimal chain decomposition
of size 2, after we add e optimally.

Figure 3.2: A counterexample to a greedy incremental chain decomposition algorithm.
Note that in the left figure a greedy algorithm would create 3 chains. On the right, we
show a minimal chain decomposition of size 2.

3.3 Entropy Sort
In this Section we describe the optimal algorithm EntropySort [1], with respect to the
number of queries. We begin by discussing the big picture of such an optimal query
algorithm. Let’s consider the sequence of queries of the optimal algorithm. For any
set of oracle queries and responses, there is a corresponding set of posets, which we
call candidates. These are the posets consistent with the responses to there queries. A
natural sorting algorithms would find a sequence of oracle queries such that, for each
query the possible responses to the query partition the spaces of candidates into three
parts, at least two of which are relatively large. Such an algorithm would achieve the
informationtheoretic lower bound.

For example, the effectiveness of Quicksort for sorting total orders relies on the fact
that most of the queries made1 by the algorithm partition the space of candidate total
orders into two parts, each of relative size at least 1/4. Indeed, in case of total orders,
much more is known; for any subset of possible queries to the oracle, there always
exists a query that partitions the spaces of candidate total orders into two parts, each of
relative size at least 3/11 [20, 21].

The Achilles’ kneel of BinInsertion Sort is in the method of insertion of an ele
ment, specifically in the way the binary searches are performed in Steps 912. In these
sequences of queries, no structural properties of P ′ are used for deciding which oracle
queries are more useful than the others. In some sense, the binary searches give the
same ”attention” to queries whose answer is guaranteed to greatly decrease the num
ber of remaining possibilities and those whose answer could potentially not be very
informative.

The Daskalakis’ et al. algorithm tries to resolve this conundrum. The suggested
scheme has shares the same structure with BinInsertion Sort but exploits the structure
of the already constructed P ′ in order to amortize the cost of queries over the insertions.

1Half of the queries in average; if we choose the pivot at random. The probability of choosing good pivots
can be increased by using a technique similar to the Median of Medians algorithm of Chapter 1. Namely, we
partition the input in k parts, e.g. k = 3; choose randomly an element of each part; then selecting the median
of these elements as pivot.

34



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

The amortized query cost matches the lower bound of Theorem 3.2.

3.3.1 Weighted Binary Search
The essence of the optimal EntropySort lies in modifying the binary searches into
weighted binary searches. The weights assigned to the elements satisfy the following
property. The number of queries it takes to insert an element into a chain is propor
tional to the (logarithm of the) number of candidate posets that will be eliminated after
the insertion of the element. In other words, we use fewer queries for insertions that are
less informative and more queries for insertions that are informative.

To define this notion formally, we introduce some notation. Let P ′ = 〈U ′,R′
⪯〉

be the already computed poset, with width w. Also, let u ∈ U \ U ′ a new element we
would like to include in P ′. We define some set of relations ER,PR ⊆ ({u} × U ′) ∪
(U ′ × {u}). We call ER the enforced relations, and PR the prohibited relations. We
call some poset P ′′ = 〈U ′ ∪ u,R′′

⪯〉 with (R′
⪯ ∪ ER) ⊆ R′′

⪯ and (PR ∩ R′′
⪯) = ∅,

a wextension of P ′ conditioned on (ER,PR). In other words, we demand P ′′ to be
an extension of P ′ with the same width, that includes the relations of ER, but prohibits
the relations of PR.

For the weighted binary search, we proceed as follows. Consider the interval [0, 1).
We will partition [0, 1) into disjoint subintervals, each of which corresponds to an
element eik, the kth element of the ith chain Ci in an existing chain decomposition
C = {C1, C2, . . . , Cw}, of the already computed poset P ′. Consider the ith chain
Ci = {ei1, ei2, . . . , eiℓi}, sorted in increasing order, i.e. ei1 � ei2 � . . . � eiℓi . With
ℓi we denote the number of element in the chain Ci. Also, consider the kth element
eik. Let e be the new element we would like to sort2. Since, the underlying poset is
unknown is some universe eik is the smallest element ofCi that dominates e. To enforce
this scenario we define,

ERk = {e � eij | j ∈ {k, k + 1, . . . , ℓi}},
PRk = {e � eij | j ∈ {1, 2, . . . , k − 1}}.

With ERk we enforce that all the elements greater (or equal to) eik also dominate e.
On the other hand, with the constraints of PRk we establish that the elements smaller
than eik do not dominate e. With Dik we denote the number of wwidth extensions
conditioned on (ERk,PRk). Let Di =

∑ℓ+1
k=1Dik, where in the (ℓ + 1)th scenario

non element of Ci dominates e. Now we can define a mass function for each eik ∈ Ci,

massi,e(eik) =
Dik

Di
. (3.3)

Observe that
∑ℓ

k=1 massi,e(eik) = 1. Also, our mass function depends only from the
chain Ci and the element to be sorted e. Using the mass function we can define a bijec
tion between the elements ofCi and interval [bk, tk) ⊆ [0, 1)with length corresponding
to the mass of eik. We have b1 = 0, bk = tk−1 and tk =

∑
k′≤k massi,e(eik). Hence,

the correspondence intervali,e : Ci → 2[0,1), with intervali,e(eik) 7→ [bk, tk) is a
well defined isomorphism. Note that the bijection intervali,e(·) depends on the chain
Ci as well as on the element e to be sorted. With the function intervali,e(·) computed
we have all the necessary ingredients to do weighted binary search on the elements of
Ci to find the smallest element eik ∈ Ci that dominates e.

2Insert e to P ′, while keeping P ′ ∪ e sorted.

35



3.3. ENTROPY SORT

Algorithm 6:Weighted Binary Search
Input: 1. A totally ordered set Ci.
2. An interval function intervali,e : Ci → 2[0,1).
3. The element to be sorted e.
Output: The smallest element ek ∈ Ci that dominates e.

1 x← 1/2

2 eik ← interval−1
i,e (x)

3 while ¬(eik−1 � e ≺ eik) do
4 if e � eik then
5 // look below
6 x← x/2

7 else
8 // look above
9 x← x+ x/2

10 eik ← interval−1
i,e (x)

11 return eik

In Algorithm 6 we present the pseudocode for the Weighted Binary Search. Note
that in Steps 2, 10 we mildly violate the notation and denote with interval−1

i,e (·) the
element eik that corresponds to an interval [bk, tk) such that x ∈ [bk, tk). Also, to ease
the notation we emit the ”edges” cases where no element of Ci dominates e, or ei1
dominates e, but can be easily induced from context. In the following lemma we argue
about the query complexity of Algorithm 6.

Lemma 3.5. For every k ∈ {1, 2, . . . , ℓi + 1} if eik is the smallest element of chain
Ci which dominates element e (with k = ℓi + 1 corresponding to the case where no
element of Ci dominates e), then k is found after at most

2

(
1 + log

1

massi,e(eik)

)
oracle queries in Algorithm 6.

Proof. Let λ = massi,e(eik) be the length of the interval that corresponds to eik. We
wish to prove that the number of queries needed to find eik (and determine that it is the
smallest element ofCi that dominates e) is at most 2

(
1 + blog 1

λc
)
. From the definition

of the Weighted Binary Search, we see that if the interval corresponding to eik contains
a point x of the form 2−r · m inits interior, where r,m are integers, then the search
completes after at most r iterations. Each iteration involves at most two oracle queries.
Now, an interval of length λ must include a point of the form 2−r · m, where r =
1 + blog 1

λc, which concludes the proof.

Note that uniformative insertions would correspond to large mass, namely if some
element eik has large mass, then we would have that eik is the smallest element of
Ci that dominates e in ”many universes”. Since its quite likely that eik is ”the small
est dominator” of e verifying this fact doesn’t tells us much about the structure of the
unknown poset. Hence this explains the use of the term entropyweighted search. A

36



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

symmetric version of Lemma 3.5 holds, naturally, for finding the largest element of
chain Ci dominated by e.

3.3.2 The Algorithm
With the above discussion regarding theWeighted Binary Search, most of our algorithm
is completed. We only need to put the pieces of the puzzle together. Remember we are
going to ”patch” the Lines 912 of Algorithm 5. Let us summarize the work of the
previous subsection. We have the already computed poset P ′ = 〈U ′,R′

⪯〉. We also
have a chain decomposition C = {C1, C2, . . . , Cw} of P ′. With e we denote the new
element we would like to sort. For each chain Ci = {ei1, ei2, . . . , eiℓi} we proceed as
follows. For each eik, k ∈ [ℓi]we compute a set of constraints (ERk,PRk). From the
set of constraints we compute the mass function massi,e : Ci → [0, 1). Subsequently,
from the mass function we compute the interval correspondence intervali,e : Ci →
2[0,1). Lastly, using the interval correspondence we compute the ”smallest dominator”
eik of e, using Algorithm 6. We use a similar process to find the greatest element eiq
that e dominates.

We describe this process in a formal way in the Algorithm 7. In the following
algorithm, we introduce a different version of the mass function, the interval corre
spondence and the Weighted binary sort, for the two problems we examine. With
mass+

i,e(·), interval+
i,e(·) and WeightedBinarySort+(·, ·, ·) we denote the notions

for the smallest dominator subproblem. With mass−
i,e(·), interval−

i,e(·) and
WeightedBinarySort−(·, ·, ·)we denote the symmetrical notions for finding the greater
element of Ci that is dominated by e. Lastly, note that a pair of constraints (ER,PR).
In each iterations of the forloop we add to (ER,PR) the constraints (ER+

k⋆ ,PR+
k⋆)

and (ER−
p⋆ ,PR−

p⋆) corresponding to the results of WeightedBinarySearch+ and
WeightedBinarySearch−, respectively. Lastly, we return the set ER as the deduced
set of relations.

3.3.3 Analysis
Before we proceed with the query analysis of Algorithm 7, we need to address the ele
phant in the room; the time complexity of the algorithm. Algorithm 7 is exponential.
This should be clear since the computation of the mass function involves the computa
tional expensive task of enumerating all possible extensions of P ′ and filter out these
that not respect the constraints (ER ∪ ER+

k ,PR ∪ PR
+
k ). At the moment this thesis

is being written finding an efficient way to compute the mass function massi,e(eik)
remains an open problem. The authors of [1] suggest the work due to Dyer, Freize, and
Kannan for ”approximating the volume of convex bodies” [22], as a possible route for
improving the time complexity of EntropySort.

The following Lemma characterizes the query complexity of a single iteration of En
tropySort3 and is the core result that will help use establish the query complexity of the
whole algorithm. Let us introduce some notation. Suppose that U = {e1, e2, . . . , en} is
the universe of our elements, sorted in the order in which the elements of U are inserted
iinto the poset P ′. Also, denote with Pd the restriction of poset P = 〈U ,�〉 onto the set
of elements {e1, e2, . . . , ed}. Additionally, with Zd we denote the number of wwidth
extensions of Pd onto U \ {e1, e2, . . . , ed}. Clearly , Z0 ≡ Nw(n) and Zn = 1.

3From now on we will use the term EntropySort to denote the ”patched” version of Algorithm 5, using
Algorithm 7.

37



3.3. ENTROPY SORT

Algorithm 7: EntropySort
Input: 1. An already computed poset P ′ = 〈U ′,R′

⪯〉.
2. A chain decomposition of P ′, C = {C1, C2, . . . , Cw}.
3. A new element e /∈ U ′ to be sorted.
Output: The set of relationships between e and the elements of C.

1 ER ← ∅,PR ← ∅ // A partial set of relations.
2 for i ∈ [w] do
3 // For each chain..
4 Let Ci = {ei1, ei2, . . . , eiℓi}, with ei1 � ei2 � . . . � eiℓi .
5 // Finding the smaller element that dominates e

6 For each eik, compute a pair of restrictions (ER+
k ,PR

+
k ).

7 From the pairs (ER ∪ ER+
k ,PR∪PR

+
k ), k ∈ [w] of restrictions compute

the mass function mass+
i,e : Ci → [0, 1).

8 From the mass function compute the interval correspondence
interval+

i,e : Ci → 2[0,1).
9 eik⋆ ← WeightedBinarySearch+(Ci, interval+, e)
10 // Where eik⋆ the smaller element that dominates e

11 ER ← ER ∪ ER+
k⋆ , PR ← PR ∪ PR+

k⋆

12 // Finding the greater element that is dominated by e

13 For each eip, compute a pair of restrictions (ER−
p ,PR

−
p ).

14 From the pairs (ER ∪ ER−
p ,PR ∪ PR

−
p ), p ∈ [w] of restrictions compute

the mass function mass−
i,e : Ci → [0, 1).

15 From the mass function compute the interval correspondence
interval−

i,e : Ci → 2[0,1).
16 eip⋆ ← WeightedBinarySearch+(Ci, interval−, e)
17 // Where eip⋆ the greater element that is dominated by e

18 ER ← ER ∪ ER−
p⋆ , PR ← PR ∪ PR−

p⋆

19 return ER

38



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

Lemma 3.6. Algorithm 7 needs at most 4w+2 log Zk

Zk+1
oracle queries to insert element

ek+1 into poset Pk in order to obtain Pk+1.

Proof. Let C = {C1, . . . , Cw} be a chain decomposition of Pk. Suppose also that, for
all i ∈ [w], k⋆i ∈ {1, . . . , ℓi + 1} and p⋆i ∈ {0, 1, . . . , ℓi} are the indices computed by
the weighted binary searches. Also , let D+

i ,D
+
ij , j ∈ {1, . . . , ℓi + 1} and D−

i ,D
−
ij ,∈

{0, 1, . . . , ℓi} the respective quantities, as defined in Subsection 3.3.1. We also stick to
the +/− exponents of Subsection 3.3.2 for denoting the two phases of the forloop of
Algorithm 7. The following hold,

Zd = D+
1 , (3.4)

D−
p⋆
w
= Zd+1, (3.5)

D+
ik⋆

i
= D−

i ∀i ∈ [w], (3.6)

D−
ip⋆

i
= D−

i+1 ∀i ∈ [w − 1]. (3.7)

The validity of the above equations should come naturally, since the numbers Zd and
D+

i , D
+
i,j measure the number of possible universes. Just, note that the milestones in

the variation of Zd is when we find the smaller element eik⋆
i
that dominates e, and the

greater element eip⋆
i
that is dominated by e.

Using Lemma 3.5 it follows that the total number of queries required to construct
Pd+1 from Pd is at most,

w∑
i=1

(
2 + 2 log

D+
i

D+
ik⋆

i

+ 2 + 2 log
D−

i

D−
ip⋆

i

)
≤ 4w + 2 log

Zk

Zk+1

which is what we wanted to show.

In the following Theorem we prove the total query complexity of the EntropySort.

Theorem 3.7 (Daskalakis et al. [1], 2011). EntropySort sorts any partial order P =
〈U ,�〉 ofwidth atmostw onn elements using atmost 2 logNw(n)+4wn = Θ(n logn+
wn) oracle queries. In particular the query complexity of the algorithm is at most
2n logn+ 7wn+ 2w logw.

Proof. From Lemma 3.6, the query complexity of the EntropySort is,

n−1∑
d=0

(# queries to insert element ed+1)

=

n−1∑
d=0

(
4w + 2 log

Zk

Zk+1

)
= 4w + 2 log

Z0

Zn

= 4wn+ 2 logNw(n)

Taking the logarithm of the upper bound from Theorem 3.1, it follows that the number
of queries required by the algorithm is 2n logn + 8wn + 2w logw. Thus, we proved
what was desired.

39



3.4. MERGE SORT

3.4 Merge Sort

In this section we turn our attention to the time efficiency for the sorting problem. We
present the algorithm MergeSort which superficially imitates the recursive structure
of the classical merge sort on totally ordered sets. The merge step is quite different
however; it makes use of the technical Peeling Algorithm in order to efficiently main
tain a small chain decomposition of the poset throughout the recursion4. The Peeling
subroutine is a specialization of the classical flowbased bipartitematching algorithm,
introduced in Chapter 2, that is efficient in the comparisons model. We begin by giving
a description of theMerge Sort method in the first Subsection 3.4.1. In Subsection 3.4.2
we analyse the Peeling subroutine.

3.4.1 Merge Sort

We begin from the top down by giving the MergeSort method. Let U be our universe,
and c : U × U → {�,�, 6∼} be an oracle to the poset 〈U ,�〉. Also, let w be an upper
bound to the width of our poset, namely width(U ,�). The Merge Sort algorithm pro
duces a decomposition of 〈U ,�〉 intow chains and concludes by building a ChainMerge
data structure. In order to obtain the chain decomposition the algorithm partitions the
elements of U into two subsets of (as close as possible to) equal size. Then finds a chain
decomposition of each subset recursively. The recursive call returns a decomposition
of each subset into at mostw chains, which constitutes a decomposition of the whole set
U into at most 2w chains. Then the Peeling algorithm of the next subsection is applied
to reduce the decomposition to a decomposition ofw chains. Given a decomposition of
U ′ ⊆ U , where m = |U ′|, into at most 2w chains, the Peeling subroutine returns a de
composition using 4wn queries and O(w2m) time. The pseudocode of the MergeSort
is given in Algorithms 8 and 9, while the performance is characterized by Theorem 3.8.

Algorithm 8:Merge Sort
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
Output: A ChainMerge data structure for 〈U ,�〉.

1 ∆← MergeSort-recursive(U , c, w) // A decomposition of 〈U ,�〉
into w chains.

2 return ChainMerge(∆)

Theorem 3.8 (Daskalakis et al. [1], 2011). The algorithm Merge Sort sorts an poset
〈U ,�〉 of width at most w on n elements using at most 4wn log

(
n
w

)
queries and total

complexity O
(
w2n log

(
n
w

))
.

Proof. The correctness of Algorithm 8 is founded upon the correctness of the peeling
method, the latter is established in Theorem 3.9. Let T (m) andQ(m) be the worstcase
time and query complexity respectively, for a poset on m elements and width at most

4Note our comments for that matter at Subsection 3.2.1. Maintaining a chain decomposition, while adding
a new element is not a trivial problem.

40



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

Algorithm 9:Merge Sort
Input: 1. A set U ′.
2. An oracle c : U ′ × U ′ → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
Output: A decomposition of U ′ into w chains.

1 if |U ′| ≤ w then
2 return {U ′} // the trivial decomposition of length 1.
3 Partition U ′ into U ′

1 and U ′
2.

4 ∆1 ← MergeSort-recursive(U ′
1, c, w)

5 ∆2 ← MergeSort-recursive(U ′
2, c, w)

6 q ← |∆1|+ |∆2|
7 if q > w then
8 ∆← Peeling(U ′, c, w,∆1 ∪∆2)

9 else
10 ∆← ∆1 ∪∆2

11 return∆

w. Whenm ≤ w, T (m) = O(w) and Q(m) = 0. Otherwise, we have,

T (m) = 2T
(m
2

)
+O(w2n),

Q(m) = 2Q
(m
2

)
+ 2wm,

where the last terms of each equation correspond to the time and query complexity
of Peeling. Solving the recursions we have T (n) = O

(
w2n log

(
n
w

))
and Q(n) ≤

4wn log
(
n
w

)
. Lastly, note that the cost of constructing the ChainMerge data structure

is negligible.

3.4.2 Peeling Algorithm
We describe an algorithm that efficiently reduces the size of a given decomposition of
a poset. It can been seen as an adaptation of the classic flowbased bipartitematching
algorithm, we presented in Chapter 2, adapted to be efficient in the widthbased oracle
model. The algorithm is optimized for reducing the size of a given decomposition rather
than constructing a minimum chain decomposition from scratch5.

The Peeling algorithm is given an oracle c(·, ·) for a poset 〈U ,�〉, where n = |U|,
and a decomposition∆ into q ≤ 2w chains. At first, it builds a ChainMerge data struc
ture using at most 2qn queries and O(qn) time. Every subsequent query the algorithm
makes after that is actually a lookup in the data structure and therefore takes constant
times and no oracle call. Our algorithm proceeds in a number of peeling iterations.
Each iteration produces a decomposition of 〈U ,�〉 with one less chain. After at most
w peeling iterations, we will have a decomposition of size at most w.

In order to comprehend the Peeling algorithm we need to understand the essence of
the greedy counterexample of Subsection 3.2.1. There the optimal chain decomposi

5For an efficient algorithm constructing a minimum chain decomposition see [23], due to Y. Chen (2007).
This algorithm is unsuited for our model.

41



3.4. MERGE SORT

Figure 3.3: Peeling Example. We reduce the chain decomposition from
{C1, C2, C3, C4} to {C ′

1, C
′
2, C

′
3}. With A we denote a maximum chain. The pairs

(x1, y1), (x2, y2), (x3, y3) form a dislodgement sequence.

tion would break a chain into two, insert the new element, and then append the one part
of the first chain to the second. A more sophisticated example is presented in Figure
3.3. Note that in Figure 3.3 we are initially given a chain decomposition of size four.
Then, we partition each of the chainsC2, C3, C4 into two parts above y1, y2, y3 and be
low respectively, including the yi, i ∈ [3]. With C[y :] we will denote the elements of
a chain above (greater than or equal to) y, whereas with C[: x] we denote the elements
of the chain C below (less than or equal to) We concatenate the subchain Ci+1[yi : ]
with the subchain Ci[ : xi]. Thus, obtaining a new chain C ′

i. We call the sequence
(x1, y1), (x2, y2), (x3, y3) a dislodgement sequence, for intuitively xi will dislodge yi.
Note that this way, we reduce the number of chains, if and only if the last element of the
sequence yℓ is aminimum element in its chain. In Algorithm 10 we give the pseudocode
of the Peeling algorithm. Theorem 3.9 characterizes the query and time complexity.

Theorem 3.9 (Daskalakis et al. [1], 2011). Given an oracle for the poset 〈U ,�〉, where
n = |U|, and a decomposition into at most 2w chains, the Peeling Algorithm 10 returns
a decomposition of U into w chains. It has query complexity at most O(wn) and time
complexity of O(w2n).

Proof. To prove the correctness of one peeling iteration, we observe first that it is al
ways possible to find a pair (x, y) of top elements such that y � x, as specified in Step
8, since the size of any antichain is at most w. We now argue that it is possible to find
a subsequence of dislodgements as specified by Step 10. Let yt be the element whose
deletion broke the whileloop. Since yt was dislodged by xt, xt was the top element of
some list when that happened. In order for xt to be a top element, it was either top from
the beginning, or its parent yi−1 must have been dislodged by some element xt−1, and
so on.

We claim that, given a decomposition into q chains, one peeling iteration produces
a decomposition of U into q− 1 chains. Recall that y1 � x1 and moreover, for every i,
2 ≤ i ≤ t, yi � xi and yi−1 � xi. Observe that, after Step 11 of the peeling iteration,

42



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

Algorithm 10: Peeling
Input: 1. A set U ′.
2. An oracle c : U ′ × U ′ → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
4. A chain decomposition∆ of U ′.
Output: A decomposition of U ′ into w chains.

1 q ← |∆|
2 for i ∈ [q] do
3 Build a linked linked list Ci = eiℓi → eiℓi−1 → · · · → ei1, where

eiℓi � eiℓi−1 � . . . � ei1. // The lists are sorted in
decreasing order.

4 while q > w do
// Perform a peeling iteration.

5 for i ∈ [q] do
6 C ′

i ← Ci

7 while 6 ∃C ′
i 6= ∅ do

// the largest elements of each C ′
i is a top element.

8 Find a pair (x, y) s.t.: (a) x ∈ C ′
i y ∈ C ′

j ; (b) top elements; and (c)
x ≺ y.

9 C ′
j ← C ′

j \ y
10 In the sequence of dislodgements, find a subsequence

(x1, y1), . . . , (xt, yt), s.t.: (a) yt is the element whose deletion created an
empty chain; (b) for i ≥ 2 yi−1 is parent of xi in its original chain; (c) x1

is the top element of one of the original chains.
// Modify the original chains C1, . . . , Cq

11 for i = 2, . . . , t do
12 Delete the pointer going from yi−1 to x1

13 Replace it with a pointer going from yi to xi

14 Add a pointer from y1 to x1

15 q ← q − 1
16 Adjust the indices of the original chains.
17 return the current chain decomposition, containing w chains.

43



3.4. MERGE SORT

the total number of pointers has increased by 1. Therefore, if the link structure remains
a union of disconnected chains, the number of chains must have decreased by 1, since
one extra pointer implies 1 less chain. It can been seen that the switches performed
by Step 11 of the algorithm maintain the invariant that the indegree and outdegree of
every vertex is bounded by 1. Moreover, no circles are introduced, since every pointer
that is added corresponds to a valid relation. Therefore, the link structure is indeed a
union of disconnected chains.

The query complexity of the Peeling algorithm is exactly the query complexity of
ChainMerge, which is at most O(wn). We show next that one peeling iteration can be
implemented in time O(qn), which implies the claim.

In order to implement one peeling iteration in O(qn) time, a little bookkeeping is
needed, in particular, for Step 10. We maintain during the peeling iteration a list L of
potentially comparable pairs of elements. At any time, if a pair (x, y) is inL, then x and
y are top elements. At the beginning of the iterationL consists of all pairs (x, y), where
x and y are top elements. Any time an element x that was not a top element becomes
a top element, we add to L the set of pairs (x, y) that y is currently a top element.
Whenever a top element x is dislodged, we remove from L all pairs contain x. When
Step 8 requires us to find a pair of comparable top elements, we take an arbitrary pair
(x, y) out of L and check whether x and y are comparable. If they are not comparable,
we remove (x, y) from L and try the next pair. Thus, we never compare a pair of top
elements more than once. Since each element of U is responsible for inserting at most
q pairs into L (when it becomes top element), it follows that a peeling iteration can be
implemented in O(qn) time.

3.4.3 Lifting the Known Width Hypothesis
We end this section with a remark regarding the ”known width hypothesis”. Recall
from the beginning of the chapter that Nw(n) is the number of posets of width at most
w on n elements. In the following Proposition we lift our hypothesis that an upper
bound on the width is known. We will modify the Entropy Sort, of Algorithm 7, and
the Merge Sort, of Algorithm 8, to work without the w parameter. It turns out that this
is quite simple; let n = |U|, for i ∈ [n] we try the width values of the form w = 2i.

Proposition 3.10. Given a set U of n elements and access to an oracle c : U ×U → {�
,≤, 6∼} of a poset 〈U ,�〉 of unknown width, there is an algorithm that sorts U using at
most logw(2 logN2w(n)+8wn) = Θ(n logw(logn+w)) queries. Additionally, there
is an efficient algorithm that sorts U using at most 8nw logw · log(n/(2w)) queries and
time complexity O(nw2 logw · log(n/w)).

Proof. We modify Entropy Sort to return FAIL if it cannot insert an element (while
maintaining a decomposition of the given width). Similarly, we modify Merge Sort to
return FAIL if the Peeling algorithm cannot reduce the size of the decomposition to the
given width. For the first query complexity of the proposition, for i ∈ [n] we run the
modified version of Entropy Sort on the input set U , with width upped bound w = 2i

until the algorithm return without failing. For the second claim we proceed analogously
but use the modified Merge Sort. The complexities follow from Theorems 3.7 and 3.8
and from the fact that we reach an upper bound of at most 2w on the width of U in logw
rounds.

44



CHAPTER 3. WIDTHBASED MODEL: SORTING ALGORITHMS

Query Complexity Time Complexity Lower Bound
BinInsertion Sort O(wn logn) O(n4 − n2w2 + w logn)

Ω(n(logn+ w))Entropy Sort O(n logn+ wn) Exponential
Merge Sort O(wn log(n/w)) O(w2n log(n/w))

Table 3.1: The Algorithms of Chapter 3 and their respective query and time complexity. w is an
upperbound to the width of the unknown poset. In the forth column, we show the lower bound
of Theorem 3.2. Note that the query lower bound is also lower bound for the time complexity.

3.5 Conclusions
With the discussion on the ”known width hypothesis”, we concluded our overview of
the Daskalakis et al. results on Poset Sorting in the WidthBased Model [1]. In Section
3.2 we introduced the BinInsertion Sort method in Algorithm 5. This was our first
attempt for sorting a partially ordered set, where we achieved a query complexity of
O(wn logn) and O(n4 − n2w2 + w logn) time complexity. Modifying Algorithm 5
we we obtain the Entropy Sort method, presented in the Algorithm 7, of Section 3.3.
Entropy Sort achieves the optimal query complexity ofO(n logn+wn). Unfortunately
the optimality of the query complexity comes at the cost of an exponential time com
plexity in Entropy Sort. An algorithm that balances the query and time complexity is the
Merge Sort, presented in the Algorithm 8. of Section 3.4. Merge Sort, achieves a query
complexity of O(wn log(n/w)) and O(w2n log(n/w)) time complexity. We summa
rize the above results in Table 3.1. The authors in [1] note that while Entropy Sort is
optimal with respect to the queries, the problem if this can be achieved in polynomial
time remains an open problem.

45



3.5. CONCLUSIONS

46



CHAPTER4
WIDTHBASED MODEL: SELECTION ALGORITHMS

An other problem we will consider is the kSelection problem, where we are required
to find the ksmallest elements of the poset, as discussed in Definitions 1.14 and 1.15.
Remember that for an element u ∈ U , of a poset 〈U ,�〉 with height(u) we denote the
size of a maximal chain C, where for each c ∈ C, u � c. If Sk the set containing the
ksmallest elements, then for each u ∈ Sk, we have height(u) = k − 1. Therefore, the
minimal elements of S1 will have height zero.

kSelection on Poset (WidthBased Model)

Input:

1. A partially ordered set U .
2. An oracle function c : U × U → {�,≤, 6∼}, of a partial order
relation � on U .
3. A constant w ∈ N, with width(U ,�) � w.

Output: The ksmallest elements of the poset.

Selection on Poset (WidthBased Model)

Input:

1. A partially ordered set U .
2. An oracle function c : U × U → {�,≤, 6∼}, of a partial order
relation � on U .
3. A constant w ∈ N, with width(U ,�) � w.

Output: The minimal elements of the poset.

In this chapter we will present efficient algorithms, with respect to the query com
plexity, for the Selection and kSelection problems. We will also show some adversar
ial lower bounds for these problems. In the adversarial setting, we construct an algo
rithm that an adversary can follow in order to force an agent to make ”many” queries.
We will also break our tradition of presenting only deterministic algorithm, and we will
show two randomized methods for the problems at hand. The randomized algorithms
are quite intuitive, that’s why we chose to include them in this presentation. Similarly
to the previous chapter all algorithms and results come from [1]. Thus we remain in
the WidthBased Model, we assume that an upper bound to the poset’s width w is pro
vided. In Section 4.1 we present our algorithms for Selection and kSelection, hence

47



4.1. UPPER BOUNDS

establishing upper bounds for these problems. In Section 4.2 we present some lower
bounds based on the adversarial setting. Lastly, in Section 4.3 we summarize our dis
cussion.

4.1 Upper Bounds
In this section we provide deterministic and randomized upper bounds for kselection,
which are asymptotically tight for k = 1. The basic idea for the kselection algorithms
is to iteratively use the sorting algorithms introduced in Chapter 3 to update a set of can
didates that the algorithm maintains. We begin with the 1Selection problem, namely
the problem of finding the minimal elements.

4.1.1 Selection Problem
We present our first method in Algorithm 11. Theorem 4.1 characterises the query and
time complexity of the algorithm.

Algorithm 11: Deterministic Selection
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
Output: The minimal elements of 〈U ,�〉.

1 T ← ∅ // The current set of candidates
2 Let U = {x1, x2, . . . , xn}
3 for t ∈ [n] do
4 Compare xt to all elements in Ti−1

5 if ∃a ∈ T s.t. a � xt then
6 D ← {a ∈ T | a � xt}
7 T ← T \D
8 T ← T ∪ xt

9 return T

We now argue about the correctness and complexity of the Algorithm 11. The al
gorithm updates a set of incomparable elements T . Observe that |T | ≤ w, since T
forms an antichain in 〈U ,�〉. At the termination of the algorithm T will contain all
the elements of height 0. Therefore, we have wn queries and O(wn) time complexity.
Hence, we proved the following theorem.

Theorem 4.1. The minimal elements of a poset can be found deterministically with at
most wn queries in O(wn) time.

Now we proceed with a randomized algorithm for the Selection problem. Algo
rithm 12 is similar to Algorithm 11, with some modifications to avoid (in expectation)
worstcase behaviour. In the following algorithm we denote with x R← S the uniformly
random selection of an elements x from the set S.

Let Tt denote the instance of T in the tth iteration. Also let, Ut = {x1, x2, . . . , xt}
contains the first t elements of U , as selected in Step 5. Then, Tt will contain all the

48



CHAPTER 4. WIDTHBASED MODEL: SELECTION ALGORITHMS

Algorithm 12: Randomized Selection
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
Output: The minimal elements of 〈U ,�〉.

1 x
R← U , n← |U|

2 T ← {x} // The current set of candidates
3 for t ∈ [n− 1] do
4 x

R← U , U ← U \ x
5 r ← |T |
6 for j ∈ [r] do
7 y

R← T
8 if y � x then
9 T ← T \ y
10 else
11 GOTO 3

12 T ← T ∪ x

13 return T

minimal elements of Ut, hence |Tt| ≤ w. Note, furthermore, that at step t,

P[xt is minimal for Ut] ≤
w

t
,

since there are at most w minimal elements. If xt is not minimal for Ut, then the ex
pected number of queries needed until xt is compared to an element a ∈ Ut that dom
inates xt is clearly at most w+1

2 . We thus conclude that the expected running time of
the algorithm is bounded by,

w∑
i=1

(t− 1) +

n∑
t=w+1

(
w

t
w +

(t− w)

t

(w + 1)

2

)
=

(
w

2

)
+

n∑
t=w+1

1

2t
(w2 − w + tw + t)

≤ w + 1

2
n+

w2 − w

2
(logn− logw).

Hence, we proved the following theorem.

Theorem 4.2 (Daskalakis et al. [1], 2011). There exists a randomized algorithm that
finds the minimal elements in an expected number of queries that is upper bounded by
w+1
2 n+ w2−w

2 (logn− logw).

4.1.2 kSelection Problem
We now proceed to examine the case where k ≥ 1. As in the previous subsection we
begin with a deterministic algorithm and then we proceed with a randomized method.
The basic idea, behind the deterministic algorithm, is to use the sorting algorithm pre
sented in the previous chapter in order to update a set of candidates for the kSelection
problem.

49



4.1. UPPER BOUNDS

Algorithm 13: Deterministic kSelection
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
4. A parameter k.
Output: The smaller k elements of 〈U ,�〉.

1 C ← ∅
2 t← 1
3 while (t− 1)wk + 1 ≤ n do
4 D ← C ∪ {x(t−1)wk+1, . . . , xmin(twk,n)}
5 sort(D)
6 Update C to be the solution of kSelection in D
7 t← t+ 1

8 return C

Clearly, at the end of the execution C will contain the solution to the kSelection
problem. Note that at each iteration, we would have |D| ≤ 2wk. In the proof of
Theorem 3.7 we showed that the Entropy Sort has a query complexity of 2n logn +
8wn+ 2w logw. Hence, after ”plugging” to the later formula the size ofD, we obtain
a query complexity of 4wk log(2wk)+16w2k+2w logw for each iteration. Thus, the
total complexity for the n

wk iterations would be,

n

wk

(
4wk log(2wk) + 16w2k + 2w logw

)
= 4n log(2wk) + 16wk +

2n

k
logw.

On the other hand, if the time complexity is more important to us, we may use
Marge Sort of Algorithm 8 to sortD. This will result in 8w2k log(2k) query complexity,
and O(nw2 log(2k)) time complexity. From this discussion we proved the following
theorem.

Theorem 4.3 (Daskalakis et al. [1], 2011). The query complexity of the kSelection
problem is at most 16wn + 4n log(2k) + 6n logw. Moreover, there exist an efficient
kSelection algorithmwith query complexity at most 8wn log(2k) and time complexity
O(w2n log(2k)).

Next we outline a randomized algorithm achieving a better coefficient of the main
termwn. Again we use x R← S to denote the uniformly random selection of an elements
x from the set S.

It is clear that C contains the solution to the kSelection problem. To analyze the
query complexity of the algorithm, recall fromTheorem3.8 that s(w, k) = 8w2k log(2k)
is an upper bound on the number of queries used by the efficient Merge Sort algorithm
to sort 2wk elements in a poset of width w.

There are two types of contributions to the number of queriesmade by the algorithm:

1. Comparing x to the set of maximal elements maximal(C).

2. Sorting C and C ∪D.

To bound the expected number of queries of the first type, we note that for t ≥
kw + 1, since |C ∪ D| ≤ 2kw and the elements are in random order, the probability

50



CHAPTER 4. WIDTHBASED MODEL: SELECTION ALGORITHMS

Algorithm 14: Randomised kSelection
Input: 1. A set U .
2. An oracle c : U × U → {�,�, 6∼} for a poset 〈U ,�〉.
3. An upper bound w on the width of the poset.
4. A parameter k.
Output: The smaller k elements of 〈U ,�〉.

1 // Initialization
2 C ← ∅
3 for i ∈ [wk] do
4 x

R← U , U ← U \ x
5 C ← C ∪ x

6 sort(C)
7 Remove any element a from C wight height(a) > k − 1.
8 // Begin the main while-loop.
9 D ← ∅, t← wk + 1
10 while t ≤ n do
11 Let maximal(C) be the set of maximal elements of C.
12 r ← |maximal(C)|
13 x

R← U , U ← U \ x
14 // Compare x with the maximal elements of C.
15 for j ∈ [r] do
16 m

R← maximal(C), maximal(C)← maximal(C) \m
17 if (height(m) = k − 1 and x � m) or (height(m) < k − 1 and

x � m) then
18 D ← D ∪ x
19 break

20 if for all a ∈ C, x 6∼ a then
21 D ← D ∪ x
22 break
23 if |D| = k or t = n then
24 sort(C ∪D)
25 Set C to be the elements of height at most k − 1 in C ∪D
26 D ← ∅

27 return C

51



4.2. LOWER BOUNDS

that x ends up in D is at most min
(
1, 2kw

t

)
. If x is not going to be in D, then the

number of queries needed to verify this is bounded byw. Overall, the expected number
of queries needed for comparisons to maximal elements is bounded by wn.

To calculate the expected number of queries of the second type, we bound the ex
pected number of elements that needed to be sorted as follows,

n∑
t=kw+1

min
(
1,

2kw

t

)
≤ 2kw(logn− 1)

Therefore the total query complexity is bounded above bywn+2s(w, k) logn, and
thus we have proved the following theorem.

Theorem 4.4 (Daskalakis et al. [1], 2011). The kSelection problem has a random
ized query complexity of at most wn + 16kw2 log(2k) and time complexity O(wn +
poly(k,w) logn).

4.2 Lower Bounds
In this Section we will present some lower bounds for the Selection and kSelection
problems. We present these lower bounds in the adversarial setting. Until now we
were trying to help an agent sort efficiently a poset with access only to an oracle function
c : U × U → {�,�, 6∼}. In this section we will traverse to the other side, and take the
role of an adversary serving the agent’s queries. We assume she wants to force the agent
to make as many queries as possible. The adversary is allowed to choose her response
to a query after receiving it. A response is legal if there exists a partial order of width
at most w with which this response and all previous responses are consistent.

Since the responses of the adversary are valid, namely consistent with her previous
answers and correspond to a valid poset, we can always argue that such a bad instance
could appear as an input to our algorithms. In other words, instead of providing a worse
case instance 〈U , c(·, ·), w〉; we produce it online depending on the agent’s queries. For
every, U , w we will give a method to compute the responses of the oracle c(·, ·) with
respect to the agents queries.

We will present two key results. In Theorem 4.5 we give a lower bound for the
Selection problem. The pseudocode of the adversarial algorithm, for this theorem, is
presented on Algorithm 15. On the other hand, the lower bound for the kSelection
problem is presented in Theorem 4.6. For the latter we constrain ourselves to a simple
sketch of the proof, omitting most of the details. For an extensive presentation of the
proof of Theorem 4.6 we refer to [1].

4.2.1 Selection Problem
The adversarial Algorithm 15, of Theorem 4.5, outputs query responses that correspond
to a poset 〈U ,�〉 of w disjoint chains. Along with outputting a response to a query, the
algorithm may also announce for a queried element to which chain it belongs. In any
proof that an element x is not a smallest element, it must be shown to dominate at least
on other element. The algorithm is designed to so that in order for such a response
to be given, x must be queried against at least w − 1 other elements with which is
incomparable.

The algorithm outputs query responses that correspond to a poset 〈U ,�〉 of w dis
joint chains. Given a query c(x, y), the algorithm outputs a response to the query, and

52



CHAPTER 4. WIDTHBASED MODEL: SELECTION ALGORITHMS

in some cases, it may also announce for one of x, y, or both, to which chain the element
belongs. Note this extra information makes the situation only easier for the agent doing
the queries and trying to determine the k smallest elements. During the course of the
algorithm, the adversary will maintain a graph G = (U , E). Whenever the adversary
responds that x 6∼ b, she adds an edge (x, y) to E.

We assume that the queries are passed to the adversarial algorithm as stream, or a
sequence of queries Q, of which the adversary is only able to access one at a time. If
some query c(x, y) ∈ Q is accessed the adversary needs to respond, before she may
access the next query. Let ct(x) be the number of queries that involve the element a,
out of the first t. Also, let chain(x) be the chain assignment that the adversary has
announced to the agent for element a. Initially, we have chain(x) = nul for every
element x ∈ U .

Algorithm 15: Selection Adversarial Protocol
Input: A sequence of queries Q. A query q ∈ Q is q = c(x, y), x, y ∈ U .
Output: A sequence of responsesR. A response r ∈ R can be either

r = 〈x, chain(x)〉, with x ∈ U and chain(x); or r = 〈x, y,2〉, with
x, y ∈ U and 2 ∈ {�,�, 6∼}

1 // We keep an "incomparability" graph.
2 G← (U ,∅)
3 while Q 6= ∅ do
4 // Fetch the next query.
5 c(x, y)← pop(Q)
6 if ct(x) ≤ w − 1 or ct(y) ≤ w − 1 then
7 ct(x)← ct(x) + 1, ct(y)← ct(y) + 1
8 if ct(x) = w − 1 then
9 Choose a chain a ∈ [w], s.t. for every neighbor v ∈ N(x)

chain(v) 6= a.
10 chain(x)← a
11 R← R∪ 〈x, chain(x)〉
12 if ct(y) = w − 1 then
13 Choose a chain a ∈ [w], s.t. for every neighbor v ∈ N(y)

chain(v) 6= a.
14 chain(y)← a
15 R← R∪ 〈y, chain(y)〉

16 if chain(x) 6= chain(y) then
17 R← R∪ 〈x, y, 6∼〉
18 else
19 Let i, j be the indices of x, y respectively in their mutual chain.
20 if i > j then
21 R← R∪ {�}
22 else
23 R← R∪ {�}

24 returnR

We can easily observe that the output of the algorithm is consistent with a poset

53



4.2. LOWER BOUNDS

Figure 4.1: An Example for Theorem 4.5. In order to prove that y is not a minimal
element the adversary need to inform as of the green edge. In order to to that, we need
to query all the dashed purple edges, where the adversary will respond that the elements
are incomparable. In order to prove that x is a minimal element we need to query all
the red dashed edges.

consisting of w chains that are pairwise incomparable. Also, without loss of gener
ality we can assume that each chain is nonempty. The following theorem shows the
lower bound on queries achieved from Algorithm 15. Namely, the minimum number
of queries the agent will always be forced to make by the adversary.

Theorem 4.5 (Daskalakis et al. [1], 2011). In the adversarial model, at least w+1
2 n−w

queries are needed in order to find the minimal elements.

Proof. We will prove a lower bound on the number of queries that are required to find
a proof that the minimal elements are indeed the minimal elements.

In any proof that m is not a smallest element, it must be shown that m dominates
at least another element. In order to get such a response from the adversary, m must
be queried against at least w − 1 elements with which is incomparable. To prove that
a minimal element of one chain is indeed minimal, it must be queried at least against
the minimal elements of the other chains, to rule oput the possibility it dominates one
of them. We show both of those checks in Figure 4.1.

From the above discussion, we observe that each element must be compared to at
least w − 1 elements that are incomparable to it. Hence, the total number of queries of
the form c(x, y), where x 6∼ y is at least w−1

2 n1. Thus, we proved our claim.

4.2.2 kSelection Problem
We now proceed to Theorem 4.6, which establishes a lower bound to the number of
queries in kSelection problem. Theorem 4.6 utilizes Theorem 1.22 of Chapter 1. Re
member that Theorem 1.22 states that we need at least n− k+ log

((
n

k−1

)
/k
)
queries

to solve the kSelection problem in total orders. The algorithm of Theorem 4.6 is based
on a similar idea to Algorithm 15 but uses a more specific rule for assigning queried

1To see that consider a graph G = (V,E), where {x, y} ∈ E, if and only if x is compared with y and
x ̸∼ y. The handshake lemma gives us the required quantity.

54



CHAPTER 4. WIDTHBASED MODEL: SELECTION ALGORITHMS

elements to chains. The responses are designed to achieve a tradeoff between the case
when few chains are short, when Theorem 1.22 implies that the number of queries re
quired must be large; and the case when many chains are short, when the algorithm
must ensure that the number of pairs declared incomparable is large.

Theorem 4.6 (Daskalakis et al. [1], 2011). Let r = n
2w−1 . If k ≤ r. then the number

of of queries to solve the kSelection problem is at least,

(w + 1)n

2
− wk − w3

8
+min

{
(w − 2) log

((
r

k − 1

)
/k

)
+ log

(
rw

k − 1

)
,

n(w − 1)(r − k)

2r
− log

((
r

k − 1

)
/k

)
+ log

(
n− (w − 1)k

k − 1

)}
.

(4.1)

The proof of Theorem 4.6 is quite extensive and exceeds the scope of this thesis.
We just present a sketch of the proof here.

A sketch of the proof of Theorem 4.6. The adversarial algorithm outputs query responses
exactly a Algorithm 15, except in the case of the tth query is c(x, y) and ct(x) = w−1
or ct(y) = w − 1. In that case it uses a more specific rule for the assignment of one or
both of these elements to chains.

In addition to assigning the elements to chains, the process must also select the k
smallest elements in each chain, and Theorem 1.22 gives a lower bound, in terms of
lengths of the chains, on the number of queries required to do so.

We think of the assignment of elements to chains as a coloring of the elements with
w colors. The specific color assignment rule is designed to ensure that if, at the end, the
number of elements e with color κ is small, then there must have been many queries in
which the element being colored could not receive color κ because it had already been
declared incomparable to an element with color κ.

We also give a lower bound on the number used by randomized kSelection algo
rithms. The authors of [1] conjecture that the randomized algorithm for findingminimal
elements, Algorithm 12, essentially achieves the lower bound, though the lower bound
we present here is different from that upper bound by a factor of 2. We give the lower
bound without a proof. The proof of the theorem does not follow the adversarial model.

Theorem 4.7 (Daskalakis et al. [1]. 2011). The expected query complexity of any
algorithm solving the kSelection problem is at least,

w + 3

4
n− wk + w

(
1− exp

(
− n

8w

))[
log
((

n/(2w)

k − 1

)
/k

)]
. (4.2)

An immediate result from Theorem 4.7 is the following corollary for the Selection
problem, i.e. k = 1.

Corollary 4.8. The expected query complexity of any algorithm solving the Selection
problem is at least w+3

4 n− w.

4.3 Conclusions
With the brief discussion on the lower bound for the deterministic kSelection we con
clude this presentation of the results of [1] on the Selection and kSelection Problems.

55



4.3. CONCLUSIONS

Query Complexity Time Complexity Lower Bound
Det.
Selection O(wn) O(wn) Ω

(
w+1
2 n− w

)
Random.
Selection

w+1
2 n + w2−w

2 (logn −
logw)

w+1
2 n + w2−w

2 (logn −
logw)

Ω
(
w+3
4 n− w

)
Det. kSelection
(Entropy Sort)

O(16wn + 4n log(2k) +
6n logw) Exponential 4.1

Det. kSelection
(Merge Sort) O(8wn log(2k)) O(w2n log(2k)) 4.1

Random.
kSelection O(wn+ 16kw2 log(2k)) O(wn+poly(k,w) logn) 4.2

Table 4.1: The Algorithms of Chapter 4 and their respective query and time complexity. w is an
upperbound to the width of the unknown poset. In the forth column, we show the query complex
ity lower bounds. Note that query lower bounds are also lower bound for the time complexity.

In Section 4.1 we presented some upper bounds for the two problems at hand.
Namely, in Subsection 4.1.1 we examined two algorithms for the Selection problem,
of finding the minimal elements of a poset. The first Algorithm 11 is deterministic and
achieves O(wn) query and time complexity. The second Algorithm 12 is randomized
and achieves w+1

2 n+ w2−w
2 (logn− logw) query and time complexity. In Subsection

4.1.2 we described two more algorithms for the kSelection problem. The first algo
rithmwe examined for the kSelection problem is presented in Algorithm 13. The algo
rithm is deterministic, while the its time and query complexity depends on the method
we use for sorting. If we want to achieve optimality with respect to the queries, we
will use the Entropy Sort of Algorithm 7. This will result in O(16wn + 4n log(2k) +
6n logw) query complexity but exponential time complexity. On the other hand, if
time efficiency is our main concern we may use the Merge Sort, of Algorithm 8. The
resulting algorithm will have O(8wn log(2k)) query complexity, and O(w2n log(2k))
time complexity. The second algorithm we examined for kSelection is presented in
Algorithm 14. The algorithm is randomized and utilizes the timeefficient Merge Sort
of Algorithm 8. The algorithms achieves a O(wn+16kw2 log(2k)) query complexity
and O(wn + poly(k,w) logn) time complexity, where poly(k,w) is the polynomial
expression that gives the time complexity of Merge Sort.

In Section 4.2 we discussed some lower bounds for the two problems at hand. We
discussed lower bounds on the number of queries for deterministic algorithm, and for
the expected number of queries in the randomized setting. The first two of these lower
bounds are presented in the adversarial setting. There we describe an algorithm for an
adversary that simulates the oracle function. The adversary will force the agent doing
the selection to make many queries. In Subsection 4.2.1 we discussed a lower bound for
the deterministic Selection problem. The lower bound we derive to is Ω

(
w+1
2 n− w

)
for the number of queries. In Subsection 4.2.2 we briefly discussed a lower bound for
the deterministic kSelection problem. The lower bound is quite elaborate, and is given
in Equation 4.1. In the same Subsection we also gave a lower bound for the randomized
kSelection (see Equation 4.2). From Equation 4.2 we can derive a lower bound for the
Selection problem, k = 1. We presented the latter lower bound in Corollary 4.8, and
show that the expected number of queries is at least w+3

4 n − w. We summarize these
results in Table 4.1.

56



CHAPTER5
FORBIDDEN COMPARISONS MODEL

In this chapter we examine the Sorting Problem of Chapter 3, under a different model.
We present theForbiddenComparisonsModel, whichwas introduced by Indranil Baner
jee and Dana Richards in 2016 [2]. In this model we are given a graph G = (U , E)
which essentially describes a set of restriction; we can compere two elements u, v ∈ U ,
only if {u, v} ∈ E. We call G comparison graph. Again, we assume that we can com
pare two elements only by calling a comparison oracle. On the other hand, in contrast
to Chapters 3 and 4, our oracle function will be defined as, c : U × U → {�,�,⊥},
where c(u, v) =⊥ if the elements are not connected with an edge in G. Therefore,
since we assume that the comparison graph is given, we don’t need to make an oracle
call to ensure that two elements are comparable. An important thing to note is that, the
comparison c(u, v) =⊥may be undefined for two elements, but we could have that the
elements are comparable, u ∼ v. Consider a scenario where c(u, a) =�, c(a, v) =�,
but c(u, v) =⊥; from transitivity we can induce that u � v in the underlying, unknown
poset. Also, observe that if the comparison graph is a complete graph (clique)G ≈ Kn

then the underlying poset collapses to a total order. In this setting, our parameter q
would be the number of missing edges from G, i.e. q =

(
n
2

)
− |E|. Note that the

parameter q, quantifies the distance of G from the complete graph Kn. We give a for
mal definition for this problem. In the subsequent section, we explore the connection
between the comparison and comparability graph in greater detail.

Sorting (Forbidden Comparisons Model)

Input:

1. A finite set U .
2. A comparison graph G = (U , E).
3. An oracle function c : U×U → {�,�,⊥}, for an underlying poset
〈U ,�〉, where c(a, b) =⊥ iff {a, b} 6∈ G.
4. A parameter q =

(
n
2

)
− |E|.

Output: The partial order �.

In [2] Banerjee and Richards present an algorithm with query complexity ofO((q+
n) logn), the first nontrivial sorting algorithm in the Forbidden Comparisons Model.
Based on this work Biswas et al. [3] propose a refinement of Banerjee’s and Richards’s
method with O(q + n) log(n2/q) query complexity. For q = Θ(n2) the latter method

57



5.1. GRAPH ORIENTATIONS & TOURNAMENTS

achieves better queryefficiency than Banerjee’s and Richard’s algorithm. In [3] the
authors, also present a lower bound to the problem along with a study of some special
cases. In this chapter, we will follow the presentation of [3], but we will also discuss
briefly the key results of [2]. We organise this chapter as follows. In Section 5.1 we
introduce some new concepts regarding directed graphs, while we explore further their
connection to posets in our model. In Section 5.2 we discuss the connection between
the comparability and comparison graph. There, we also present a characterization of
the comparability graphs due to Gallai. In Section 5.3 we present the sorting algorithm
of [2], along with the improvements of [3]. In that Section we also present some lower
bound to our problem. In Section 5.4 we present some results on the queryefficiency
of our sorting, for special cases of the input comparison graph. Finally, in Section 5.5
we summarise our discussion on the sorting problem in the Forbidden Comparisons
Model.

5.1 Graph Orientations & Tournaments
In this section we introduce some new notion regarding directed graphs. We explore
their relation with undirected graphs and their connection with partial orders. We define
the notion of orientation of an undirected graph, while we focus on orientations that
respect the transitivity. We define a special class of directed graphs, the tournaments,
that are closely connected to total orders. Since any partial order, contains a total order,
e.g. its maximal chain, we will use tournaments to sort a partial order in the sequel.

We begin with some definitions. We call a directed graph, with no directed cycles;
a directed acyclic graph or DAG. Directed acyclic graphs will be of great importance
in our presentations as they will be useful in the study of partial orders. An impor
tant notion in directed acyclic graphs is the topological order. We give the following
definition.

Definition 5.1 (Topological Order). Let D = (V,A) be a directed acyclic graph.
We call a topological order of D a sequence of its nodes v1, v2, . . . , vn, such that if
(vi, vj) ∈ A, then i < j.

In this chapter we will examine a problem where we are given a undirected graph
and we will be required to find a suitable orientation of its edges, for the resulting
directed graph to correspond to a valid partial order. We give the following definition.

Definition 5.2 (Graph Orientation). Let G = (V,E) an undirected graph. Also, let
ϕ : E → V × V be a 11 correspondence. We call the resulting directed graph D =
(V, ϕ(E)) an orientation of G.

A transitive orientation is an orientation that respects the transitivity. Namely, let
G = (V,E) be a undirected graph, and D = (V,A) an orientation of G. We say that
D respects the transitivity if for every (a, b), (b, c) ∈ A, then (a, c) ∈ A. An important
notion, for our analysis will be this of an orientation of a cliqueKn.

Definition 5.3 (Tournament). LetKn be a clique on n nodes. Let D be an orientation
of Kn, we will call D a tournament. Note that, essentially in a tournament D every
two nodes are connected with a single arc.

Observe that any transitive tournament is acyclic. Consider a path v1, . . . vk in a
tournamentD = (V,A). Now, since we have a tournament either (v1, vk) or (vk, v1) is

58



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

Figure 5.1: The figure for Rédei’s Theorem 5.5 proof.

an arc. If our tournament is transitive then (v1, vk) ∈ A, hence we don’t have a cycle.
On the other hand, the only way for us to not have a cycle is to not include (vk, v1) as
an arc. Thus, we proved the following characterization of a tournaments acyclicity.

Proposition 5.4. LetD = (V,A) be a tournament. ThenD is acyclic, if and only if D
is transitive.

A directed Hamiltonian path is a path in a directed graph D that visits each node
of the graph only once. We present the following key property of tournaments due to
Rédei.

Theorem 5.5 (Rédei, 1934). Any tournament D = (V,A) on n vertices contains a
Hamiltonian path, i.e., a directed path on all n vertices.

Proof. Suppose we have a directed path v1, . . . , vk which does not contain all the ver
tices of the graph. Let z be any vertex not on this path. If (z, v1) is an arc, i.e.
(z, v1) ∈ A we can insert z at the beginning of the sequence. If (z, v1) /∈ A, then
(v1, z) is an arc, since we have a tournament. In this case, if (z, v2) is an arc, then we
can insert z between v1, v2 to get a directed path from v1 to vk which includes z.

If (z, v2) is not an arc, since we have a tournament, then (z, v2) is an arc; and we
let r be the greatest integer for which (v1, z), (v2, z), . . . , (vr, z) are arcs (see Figure
5.1). If r < k we can insert z between vr and vr+1 as we did in the previous cases and
complete our v1, vkpath. On the other hand, if r = k, we just add z at the end.

Therefore, if we have a directed path which does not contain all the vertices, we can
always insert another vertex into this directed path. Since the graph is finite, we will
eventually get a directed path that contains all of the vertices.

Note that the proof of Theorem 5.5 is constructive. It also gives us an algorithm to
compute the Hamiltonian path inO(n logn) time. Observe that in order to achieve this
timecomplexity, we need to do binary search to compute r in O(logn) time. From
Theorem 5.5 we get an interesting corollary; for transitive tournaments not only there
always exists a Hamiltonian path in a tournament, but it is also unique.

Corollary 5.6. Let D = (V,A) a transitive tournament on n vertices. Then, there is a
unique Hamiltonian path P = v1, . . . , vi, . . . , vj , . . . , vn.

Proof. Let P ′ be another Hamiltonian path, where vi, vj appear in P ′ in reverse order
than this of P . Consider the subpath of P ′, from vj to vi. From transitivity, we have
that (vj , vi) ∈ A. A contradiction, since D is a tournament.

59



5.1. GRAPH ORIENTATIONS & TOURNAMENTS

Figure 5.2: The layer decomposition of the directed orientation, of the Hasse diagram
of Example 1.12.

On the other hand, observe that in a tournament a topological order, will always be
a Hamiltonian path. Indeed, let v1, v2, . . . , vn be a topological order. Also, let vi, vi+1

be adjacent in this sequence. From since we have a tournament either (vi, vi+1), or
(vi+1, vi) is an arc. Since, vi, vi+1 are adjacent in the topological order we can only
have that (vi, vi+1) is an arc. But, from Corollary 5.6 we can only have a single Hamil
tonian path in a transitive tournament. Therefore, we have a unique topological order
for a transitive tournament.

Corollary 5.7. Let D = (V,A) be a transitive tournament on n vertices. Then, there
is a unique topological order v1, . . . , vn.

We can rewrite Corollary 5.7, to state that directed acyclic graphs have a unique
topological order. It is sometimes more intuitive to underline the acyclicity of a graph
than its transitivity. In Section 5.4 we will use Corollary 5.7 in this latter form.

5.1.1 Layer Decomposition & Linear Extension
Before we close this section, wemake some observations regarding the number of topo
logical orders of a given directed acyclic graph. The case which we are interested in is,
naturally when a given DAG represents a poset. We give the following definition, that
is valid in any directed acyclic graph, regardless of it being transitive of not.

Definition 5.8 (Layer Decomposition of a DAG). Let D = (V,A) being a directed
acyclic graph. We consider a decomposition L = {Li | i ∈ [k]}, for some k ∈ N, of
the vertices of D, such that,

L0 = {v ∈ V | dout(v) = 0}
Li+1 = {v ∈ V | if there is (v, u) ∈ A, u ∈ Lj , j ≤ i}

}
. (5.1)

We call the decomposition L a layer decomposition of D.

In Figure 5.2 we show the layer decomposition of our running example, Example
1.12. An important thing to note is that, if we demand each node to be included to the
set Li, with the smallest index i, such that the Equation 5.1 holds, then the layer de
composition is unique. In the sequel, when we are referring to the layer decomposition
of a DAG, we will be assuming that the latter uniqueness condition holds. We give
the following definition, regarding a suprelation that includes the relations of a given
poset, but constitutes a total order.

60



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

Definition 5.9 (Linear Extension). Let 〈U ,R⪯〉 be a poset on a finite set U . We call a
relationR′

⪯ a linear extension of 〈U ,R⪯〉, ifR′
⪯ ⊇ R⪯ andR′

⪯ is a total order.

From the above discussion, we hope to come naturally the following. Let ℓ0 be an
ordering of the L0 layer of a layer decomposition, ℓi be an ordering of the layer Li, etc.
Then, ℓ0ℓ1ℓ2 · · · ℓk be a concatenation of the layers’ orderings. Then, ℓ0ℓ1ℓ2 · · · ℓk will
be a topological sort of the given directed acyclic graph. On the other hand, if the DAG
is transitive and represents a poset, then every topological sort is a linear extension. A
simple combinatorial result is the following, regarding the number of linear extensions
of a poset.

Proposition 5.10. Let 〈U ,�〉 be a poset in a finite set U . Also, let D = (V,A) be a
directed acyclic graph, that represents the relations of the poset. Lastly, assume L =
{L0, L1, . . . , Lk} be the unique layer decomposition ofD. Then, the number of linear
extensions of 〈U ,�〉 is ν, where,

ν =

k∏
i=0

|Li|!

Remember that earlier in this section we argued that a transitive tournament has
a single topological order (and a unique Hamiltonian path). Hence, a transitive tour
nament has a unique linear extension. Therefore, the underlying poset of a transitive
tournament, is actually a total order.

5.2 Comparability & Comparison Graphs
In this section we formalize the notions discussed in the introduction of this chapter and
explore further the connection between the comparison and comparability graphs. We
begin with a formal definition of the comparability graphs.

Definition 5.11 (Comparability Graph). Let 〈U ,�〉 be a poset. Let G̃ = (U , Ẽ) be the
graph, where for two nodes x, y ∈ U there is an edge {x, y} ∈ Ẽ, if and only if the two
corresponding elements of the poset are related, i.e x ∼ y. We call G̃ the comparability
graph of 〈U ,�〉.

Note that a comparability graph of a poset results from the directed graph of the
poset, if we remove the direction from the edges. On the other hand, we can imag
ine the comparability graph as the Hasse diagram of the poset, if we add the transitive
edges. An arbitrary graph, in general, cannot be the the comparability graph of a poset.
In other words, there are graphs where we cannot find a proper orientation of its edges,
in order for the induced binary relation to be a partial order. Hence, we also call these
graphs transitivity orientable. Later, we will give a characterization of the comparabil
ity graphs in Gallai’s theorem, which we present without a proof. LetKℓ be the ℓclique
andKℓ ⊆ G̃, for some comparability graph G̃. Then the subposet induced on the nodes
of Kℓ will be a total order. On the other hand, note that we cannot have an odd cycle
(n > 3) as an induced subgraph in any comparability graph. We present this intuitively
obvious fact in the theorem bellow, without a proof.

Theorem 5.12 (GhouilaHouri, 1962). Let G = (V,E) be a graph. Then G is a com
parability graph if and only if there is no sequence x1, x2, x3, . . . , x2n+1 of (not nec
essarily distinct) vertices from V with n ≥ 2 such that {xi, x(i+1) mod 2n+1} ∈ E, but
{xi, x(i+2) mod 2n+1} /∈ E.

61



5.2. COMPARABILITY & COMPARISON GRAPHS

(a) Comparison graph. (b) Assigning orientation to the
comparison graph.

(c) Computing the transitive
edges.

Figure 5.3: The comparison graph (5.3a), the orientation of the comparison graph
(5.3b), and the transitive closure (5.3c) of the poset of Example 1.12. Note that the
comparison graph in Figure 5.3a is isomorphic to the Hasse diagram of the poset. In
contrast to a Hasse diagram, we have no constriction on the way we draw the graph on
the plane, i.e. we don’t need to draw a higher than b if a � b. A comparability graph
would be identical to the graph of Figure 5.3c, if we remove the orientation.

As we established in the introduction, a similar notion to comparability graphs, are
the comparison graphs introduced by I. Banerjee and D. Richards [2]. A comparison
graph, is a comparability graph, where we are allowed to omit some edges. Observe,
that we can omit all the edges that can be induced from the transitive closure, without
harming the underlying partial order. Therefore, the Hasse diagram of a poset can be
regarded as a comparison graph, whereas it cannot, in general, be considered a com
parability graph, due to the lack of the transitively induced edges. We give a formal
definition.

Definition 5.13 (Comparison Graph). Let 〈U ,�〉 be a poset. We call G = (U , E) a
comparison graph, if for every x, y ∈ U that are connected with an edge {x, y}, then
x ∼ y in 〈U ,�〉. On the other hand, we allow to elements x, y ∈ U to be related x ∼ y,
but not to be connected in G with an edge {x, y} /∈ E.

Observe that from Definitions 5.11 and 5.13, we would have G ⊆ G̃. Also, note
that since a comparison graph is essentially a comparability graph, where we have omit
ted some edges, and because omitting edges cannot introduce cycles; the comparison
graphs have no odd cycles. Hence, a comparison graph is also bipartite.

The notion of a comparison graph raises some interesting algorithmic questions.
The problem that we will analyse in this chapter is to determine a valid partial order
from a comparison graph. This, essentially, takes two steps; firstly, to determine a valid
orientation of the edges; then, to deduce the transitive closure of this graph. In Figure
5.3 we show the subsequent steps of this process, with some remarks on the graph
theoretic notions we introduced.

5.2.1 Gallai’s Theorem

Perhaps one the most important results in partially order theory, regarding the compa
rability graphs is the theorem due to Gallai (1967). We follow the elegant presentation
of [8]. In some cases, when a class of discrete structures is closed under a notion of

62



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

(a) The odd cricle C2n+1, n ≥ 2. (b) Jn, n ≥ 2.

(c) J ′
n, n ≥ 2. (d) J ′′

n , n ≥ 2.

Figure 5.4: Part 1 of the Gallai’s forbiden graphs C. Each subfigure depicts an infinite
family of graphs. These graphs cannot be a subgraph of a comparability graph.

substructure, it can be characterized by a minimum list of forbidden substructures. Per
haps the best known example of this type is Kuratowski’s theorem which asserts that
a graph is planar if and only if it does not contain a subgraph which is isomorphic to
a subdivision K5 or K3,3. Note that from its definition the notion of a transitive ori
entable graphs is closed under the notion of subgraph. Hence, Gallai’s theorem gives
exactly the aforementioned minimum list of the forbidden subgraphs. We denote this
list with C. Following Gallai, we divide the family C of forbidden graphs into parts,
see Figures 5.4, 5.5. The graphs in Figure 5.4 belong in C, while the complements of
the graphs in Figure 5.5 belong in C. Note that each graph in C is not a comparability
graph, but every proper nonempty induced subgraph of a graph in C is a comparability
graph.

Theorem 5.14 (Gallai). A graph G = (V,E) is a comparability graph if and only
if G does not contain an induced subgraph isomorphic to a graph in the collection C
described in Figures 5.4, 5.5.

We do not include here a proof of Theorem 5.14, or even an outline of the proof,
since it is difficult, time consuming, and out of the scope of this thesis. In the sequel
we focus our attention on comparison graphs, rather than comparability graphs. We
discuss here briefly some important results of this area, as the intuition behind the two
notions is similar. For the reader interested in this area, we refer to [8], and Kelly’s
survey paper [24].

5.3 Sorting Under Forbidden Comparisons
In this sectionwewill present a sorting algorithm for the ForbiddenComparisonsModel.
We will follow the presentation in [3].

63



5.3. SORTING UNDER FORBIDDEN COMPARISONS

(a)Kn, n ≥ 1.

(b) Cn, n ≥ 6.
(c) Ln, n ≥ 2. (d) L′

n, n ≥ 1.

(e) B1.
(f) B2.

(g) G1. (h) G2.

(i) G3.
(j) G4.

(k) G5. (l) G6.

(m) G7. (n) G8.

Figure 5.5: Part 2 of the Gallai’s forbiden graphs C. The first four subfigures depict an
infinite family of graphs. The complements of these graphs cannot be a subgraph of a
comparability graph.

5.3.1 Upper Bounds
We begin by reviewing the algorithm in [2]. The central claim in the algorithm in [2] is
the following lemma, which is not stated explicitly, but is presented as a collection of
lemmas culminating in the result in Section 2.2 of [2]. We omit a the proof of Lemma
5.15.

Lemma 5.15. LetG = (V,E) be a comparison graph with n = |V |, and q =
(
n
2

)
−|E|.

If q < n2/320 1 there is an approximate median vertex m, that is greater than at least
n/40 elements and less than n/40 elements. Furthermorem cannot be compared with
at most O(q/n) elements, and it can be found using O(q + n) queries.

The intuition behind Lemma 5.15 is that we can always find a sufficiently big clique
as a subgraph of the comparison graph. Assume that q ≤ cn, where n is the number
of vertices and c ∈ N a constant. Also, let G = (V,E) be the complementary graph,
of the comparison graph G. From our hypothesis we would have |E| = q. We denote
with R the vertices of the comparison graph G with many missing edges. Note, that
these vertices would have many edges in the complementary graph, namely R = {v ∈
V | dG(v) > c1}, for some constant c1 ∈ N. Applying the Handshake Lemma on
the complementary graph we would have

∑
v∈V dG(v) = 2q. Thus, for the size of

R we have, |R| ≤ 2q
c1

= 2cn
c1

. Also, let S = V \ R the set with few missing edges

1The constant used in [2] is 200, instead of 320, used by the authors in [3].

64



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

in the comparison graph G. Observe that we have S = {v ∈ V | dG(v) ≤ c1} or
S = {v ∈ V | dG(v) ≥ n − 1 − c1}. Again, from the Handshake Lemma on G, we
have |S| ≥ 2q

c1
= 2cn

c1
. Now, we set the constant c1 to be c1 = 4c. Therefore, |S| ≥ n

2 .
From the above discussion we established that there is a sufficiently large set S, which
contains vertices with sufficiently large degree. We will use this fact to show that we
can always find a large enough clique as a subgraph of the comparison graph.

Proposition 5.16. Let G = (V,E) be a comparison graph with n = |V |, and q =(
n
2

)
− |E|. Also, assume q ≤ cn for some constant c ∈ N, and S = {v ∈ V | dG(v) ≥

n − 1 − 4c} be the set with vertices of large degree. Then, there exists some X ⊆ S,
such that G[X] is a clique, and,

|X| ≥ n

2(4c+ 1)

Proof. We give an algorithm for computing X . The algorithm is quite simple and
follows a greedy strategy. We choose an arbitrary vertex v ∈ S. We also initialise
the active neighborhood to be N = NG(v) ∩ S. In each iteration, we pick a vertex
u ∈ N , and update N to be N ′ = N ∩ N(u). We repeat this process until the active
neighborhood is depleted, i.e. N = ∅.

Observe that since d(v) ≥ n− 1− 4c, then d(v) ≥ n/2− 4c, or d(v) ≥ |S| − 4c.
Also note that in each iteration we loose some of the active neighbors in N . More
precisely we have loose the neighbors of the new vertex u, that are not already in N .
In the worst case, these would be 4c+ 1 nodes. Therefore, |X| ≥ |S|

4c+1 = n
2(4c+1) .

Note that, in order to computeX we do notmake any oracle calls. On the other hand,
sinceG[X] is a clique, the subposet 〈X,�〉 would be a total order. Using Algorithm 1
of Section 1.4, we can find a median in X in linear O(|X|) queries.

We are now ready to present the algorithm due to Biswas et al. [3]. The algorithms
in [3] and [2] are essentially the same, with the key difference being that the recursion
in [3] stops earlier, which improves the bounds. The output of the algorithm is an orien
tation of some of the edges of the comparison graph. The orientation of the remaining
edges can be deduced using transitivity. We present the pseudocode in Algorithm 16.

Theorem 5.17 (Biswass et al. [3], 2017). Sorting a comparison graph with q forbidden
edges can be done in,

min
{
|E|, O

(
(q + n) log

(
n2

q

))}
queries.

Proof. Algorithm 16 is called with depth d = 0. The algorithm checks if the value of
q or the depth d of the recursion is less than a threshold and then it breaks the problem
into two disjoint subproblems using O(q + n) queries by Lemma 5.15. Suppose at
level ℓ of the recursion, the sizes of the subproblems are n1, n2, . . . , nt and the number
of missing edges in these subproblems is q1, q2, . . . , qt respectively. The algorithm
either breaks them into smaller subproblems or queries every edge in that subproblem
(with qi ≥ n2

i /320 missing edges) in which case the algorithm performs at most 160qi
queries. The query cost incurred by the incomparable elements at any internal node of
the recursion tree is alsoO

(
qi
ni
ni

)
= O(qi). In either case, the total number of queries

65



5.3. SORTING UNDER FORBIDDEN COMPARISONS

Algorithm 16: Sort
Input: 1. A finite set U .
2. A comparison graph G = (U , E).
3. An oracle function c : U × U → {�,�,⊥}, for an underlying poset 〈U ,�〉,
where c(a, b) =⊥ iff {a, b} 6∈ G.
4. A parameter q =

(
n
2

)
− |E|.

5. A parameter d, for the depth of the recursion.
Output: An orientation of G as a directed graph D = (V,A).

1 if q ≥ n2

320 or d = log
(

n2

q

)
/ log

(
40
39

)
then

2 Query every edge in E and output their orientations.
3 else
4 Find an approximate median vertexm using Lemma 5.15.
5 Comparem with all its neighbors in V and output their orientations.
6 VL ← {v ∈ V | v � m}, and VH ← {v ∈ V | v � m}
7 Vincomp ← {v ∈ V | {v,m} /∈ E}
8 Compare every vertex in Vincomp with all its neighbors in V and output

their orientations.
9 Let qL be the number of missing edges in G[VL] and qH be the number of

missing edges in G[VH ]
10 Sort(VL, G[VL], c(·, ·), qL, d+ 1)
11 Sort(VH , G[VH ], c(·, ·), qH , d+ 1)

done at this level is at most
∑l

i=1(qi + ni) = O(q + n). Thus, at any level of the
recursion tree, the algorithm makes at most O(q + n) queries.

The algorithm is essentially the same as that of [2], except that it is forced to stop the
recursion, when the depth of the recursion i is d = log

(
n2

q

)
/ log

(
40
39

)
. At this point

the number of subproblems would be at mostO(n2/q) and the size of each subproblem
would be at most (39/40)in = q/n, since each subproblem has at most 39/40 fraction
of the vertices of its parent subproblem by Lemma 5.15.

Even if all these subproblems were complete graphs, the total number of edges in all
subproblems would be at mostO(n2/q ·q2/(2n2)) = O(q). At this point we just ask all
the edge queries without recursing any further using O(q) edge queries. The algorithm
creates a recursion tree which hasO

(
log n2

q

)
levels and queriesO(q+n) edges at each

level. Thus the total edge queries made by the algorithm is O
(
(q + n) log

(
n2

q

))
. If

|E| < (q + n) log
(

n2

q

)
, then the algorithm just asks all the edge queries without

optimizing in any way.

In the above theorem, we have just analysed the query complexity and ignored the
time it takes to find the queries to make. One can easily see that the rest of the running
time remains as O(n2 +

√
qω) as shown in Theorem 6 of [2]. This running time is

essentially required to compute the transitive closure of the directed graph, in order to
deduce the missing relations.

66



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

5.3.2 Lower Bounds
We now exhibit lower bounds on the number of edge queries needed to sort a graph
G = (V,E) in terms of |V | = n and q =

(
n
2

)
− |E|, the number of missing edges.

When q is large, we have the following lower bound.

Lemma 5.18. There exists a graph with q ≥ n2/4 and an orientation such that, Ω(|E|)
edge queries are needed to sort the graph.

Proof. The graph which we construct is a complete bipartite graphG(A]B,E), with
|A| = |B|. We force the oracle function to orient the edges from A to B. Here the
number of missing edges, as well as the number of edges present is, roughly n2/4.
The edges are oriented from A to B forcing the algorithm to query every edge, as the
algorithm cannot deduce any of the edges using transitivity. If the algorithm fails to
query an edge, it will have a choice of flipping its direction.

For q < n2/4, we have the following bound.

Theorem 5.19 (Biswas et al. [3], 2017). When q < n2/4, there exists a graph and an
orientation of the edges such that any algorithm hat to make Ω(q+n logn) oracle calls
to sort the graph.

Proof. In this case, the graph we construct consists first of a complete bipartite graph
B = (X ] Y,EB), whereX and Y have size roughly√q each such that it has q edges
and has q edges missing. Then we construct a clique K on the remaining n − 2

√
q

vertices and we maintain a total order among those vertices. And we add all the edges
between K and B. If a query comes between a vertex b ∈ B and a vertex k ∈ K, the
oracle directs this edge from b to k. If the edge query is between two vertices inside
the complete graph, the oracle function will answer consistently with the total order we
chose. If the edge query is between two elements inside the bipartite graph, the oracle
always directs the edges from X to Y .

The numbers of edge queries required to sort the complete graph K would be
Ω(n logn) and the number of edge queries required to sort the bipartite graph B is
at least Ω(q) from Lemma 5.18, which gives a lower bound of Ω(q + n logn) edge
queries.

5.4 Special Cases
In general, the number of edge queries needed to sort a poset can depend on both its size
n and the number of forbidden pairs q. However, when the comparison graph accom
panying the poset has some additional structure, the number of edge queries needed can
be at mostO(n logn), and more importantly independent of q. In this section we show
that when the comparison graph is chordal or transitively orientable, the graph can be
sorted by making O(n logn) edge queries. In fact, both algorithms presented below
output linear extensions (i.e. topological orderings) of the input posets.

Topologically sorting a general directed acyclic graph D = (V,A) needs Ω(|V |+
|A|) running time, while the algorithms in this section make O(n logn) queries. This
is due to the fact that the algorithms exploit the additional information about the input
poset which the comparison graph provides and more importantly, we only care about

67



5.4. SPECIAL CASES

the query complexity, and not bother about finding the orientation of every edge. One
can deduce the edge directions from the topological sort (or the layer decomposition)
of the vertices using transitivity, which have no effect on the query complexity. There
fore, in both of the following cases, the main computational step will be to find the
topological sort and a layer decomposition.

The algorithms in the next two subsections have the following general outline.

1. Pick an appropriate (constantsize) subposet of the input and topologically sort
it.

2. Iteratively extend the topological ordering by inserting one element at a time
using a binary search type procedure among its neighbors.

3. Use transitivity to compute the orientation of the remaining edges.

We use the same ideas as in Theorem 5.5. In order to insert a new vertex v we do
a binary search in the topological order v1, v2, . . . , vt. This way we find if v ≺ v1, or
vt ≺ v, or if there are some adjacent vertices vi, vi+1, such that vi ≺ v ≺ vi+1. If the
comparison graph is a complete graph, then from Corollary 5.6 any any directed acyclic
orientation of its edges has a unique directed Hamiltonian path. Hence, from Corollary
5.7 has a unique topological ordering. In this case, the simple insertion by binary search
is suffices to sort our comparison graph. We will, also show that the binary insertion
works even if the comparison graph is not a complete graph. In this direction, we make
the following observation, it comes as an immediate result from Corollary 5.7.

Lemma 5.20. Let D = (V,A) be a directed acyclic graph, and let S ⊆ V be a subset
of vertices, such that D[S] is a tournament on the vertices of S. Let v1, . . . , vs be the
unique topological order of vertices of S. In any topological order of the vertices in V ,
the elements of S appear in the unique topological order within S.

We will exploit Lemma 5.20 in the first special case, regarding chordal graphs.
There, we will see that we will only need to find the ”local” order of a node v we would
like to insert. In other words, we will only need to sort the new node swith respect to its
neighbors, which will form a total order. Hence, we can sort the inserted vertex, with
respect to its neighbors inO(n logn) time, using for example Merge Sort. We note that
this is a special characteristic of chordal graphs, as we shall see in more detail in the
sequel. In general graphs, we have no guarantee the that neighborhood of a vertex is a
clique, i.e., the restriction of the poset inN(v)∪v is a total order. Let v, u be two nodes
with disjoint neighborhoods. We could deduce the remaining edges betweenN(v)∪ v
and N(u) ∪ u using transitivity.

On the other hand, despite we use a similar strategy in comparability graphs, the
correctness of the method will be based on a completely different fact. In compara
bility comparison graphs, we have the advantage that two nodes u, v are related in the
underlying poset, if and only if {u, v} is an edge. Assume we would like to sort the
node v. Also, consider the layer decomposition L = {L0, . . . , Lk}. We only need to
assign v to the correct layer Li. From Definition 5.8 we only need to query the neigh
bors of v, in the worst case. Now, for every other u ∈ Lj , with i < j we would have
v ≺ u if and only if the edge {v, u} exists. Therefore, we can deduce the orientation
of such edges, without querying the oracle. In the following sections we explore the
details of the process we discussed.

68



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

5.4.1 Chordal Graphs
An undirected graph is chordal if every circle of length greater than three has a chord,
i.e., an edge connecting two nonadjacent nodes. Chordal graphs form a wellstudied
class of graphs as they can be recognized in linear time [25]. Moreover, several prob
lems that are hard on other classes of graphs, such as graph coloring, can be solved in
polynomial time for chordal graphs [26].

In a graphG, a vertex v is called simplicial if and only if the subgraph ofG induced
byN(v)∪v form a clique. A graphG on n vertices is said to have a perfect elimination
ordering (PEO) if and only if there is an ordering v1, . . . , vn of its vertices such that vi
is simplicial in the subgraph induced by v1, v2, . . . , vi. We use the following key result
regarding perfect elimination ordering in chordal graphs.

Theorem 5.21 ([26, 25]). Every chordal graph has a perfect elimination ordering which
can be found inO(|V |+|E|) time. Additionally, wemake no edge queries while finding
a perfect elimination ordering.

Now we apply the idea outlined in the beginning of this section on the elimination
ordering. Suppose v1, . . . , vn is a perfect elimination ordering (PEO) for the graph. We
obtain a topological sort of vertices of the graph, in the inductive order of the PEO. Let
Gi be the graph induced on the first i vertices of the PEO. Suppose that we know all the
orientations of the edges in Gi, and we have a topological sort of the orientation of G.
Now we insert vi+1 using binary search, since the neighborhood of vi+1 in Gi formes
a total order.

In particular, suppose we have vertices vp, vq ∈ Gi such that vp ≺ vi+1 ≺ vq ,
where vp, vq are consecutive vertices in the topological order on the neighbors of vi+1.
Then we simply insert vi+1 after vp in the topological order. We claim that the resulting
order is a valid topological order.

Proposition 5.22. The resulting order from the above procedure is a valid topological
order of the directed acyclic orientation of Gi+1.

Proof. We only need to worry about edges incident on vi+1 as for every other pair of
edges, their relative order has not been changed by the insertion and hence the topolog
ical order property is satisfied by induction. By Lemma 5.20, vi+1 has been inserted
properly in the unique topological order on the induced subgraph of vi+1 and its neigh
bors, as they form a clique (becaus of the simplician ordering property).

Thus we have the following result.

Theorem 5.23 (Biswas et al. [3], 2017). If the comparison graph is chordal, then the
undelying poset of the graph can be sorted using O(n logn) edge queries.

5.4.2 Comparability Graphs
Remember form Section 5.2 that a comparability graph is an undirected graph that ad
mits a transitive orientation. Observe that that the class of comparability graphs, is not
related to chordal graphs, i.e., there are chordal graphs that are not comparability and
vice versa (see Figure 5.6). In particular, in comparability graphs, we have no guarantee
about the existence of a simplicial ordering. However, we argue that we can incremen
tally insert new vertices and get the orientation of its edges by doing a variation of the
binary search, outlined in Rédei’s Theorem.

69



5.4. SPECIAL CASES

(a) (b)

(c) (d)

Figure 5.6: In Figure 5.6a we show a comparability, nonchordal graph that admits
a valid transitive orientation, as depicted in Figure 5.6b. In Figure 5.6c we show a
chordal, noncomparability graph. As shown in Figure 5.6d there is no valid transitive
orientation for this graph.

The idea is the same as we did for chordal graphs. However, here we don’t have
a simplicial ordering. We will simply start with an arbitrary ordering of the vertices
and maintain the topological sort of the subgraph induced by the initial set of vertices
and incrementally insert the new vertex. Let Gi be the induced subgraph on the first i
vertices in our arbitrary order. Suppose that we know all the orientations of the edges
inGi, and we also have a topological sort of the orientation ofGi. Now we insert vi+1

using binary search as before. In particular, suppose we have vertices vp, vq ∈ Gi such
that vp ≺ vi+1 ≺ vq , where vp and vq are consecutive in the topological order of Gi

among the neighbors of vi+1. Then, we simply insert vi+1 after vp in the topological
order. We claim the following. Note that, in contrast to the previous case, here we
use the term ”binary search” somewhat loosely, since we have no guarantee that the
neighbors of vi+1 form a clique, i.e., a total order. Let L = {L0, . . . Lk} be a layer
decomposition. We consider the sequence v0, . . . , vk of the neighbors of vi+1, each of
the belonging to a single layer, i.e. vj belongs to layer Lj , and no other vertex of the
sequence belongs to Lj (see Figure 5.7). Now, the elements of the sequence form a
total order and we can proceed as the previous case. From Lemma 5.20 and following
a similar strategy with the proof of Proposition 5.22, we have the following.

Proposition 5.24. The resulting order is a valid topological order of the directed acyclic
orientation of Gi.

Thus we have proved the following.

Theorem 5.25 (Biswas et al. [3], 2017). If the comparison graph is a comparability
graph, and the oracle function respects a valid comparability orientation, then we can
sort the underlying poset using O(n logn) edge queries.

Note that our proof crucially used the fact that the oracle function answers the
queries according to a comparability orientation, and this is not an artifact of the proof.

70



CHAPTER 5. FORBIDDEN COMPARISONS MODEL

Figure 5.7: Adding the vertex v = 18 to our running Example 1.12. Remember that
here our partial order is the ”divides” relation ”|”. Hence, 18 will be connected to
3, 2, 6, 4, 144. We only consider one representative from each layer, i.e. 2, 4, 144, which
form a total order. Doing binary search we only need to query the edges {4, 18} and
{18, 144}. We would have vp = 4 and vq = 144. Note, that after the sort, we would
end up with a new singleton layer L′ = {18} between L1 and L2.

Otherwise we may to sort using O(n logn) queries. For example, a complete bipartite
graph is a comparability graph, but if we are told that the orientation the oracle uses
is a comparability orientation, then only two orientations are possible (see Figure 5.8),
and we can sort in just one query. However we have shown an Ω(n2) lower bound in
Lemma 5.18 if the oracle is free to choose any directed acyclic orientation.

5.5 Conclusions
With the discussion on the special cases of chordal and comparison graphs we con
clude our discussion of the Forbidden Comparisons Model. In this model we exam
ined primarily the results in [2] and [3]. More precisely, in Section 5.1 we expanded

(a) (b)

Figure 5.8: The two possible orientations of a comparability bipartite graph. Note that if
we had an orientation of the form (v1, v2), (v2, v3) then wewould have the the transitive
edge (v1, v3). A contradiction, since our graph is a comparability graph and we cannot
have odd circles.

71



5.5. CONCLUSIONS

Query Complexity Time Complexity Lower Bound
Sorting [2] O((q + n) logn) O(n2 + qω/2) Ω(q + n logn)
Sorting [3] O((q+n) log(n2/q)) O(n2 + qω/2) Ω(q + n logn)
Sorting
(Chordal Graphs) O(n logn) O(nω) O(n logn)

Sorting
(Comparability Graphs) O(n logn) O(nω) O(n logn)

Random Sort Õ(n2√q + n+n
√
q) O(nω) Open Question

Table 5.1: The Algorithms of Chapter 5 and their respective query and time complexity. q is the
number of missing edges. ω is the exponent of the matrix multiplication. In the forth column, we
show the query complexity lower bounds. Note that query lower bounds are also lower bounds
on the time complexity.

our presentation on directed graphs. We introduced a special class of directed graphs,
the tournaments, while we examined the concepts of topological sort and the orien
tation of a graph. In Section 5.2 we presented the class of comparability graphs and
explored its connection with comparison graphs. The comparison graphs are at the
heart of our model. In Section 5.3 we discussed an improvement of the algorithm in
[2], presented in [3]. The algorithm presented in [2] achieves a querycomplexity of
O((q + n) logn) and a timecomplexity of O(n2 + qω/2), where ω is the exponent
of matrix multiplication. On the other hand, in [3] the authors present an algorithm of
O((q + n) log(n2/q)) querycomplexity and the same timecomplexity. Additionally,
in this section we present a lower bound of Ω(|E|), for q ≥ n2/4 and Ω(q + n logn)
for q < n2/4, on the querycomplexity. Lastly, in Section 5.4 we examine some spe
cial cases for chordal and comparability graphs. For both of these cases we showed an
algorithm with O(n logn) query and O(nω) time complexity. Another interesting re
sult we left out of our presentation is the randomised analysis in [2]. There the authors
present a randomised algorithm with Õ(n2√q + n+n

√
q)2 queries inO(nω) time. In

Table 5.1 we summarize the algorithms and lower bounds we examined in this chapter.
The authors in [3] present some interesting avenues for future work. Finding the

largest class of comparison graphs that can be sorted in O(n logn) time remains an
open question. Moreover, determining the query complexity when we know that the
underlying order relation is a total order, remains an open question. For example, in
that case, the complete bipartite graph cannot be oriented, as shown in Lemma 5.18,
and hence we do not know of any lower bound other than Ω(n logn) regardless of
the missing edges. In particular, sorting a complete bipartite graph is the famous nuts
and bolts problem and can be sorted using O(n logn) queries [27]. The authors in
[3] conjure that sorting in any undirected graph whose vertices constitute a total order,
can be done in O(n logn) queries. In other words, if we know that the directed acyclic
orientation of the comparison graph has a directed Hamiltonian path, we conjecture that
we can find that path in O(n logn) queries. An important thing to note is that for total
orders, in the forbidden pairs model, we do not even know how to find the ksmallest
element in O(n) time, for arbitrary k, while this is possible for k = 1, or k = n.

2In the Õ() notation we ignore the logarithmic terms.

72



CHAPTER6
CONCLUSION

In this thesis we surveyed some results from the literature regarding sorting in the partial
order setting. In general, we assumed that we are given access to an oracle function
c : U ×U → {�,�, 6∼} that informs us for the relation of two elements of our universe
U . We also, assumed that the oracle answers our queries with respect to an underlying,
unknown poset 〈U ,�〉. Our goal was to retrieve all the information of the unknown
partial order�, by making as few queries to the oracle as possible. In this direction we
considered two slightly different models. In Chapters 3 and 4 we discussed the Width
Based Model, introduced by Daskalakis et al. in [1]. In this model, we are given access
to an oracle c(·, ·), along with a parameter w, an upper bound to the underlying poset’s
width. In Chapter 5 we present the Forbidden Comparisons Model, due to Banerjee and
Richards [2]. In this model, our oracle function is defined slightly differently. Namely,
we have c : U ×U → {�,�,⊥}, where ⊥ denotes a forbidden comparison. Note, that
when c(a, b) =⊥, we can know the relation of a and b, or whether they are related at
all. We would have to deduce such relations through transitivity. Also, we are given
a comparison graph G = (V,E), where {u, v} is an edge, if and only if c(u, v) 6=⊥.
There, our parameter is q, denoting the number of missing edges ofG, i.e. q =

(|V |
2

)
−

|E|. We organized our presentation as follows.
In Chapter 3 we considered the sorting problem in the WidthBased Model. In The

orem 3.2 we showed an information theoretic lower bound for the sorting problem in the
WidthBased Model. In Algorithm 7, we presented the Entropy Sort, a queryoptimal
algorithm, in the WidthBased Model. Entropy Sort, despite achieving optimality with
respect to the number of queries, lack in time efficiency. In particular, the authors in
[1] used an elaborate method to estimate the cost of each query, by computing a mass
function, described in Section 3.3. This computation assigns large mass to uniforma
tive queries and a small mass to informative queries. We perform a weighted binary
search, with respect to the inverse value of the mass function. Unfortunately, in or
der to compute the mass of each query we consider all the extensions of the currently
computed poset, which are exponential in number. Hence, the timeinefficiency of the
algorithm. On the other hand, an algorithm that tries to bridge the gap between time and
query efficiency is presented in Merge Sort of Algorithm 8. We summarise the results
of Chapter 3 in Table 3.1. The open problems in this area are the following. Find a
queryoptimal algorithm, that achieves polynomial time. The authors suggest the work

73



in [22] as a possible route for improving the time complexity.
In Chapter 4 we discussed the Selection and kSelection problem, in the Width

Based Model. Note that in general we want to find the ksmallest elements of the
poset, following the Definition 1.14. Now, when k = 1, our problem would be to find
the minimal elements. Our goal is to find the ksmallest elements efficiently, with re
spect to queries, without sorting the whole poset, if possible. In Section 4.1 we show
some upper bounds for the problems at hand, by presenting some deterministic and ran
domised algorithms. Both the randomised and deterministic algorithms do not deviate
much from the philosophy of the constructive Definition 1.14. On the other hand, in
Section 4.2 we present some lower bounds for the same problem. The lower bounds
are presented in the adversary setting. In this setting we let the queries to the oracle
be done by an arbitrary agent, while we traverse on the other side and take the role of
an adversary which simulates the query function. The adversary is free to answer the
queries as she sees fit, but must be consistent with an underlying poset. The purpose
of the adversary is to force the agent to make as many queries as possible. The most
sophisticated and general lower bound is presented in Theorem 4.6, regarding the k
Selection problem. We also presented a lower bound for randomised algorithms for
the kSelection problem in Theorem 4.7. We summarized all the results of Chapter 4 in
Table 4.1. The open problems in this area are the following. Close the envelop between
the upper and lower bounds for the kselection problems.

Lastly, in Chapter 5 we examined the sorting problem under the Forbidden Com
parisons Model. Despite this model had been introduced by [2], we followed the pre
sentation in [3]. Observe that in the Forbidden Comparisons Model we have a piece
of information that was unavailable to us in the WidthBased Model, in particular, if
{a, b} is an edge, we know that a, b are related, without querying the oracle. Moreover,
ifKℓ is a subgraph of the given comparison graphG, we know that the elements inKℓ

are totally ordered. We used such subgraphs, to sort the whole poset. Note that, essen
tially the strategy we followed throughout the chapter is as follows. Firstly, we find
the orientation of the edges of the comparison graphG; then, we compute the transitive
remaining edges. The core result in this chapter is Theorem 5.17, due to Biswas et al.,
which is an improvement over the related theorem of Banerjee and Richards. Addition
ally, in that chapter we explored some results regarding special cases, i.e. chordal and
comparability graphs, due to Biswas et al. We summarized all these results in Table
5.1. The open problems in this area are the following. Finding the query complex
ity when we can assume that the comparison graph has a Hamiltonian path. Another
open question is to find the query complexity for finding the median, using the latter
assumption.

Sorting problems have been at the core of the Computer Science since its concep
tion at the middle of last century. Traditionally, we are given a totally ordered set, with
no information about the relations of its elements and we are required to retrieve this
information, as fast as possible. In this thesis, we followed a different direction. We
assumed a generalised model, where the elements of the given set can be only partially
ordered. Our way to determine the elements’ relation is restricted to querying an un
known oracle function which we treat as a black box. Additionally, we focused our
attention on the number of oracle calls, as a measure of efficiency. In some sense, we
ask an informationtheoretic question. We are given some partial information (the upper
bound w, or the comparison graph G) about a partial order relation; we want to know
how much additional information is required to determine the relations of the elements.
This problem proved to be much more intricate from its traditional counterpart. We saw
that in many cases, queryefficiency requires timeinefficiency and vice versa. In this

74



CHAPTER 6. CONCLUSION

area we discussed two different models, or variants of this broad topic; theWidthBased
Model and the Forbidden Comparisons Model, while we left other equally interesting
topics unexamined. For example in [11] Jean Cardinal et al. discuss the problem of
Sorting Under Partial Information1. In this model, we are given a totallyordered set
and some of the relations of its members, our goal is to retrieve the total order. While
this problem shares some similarities with the Forbidden Comparison Model, its key
difference is the we are given a directed graph, as a comparison graph, while we also
know that the elements are totally ordered. An interesting overview of some earlier
work in the poset sorting problem can be found in the Cardinal’s and Fiorini’s survey
paper [10]. Some additional interesting texts, for a more elaborate presentation of the
topics we covered in this thesis can be found in Banerjee’s Phd dissertation [29] and
Jayapaul’s Phd dissertation [30].

1Another interesting survey text regarding Sorting Under Partial Information is this [28]

75



76



BIBLIOGRAPHY

[1] Constantinos Daskalakis, Richard M. Karp, Elchanan Mossel, Samantha J.
Riesenfeld, and Elad Verbin. Sorting and selection in posets. SIAM J. Comput.,
40(3):597–622, 2011.

[2] Indranil Banerjee and Dana S. Richards. Sorting under forbidden comparisons. In
Rasmus Pagh, editor, 15th Scandinavian Symposium andWorkshops on Algorithm
Theory, SWAT 2016, June 2224, 2016, Reykjavik, Iceland, volume 53 of LIPIcs,
pages 22:1–22:13. Schloss Dagstuhl  LeibnizZentrum für Informatik, 2016.

[3] ArindamBiswas, Varunkumar Jayapaul, and Venkatesh Raman. Improved bounds
for poset sorting in the forbiddencomparison regime. In Daya Ram Gaur and
N. S. Narayanaswamy, editors, Algorithms and Discrete Applied Mathematics 
Third International Conference, CALDAM 2017, Sancoale, Goa, India, February
1618, 2017, Proceedings, volume 10156 of Lecture Notes in Computer Science,
pages 50–59. Springer, 2017.

[4] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM
SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, Jan
uary 10  13, 2021, pages 522–539. SIAM, 2021.

[5] Merkouris Papamichail. Introduction to matroid theory. Bachelor’s thesis, Na
tional and Kapodistrian University of Athens, 2020. https://pergamos.lib.
uoa.gr/uoa/dl/object/2925849.

[6] L. Mirsky. A dual of Dilworth’s decomposition theorem. The American Mathe
matical Monthly, 78(8):876–877, 1971.

[7] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics, 51(1):161–166, 1950.

[8] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory.
Johns Hopkins Studies in Nineteenth C Architecture Series. Johns Hopkins Uni
versity Press, 1992.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

77

https://pergamos.lib.uoa.gr/uoa/dl/object/2925849
https://pergamos.lib.uoa.gr/uoa/dl/object/2925849


BIBLIOGRAPHY

[10] Jean Cardinal and Samuel Fiorini. On generalized comparisonbased sorting prob
lems. In Andrej Brodnik, Alejandro LópezOrtiz, Venkatesh Raman, and Alfredo
Viola, editors, SpaceEfficient Data Structures, Streams, and Algorithms  Papers
in Honor of J. Ian Munro on the Occasion of His 66th Birthday, volume 8066 of
Lecture Notes in Computer Science, pages 164–175. Springer, 2013.

[11] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian
Munro. Sorting under partial information (without the ellipsoid algorithm).
Comb., 33(6):655–697, 2013.

[12] Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–
461, 1973.

[13] Frank Fussenegger and Harold N. Gabow. A counting approach to lower bounds
for selection problems. J. ACM, 26(2):227–238, 1979.

[14] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, USA, 1962.

[15] Jon Kleinberg and Eva Tardos. Algorithm Design. AddisonWesley Longman
Publishing Co., Inc., USA, 2005.

[16] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo
rithms. Springer Publishing Company, Incorporated, 5th edition, 2012.

[17] P. Hall. On representatives of subsets. Journal of the London Mathematical So
ciety, s110(1):26–30, 1935.

[18] Graham R. Brightwell and Sarah Jane Goodall. The number of partial orders of
fixed width. Order, 20:333–345, 2003.

[19] Ulrich Faigle and György Turán. Sorting and recognition problems for ordered
sets. In Kurt Mehlhorn, editor, STACS 85, 2nd Symposium of Theoretical As
pects of Computer Science, Saarbrücken, Germany, January 35, 1985, Proceed
ings, volume 182 of Lecture Notes in Computer Science, pages 109–118. Springer,
1985.

[20] Jeff Kahn and Michael E. Saks. Balancing poset extensions. Order, 1:113–126,
1984.

[21] Graham R. Brightwell, Stefan Felsner, and William T. Trotter. Balancing pairs
and the cross product conjecture. Order, 12:327–349, 1995.

[22] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time
algorithm for approximating the volume of convex bodies. In David S. Johnson,
editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
May 1417, 1989, Seattle, Washington, USA, pages 375–381. ACM, 1989.

[23] Yangjun Chen. Decomposing dags into disjoint chains. In Roland R. Wagner,
Norman Revell, and Günther Pernul, editors, Database and Expert Systems Ap
plications, 18th International Conference, DEXA 2007, Regensburg, Germany,
September 37, 2007, Proceedings, volume 4653 of Lecture Notes in Computer
Science, pages 243–253. Springer, 2007.

78



BIBLIOGRAPHY

[24] David Kelly. Comparability Graphs, pages 3–40. Springer Netherlands, Dor
drecht, 1985.

[25] Robert Endre Tarjan and Mihalis Yannakakis. Simple lineartime algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.

[26] Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects
of vertex elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976.

[27] János Komlós, Yuan Ma, and Endre Szemerédi. Matching nuts and bolts in o(n
log n) time. SIAM J. Discret. Math., 11(3):347–372, 1998.

[28] Preetum Nakkiran and Matthew FrancisLandau. Graph entropy , posets , and
their applications in sorting under partial information, 2015. https://preetum.
nakkiran.org/pdf/entropy_posets_supi.pdf.

[29] Indranil Banerjee. Problems on Sorting, Sets and Graphs. PhD thesis, George
Mason University, 2018. https://www.cct.lsu.edu/~ibanerjee/files/
Publications/PhD_Dissertation.pdf.

[30] Varunkumar Jayapaul. Sorting and Selection in Restriction Model. PhD the
sis, Chennai Mathematical Institute, 2017. https://libarchive.cmi.ac.in/
theses/varunkumarj_cs2017.pdf.

79

https://preetum.nakkiran.org/pdf/entropy_posets_supi.pdf
https://preetum.nakkiran.org/pdf/entropy_posets_supi.pdf
https://www.cct.lsu.edu/~ibanerjee/files/Publications/PhD_Dissertation.pdf
https://www.cct.lsu.edu/~ibanerjee/files/Publications/PhD_Dissertation.pdf
https://libarchive.cmi.ac.in/theses/varunkumarj_cs2017.pdf
https://libarchive.cmi.ac.in/theses/varunkumarj_cs2017.pdf


BIBLIOGRAPHY

80



INDEX

kSelection Problem, 13

adversarial lower bound, 47
adversarial setting, 52
algorithm

median of medians, 13
antichain, 6

maximal, 6
arc

backward, 18
forward, 18

arcs, 5
augmenting path, 19

chain, 6
maximal, 6

ChainMerge, 30
circle, 5
circuit, 5
clique, 5
cut, 20

problem, 20

DAG, 58
diagram

Hasse, 7

edges, 5
element

ksmallest, 8
height, 8
maximal, 6
maximum, 6
minimal, 6

minimum, 6

flow, 18
network, 17
problem, 18
value, 18

graph, 5
bipartite, 21
chordal, 69
comparability, 61
comparison, 57
complementary, 5
directed, 5
directed acyclic, 58
induced, 5
isomorphic, 5
orientation, 58
sub, 5
tournament, 58
transitive orientable, 61
transitive orientation, 58

Handshake Lemma, 5

layer decomposition, 60
linear extension, 61

mass function, 35
matching, 22

perfect, 22
merge sort, 12

network

81



INDEX

residual, 18
node

degree, 5
indegree, 5
inneighborhood, 6
neighborhood, 5
outdegree, 5
outneighborhood, 6
simplicial, 69

nodes, 5

oracle function, 11, 12

partial order, 4
partially ordered set, 6
path, 5

Hamiltonian, 59
PEO, 69
perfect elimination ordering, 69
poset, 6

conditioned, 35
extension, 35
height, 7
width, 7

query complexity, 12

relation, 3

antisymmetric, 3
binary, 3
enforced, 35
equivalence, 4
prohibited, 35
reflexive, 3
restriction, 8
symmetric, 3
transitive, 4

Selection Problem, 13
set

independent, 22
Sorting Problem, 12
subposet, 8

topological order, 58
total order, 4
transitive closure, 4

operator, 4
transitive orientation, 61

vertex, 5
degree, 5
neighborhood, 5

vertex cover, 22

weighted binary search, 35

82


	Prologue
	Introduction
	Relations
	Graph Theory
	Posets
	Graphical Representation of a Poset
	k-Smallest Elements
	Mirsky's and Dilworth's Theorems

	Sorting and Selection Problems
	Sorting in Totally Ordered Sets
	Selection in Totally Ordered Sets


	Algorithms in Flows, Matchings and Posets
	Networks and Flows
	Flow Networks
	Cuts in Networks

	Matchings
	Hall's Theorem
	König's Theorem

	Finding a Minimum Chain Decomposition

	Width-Based Model: Sorting Algorithms
	Representing a poset: The ChainMerge data structure
	Bin-Insertion Sort
	Greedy Counter-Example

	Entropy Sort
	Weighted Binary Search
	The Algorithm
	Analysis

	Merge Sort
	Merge Sort
	Peeling Algorithm
	Lifting the Known Width Hypothesis

	Conclusions

	Width-Based Model: Selection Algorithms
	Upper Bounds
	Selection Problem
	k-Selection Problem

	Lower Bounds
	Selection Problem
	k-Selection Problem

	Conclusions

	Forbidden Comparisons Model
	Graph Orientations & Tournaments
	Layer Decomposition & Linear Extension

	Comparability & Comparison Graphs
	Gallai's Theorem

	Sorting Under Forbidden Comparisons
	Upper Bounds
	Lower Bounds

	Special Cases
	Chordal Graphs
	Comparability Graphs

	Conclusions

	Conclusion
	Bibliography
	Index

