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Abstract

The reachability query is of particular interest for investigating the expres-
sive power of DynFO, since it is one the simplest queries that cannot be
expressed statically in first-order logic, but rather requires recursion.

We present the framework of Dynamic Complexity using notation from
descriptive complexity. We study the class DynFO by showing which prob-
lems are in DynFO and the relation between DynFO and other classes such
as P, P-complete, L-complete, NL-complete and DynAC0. We also give
the definition of ”bounded-expansion reductions” from [7] which honor
dynamic complexity classes.

Then we present a detailed proof of Reachability being in DynFO from
[7] by using computational linear algebra problems. Futhermore, using the
previous result and techniques from its proof, we give the proof of 2-Sat is
DynFO and PerfectMatching and MaxMatching are in non-uniform DynFO
from [7].
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Chapter 1

Introduction

In traditionally computational complexity, we deal with static problems.
More precisely, a static problem is a problem that for an input ,A, we check
whether this input satisfies a boolean query, Q. Static problems are very
important for computational theory, but some problems are presented to
us in a non-static form. A lot of problems can be described as dynamic,
i.e. as problems that each time the input data are modified, i.e. objects are
inserted or deleted. For example, when a person waits for the next train to
come, but the train is cancelled on short notice, then the person has to find
another train or a combination of trains so he will reach his destination as
fast as possible.

Another example is that of GPS. When the GPS is always updating
the route from one place to another, because of traffic or construction on
some roads or accidents that stop the circulation. Another example is the
compilation of programs. Staged compilation is a compilation strategy in
which the code-compilation process is completed in multiple stages: for
example, at static compile time, at link time, at load time, and at run time.
But if we work with a large program and each time we want to change a
part of it and then recompile, we need a way not to read and compile all
the program again.

It is not always easy to compute a query after a change of data, because
sometimes this leads to an amount of data that it is questionable if the
efficiency or latency(lack of it) of them is guaranteed. That’s why instead
of static algorithms, we work with incremental algorithms. An incremental
algorithm is given a sequence of input, and gives a sequence of solutions
that build incrementally while adapting to the changes of the input. More
specifically, incremental algorithms use auxiliary data to answer queries
after a change on the input data.
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Introduction

In this thesis, we do not study incremental algorithms, but the complex-
ity of problems that change dynamically. When we work in database, we
deal with a sequence of small updates and queries to a large amount of data
and the most important is that all of this work should be performed as fast
as possible compared to the size of the database. So databases are dynamic.
At first, it was necessary to find a way to describe how to maintain each
query after an insertion or deletion and that language would give enough
information about the time and space that was needed. Unfortunately, for
many decades there were not appropriate Database Complexity Classes for
database systems and traditional complexity classes are not very useful for
database systems. But in 1995, Patnaik and Immerman published a pa-
per which introduced complexity classes appropriate for database systems,
more specifically dynamic complexity classes [24]. For that reason, we study
the complexity of dynamic problems (or database problems) in the frame
of descriptive complexity.

In 1974, Ron Fagin proved that the problems that belong to the class
NP(non-deterministic polynomial time class) can be described by second
order existential logic. In the next years, it has been shown that most
of the traditional complexity classes have also a descriptive characteriza-
tion [19]. Another example of a well-known complexity class, that has
a descriptive characterization, is the deterministic polynomial time, or P,
which is equal to FO(LFP) - first-order logic closed under the inductive
definitions [19]. Also, it holds that the notions of naturalness in traditional
complexity theory corresponds easily to the notion of naturalness in logic.
Thus, in descriptive complexity, we can define any notion that was defined
in traditional complexity theory. Indeed, any input can be presented as
relational database which is a finite logical structure, with schemata (or vo-
cabularies) that consist of the domain, relation symbols and constant sym-
bols. Also we define a set of structures that depend on a specific schema.
Since each complexity problem is set of of inputs which satisfy a common
property then in descriptive complexity we define them as subset of a set
of structures for some schema.

One of the most commercial query languages for the databases systems
is SQL. We use SQL as query language because it is more convenient to
deal with it than first-order logic. Also, in database theory, an important
result is that SQL is relational ”complete”. i.e. it can express all relational
queries expressible in calculus. Relational calculus is equivalent to first-
order logic [1], and that’s why first-order logic is a very interesting language
in database theory and very useful to express our efforts of maintaining
queries after insertion or deletions. Thus, first-order logic is very powerful
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Introduction

as an update mechanism and is in the center of research for many decades.
We already know that first-order logic with arithmetic( more specifically
relations for <, +, ×) is as powerful as uniform AC0 circuits, and so AC0 is
the complexity class that consists of the problems that is the most likely to
belong to the dynamic complexity class of first-order logic. Therefore, we
study dynamic problems, that can be maintained by the minimum possible
number of resources.

In the last paragraph, we mention the term dynamic complexity class
of first-order logic and this class is denoted as DynFO. More specifically,
the complexity class DynFO consists of all the queries that can be main-
tained after single tuple insertions and deletions using first-order formulas
(or AC0-circuits). Many queries can be maintained by first-order logic. The
reachability query is a query that have occupied researchers for many years
and can be defined as follows: for a given graph G, it returns all pairs (s,
t) of vertices, for which there is a path from s to t. The reachability query
represent the transitive closure of a relation and also is a well known NL-
complete [19], and so it was one of the problems that researchers tried to
put it in DynFO for many years. Also, it is one of the most basic prob-
lems in graph theory and also is the most important problem in computer
science, since represents the configuration graph of a computation from the
initial state to the final state (accepting or rejecting).

Many version of the reachability query have been under investigation
for membership in DynFO. Immerman and Patnaik have shown that reach-
abiltiy in undirected graphs, on deterministic graphs and in acyclic graphs
are in DynFO for several decades now [24]. ”Reachability in directed graph
is in DynFO” is a question that troubled researchers for many years and Im-
merman and Patnaik had it as an open problem. Through the years, reach-
ability in directed graphs has been studied for several variants of DynFO.
William Hesse proved in 2001 that the dynamic complexity of transitive
closure (or the reachability query) is in DynTC0, i.e. he proved that the
reachabiliy quey can be maintained by quantifier-free updated formulas [15].
Eventually, around 2015 came the proof that reachability in directed graphs
is in DynFO [7].

Finally, we show that two queries that deal with matchings in graphs
can be maintained in a non-uniform extension of DnyFO. More specifically,
we will give the proof of that PerfectMatching and MaxMatching are in
non-uniform DynFO from [7]. Here, PerfectMatching is the Boolean query
that asks for the existence of a perfect matching in a graph, whereas Max-
Matching returns the size of the maximum matching. Non-uniform DynFO
is the extension of DynFO whose programs can use arbitrarily pre-defined
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auxiliary relations.
In Chapter 2, we fix our notation for database, structures and queries.

Based on [7], we give the definition of the dynamic complexity framework
and give some problems in DynFO from [7]. We give the definition of
the first-order reductions, bfo reductions and the bfo-tt reductions from
[7] [19]. Later, we give the proof of some results between DynFO and other
complexity classes from [19]. In chapter 3, we fix our notation for linear
algebra. Chapter 4 is dedicated to the proof that the reachability query is
in DynFO [7]. Chapter 5 presents the results on 2-Sat and graph matchings.
The conclusion and the further work is given in Chapter 6.
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Chapter 2

Dynamic Complexity

2.1 Descriptive Complexity

As we have already seen, in descriptive complexity, an input can be repre-
sented as a relational database and relational databases are considered as
logical structures. Thus, for all the notions we will need to define so that
we give the descriptive characterization of problems and study their com-
plexity, we will use the notation from relational database. More specific,
we define the relational schema, the structure over a schema, the query and
we will talk about the arithmetic for d-tuples, d≥1.

2.1.1 Schema and database

A schema(or a vocabulary) is a tuple of relation symbols, function symbols
and constant symbols. All relation symbols Ri are characterized by a num-
ber, ai, which denotes their arity. Arity is the number of argument taken
by a relation. Similarly, function symbols have an arity. A well-known
example of schema is

τF = 〈0, 1,+2,×2〉,

the schema of a field, which consists of two constant symbols 0 and 1, and
two functions symbols of arity 2.

If a schema does not contain function symbols then we call it relational
schema. More formally, a relational schema τ(or a relatioanl vocabulary)
consists of a set τ of relation symbols, accompanied by an arity function Ar:
τrel → N, and a set τconst of constant symbols. An example of relational
schema is τg = 〈E2, s, t〉, the relational schema of graphs with two specific
endpoints, which consists of a relation symbol E with Ar(E)=2 (the edge
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2.1 Descriptive Complexity Dynamic Complexity

relation) and two constant symbols s and t that correspond to the two
endpoints. Another example is σ = 〈≤2, S

′〉, the relational schmea of
binary strings, which consists of two relation symbols ≤ with Ar(≤)=2
(or the ordering relation) and S with Ar(S)=1.

A relational database (or a database) is a finite logical structure. A
database D over schema τ consists of a domain D, a set of relations and
a set of constants. More precisely, a database D with domain D assign to
every relation symbol R ∈ τrel a relation of arity Ar(R) over D and to every
constant symbol c ∈ τconst an element from D. Also, except from domain, we
define the active domain and will be denoted as adom(D), which contains of
all the elements of domain D that occur in some relation or as a constant.

An example of a relational database is a genealogical database

A0 = 〈U, F1, P2, S2〉,

where U is the domain of the database, F is a relation symbol that has been
assign to a relation of arity Ar(F)=1 and P, S is relation symbols that have
been assigned to relations of arity Ar(P)=Ar(S)=2. Moreover, F is true
for the female elements of U, P and S is true for the parents and spouses,
respectively.

2.1.2 Structures and arithmetic

A structure S with relational schema τ is a tuple

〈D,RS1 , ..., RSr , cS1 , .., cSs 〉.

More specific, is a pair (D,D), where D (or dom(S)) is a domain and D
is a database with domain over schema τ. The domain D is a finite and
nonempty set. For every relation symbol R with Ar(R) = k in τ, S has a
relation RS with arity k defined on the domain D. For every constant symbol
c in τ, S has a constant cS which corresponds to a particular element of the
domain D. For example, a structure of the relational schema of graphs τg
is the tuple

〈{0, 1, ..., n}, ES , sS , tS〉
where the domain corresponds to the vertices of the graph.
The structure

〈{0, 1, ..., 6}, {(0, 3), (1, 2), (1, 4), (2, 6), (3, 5), (5, 6)}, 1, 4〉

of schema τg defines the graph with 7 vertices, 6 edges and two specific
vertices 1 and 4.
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An another example is a structure of the relational schema σ of a binary
string, which is the tuple

〈{0, 1, ..., n},≤S , SS〉

where the elements of the domain correspond to bits of that string. The
structure

〈{0, 1, ..., 6},≤S , {2, 3, 4}〉

of schema σ defines the binary string that is one in the positions 2, 3, 4.
Also, a structure of the schema λ=〈F1, S2, P2〉 is a tuple

〈U, FS , SS , PS〉

where F is unary relation which is true for all the female elements of U, P
and S is binary relations for parent and spouse, respectively. The structure

S = 〈{a, b, c, d, o, t}, {c, d, o}, {(a, c), (b, o)}, {(a, b), (c, b), (b, t), (b, d), (o, d), (o, t)}〉

of the schema λ defines the genealogical tree of the set of people {a, b, c, d,
o, t}. The people c, d, o are female, the people a,c and b,o are spouses and
a,c are parents of b and b,o are parents of o and t.

In descriptive complexity, a problem is a set of inputs and an input is
a logical structure, so a problem will be a subset of a set that consists of
all structures for a specific schema, and we will denote as STRUCT[τ] for
a schema τ. Also, a problem is the same thing as a boolean query.

In the previous paragraphs, we give the definitions of databases and
structures. All of the readers may be confused why this two notions are
different. The difference between structure and database is that the domain
of a structure is static but the domain of the database, or more specific the
active domain, may change if we insert or delete a tuple from a relation or
set a new constant.

Many times the domain of a logical structure is not in order, i.e. between
the elements of the domain there is no ordering that will say an element is
lesser or grater from another element. But when we discuss about compu-
tation, it is necessary for the domain to be ordered. A domain is in order
if the schema of its structure contains the binary arithmetic relation ≤ (or
linear order). When the schema of a structure has ≤ as its element, then
this structure must always consider that relation as the total ordering of
its domain. Also, when linear order is contained in a schema τ, then the
domain D of every τ-structure has 1-1 correspondence with the set {0, 1,...,
|D|-1}. Moreover, a schema may contain more arithmetic relations like +
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2.1 Descriptive Complexity Dynamic Complexity

and ×, which are interpreted by the relation of addition and multiplication
on the domain elements, respectively. Also, we define L(τ) be the first-order
language built up from the elements of the schema τ and the arithmetic re-
lations, =, ≤ and BIT ,and arithmetic constants min, max using logical
connectives: ∨, ∧, ¬, variables: x, y, z, ...., and quantifiers: ∀, ∃. The
constants min and max correspond to the minimum and maximum element
of the domain in the ordering ≤ and BIT(x,y) is true if and only if the y-th
bit of the binary representation of x is one.

There may be times that a schema will need to use arithmetic for d-
tuples, where d ≥1. If d=1, then it is the arithmetic we are already known.
But, when d > 1, then the arithmetic is defined differently. Now we will
see how the arithmetic lifts for d=2 in first-order logic and for arbitrary d
the proof exists in [29].

Theorem 2.1.1. The arithmetic can be lifted to relations over 2-tuples in
first-order logic.

Proof. A tuple ~x = (x0,x1) ∈ N2, where N = {0,1,....,N}, corresponds to the
number x1 + (1+N)x0.

The relation < for comparing a 2-tuple with another 2-tuple can be de-
fined in first-order logic as follows:

ϕ2<(x0, x1, y0, y1) := x1 < y1 ∨ (x1 = y1 ∧ x0 < y0)

and the relation ≤ is the reflexive closure of <.

The relation + for 2-tuples can be defined in first-order logic as follows.
For 1-tuples we have that φ1+(x0,y0,z0,z1) expresses that x0 + y0 = z1(N+1)
+ z0. If x0 + y0 ≤ N, then x0 + y0 = z1(N+1) + z0 if and only if z1 = 0
and z0 = x0 + y0. Otherwise, we have N+1 ≤ x0 +y0 ≤ 2(N+1), and hence
there are u, v ∈ N such that x0 + u = N and u + v = y0 - 1. Thus x0 +
y0 = x0 + u + 1 + v = (N+1) + v. Hence, x0 + y0 = z1(N+1) + z0 if and
only if z1 = 1 and z0 = v.

For the formula of the relation + for 2-tuples, we have that φ2+(x0,x1,y0,y1,
z0,z1,z2,z3) expresses that x0 + y0 = z1(N+1) + z0 and x1 + y1 + z1 =
z3(N+1) + z2 in similar way as above. The formula φ2+ can be easily de-
fined by using formula φ1+.

The relation × for 2-tuples can be defined in first-order logic as follows.
To expose the overall idea, we consider the multiplication of two decimal
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Dynamic Complexity 2.2 Dynamic Complexity

numbers. For example,

540× 720 = (500+ 40)× (700+ 20) =

(500× 700) + (500× 20) + (40× 700) + (40× 20)

and with the same way we will give the definition of multiplication for
2-tuples from [29]. For ~x = (x0,x1) and ~y = (y0, y1) we have that:

ϕ2×(~x,~y) := ϕ
1
+(ϕ

1
×(x1, y1), ϕ

1
+(ϕ

1
×(x1, y0), ϕ

1
+(ϕ

1
×(x0, y1), ϕ

1
×(x0, y0))))),

i.e., (x0, x1)× (y0, y1) = [(x1×y1)+ [(x0×y1)+ [(x1×y0)+(x0×y0)]]].

2.1.3 Queries

In the previous sections, we mention the concept of the query as an example
of computation. A query I is mapping from structures of one schema to
structures of another schema. More precisely, if it is given us a problem
over the schema τ or a subset of STRUCT[τ] then a query maps this subset
to another subset of STRUCT[σ] or a problem over the schema σ. The query
I is always polynomial bounded, i.e. there is a polynomial p such that for
every structure A ∈STRUCT[τ], ||I(A)|| ≤p(||A||). For example, the query
Iadd, which for a given pair of binary strings A and B, returns their addition.
Query Iab is the mapping from STRUCT[τab] to STRUCT[τs]. The τab is
the schema that consists of the domain D, where ||D||=n, the total ordering,
and two unary relations A and B that A(i) is true if and only if the i bit of
A is one and similarly for B and the τs is the schmema 〈≤2, S1〉 that defines
binary strings. It is again obvious that this query is polynomial bounded,
since ||I(A)|| = ||A||.

A boolean query I is mapping from structures of a schema σ to the set
{0,1}. For example, the query DIAM[8] on graphs is true if and only if
the diameter of the graph is at most 8. This query is the mapping from
STRUCT[τg] to {0,1}, where τg is the schema of graphs and it is obvious
that query DIAM[8] is polynomial bounded.

2.2 Dynamic Complexity

2.2.1 Dynamic Complexity Classes

We have already seen that in dynamic complexity, inputs are represented
as relational structures and the domain is fixed from the beginning, but
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the database in the initial structure is empty and is then modified by a
sequence of insertions and deletions of tuples. A change operation is thus
of the form insert ~t into R or delete ~t from R, for some tuple ~t and
input relation R or set constant cj to a, where a is element of the domain.
More precisely, we denote by Rn,σ the set of all possible change operations,
where n denotes the size of the domain of the structure with schema σ.Let
α be a sequence of change operations and I an input database, then α(I)
denotes the structure we get after applying α to I.

Let I0 be the initial structure and S⊆STRUCT[σ] be a boolean query.
After the first insertion or deletion of a tuple there is the query as to if I1
satisfies the problem S, where I1 is the result structure of applying that
change operation to I0. In order to prove that I1 satisfies S, we maintain
an auxiliary structure A1. After the i-th change operation, i.e. after that
the i-th insertion or deletion modifies the current structure, we want to
maintain the corresponding auxiliary structure Ai, so that to check if the
input structure Ii satisfies S. Let A0,A1,...,Ar be the sequence of auxiliary
structure, the sequence a=a1,...,ar of change operations. We compute A0
from the corresponding I0 and Ai can compute efficiently from Ai−1 and
change operation ai. Each Ai is not polynomial larger than the Ii and if
Ai is given then we can test whether Ii satisfies S. Now we give the formal
definition for dynamic complexity classes.

Definition 2.2.1. Let C be a a static complexity class. Let σ= 〈Ra1
1 ,Ra2

2 ,...,Rat
t ,c1,...,cs〉

be a schema and let S ⊆ STRUCT[σ] be any problem. Let I0,I1,...,Ir be the
sequence as it defined above. Let n ∈ N and let a1,...,ar be any sequence of
any change operation from Rn,τ.

Dynamic complexity class DynC is the set of boolean queries S ⊆ STRUCT[σ]
that satisfy the following conditions:

• There exists another boolean query, T ⊆ STRUCT[τ] in static C that
serves as auxiliary structure for the dynamic algorithm.

• There exists mappings f : R∗n,σ1→ STRUCT[τ] and g : STRUCT[τ]×Rn,σ→ STRUCT[τ] and a constant k ∈ N such we have the following.

� The maps f and g determine a sequence A0,A1,...,Ar ∈ STRUCT[τ]
such that for all i ≤ r,

(i) A0 = f(n)

(ii) ||Ai|| ≤ nk

1R∗
n,σ is the set of finite sequence from Rn,σ.
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(iii) Ai = g(Ai−1,ai), and

(iv) Ii ∈ S ⇔ Ai ∈ T

Thus, we can efficiently, i.e., in static C for each change operation and
query, maintain the auxiliary structure Ai, and test whether Ii ∈ S by
testing whether Ai ∈ T.

Let P denote the dynamic algorithm that works on as input structure
I and maintains an auxiliary structure A as we see in Definition 2.2.1..
Aso, a dynamic program P has a set of maintaining rules that specify how
auxiliary relations are maintained after a change operation. For a change
operation δ, we denote the maintaining state for input structure I and aux-
iliary structure A by Pδ(I,A) and for a change sequence α, we denote the
maintaining state by Pα(I,A).

The classes that we will study are:

• DynFO: the class of all dynamic queries that can be maintained by a
dynamic algorithm with formulas from first-order logic starting from
an empty input and auxiliary structures.

• DynFO(+, ×): the same as DynFO, except that the algorithm have
three particular auxiliary relations that are initialized as a linear order
and the corresponding addition and multiplication relations.

• DynAC0: the class of all dynamic queries that can be maintained by
uniform AC0-circuits,

In the next section, we will give the proof of that DynFO(+, ×) = DynAC0

from [12].

2.2.2 DynFO(+,×) = DynAC0

It is well known that first-order logic with arithmetic is as powerful as
uniform AC0-circuits [3]. This correspondence naturally transfers to the
dynamic setting. That is, a query can be maintained in DynFo(+,×) if and
only if it can be maintained by uniform AC0 circuits.

Let the activated domain (ad) of the structure be those elements of a
k-tuple that have at some point during this sequence of change operations
inserted or deleted from a relation. The differences between the domain,
elements of the active domain, and the activated domain are that the do-
main contains all the elements that can be used in relations and does not
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change during a dynamic computation, the active domain adom(D) of a
database D consists of all elements that occur in some tuple of D after a
change sequence a and the activated doamin consists of all elements that
occur somewhere in a. For example, adding the edges (1,2) and (2,3) to
an initially empty graph over the domain {1,2,3,4} and then deleting edge
{1,2}, it gives us an input databse with active domain {2,3} and activated
elements 1,2,3. By that example, we conclude that every elements in the
active domain is activated but not vice versa.

Let ad(x) be the predicate that defines this set. Let ≤ad(x,y) denote a
total ordering on the activated domain, defines by the order which elements
entered the activated domain. To resolve ties, when INSERT(G,a,b) occurs,
a 6= b and a, b /∈ ad, we arbitrarily choose to let element a into the activated
domain prior to element b. Once we have an ordering ≤ad, we can view
ad as a set of numbers {1,...,nad}. Let maxad(x) be the predicate that hold
only for current maximum, nad. Let BITad(x,i) denote the bit predicate on
these numbers, meaning ” the i-th bit of the number x is on”(we assume
bit position are numbered starting at 1). Let +ad(x,y,z) and ×ad(x,y,z) be
graphs of the ordinary addition and multiplication function on the domain
ad.

Lemma 2.2.2. We can built and maintain auxiliary relations that defines
ad(x), ≤ad(x,y), maxad(x), BITad(x,i), +ad(x,y,z) and ×ad(x,y,z).

Proof. All these relations do not change after a delete operation, so we only
write formulas for updates after insertion.

kinsertad (x, a, b) ≡ adold(x)∨ x = a∨ x = b

kinsert≤ad (x, y, a, b) ≡≤adold (x, y)∨ (kinsertad (y, a, b)∧ ¬adold(y)∧

(x = y∨ adold(x)))∨

(kinsertad (x, a, b)∧ kinsertad (y, a, b)∧

¬adold(x)∧ ¬adold(y)∧ (x = a∧ (y = a∨ y = b))

kinsertmaxad
(x, a, b) ≡ kinsertad (x, a, b)∧ ∀z(kinsertad (z, a, b)→ kinsert≤ad (z, x, a, b))

To express BITad(x,i), observe that the only interesting situation is when
x is new to ad. Using the fact that addition is first-order expressible, we
can identify the prior maximum element, z, of ad and increment its binary
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representation by 1 or 2, depending on whether x is first or second new
entry into ad.

kinsertBITad
(x, i, a, b) ≡ BITadold(x, i)∨

((¬adold(x)∧ (x = a∨ (adold(a)∧ x = b))∧

∃z(maxold(z)∧ ∃y(ad(y)∧ ¬BITold(z, y)∧

∀j(j <ad y→ BITold(z, j))∧

((i > y∧ BITold(z, i)))∨ i = y)))∨

(increment the binary representation by 2, similarly)

the maintainability of +ad(x,y,z) and ×ad(x,y,z) follows from the known
fact that + and × are first-order expressible in terms of ≤ and BIT.

Lemma 2.2.2. sheds some light on why lower bound proofs for Dyn-FO
are so hard. Let Dyn-(uniform)-AC0 be the class of dynamic problems where
it is possible to update both the query and the auxiliary structure with
a Dlogtime-uniform constant-depth, polynomial-size boolean circuits with
unbounded fan-in, where the amount of auxiliary structure is polynomial
long in the length of the input string, and the length of the input string is
fixed.

Let Dyn-FO$ be the same as Dyn-FO except that we assume the entire
universe is activated. This could be enforced by, e.g., assuming that start-
ing from the ∅ structure, a k-tuple is inserted and deleted from the relation.

Corollary. Dyn-FO$ = Dyn-AC0.

Proof. It was shown that uniform-AC0 is equivalent to FO(≤,BIT), first-
order logic equipped with the given built-in arithmetic predicated. Once the
entire universe is activated, by above Lemma we can build all the necessary
arithmetic predicates on the universe dynamically.

2.2.3 Problems in DynFO

Consider the simple boolean query: Parity, which is true if and only if the
input binary string has an odd number of one’s. We know that Parity is
not in static FO [14] [2]. The dynamic algorithm for Parity maintains a
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bit b which is switched after any change to the string. Moreover, it is very
important to remember the input string so that we can tell if a request has
actually changed the string.

Example 2.2.3. The schema of the Parity problem is τ that consists of the
relation M with Ar(M)=1 and zero constants. Let I be the input structure
over schema τ coding the binary string w. Then Iw |= M(i) iff the i-th
bit of w is a one. Let σ be a schema that consists of the relation M with
Ar(M)=1 and one constant b where b is a boolean constant symbol. Let A
be an auxiliary structure over schema σ.

The initial auxiliary structure A∅ = 〈{0,1,...n-1},∅,false〉 consists of a
string of all 0’s, with the boolean b initialized to false and from Definition
2.2.1. we have that f(n) = A∅ .

To show that Parity is in DynFO we need to give first-order formulas
that maintaining the auxiliary relations after a change operation. The cases
of change operations are the setting of a bit of w to 0 or 1. Let M,b de-
note the relations in the auxiliary structure A before the change, and M

′
,b
′

are their values afterwards which have produced by the function g. Depend-
ing on whether the change operation is an insert or delete, the two cases are:

ins(a,M):

M
′ ≡M(x)∨ x = a

b
′ ≡ (b∧M(a))∨ (¬b∧ ¬M(a))

del(a,M):

M
′ ≡M(x)∧ x 6= a

b
′ ≡ (b∧ ¬M(a))∨ (¬b∧M(a))

It is well known that the graph reachability problem in not first order
expressible and this often been used as a justification for using database
query languages more powerful than FO.

The reachability query is a query that has troubled researchers for many
years. Much time and effort have been put into showing that reachability
query belongs to DynFO. At first, Immerman and Patnaik prove that reach-
ability query in undirected graphs, on deterministic paths and in acyclic
graphs are in DynFO[1].

Now we will give the proof that the graph reachability problem Reachu
from [19], that is the restriction of Reach to undirected graphs is in DynFO.

Theorem 2.2.4. Reachu is in DynFO.

18
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Proof. The schema of the input structure consists of a single relation E with
Ar(E)=2. The schema of the auxiliary structure for this problem consists of
the relations F with Ar(2) and PV with Ar(PV)=3 and the input relation,
E. F(x, y) means that the edge (x, y) is in the current spanning forest.
PV(x, y, u) means that there is a (unique) path in the forest from x to y
via vertex u. The vertex, u, may be one of the endpoints. So, for example,
if F(x, y) is true, then so are PV(x, y, x) and PV(x, y, y). The goal is to
maintain a spanning forest of the underlying graph via those relations. We
maintain the undirected nature of the graph by interpreting insert(E, a, b)
or delete(E, a, b) to do the operation on both (a, b) and (b, a).

Insert (E, a, b):

We denote the updated relations as E
′

F
′
, and PV

′
. Also, we shall use

P(x, y) to abbreviate (x=y ∨ PV(x, y, x)), and Eq(x, y, c, d) to abbreviate
the formula,

((x = c∧ y = d)∨ (x = d∧ y = c)).

Maintaining the input edge relation is trivial:

E
′
(x, y) ≡ E(x, y)∨ Eq(x, y, a, b).

The edges in the forest remain unchanged if vertices a and b were already
in the same connected component. Otherwise, the only new forest edge is
(a, b).

F
′
(x, y) ≡ F(x, y)∨ (Eq(x, y, a, b)∧ ¬P(a, b)).

Now all that remains is to compute PV
′
. The latter changes if and only if

edge (a, b) connects two formerly disconnected trees. In this case, all new
tuples (x, y, z) have x coming from one of the trees containing a and b, and
y coming from the other:

PV
′
(x, y, z) ≡ PV(x, y, z)∨ (∃uv)[Eq(u, v, a, b)∧ P(x, u)∧ P(v, y)

∧(PV(x, u, z)∨ PV(v, y, z))].

Delete (E, a, b):

If the edge (a,b) is deleted then E
′
(a,b) is set to false, but the relations

F, PV change only if this edge was already in the forest, otherwise remain
unchanged. When the edge is in the forest, then it is necessary to identify
the vertices of the two trees in the forest created by deletion and choose (if
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any) another edge which by its insertion will connect those two trees and
so updating the relations F, PV.

We define a temporary relation T to denote the PV relation after (a, b)
is deleted, before the new edge, e, is inserted.

T(x, y, z) ≡ PV(x, y, z)∧ ¬(PV(x, y, a)∧ PV(x, y, b)).

Using T, we then pick the new edge that must be added to the spanning
forest. New(x, y) is true if and only if edge (x, y) is the minimum edge that
connects the two disconnected components:

New(x, y) ≡ E(x, y)∧ T(a, x, a)∧ T(b, y, b)∧

(∀uv)[(E(u, v)∧ T(a, u, a)∧ T(b, v, b))→ (x < u∨ (x = u∧ y ≤ v))].

E
′
, F

′
, and PV

′
are then defined as

E
′
(x, y) ≡ E(x, y)∧ ¬Eq(x, y, a, b).

We remove (a, b) from the forest and add the new edge:

F
′
(x, y) ≡ (F(x, y)∧ ¬Eq(x, y, a, b))∨New(x, y)∨New(y, x).

The paths in the forest, from x to y via z, that did not pass through a and
b, are valid. Also, new paths have to be added as a result of the insertion
of a new edge in the forest:

PV
′
(x, y, z) ≡ T(x, y, z)∨ [(∃u, v)(New(u, v)∨New(v, u))∧ T(x, u, x)

∧T(y, v, y)∧ (T(x, u, z)∨ T(y, v, z))].

We next give a new DynFO algorithm for the problems Reachd and
Reach (acyclic). The problem Reachd is the restricted version of Reach in
which we only allow deterministic paths, i.e. the edge (u,v) in on the path,
then this must be the unique edge leaving u. By Reach(acyclic) we mean
the Reach problem restricted to qieries in which the input graph is acyclic
during its entire history.

Theorem 2.2.5. Reachd and Reach(acyclic) are in DynFO.
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Proof. In the next sections we will give the proof that Reachd is reducible to
Reachu from [19] and since Reachu is in DynFO, Reachd is in DynFO(that
follow from Theorem ,which we will see later).

Now we will give an DynFo algorithm for Reach(acyclic). At first, we
assume that every insertion will preserve acyclicity. For this problem the
schema of the auxiliary structure consists of relation P(x,y) which means
that there is a path from x to y in the graph. We maintain this relation as
follows:

Insertion(E,(a,b)):2

P
′
(x, y) ≡ P(x, y)∨ (P(x, a)∧ P(b, y))

Delete(E,(a,b)),:

P
′
(x, y) ≡ P(x, y)∧ [¬P(x, a)∨¬P(b, y)∨(∃uv)(P(x, u)∧P(u, a)∧E(u, v)

∧¬P(v, a)∧ P(v, y)∧ (v 6= b∨ u 6= a))].

If there is a path from x to y passing through the edge (a, b), then P
′
(x,y)

will always be false. Otherwise there is a path from x to y passing through
the vertex u, where u is the last vertex in this path from which a is reachable.
Note that u 6= y because the graph was acyclic before the deletion of edge
(a, b). Thus, the edge (u, v) described in the above formula must exist and
acyclicity insures that the path x → u → v → y does not involve the edge
(a, b).

Theorem 2.2.6. Minimum Spanning Tree can be computed in DynFo.

Proof. For this problem we will maintain the forest edges and non-forest
edges dynamically and the relations PV(x,y,e) and F(x,y) as in the case
of Reachu. A big difference from Reachu is that we have to maintain the
minimum spanning tree and not a spanning tree. In this problem also exists
a function w : E → N, which gives the weight of every edge.

Insert(E,(a,b)): When the edge (a,b) is inserted, there exist only two
cases:

1) There is no path between a and b, and then (a,b) is in the forest ,
and PV is updated as in Reachu.

2E is the binary input relation.
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2) There is path between a and b. We find all the edge that appear in
this path and check if the weight of (a,b) is less from the weight of anyone
of them. If not, then (a, b) cannot be a forest edge. Otherwise, if the (c,d)
is the maximum weighted edge from the path, then we set F

′
(x,y) to false

and F
′
(a,b) to true and update PV accordingly.

Delete(E,(a,b)): After the deletion of the edge (a,b) two trees have split.
So we determine all vertices that are reachable from the vertices a and b,
respectively. Then we order them by their weight and choosing the mini-
mum and insert it. If there is more than one minimum, we break with tie
with the lexicographic order3. At the end, PV is updated accordingly to
reflect the merging of two disconnected trees into one.

We conclude this section with another low-level problem that is in
DynFO:

Proposition 2.2.7. Multiplication in in DynFO

Proof. Given two n-bit number, x, y, their addition can be expressed in
FO⊆Dyn-FO. We maintain the product in a bit array, P. Suppose the
change operation is Change(x,i,b), i.e. change the i-th bit of x to b.
(Change(y,i,b) is analogous). There are two cases:

If the bit is changed from 0 to 1, then P
′

is given by shifting y to i bits to
the left and then adding it to P. It is easily accomplished by a first-order
formula. Indeed, we have the auxiliary relation auxY[j+i] which is true iff
the j-th position of the binary representation of Y is one

auxY[k] = (k > i)∧ Y[k− i]

and for every i

P
′
[i] = P[i]⊕ auxY[i]⊕ϕcarry(i)

If the bit is changed from 1 to 0, then P
′
is given by shifting y by i bits to the

left, and adding the 2’s complement of the resulting number with respect to
2|P| to P4. Again this is easily accomplished by a first-order formula. Indeed,
we define the auxiliary relation coNY which the 2’s complement of Y with

3Here, lexicographic order means that we choose the first non-forest edge that recon-
nects the two disconnected trees.

4|P| is the length of the binary number P.
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respect to 2N and One[i] is true iff the i-th position of 1 is one, so for every
i

co|P|Y[i] = (¬auxY[i])⊕One[i]⊕ϕcarry(i)
and for every i

P
′
[i] = P[i]⊕ co|P|Y[i]⊕ϕcarry(i)

2.3 Dynamic Reductions

2.3.1 First-Order Reductions

In descriptive complexity, a way of reducing one problem to another prob-
lem is the first-order reductions. First-order reductions are used to build
reduction that honor dynamic complexity, the bfo-reductions which we will
see in the next section. We already know that a first-order query is a first-
order definable mapping from structures of one schema to structures of
another, so a first-order reduction is simply a first order query that is also
a many one reduction. At first, we give an example and then the formal
definition.

Example 2.3.1. The problem Reachd is reducible to Reachu. Indeed, given
a directed graph, G, let G

′
be the undirected graph that results from G by

the following steps:

(i) Remove all edges out of t.

(ii) Remove all multiple edges leaving any vertex.

(iii) make each remaining edge undirected.

It is very easy to see that there is a deterministic path in G from s to t if
and only if there is a path from s to t in G

′
.

The first-order reduction is the expression Id−u = λxy(φd−u,s,t) whose
meaning is, ”Make the new edge relation {(x,y) | φd−u}, and map s to s and
t to t.”

a(x, y) ≡ E(x, y)∧ x 6= t∧ (∀z)(E(x, z)→ z = y)

ϕd−u(x, y) ≡ a(x, y)∨ a(y, x)

Id−u leaves the size of the domain unchanged, so we will say that Id−u is
a unary first-order reduction. Now we give the definition of the many-one
reductions and first-order reductions.
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Definition 2.3.2. Let C be a complexity class, and let A and B be boolean
queries over σ-structures and τ-structures, respectively. Let I be a mapping
from σ-structures to τ-structures with the property that for all σ-structures
A,

A ∈ A⇔ I(A) ∈ B

Then I is C-many-one reduction from A to B. When I is a first order query,
it is a first-order reduction.

Example 2.3.3. In a previous section, we see that the problem Parity and
Multiplication are in DynFo. Now we show that there is a first-order re-
duction from Parity to Multiplication. Let τ = 〈A1, B

′〉 be the schema of
structures that are a pair A, B of boolean strings. Then Mult is query from
τ-structures to τs-structures, where τs is the schema of boolean strings. Since
reductions map boolean queries to boolean queries, we actually deal with the
boolean version of MULT. MULTb is a boolean query on structures of vo-
cabulary τ

′
= 〈A1, B

′
, c, d〉 that is true iff bit c of the product of A and B

is ”d”.
The first-order reduction I from τs-structures to τ

′
-structures is given by

the the following formulas:

ϕA(x, y) ≡ y = max∧ S(x)

ϕB(x, y) ≡ y = max

I ≡ λxy〈true,ϕA, ϕB, 〈0,max〉, 〈0, 1〉〉

Observe that the effect of this reduction is to line up all the bits of string A
into column n-1 of the generated product and the end product of those two
binary strings give us the number of ones.More specific:

The string A is: 0 . . . 0 s0 0 . . . 0 s1 . . . 0 . . . 0 sn−1 (the length of
every ”0 . . . 0 si” is n)

The string B is: 0 . . . 0 1 0 . . . 0 1 . . . 0 . . . 0 1 (the length of every
”0 . . . 0 1” is n)

The product of A and B gives the sum of n rows of the form ”0 . . . 0
. . . si 0 . . . 0 . . . ” for every i ∈ [0,n-1], and this sum gives a number P
which actually is the number of one’s of string A.
It follows that

A ∈ Parity⇔ I(A) ∈Multb
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as desired. Thus, Parity ≤fo Multb. It follows that if Mult were first-order,
then Parity would be as well, which is a contradiction since we already know
that Parity is not in Fo.

This I is also a unary first-order reduction, since is leaves the size of
the domain unchanged. Now we give the definition of k-ary first-order
reductions. these map structures with domain size n to structures with
domain size nk.

Definition 2.3.4. Let σ and τ be two schemata, with τ = 〈Ra1
1 ,...,Rar

r ,c1,...,cs〉.
Let S ⊆ STRUCT[σ], T ⊆ STRUCT[τ] be two problems. Let k be a positive
integer. Suppose we are given an r-tuple of formulas φi ∈ L(σ), i=1,...,r,
where the free variables of φi are a subset of {x1,...,xk·ai}. Finally, suppose
we are given an s-tuple, ~t = {~t1, ...~ts}, where each ~tj is a k-tuple of constant
symbols from L(σ). Let I = λx1,...xd〈ϕ1, ..., ϕr,~t〉 be a tuple of there formulas
and constants.(Here d = maxi(kai)). Then I induces a mapping also called
I from STRUCT[σ] to STRUCT[τ] as follows. Let A ∈ STRUCT[σ] and
let n be the size of the domain of A.

I(A) = 〈{0, ..., nk − 1}, R1, ..., Rr,~t〉

Here each cj is given by the corresponding k-tuple of constants. The relation
Ri is determined by the formula φi, i = 1,...,r.

Suppose that I is a many-one reduction from S to T, i.e, for all A in
STRUCT[σ],

A ∈ S⇔ I(A) ∈ T
Then we say that I is a k-ary first-order reduction from S to T.

Since the composition of first-order reductions are a first-order reduc-
tion, then we have that the relation ≤fo is transitive.

Now, we will give a k-ary first-order reduction [19].

Theorem 2.3.5. Reach is hard for NL via first-order reductions.

Proof. Let S ⊆ STRUCT[σ] be a boolean query in NL. Let N be the
non-deterministic logspace Turing machine that accepts S. We construct
a first-order reduction I : STRUCT[σ] → STRUCT[τg] such that for all
A ∈ STRUCT[σ],

N(bin(A)) ↓ ⇔ I(A) ∈ Reach (1)

Let c be such that N uses at most clogn bits of worktape for inputs bin(A),
with n = ||A||. Let σ = 〈 Ra1

1 ,...., Rar
r ,c1,...,cs〉 and let a = max{ai | 1 ≤ i ≤
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r}. Let k = 1 + a + c. Consider a run of N on input bin(A). We code an
instantaneous description (ID) of N’s computation as a k-tuple of variables:

ID = (p, r1, ..., ra, w1, ...., wc)

The idea is that variables r1,...., ra encode where in one of the input relations
the read head of N is looking. If for example it is looking at relation Ri, then,

N’s read head is looking at a ” 1 ” ⇔ A |= Ri(r1, ..., rai)

Variables w1,..., wc encode the contents of N’s work tape. Remember that
each variable represents an element of A’s n-element domain, so it corre-
sponds to a logn-bit number. Finally , we need O(loglogn) bits of further
information to encode: (1) the state of N, (2) which input relation or con-
stant symbol the read head is currently scanning, and (3) the position of the
work head. We assume that n is sufficiently large that all of this information
can be encoded into a single variable, p.

Now we start to build the desire k-ary first-order query I and show that
it satisfies (1). I will be constructed as follows:

I = λID,ID ′ 〈true,φN,α,ω〉

where

(i) The domain relation being ”true” indicates that for anyA ∈STRUCT[σ],
the domain of I(A) consists of all k-tuples from the domain ofA, |I(A)|
= |A|k.

(ii) A |= φN(ID,ID
′
) if and only if (ID,ID

′
) is a valid move of N on input

bin(A),

(iii) A |= α(IDi) if and only if IDi is the unique initial ID of N , for inputs
of size ||A||, and,

(iv) A |= ω(IDf) if and only if IDf is the unique accept ID of N , for inputs
of size ||A||.

Formulas α and ω are the following

α(x1, ..., xk) ≡ x1 = x2 = ... = xk = 0

ω(x1, ..., xk) ≡ x1 = x2 = ... = xk = max
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Formula φN is not hard, but it is more tedious. It is essentially a disjunction
over N’s finite transition table.

A typical entry in the transition table (〈q, b, w〉, 〈q ′ , id, w
′
, wd〉). This

says that in state q, looking at bit b with the input head and bit w with
the work head, N may go to state q

′
, move its input head one step in

direction id, write bit w
′

on its work tape and move its work head one step
in direction wd. The corresponding disjunct in φN must decode the old
state from variable p and must decode from p which input relation is being
read. Say it is Ri. Then the bit b is ”1” if and only if Ri(r1,...,rai) holds.
Similarly, we extract from p the segment j of the work tape that is currently
being scanned together with position s on that worktape. Thus, bit w is
”1” if and only if BIT(wj,s) holds.

With these details completed, it now follows that for anyA ∈ STRUCT[σ],
I(A) is the computation graph of N on input bin(A). It follows that N ac-
cepts bin(A) if and only if there is a path in I(A) from s to t.

2.3.2 Bfo-Reductions

Now we give reductions that honor dynamic complexity, i.e. reductions
for comparing dynamic complexity classes. First-order are too powerful
for these classes and that’s why we define a restricted version of first-order
reductions.

Definition 2.3.6. Bounded expansion, first-order reductions (bfo) are first-
order reductions such that each tuple in a relation and each constant of the
input structure affects at most a constant number of tuples and constants
in the output structure.. Furthermore, a bfo reduction is required to map
the initial structure, I, to a structure with only a bounded number of tuples
present. If this condition is relaxed we get bounded expansion, first-order
reductions with precomputation (bfo+). If S is reducible to T via bounded
expansion, first-order reduction (with precomputation), we write S ≤bfo T
(S ≤bfo+ T)

Example 2.3.7. In example 2.2.1, we see that the problem Reachd is first-
order reducible to Reachu. It is easy to see that this first-order reduction is
bounded expansion, since each insertion or deletion of an edge (a,b) from
the graph G can cause at most two edges to be inserted or deleted in G

′
=

Id−u(G).

Since the composition of bfo reductions are a bfo reduction, then we
have:
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Proposition 2.3.8. The relation ≤bfo is transitive.

Now we will give the proof that bfo reductions preserve dynamic com-
plexity from [19].

Proposition 2.3.9. If T ∈ DynFO and S ≤bfo T, then S ∈ DynFO.

Proof. We are given a bfo reduction, I, from S to T. If any change to an
input, A, for S corresponds to a bounded number of changes to I(A). Given
a change operation r to A, we immediately know the number of possibly
affected tuples and constants in I(A), let’s say k. Since I is first-order,
we can existentially quantify all the changed tuple and constants. Then by
using the DynFO algorithm for T, we can respond to the at most k changes.
Every answer of a query of T will be the correct answer to the given query
to, since I is a many-one reduction.

Example 2.3.10. In example 2.2.3, we see that the problem Parity is first-
order reducible to the problem Multiplication. We can see that this first-
order reduction is bounded expansion, since each change of one bit of string
A can cause one change to the string of A in the product A × B. Therefore,
Parity is bfo-reducible to Multiplication., and we have already proven that
Multiplication in is DynFO, so Parity is in DynFO by Proposition 2.3.9.
which is known from Example 2.1.1..

Example 2.3.11. Now we will see that the first-order reduction from The-
orem 2.3.5. is not bfo reduction. The change of a bit of bin(A) from 0 to
1 or from 1 to 0 can affect a non-constant number of edges in I(A), since
if we change a tuple from a relation then that wil affect the most of the
instantaneous descriptions, and that’s why I is not a bfo reduction. Also, if
I is a bfo reduction and as we will show in Section 4 that Reach ∈ DynFO,
then we have from Proposition 2.3.9. that NL ⊆ DynFO. The conjecture
NL ⊆ DynFO has not proven yet, but it is believed that does not hold.

2.3.3 Logical Truth-Table Reductions

In this section, we define logical truth-table reductions which are a more
general notion of reductions between queries than the bfo-reductions from
the previous section.

The logical truth-table reductions is what it is the truth table reductions
to many-one reductions. The notion of the truth-table reducibility was
defined originally by Post [25] and a definition is :
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Definition 2.3.12. There exists a truth-table reduction from problem A to
problem B if there is a function which, on input x, precomputes a number
of questions about membership in B and describes a Boolean function of the
answers to these questions which specifies the membership of x in A [4].

Here, the idea is to define a reduction from a computation of a query q
on a structure S to the computation of a query q

′
by

(i) defining in a first-order fashion, from S, a collection of structures of
the form J (S,~a), one for each tuple ~a of some arity m over the domain
of S,

(ii) compining all query results q
′
(J (S,~a)) into a structure S ′ , and

(iii) defining q(S) from S and S ′ by a first-order formula.

Here, (i) corresponds to the numbers of questions from Definition 2.3.12, (ii)
makes these questions about the membership in B and (iii) corresponds to
the Boolean function of the answers to these questions. That’s how logical
truth-table reductions relate to truth-table reductions.

The structures of the form J (S,~a) are defined not over the domain of S
but over some Cartesian product over this domain, so we have to deal with
two ”dimension parameters”. One of these two is d which will denote the
dimension of the domain of the structures J (S,~a) and the other is m which
will denote the arity of the tuples ~a. Now we give the formal definition of
first-order truth-table reductions.

Definition 2.3.13. An interpretation J of dimension d and arity m from
databases with schema σ to databases with schema τ consists of

• a σ-formula φD(~x,~y) and

• σ-formula φR(~x1,...,~xAr(R),~y), for every R ∈ τ,

where ~y = y1,...,ym, ~x = x1,...,xd and, for every j, ~xj = xj1,...,xjd.
For every σ-structure S and each m-tuple ~a over the domain S of S, the

interpretation J defines a structure J (S,~a) with

• domain D~a def
= { ~b ∈ Sd | S |= φD(~b,~a) }, and

• relations

R~a
def
= {(~b1, ...,~bAr(R)) ∈ (D~a)Ar(R) | S |= ϕR(~b1, ....,~bAr(R), ~a)}

, for every R from τ.
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A first-order truth-table query-to-query reduction R = (J ,φ) from q to q
′

consists of an interpretation J and a formula φ with free variables x1,...,xk,
where k is the arity of q, which fulfills the following reduction property.

For every structure S, q(S) is the set {~t | S ′ |= ϕ(~t)}, where the structure
S ′ with domain dom(S) is defined as follows. Let d be the dimension of J ,
m its arity, l the arity of q

′
, and σ, τ the schemata of J .

• S ′ has all relations from S;

• Furthermore, S ′ has a relation Q of arity m + dl that contains all
tuples of the form (~a,~s), where ~a ∈ dom(S)m and ~s ∈ q

′
(J (S,~a)). In

(~a,~s), the l-tuple s over universe dom(S)d is considered a dl-tuple in
the obvious way.

The formula φ is called the wrap-up formula of the reduction.

Now we will give the definition of the bounded expansion of fo-tt reduc-
tions from [7] as we did for fo-reductions in the previous section.

Definition 2.3.14. A fo-tt reduction is a bfo-tt reduction if its interpreta-
tion has bounded expansion. The interpretation J has bounded expansion
if there is a constant c such that for all structures S1, S2 over the domain
D, which differ by exactly one tuple, and for every ~a over D, the databases
J (S1,~a) and J (S2,~a) differ by at most c tuples.

Example 2.3.15. Now we give a bfo-tt reduction from 2-Sat to Reach. The
Boolean query 2-Sat asks whether a given propositional formula in 2-CNF5

has a satisfying assignment. A instance of 2-Sat is represented as a struc-
ture The domain of this structure is the set of variables of a formula φ that
the structure represents. The clauses of φ are represented by three binary
input relations CTT , CTF and CFF such that a tuple (x,y) ∈ CTT corresponds
to a clause x ∨ y, a tuple (x,y) ∈ CTF to a clause x ∨ ¬y, and a tuple (x,y)
∈ CFF to a clause ¬x ∨ ¬y. So the change operation of tuples corresponds
to a change operation of clauses in a natural way.

Let θ be a 2-CNF formula with set of Variables V and G = (V ∪ V, E)
be a graph where V = {¬x | x ∈ V } and E contains the edges (¬L,L

′
) and

(¬L
′
,L) if L ∨ L

′
is clause in θ. So there is reduction that maps θ to G

and we see that θ is satisfiable if and only if there is no variable x ∈ V such
that there exist both a path from ¬x to x and from x to ¬x in G.

5A propositional formula is in 2-CNF if it is in conjunctive normal form and each
clause contains at most two literals.
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Indeed, if θ is satisfiable then we assume that there is a variable x ∈ V
such that there exist both a path from ¬x to x and from x to ¬x in G. In
the assignment that satisfies θ, variable x can be true or false. Let x → y1→ . . . → yk → ¬x be the path from x to ¬x, then formula θ consists of the
clauses: (¬x ∨ y1), (¬y1∨ y2), (¬y2∨ y3), . . . , (¬yk ∨ ¬x). If we assign
x to true, at least one of these clauses is not satisfied. Indeed, if we assign
y1 to true, then for the rest of the variables we have that yi=True for i ∈
[2,k]. Thus the clause (¬yk ∨¬x) is false and otherwise, for the rest of the
variables we have that yi=false for i ∈ [2,k]. Thus the clause (¬x ∨ y1) is
false. Similarly, we work if assign x to false, but for the path from ¬x to x.
Therefore, we lead to contradiction and so there is no variable x ∈ V such
that there exist both a path from ¬x to x and from x to ¬x in G

Now if there is no variable x ∈ V such that there exist both a path from
¬x to x and from x to ¬x in G then we assume that θ is not satisfiable. For
the path from x to 6=x, let U be the set of vertices in G reachable from x, Z
the set of vertices from which ¬x is reachable and W := V(G) \ (U ∪ Z).
By hypothesis and construction, U, Z, W are pairwise disjoint, and there
are no edges from U to V ∪ W or from U ∪ W to Z . Let me assign the
true value to every variable in U ∪ W (including x) and the false value to
every variable in V (including the literal ¬x). It is now simple to check that
this formula is satisfied for this truth assignment. Similarly, for path from
¬x to x, we get that θ is satisfiable. Therefore, we lead to contradiction and
the equivalence holds.

Now about the reduction, the graph G will be encoded over the set of pairs
over V. For two variables u 6= v from V, a pair (x,u) will represent x and
(x,v) will represent x. We demand u 6= v because if u = v then these kind of
parameters do not contribute to success of the reduction and that’s why we
ignore 2-CNF formulas with one variable . This can be achieved by a two-
dimensional interpretation J of arity 2. For each pair of variables (u,v),
J (θ,u,v) is the graph defined as above with u and v indicating positive and
negative literals, respectively. Thus, the formula φD((x1,x2), (y1,y2)) could
be chosen as (x2 = y1) ∨ (x2 = y2) , allowing only pairs in the domain of
J (θ,u,v) whose second entry is one of the parameters given by y1 and y2.
The formula φE((x11,x12),(x21,x22),(y1,y2)) can be chosen as

((CTT(x11, x21)∨ CTT(x21, x11))∧ (x12 = y2)∧ (x22 = y1))∨

((CTT(x11, x21)∨ CTT(x21, x11))∧ (x12 = y1)∧ (x22 = y2))∨ · · ·

where (y1, y2) is the parameters for this interpretation and for x21 or x22
to be equal to y1 means that their corresponding entry is a positive literal
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and it is negative if they are equal to y2. So this formula says that for the
variables x11 and x21 we have:

((¬x11 ∨ x21)∨ (x21 ∨ ¬x11))∨ ((x11 ∨ ¬x21)∨ (¬x21 ∨ x11))∨ · · ·

for every possible match between x12, x22 and y1, y2.
For the CTF the formula is the following:

((CTF(x11, x21)∨ CTF(x21, x11))∧ (x12 = y2)∧ (x22 = y1))∨

((CTF(x11, x21)∨ CTF(x21, x11))∧ (x12 = y1)∧ (x22 = y2))∨ · · ·

and this formula says that for the variables x11 and x21 we have:

((¬x11 ∨ ¬x21)∨ (x21 ∨ x11))∨ ((x11 ∨ x21)∨ (¬x21 ∨ ¬x11))∨ · · ·

for every possible match between x12, x22 and y1, y2.
Also, for CFF the formula is the following:

((CFF(x11, x21)∨ CFF(x21, x11))∧ (x12 = y2)∧ (x22 = y1))∨

((CFF(x11, x21)∨ CFF(x21, x11))∧ (x12 = y1)∧ (x22 = y2))∨ · · ·

and this formula says that for the variables x11 and x21 we have:

((x11 ∨ ¬x21)∨ (¬x21 ∨ x11))∨ ((¬x11 ∨ x21)∨ (x21 ∨ ¬x11))∨ · · ·

for every possible match between x12, x22 and y1, y2.
Finally, the wrap-up formula φ can be chosen as

∃u, v(u 6= v)∧ ¬∃x(Q((x, u), (x, v), (u, v))∧Q((x, v), (x, u), (u, v)))

where the relation Q is true if and only if there is path between two vertices
and Q has arity 6, since the tuple ~a = (u, v) is of arity 2 and all the 2-tuples
s is over the domain dom(θ)2 and thus, the relation Q has arity 2 + 2 × 2
= 6. The formula φ says that there exists a pair of variables (u, v) with u 6=
v,where u and v indicate the positive and negative literals in θ, respectively,
and that there is no variable x such that there exist both a path from ¬x to
x and from x to ¬x in G.

The modification of a single clause in θ induces only two first-order
definable modifications to the edge set of each corresponding graph, since
each clause give two edges to the edge set. Therefore, the reduction is also
bounded.
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In the previous section, we gave the proof that bfo-reductions preserve
the dynamic complexity. We will give the proof of the same about the bfo-tt
reductions from [7].

Proposition 2.3.16. DynFO is closed under bfo-tt reductions, that is, if
there is a bfo-tt reduction from a query q to a query q

′
and q

′ ∈ DynFO,
then q ∈ DynFO.

Proof. Let (J ,φ) be a bfo-tt reduction from q to q
′
with expansion bound c.

Let σ,τ be the schemata of q and q
′
, respectively, and let d be the dimension

and m the arity of J . let P ′ be the dynamic program of q
′
.

The program P ′ can be turned into a dynamic program P for σ-structures
that have one auxiliary relation R of arity m + dAr(R

′
), for every input

and auxiliary relation R
′

of P ′ . For each m-tuple ~a, the P simulates the
behavior of P ′ on J (S,~a), independently. Since the interpretation J has
expansion bound c then a change operation for S translates into a sequence
of at most c change operations for J (S,~a). So, for evry tuple ~a, there
is a sequence of at most c change operations of P ′ , which can be applied
successively and in parallel for each ~a.

Since the query relation of P ′ is one of its auxiliary relations, P ′ has,
in particular, the relation Q from the reduction property above available,
and can therefore compute q(S) in a first-order manner.

For the dynamic complexity class DynFO(+, ×), the reduction that we
work with is bfo(+, ×)-tt reduction.

Definition 2.3.17. A bfo(+, ×)-tt reduction is defined almost the same
way as a bfo-tt reduction. The difference is that S has three distinguished
relations ≤, +, and ×, representing arithmetic on the universe. In such a
reduction, the query q must not depend on the choice of ≤, +, and ×, but
J (S,~a) of course can.

By an adaptation of the proof of Proposition 2.2.1., it can be shown
that:

Proposition 2.3.18. If there is a bfo(+, ×)-tt reduction from a query q to
a query q

′
, then q ∈ DynFO(+, ×) if q

′ ∈ DynFo.

2.4 DynFO and Other Complexity Classes

In this thesis, we talk about dynamic complexity and their complexity
classes. More precisely, the complexity class that we deal with the most
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is DynFO. Every time a new class is defined, it is necessary to show where
exactly it is compare to other classes. We will show where DynFO stands
compare to class like AC0, P, P-complete.

A way that we have defined DynFO is as the complexity class that con-
sists of all the queries that can be maintained after single tuple insertions
and deletions using first-order formulas (or AC0-circuits). So we have that
AC0 ⊆ DynFO. But, in the previous section, we show that Parity ∈ DynFo
and we are already known that Parity is not in AC0[7]. Thus, AC0 ⊂
DynFO.

It is not difficult to show that DynFO ⊆ P.

Theorem 2.4.1. DynFO ⊆ P.

Proof. Let φ be a query over graphs that is maintained in DynFO. Let I
be the structure coding the graph G. We show that the problem whether
I |= φ can be solved in polynomial time. Let A be the auxiliary structure.
Let I∅, A∅ be the empty input structure and the auxiliary empty structure,
respectively, before any insertion or deletion and Ii, Ai be input structure
and the auxiliary structure, respectively, after insertion of i edges. After
the first insertion we want to answer the question I1 + A1 |= φ, which needs
polynomial time to be answered, since only one element has inserted and is
easy to check if I1 + A1 |= φ holds. After the second insertion we want to
answer the question I2 + A2 |= φ, which also needs polynomial time to be
answered for the same reason as before. So after the i (i ≤ |E|, where E is set
of edges of G) insertions the question Ii + Ai |= φ needs polynomial time to
be answered. Finally, after the |E| insertion, where G|E|=G, the question I|E|
+ A|E| |= φ needs polynomial time to be answered. If any deletion happens
and from i edges we have i-1, then we already know that the question for i-1
edges can be answered in polynomial time. Therefore, the problem whether
I |= φ can be solved in polynomial time, so DynFO ⊆ P.

There is the conjecture that DynFO is a proper subset of P. Also, the
relation between DynFO and P-complete is very interesting. We will give
the proof of that DynFO contains P-complete problems from [19] and more
specific the padded form of Reacha. Reacha is the reachability problem for
alternating graphs. Alternating graph is a directed acyclic graph whose
vertices are marked ”∨” or ”∧”. Suppose the a and b are vertices of
alternating graph G, and a has edges to the vertices x1,...,xn. We say that
b is reachable from a if and only if:

(i) a = b; or
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(ii) a is marked ”∧”, n ≥ 1, and b is reachable from all the xi’s; or

(iii) a is marked ”∨” and b is reachable from some x1.

We also note that if all vertices of the graph are marked ”∨” then this will
be the usual notion of reachability.

As we see at Section 2.3.2, reduction with bounded expansion and pre-
computation are appropriate reductions for comparing the dynamic com-
plexity of problems. The most natural reductions for P-complete problems
are either bounded expansion, or can be modified to be so and the same
holds for Reacha.

Proposition 2.4.2. Reacha is P-complete for P via bfo+ reductions.

Proof. It is shown that Reacha is complete for ASPACE[logn] via first order
reductions[18]. Also it holds that ASPACE[logn] = P [5] [21] and then we
have that Reacha is complete for P via first-order reductions.

Now we want to show that this first-order reduction has bounded ex-
pansion. An alternating machine does not look at its input until the last
step of its computation, and so each input bit is copied only once and the
first-order reductions from [11] has bounded expansion.

Definition 2.4.3. For any problem S, define the padded form of S as fol-
lows:

PAD(S) = {w1, w2, ..., wn | n ∈ N, w1 = w2 = ... = wn, w1 ∈ S}

Theorem 2.4.4. PAD(Reacha) is in DynFO.

For every S, PAD(S) is computationally equivalent to S. From Propo-
sition 2.4.2., we have that Reacha is P-complete via bounded-expansion
first-order reductions with precomputation and so is PAD(Reacha). Also,
for every change operation to an input of S, it required n change operations
to the input of PAD(S). Therefore, the DynFO algorithm for PAD(Reacha)
has n first-order steps to respond to any change of the input to S. Reacha
is in FO[n], since FO[nO(1)] = P from Theorem 15.5 from [19] and from
Proposition 2.4.2. we know that Reacha is in P. That’s why Theorem 2.4.4.
holds and we have that a P-complete problem is in DynFO(Figure 2.1).

The complexity class DynFO contains also L-complete and NL-complete
problems. The problem Reachd is a L-complete problem and is in DynFO
from Theorem 2.2.4 and Reach is a NL-complete problem that is in DynFO,
which we will show it in Section 4.
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AC0 (= FO(+, ×))

DynFO

Reachu

Reachd

MultiplicationParity

Reach

PAD(Reacha)MST

Integer Addition

Integer Subtraction

Reacha

PP-complete

DynFO(+, ×)

(= DynAC0)

1)The black line means that one class is proper subset of the above classes.

2)The dashed line means that one class is not for sure a proper subset of the above classes.

Figure 2.1: Hierarchy of Complexity Classes
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2.5 DynFO(+, ×) vs. DynFO

In this section, we will give the proof of that if a query has a specific property
and belongs to DynFo(+, ×) then also belongs to DynFO from [7]. This
property is the weak domain independence.

Definition 2.5.1. A query q is weakly domain independent, if q(D) �
adom(D) = q(D � adom(D)), for all databases D6.

Example 2.5.2. The query Reach is a well-known weakly domain indepen-
dent query. As we have already known, the query representing Reach maps
a τg-structure to a binary relation that contains the transitive closure of the
graph. More specifically, the reachability query returns, for a given graph
G, all pairs (s,t) of vertices, for which there is a path from s to t. The
active domain adom(D) is the set of all the vertices in G, that occur in the
edge relation. Thus, the query over the database D � adom(D) is equal to
the query over the database D that is restricted from adom(D), since the
elements that occur in the edge relation is the only possible elements for
which may exist a path from one to another.

It is pretty obvious to see that any other variant of Reach, i.e., Reacha,
Reachu, and Reachd, are weakly domain independent.

Example 2.5.3. Now, we will see a query that is not weakly domain inde-
pendent. That query is the connectivity query, which returns, for a given
graph G, if there is a path for every two vertices of the graph. The active
domain adom(D) is the set of all the vertices in G, that occur in the edge
relation. Thus, the query is not weakly domain independent, since when we
restrict D to adom(D), we exclude all the isolated vertices and that affects
the connectivity of the graph.

Proposition 2.5.4. If a query q ∈ DynFO(+, ×) is weakly domain inde-
pendent, then q ∈DynFO.

In section 2.2.2., we saw that DynFo(+, ×) = DynAC0. More precisely,
we proved that DynFO$ = DynAC0, where DynFO$ is the same complexity
class as DynFO except that we assume the entire domain is activated. Thus,
if the domain is activated then we have that a DynFO algorithm has the
same expressive power as DynFO(+, ×) and that is the reasoning for the
proof of the Proposition 2.5.4.. A way to activate the domain, before any

6D �A is the restriction of a databaseD over the set A and results fromD by restricting
all relations to tuples over A.
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change operation starts, is to insert and after delete the edge {u,u} for every
element u of the domain. If the domain is activated then the relations ≤ad,
+ad and ×ad are also in the structure and represent a linear order on the
activated elements, and corresponding ternary addition and multiplication
relations.

Now we give the proof of the Proposition 2.5.4..

Proof. Let q be a weakly domain independent query and P a DynFO(+,
×) algorithm that maintains q. Here, we assume that q uses only one
binary relation E as input relation, the adaptation for arbitrary structures
is straightforward. Since P is a DynFO(+, ×) algorithm, it means that any
change operation is applied to an initially empty structure and there exist
non-empty initial relations that provide a linear order and the corresponding
addition and multiplication relations on the domain.

We will construct a DynFO algorithm P ′ that simulates P . The main
difficulty is that a DynFO algorithm uses initially empty auxiliary relations
unlike a DynFO(+,×) algorithm. Therefore, P ′ cannot simulate P right
from the beginning of the change sequence, since it does not have ≤, + and
× available.

Now we will fully describe algorithm P ′.
The update algorithm P ′ maintains a linear order ≤, an addition rela-

tion + and a multiplication relation× on the set A of the activated elements.
This part of the simulation is the same as we have seen in Lemma 2.2.2..
The relation ≤ orders the activated elements in the order of activation. For
correctness: if an (a,b) is inserted and both a and b were not activated
before then a and b become the largest elements of ≤ with a ≤ b. If only
one of a,b were not activated then this elelement becomes the largest of ≤.
The update formula for determining whether a tuple (x,y) is in the rela-
tion ≤ after inserting an edge (a,b) into E is the same as the one from the
Lemma 2.2.2. . Also that an element x is activated can be expressed by
the corresponding formula from Lemma 2.2.2. If a deletion happens, then
the update formula for ≤ is φdele≤ (x,y,a,b) = x ≤ y, since the elements are
already activated and so their order is still on. The relation ≤ associates

A with the set of size m
def
= |A| of the form [m-1]0

7 with the natural linear
order, i.e., the minimum element in ≤ is considered as 0, the second as 1,
so on and the maximum element in ≤ is considered as m-1. We use num-
bers as constants in formulas. It is very easy and simple to replace there

7By [n], we denote the set {1,...,n} and by [n]0, the set {0,1,...,n}.
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Ni−1 Ni Ni+1 Ni+2

stage i-1

initialize thread i

· · ·

stage i

initialize thread i+1

thread i in charge

stage i+1

· · ·

thread i+1 in charge

Figure 2.2: Illustration of stages in the proof of Proposition 2.5.3.

numbers by formulas. For example, the subformula x ≥ 1 can be replaced
by ∃x1∃x2 (x1 ≤ x2) ∧ (x2 ≤ x). Furthermore, the addition relation and
multiplication relation are maintained as in Lemma 2.2.2..

The main work of this algorithm P ′ is to run each computation of P .
The way this algorithm is going to do it is by separating each computation
in stages, based on the size of A. Let U be the universe of size n, then
the i-th stage of the computation of P starts when more than Ni and at
most Ni+1 elements of U are activated, where i < log logn +1 and Ni = 22

i

(= N2
i−1) for every i ≥ 0. The case, where at most 2 = N0 elements are

activated, is very easily to dealt with separately as we have seen at Lemma
2.2.2..

Now P ′ will simulate the stages of P by using threads. For each i,
thread i is responsible for stage i and begins when the computation of P is
in stage i-1 and ends at the end of stage i of P . During stage i of P , thread
i is in charge. The query result for q is always provided by the thread that
is in charge(Figure 2.2).

When thread i starts, a linear order, an addition relation, and a mul-
tiplication relation over [Ni−1 - 1]0 are available. For these relations, a
linear order, an addition relation, and a multiplication relation on 4-tuples
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over [Ni−1 - 1]0 can be easily defined in first order logic. Thread i con-
siders 4-tuples as 4-digit base-Ni−1 numbers and thus identifies a 4-tuple
(u1,u2,u3,u4) over [Ni−1 - 1]0 with the number u1× N3

i−1 + u2× N2
i−1 + u3×

Ni−1 + u4. As we have said before, the relations <, +, × can be lifted to
relations over 4-tuples in first-order logic as we have seen in Theorem 2.1.1.
and, thus, we do not have to maintain them as separate auxiliary relations.

Thread i uses the set of 4-tuples over [Ni−1 - 1]0 as domain of size Ni+1

((22
i−1

)4 = N4
i−1 = N2

i = Ni+1), since every structure has to have in its
domain all elements that can be used in a relation. Thus, the domain
([Ni−1 - 1]0)

4 of size Ni+1 is large enough to represent each new element that
is activated by some tuple over [Ni−1 - 1]0. For that reason, during stage
i-1 and i, thread i maintains a bijection gi between the activated elements
and 4-tuples over [Ni−1 - 1]0. At the start of thread i, gi(k) = (0,0,0,k), for
every k ∈ [Ni−1 - 1]0, and gi is extended in a straightforward fashion. For
example, if the last activated domain corresponds to the number Ni−1 + 3
then we have that gi(Ni−1 + 3) = (0,0,1,3). Also, it uses one 4k-ary auxiliary
relation R

′
for every auxiliary or input k-ary relation R of P . It starts on

the structure over ([Ni−1]0)
4 with empty relation E, with the linear order

and the corresponding addition and multiplication relations over ([Ni−1 -
1]0)

4, but otherwise empty auxiliary relations. So now P ′ can simulate P
on an initially empty structure.

Let E
′

be the auxiliary 8-ary relation corresponding to the binary re-
lation E of P . At the beginning of stage i-1 at least Ni−1 elements are
activated and so the relation E contains almost N2

i−1 edges and the corre-
sponding relation E

′
is empty, since thread i has not started yet. Therefore,

thread i cannot simulate P until it catches up with P . So, thread i needs
to make sure that at the end of stage i-1, all tuples in E have corresponding
tuples in E

′
.

As we have said, thread i has to catch up with P and for that it needs
to add more than one edge per step to E

′
and more specific at most four

edges per step. The reason will be given below. Thus, thread i has to catch
up until the end of the stage i-1, so at the beginning of stage i, its relation
E
′

and relation E are isomorphic to each other under gi. That’s why we get

the symmetric difference of E and g−1
i (E

′
), ∆

def
= E4 g−1

i (E
′
), where g−1

i (E
′
)

is a subset of the 2-tuples of the activated elements that give through gi
the corresponding elements of E

′
, and the goal is to decrease the symmetric

difference to zero and then thread i would have caught up with P .

If a change δ occurs in P , then it is applied to E without triggering
the associated update operations. Afterwards, thread i identifies the lexi-
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cographically smallest four pairs e1, e2, e3, e4 over [Ni]0 in ∆ and then for
each one applies the appropriate update operations as follows:

(i) If ej ∈ E \ g−1
i (E

′
), thread i simulates the operation of P for an

insertion of ej and thus algorithm P ′ inserts the element gi(ej) in E
′
.

(ii) If ej ∈ g−1
i (E

′
) \ E, thread i simulates the operation of P for a deletion

of ej and thus algorithm P ′ deletes the element gi(ej) from E
′
.

The change δ can be an insertion or a deletion. If it is an insertion, after
the work of thread i |∆| decreases by three tuples and if it is a deletion,
|∆| decreases by five tuples. Therefore, we can say as a conclusion that |∆|

decreases by at least three tuples, unless |∆| < 4 already. At the beginning
of the stage i-1, relation E might already contain up to N2

i−1 edges, whereas
E
′

is empty and so ∆ may contain at most N2
i−1, i.e., |∆| ≤ N2

i−1. We
conclude that after each step |∆| decreases by at least three tuples and
thus, 1

3
N2
i−1 change steps suffice for thread i to catch up. Stage i-1 has at

least 1
2
(Ni - Ni−1) change steps, since the minimum amount of change steps

corresponds to each change step to be an insertion and exactly 2 elements
to be activated with each insertion. Also, we have that

Ni −Ni−1 = N
2
i−1 −Ni−1 ≥

3

4
N2
i−1 for i ≥ 2,

since

i ≥ 2 ⇔ i−1 ≥ 1 ⇔ Ni−1 ≥ N1 ⇔ Ni−1 ≥ 4 ⇔ N2
i−1 ≥ 4Ni−1 ⇔

1

4
N2
i−1 ≥ Ni−1 ⇔ N2

i−1 −
3

4
N2
i−1 ≥ Ni−1 ⇔ N2

i−1 −Ni−1 ≥
3

4
N2
i−1,

then stage i-1 has at least 1
2
× 3

4
N2
i−1 = 3

8
N2
i−1, which is larger than 1

3
N2
i−1

and thus, it is possible for thread i to catch up. When i = 1 and |∆| ≤ 3,
we work the same as before.

If thread i instead of identifying the four smallest pairs of edges, identify
one, two or three, then the change steps that will suffice for thread i to catch
up, it would not be enough as we saw above.

During stage i, thread i can simulate P in a lockstep fashion, mimicking
every step. More precisely, when a change δ modifies a tuple e, thread i of
algorithm P ′ applies δ to gi(e), and performs the necessary updates to the
relations of thread i. If Q

′
is the auxiliary relation in P ′ that corresponds

to query relation Q of P , then g−1
i (Q

′
) is the query result during stage i.

After stage i, thread i is abandoned and thread i+1 is in charge. Algo-
rithm P ′ will maintain a counter for each thread and when the counter of
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thread i reaches the value (Ni−1)
4 (= Ni+1 ) then the thread i+1 has to take

over in the next step.
This completes the description of how the thread i works, for each i.

In the previous paragraphs, we saw how the thread i works and an im-
portant question is whether each thread will use its own auxiliary relations.
The answer is no and the way we will handle this is instead of using different
relations for each thread, we can increase the arity of each relation by one
and the extra component will be used to identify the thread, for which it
is used. For example, all the 8-ary relation E

′
are encoded into one 9-ary

relation E and the relation E
′

of thread is the set of tuples

{t | (i, t) ∈ E}.

Another example is the bijection gi that can be encoded into one 6-ary
relation that contains the tuple (i, k,t) if and only if gi(k) = t.

Now we will show the correctness of algorithm P ′ . Let α denote some
change sequence in P and αi the prefix of α until the end of stage i. Let γi
denote the change sequence of P that arises from the process that reduces
the size of ∆ for thread i during stage i-1 as we have explained above.
We argued above that αi−1(I∅) = γi−1(I∅), where I∅ is the empty input
structure of algorithm P . The program P ′ applies gi(γi−1) in stage i-1, and
therefore gi(Pγi−1(I∅, A∅)) = P ′gi(γi)(gi(I∅, A∅)) is easy to be shown by an
induction on the length of change sequences. Thus, the input and auxiliary
structures of thread i at the end of stage i-1 is the isomorphic image of
the input and auxiliary structure that P can reach for the input database
αi(I∅).

Finally, we can see that during stage i, P ′ can keep track of the changes
and updates. As we saw before, thread i uses a domain of size Ni+1, where
Ni+1 < n, and not of size n. This does not affect the output of P ′ , since
the query q is weakly domain independent and so the activated part of the
domain during stage i is always of size at most Ni−1. Thus, P ′ has a correct
output, at anytime.
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Chapter 3

Linear Algebra and Matrices

In the next section, we will give the proof of that the reachability problem
on directed graphs is in DynFO from [7]. A very important contribution
to this proof is a linear algebra problem SVRank. As far as we have known,
there are not computational linear algebra problems that have been studied
in dynamic complexity, except from the Boolean Matrix Multiplication [16].
Thus, the main problem for linear algebra problems in dynamic complexity
is how to represent the problem. If for example we have the problem matrix
rank, then the key question is how to represent the numbers that appear
in the matrix. The important thing is to represent all the elements of a
matrix, and for that we use a representation that does not allow matrices
with large numbers but suffices for applications in which matrix entries are
not larger than the number of rows in the matrix.

At first, we will give the definition of some notation about the matrices
from [7] that will be very useful later. Let A be a matrix, the entry in the
i-th row and j-th column of A will be denoted as A[i,j] and the i-th entry of

vector x as x[i]. By e
(n)
i , we denote the n-dimensional unit(column) vector e

with e[i]=1 and e[j]=0 for j 6= i. The rank and the determinant of a matrix
A are denoted by rank(A) and det(A), respectively. For a prime number
p, we denote by rankp(A), the rank of A as a matrix over Zp. A (m×m)
matrix A over Z has small values, if for each i, j ∈ {1,...,m}, |A[i,j]| ≤ m.

The query SVRank returns the rank of the matrix A, where A is a
(m×m)-matrix with small values.The query representing SVRank maps τ-
structures to structures that consist of a unary relation Q that is supposed
to contain a unique element r, the rank of A. Let τ-structure, where τ is
arbitrarily, be the structures that represent (m×m) matrices A. The domain
of those structures contain m+1 elements and there is a linear order < that
give us a total ordering of D and so D is equivalent to the set [m]0. There
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are compatible + and × relations as well. Furthermore, those structures
consist of two ternary relations A+, A− to represent the entries of A. That
A[i,j] = a, for a ∈ {1,...,m} is represented by a triple (i,j,a) in A+. Similarly,
if A[i,j] = a, for a ∈ {-m,...,-1}, there is a triple (i,j,a) in A−. For each i,j,
there is at most one triple (i,j,a) in A+∪A−. If, for some i,j, there is no such
triple (i,j,a),then A[i,j] = 0.

Change operations might insert a triple (i,j,a) to A+ or A− (in case no
(i,j,b) is there) or delete a triple. That is, basically, single-matrix entries
can be set to 0 or from 0 to some other value. However, the relations <, +
and × cannot be changed.
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Chapter 4

Reachability Is in DynFO

In this chapter, we will show that Reachability is in DynFO and the proof
of this theorem has four steps. The first step involves the problem SVRank
that we defined in chapter 3 and a bfo(+, ×)-tt reduction from Reach to
SVRank. The second step is a bfo-tt reduction from SVRank to RankModP,
which is a new problem that we will define later. The third step is to show
that RankModP is in DynFO. From the first three steps we have that
Reach is in DynFO(+, ×) and from Example 2.5.2 we know that Reach is
a weakly domain independent query, then we have that Reach is DynFO
from Proposition 2.5.4..

In the next three sections, we will give the proof of the three steps
separately.

4.1 From Reachability to Matrix Rank

Now we will give the reduction between Reach and SVRank.

Theorem 4.1.1. There is a bfo(+, ×)-tt reduction from Reach to SVRank.

Proof. Let G be graph with n vertices and AG its adjacency matrix, and
let s, t be vertices of G. For the matrix I - 1

n
AG [17], we know that is is

invertible and its inverse is(
I−

1

n
AG

)−1

= I+

∞∑
i=1

(
1

n
AG

)i
. (1)

Instead of dealing with the matrix I - 1
n
AG, we will work with the integer

matrix B
def
= nI - AG, which is also invertible.

45
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If the vertex t is reachable from the vertex s in G and the path from s to
t is of length k, where k is arbitrary, then the matrix (AG)k has a non-zero
entry at the position (s,t). From the equation (1), we will have that the
inverse of B has a non-zero entry at position (s,t). Thus, we have that if t
is reachable from s then the inverse of B has a non-zero entry at position
(s,t).

If the inverse of B has a non-zero entry at position (s,t), this means that∞∑
i=1

( 1
n
AG)

i has at least a non-zero entry at position (s,t) and let k be the

number for which the sum get the non-zero entry. Thus, we have that the
matrix (AG)k has a non-zero entry at position (s,t) and so, there is a path
of length k from to s to t or t is reachable from s.

Therefore, we have the following:

t is reachable from s ⇔ (B−1)[s, t] 6= 0 (1)

The equivalence (1) is proven above.

(B−1)[s, t] 6= 0⇔ (B−1e
(n)
t )[s] 6= 0 (2)

The equivalence (2) is pretty obvious.

(B−1e
(n)
t )[s] 6= 0

⇔ (3)

Let x be the vector B−1e
(n)
t and we know that x[s] 6= 0

The equivalence (3) is pretty obvious.

Let x be the vector B−1e
(n)
t and we know that x[s] 6= 0

⇔ (4)

The equation Bx = e
(n)
t has no solution vector x with x[s] =

0

The equivalence (4) is pretty obvious.
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Reachability Is in DynFO 4.1 From Reachability to Matrix Rank

The equation Bx = e
(n)
t has no solution vector x with x[s] = 0

⇔ (5)

The system

{
Bx = e

(n)
t

(e
(n)
s )Tx = 0

has no solution vector x at all

The proof of the equivalence (5) is the following:

If the equation Bx = e
(n)
t has no solution vector x with x[s] = 0 and we

can see that for the second equation of the system every solution has x[s]
= 0, then the system has no solution vector x.

If the system has no solution vector x, then Bx = e
(n)
t has no solution

vector with x[s] = 0 because every solution of (e
(n)
s )Tx = 0 has x[s] = 0.

The system

{
Bx = e

(n)
t

(e
(n)
s )Tx = 0

has no solution vector x at all

⇔ (6)

e
(n+1)
t is not in the column space of B+s

B+s denotes the ((n+1)×n)- matrix that is obtained from B by adding

as additional row (e
(n)
s )T . The proof of the equivalence (6) is the following:

From linear algebra, we already know that the multiplication of B+s

with x = [x1 ... xn]T is equal to a linear combination of the columns of B+s

with coefficients the elements of x, i.e.,

(x1 × the first column of B+s) + .... + (xn × the n−th column of B+s).

If the system has a solution, then e
(n+1)
t is equal to the multiplication of

B+s with x and thus, will be in the column space of B+s. Therefore, if the
system has no solution then e

(n+1)
t is not in the column space of B+s.

If e
(n+1)
t is not in the column space of B+s, then the system has no a

solution, because otherwise e
(n+1)
t will be in the column space of B+s, as we

have seen above.
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e
(n+1)
t is not in the column space of B+s

⇔ (7)

B+st has rank n+1

B+st denotes the extension of B+s by the additional column vector e
(n+1)
t .

The proof of the equivalence (7) is the following:

Since B is invertible, then B and B+s have rank n and since e
(n+1)
t is not

in the column space of B+s, then B+st has rank n+1.

If B+st has rank n+1 and we know that the matrix B+s has rank n, then
this means that e

(n+1)
t is not in the column space of B+s because otherwise

B+st would have rank n.

From the equivalences (1) - (7), we have that

t is reachable from s ⇔ B+st has rank n+1

Now we will show how the above equivalence give us a bfo(+, ×)-tt re-
duction from Reach to SVRank.

At the end of the equivalence, we get the ((n+1)×(n+1))-matrix B+st and
every value of this matrix is at most n and thus, B+st has small values as
we wanted to be from chapter 3.

In the presence of arithmetic, B+st can be obtained from G by a two-
dimensional and binary bfo(+, ×)-tt reduction (J ,φ). For each database
D, which represents a graph G, and each pair (s,t) over the domain U of D,
J (D,(s,t)) is a database that encodes B+st. The interpretation J uses two
dimensions because the domain representing B+st is of size n + 2 for graphs
with n vertices. A pair (u1,u2) from the domain of J will represent the
number u1× n + u2. For example, the number k < n will be represented by
(0,k) and the number n + 1 will be represented by (1,1). For each pair (s,t)
of vertices, J (D,(s,t)) is the matrix defined as above with s and t indicating
the column vectors that will be added to B so that we get B+st.

For every pair (s,t), the result relation SVRank (J (D, (s,t))) is the set
{(r)}, where r is the rank of B+st and is represented by 2-tuple of the form
(u1,u2) as above. The relation Q has arity 4, since the tuple ~a = (s,t) is a
2-tuple and all the 1-tuples s are over the domain dom(D)2 and, thus, the
arity of the relation Q is 2 + 2 × 1 = 4. Therefore, the relation Q of arity
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4 consists of all 3-tuples (s,t,r), for which r is the rank of B+st. Thus, for
each (s,t), the wrap-up formula φ only needs to check whether r = n + 1,
where n is the number of vertices of G:

∃s, tQ(s, t, (1, 1)).

Finally, each change in G results in only one change in B+st, for every (s,t),
since if we have an insertion or a deletion of an edge in G, then we change
one entry of the adjacency matrix and thus, one change to B and B+st.
Therefore, the reduction actually has expansion bound 1.

4.2 From Rank to Rank Mod p

As we have already seen, all input matrices for the SVRank query have small
entries, but the maintenance algorithm on with the DynFO algorithm will
be based needs to deal with large entries. For that reason, we need to find a
way to avoid this complication, and that’s why we introduce another prob-
lem, such that any dynamic algorithm that maintains it, will not have to
deal with large numbers. This problem is the following:

RankModp
Input: (m × m)-matrix A with values from {0,1,...,p-1}, prime

p ≤ m2

Output: Rank of A over Zp

The bound m2 for prime p over RankModp might appear a bit arbitrary,
but we will see that it just suffices. We show next that, to maintain the
rank of a matrix A with small values, it suffices to maintain its rank over the
field Zp, for sufficiently many primes p. We denote this rank by rankp(A).
Now we will give a bfo-tt reduction by SVRank to RankModp.

Theorem 4.2.1. There is a bfo-tt reduction from SVRank to RankModp.

Proof. At first, we show that rank(A) ≥ k if and only if rankp(A) ≥ k for
some prime p ≤ m2. The reduction from SVRank to RankModp is actually
pretty simple.

From linear algebra, we already know that rank(A) ≥ k if and only if there
is some k × k submatrix A

′
of A with det(A

′
) 6= 0. The det(A

′
) is bounded

by m! · mm. Indeed, from Hadamard’s inequality we have that

det(A
′
) ≤

m∏
i=1

||xi||,
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where xi = [xi1 xi2 · · · xim ]T is the i-th column of A
′
. Since A is a matrix

with small values, i.e., xik ≤ m for every k ∈ [1,m], we have that

||xi|| =
√
x2i1 + x2i2 + · · · + x2im ≤

√
m2 + m2 + · · · + m2 =

=
√
m3 = m

3
2 , for every i ∈ [1,m].

Thus,

det(A
′
) ≤

m∏
i=1

||xi|| ≤
m∏
i=1

m
3
2 ≤ m

3
2
· m = mm · m

m
2 .

Furthermore, we have that

(m!)2 = (1 · 2 · · · m) · (1 · 2 · · · · · m) =

(1 · 2 · · · m− 1) · (m · 1) · (2 · · · · · m) =

(1 · 2 · · · m− 2) · (m · 1) · (2 · m− 1) · (3 · · · · · m) =

= . . . =

(1 · m) · (2 · m−1) · (3 · (m−2)) · · · · · (m−2 · 3) · (m−1 · 2) · (m · 1).

For everyone parenthesis from above holds that is clearly larger than m and
the amount of these parentheses are m, so we have that

(m!)2 ≥ mm ⇔ m! ≥ m
m
2 .

Therefore,
det(A

′
) ≤ mm · m

m
2 ≤ m! · mm.

Now, we know that for large enough n, there are more than n
logn

prime

numbers between 1 and n from (3.5) of Colorrary 1 from [28]. Thus, for

m2, there are more than m2

2 logm
prime numbers below m2 and so their product

is larger than m!mm, since from [28] and inequality 3.16 we know that

ϑ(x) > x(1 −
1

log x
),

where θ(x) is the logarithm of the product of all primes ≤ x. Thus, for m2

we have that

ϑ(m2) > m2(1 −
1

logm2
) > m logm
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and we can see that log(m! · mm) = O(mlogm), so the product of all prime
numbers below m2 is clearly larger than m! · mm. Therefore,

det(A
′
) ≤ m! · mm <

∏
p < m2 + 1, p is prime

p.

Let det(A
′
) 6= 0. If det(A

′
) is equal to 0 modulo every prime p below m2,

then we have that det(A
′
) is equal to the product of all these primes. This

is a contradiction because of all that we proved above. Therefore, det(A
′
)

6= 0 if and only if there exists a prime p ≤ m2 such that det(A
′
) 6= 0 (mod

p). The other direction of the equivalence is pretty obvious. Thus, for large
enough m, rank(A) ≥ k if and only if there exists a prime p ≤ m2 such that
rankp(A) ≥ k.

Then, we give the bfo-tt reduction between SVRank and RankModp. The
bfo-tt reduction from SVRank to RankModp consists of the interpreta-
tion J (D, ~i) of dimension 1 and arity 2 and the wrap-up formula φ. The

database D represents an input matrix A for SVRank and the pair ~i = (i1,

i2) over m is interpreted as the number n(~i) = (i1 - 1)m + (i2 -1). If n(~i)

is not a prime number, then the matrix B
~i = J (D,~i) is the all-zero matrix

and if n(~i) is a prime number, then the matrix B
~i = J (D,~i) represents the

matrix A over Zp. Thus, the formula φD(x, (i1,i2)) could be

∃n([n = (i1 − 1) × m + (i2 − 1)] ∧ prime(n)),

where the formula prime(n) is

1 < n ∧ ∀u, v(n = u × v → u = 1 ∨ v = 1).

For every pair ~i, the result relation RankModp(J (D,~i)) is the set {(k)},

where k is rank of a matrix over the field Zp, for p = n(~i). Therefore,

the relation Q has arity 3 and consists of all 3-tuples (~i,k), for which k is
the rank of the matrix over Zp. The wrap-up formula φ simply computes

the maximum k, such that for some prime p = n(~i), the result relation

RankModp(J (D,~i)) contains k and the formula is

∃i1, i2Q(i1, i2, k).
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4.3 Maintaining Rank Mod p in DynFO

As we have said at the beginning of this section, our goal is to prove that
Reach is in DynFO. That’s why we have showed the two reductions from
sections 4.1 and 4.2, i.e., Reach is bfo(+, ×)-tt reducible to SVrank and
SVrank is bfo-tt reducible to RankModp. Now we will show that RankModp
is in DynFO and because of Proposition 2.3.16 , then SVRank will be in
DynFO and because of Proposition 2.5.4 and that Reach is a weakly domain
independence query, then Reach will be in DynFO.

So we want to show that the rank of a matrix modulo a prime can be
maintained in DynFO.

Theorem 4.3.1. RankModp is in DynFO.

Proof. The algorithm is an adaptation of a dynamic algorithm that has
been stated in [13].

Let A be a matrix over Zp, where p < m2, with small values and we
want to maintain the rank of this matrix after a change of A[i, j], for any
i, j ≤ m. As we have seen in Chapter 3, change operations for a matrix
might insert a triple (i,j,a) to A+ or A− (in case no (i,j,b) is there) or delete
a triple. That is, basically, single-matrix entries can be set to 0 or from 0 to
some other value. Instead of maintaing the rank of A, we will maintain an
invertible matrix B and a matrix E which is in reduced row-echelon form
such that BA = E, i.e. we find a matrix B for which holds that if we mul-
tiply it to A from the left, we get a matrix, E, in reduced row-echelon form
and we want to maintain these two matrices.

A matrix E is in reduced row-echelon form means that

• the leftmost non-zero entry (the leading entry) in every row is 1,

• the column of such a leading entry only contains zero entries other-
wise, and

• rows are sorted according to the position of the leading entry if this
is 1, i.e., if row i has as a leading entry, 1, in position j then every
other row i

′
< i must have as a leading entry, 1, in some position j

′

< j. In particular, all rows consisting of only 0’s are at the bottom of
the matrix.

The rank of E is equal to the rank of A, since B is invertible and we know
that if B is invertible then rank(BA) = rank(A) [11]. The rank of A equals
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the number of non-zero rows of E thanks to rank(E) = rank(A) and the
structure of E. Indeed, since E is in reduced row-echelon form then none of
its rows can be a linear combination of the others and if the rank of A is
lesser than m then the only way the rank of E can be lesser than m is to
have rows that consist of only 0’s. So if we want to maintain the rank of
A, we have to find the number of rows of that consist of only 0’s. Thus,
maintaining the matrices B and E suffices to maintain the rank of A.

Now, we will describe how to maintain these matrices after a change A[i,
j], for any i, j < m. We note now that every computation of matrix entries
is modulo p. Let A

′
denote the new matrix after the change of A[i, j] and

we will explain how the new matrices B
′

and A
′

can be obtained such that
B
′
A
′

= E
′
.

After a change of A[i, j], the product BA
′

differs from BA at most in
column j, which is pretty obvious from the definition of multiplication of
matrices. Thus, to get the desired matrix E

′
in reduced echelon form, we

can proceed as follows:

(i) If column j has more than one leading entry of BA
′

• let some entry with a maximum number of successive zeros in its
row (right after column j) be the new leading entry

• set this leading entry to 1, and set all other entries of column j
to zero , by appropriate row operations.

(ii) If a former leading entry of row k is lost in column j by the change
operation in A or by step (i),

• set its new leading entry to 1, i.e., the next non-zero entry in row
k and some column ` > j, and set all others entries of column `
to 0, by the appropriate row operations.

(iii) If needed, move the at most two rows, for which the position of the
leading has changed compared with E to their correct row positions.

As we have said , we want to maintain matrices B and E, so that we get
the matrices B

′
and E

′
such that B

′
A
′

= E
′

and E
′

to be in reduced
row-echelon form. Since the above description gives E

′
, then we applied

the same row operations to B, and this ensures us that B
′
A
′

= E
′
. By

applying all these row operation to B corresponds to multyplying a suitable
elementary matrix from the left to B, so B remains invertible as we have
seen in [22]. An illustration of the modifications necessary for one change
in matrix A for p = 5 is the following:
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At first, for a given A, we find B such that BA = E and E is in reduced
row-echelon form. So we have that

B A E (mod p)
4 0 0 0 0

0 3 0 0 0

4 0 1 0 0

0 2 0 3 0

3 0 0 0 1

 ×


4 0 3 0 0

0 2 4 0 0

4 0 3 1 0

0 2 4 0 2

3 0 1 0 0

 =


1 0 2 0 0

0 1 2 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0


Then we change the entry of A, A[1,2], from 0 to 1 and we have that

B A
′

B ×A ′ (mod p)
4 0 0 0 0

0 3 0 0 0

4 0 1 0 0

0 2 0 3 0

3 0 0 0 1

 ×


4 [1] 3 0 0

0 2 4 0 0

4 0 3 1 0

0 2 4 0 2

3 0 1 0 0

 =


1 4 2 0 0

0 1 2 0 0

0 4 0 1 0

0 0 0 0 1

0 3 0 0 0


Then, we apply the step (i) to B × A

′
and B and we have that

B after Step (i) A
′

B ×A ′ after Step (i)
0 0 0 0 2

4 3 0 0 3

0 0 1 0 2

0 2 0 3 0

1 0 0 0 2

 ×


4 1 3 0 0

0 2 4 0 0

4 0 3 1 0

0 2 4 0 2

3 0 1 0 0

 =


1 0 2 0 0

0 0 2 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0


Then, we apply the step (ii) to B after Step (i) and B × A

′
after Step (i)

and we get
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B after Step (ii) A
′

B ×A ′ after Step (ii)
1 2 0 0 4

2 4 0 0 4

0 0 1 0 2

0 2 0 3 0

1 0 0 0 2

 ×


4 1 3 0 0

0 2 4 0 0

4 0 3 1 0

0 2 4 0 2

3 0 1 0 0

 =


1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0


Finally, we apply Step (iii) to B after Step (ii) and B × A

′
after Step (iii)

B after Step (iii) A
′

B ×A ′ after Step (iii)
1 2 0 0 4

1 0 0 0 2

2 4 0 0 4

0 0 1 0 2

0 2 0 3 0

 ×


4 1 3 0 0

0 2 4 0 0

4 0 3 1 0

0 2 4 0 2

3 0 1 0 0

 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1



Therefore, the matrix B × A
′

after Step (iii) is in reduced row-echelon
form and so B

′
= B after Step (iii) and E

′
= B × A

′
after Step (iii).

Now we will give the dynamic algorithm P that will put RankModp
in DynFO:

At first, there is available the logical representation of the matrix A with
the relations ≤, + and ×. Also, P has auxiliary relations that encode the
matrices B and E. After a change of A[i, j], the steps (i)-(iii), described
above, can be translated into maintaining rules in first-order logic. so that
P maintains the auxiliary relation that encodes B and E and this will give
us matrices B

′
and E

′
such that B

′
A
′

= E
′
. Each of the steps (i)-(iii) can

be performed in constant parallel time. This is the way we maintain the
rank of A in first-order logic.
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Chapter 5

More Problems in DynFO

In the previous chapter we presented the proof of Reach is in DynFO.
Now using this result and the techniques that developed for proving it,
we will give the proof several other problems being in DynFO. At first,
from Example 2.3.15 we have that 2-Sat is bfo-tt reducible to Reach and
from Proposition 2.3.16, we have that 2-Sat is in DynFO, since Reach is in
DynFO.

Corollary 5.0.1. 2-Sat is in DynFO.

Now are going to study the dynamic complexity of matching in graphs. In
this chapter, we will give the proof of PerfectMatching and Maxmatching
are in non-uniform DynFO from [7].

Definition 5.0.2. Non-uniform DynFO is the same dynamic complexity
class as DynFO, except that the auxiliary relations may be initialized arbi-
trary. A query is in non-uniform DynFO, if there is a dynamic algorithm
such that, for every finite domain, the auxiliary relations can be chosen in
some way such that the algorithm correctly maintains the query.

MaxMatching
Input: An undirected graph G
Output: The size k of a maximum matching of G

PerfectMatching
Input: An undirected graph G
Output: Does G have a perfect matching?
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It has already been proven that MaxMatching and PerfectMatching are
non-uniform DynTC0 [6], i.e, a non-uniform dynamic algorithm with TC0-
updates and is still open whether these two problems are in DynFO.

The idea of [7] is to prove a correspondence between the size of a
maximum matching and the rank of a matrix. More precisely, the matrix
that the author of [7] used is the Tutte matrix and from an undirected
graph we get its Tutte matrix (or TG as we will denote it, where G is the
undirected graph ) as follows:

tij =


xij if (i, j) ∈ E and i < j

−xij if (i, j) ∈ E and i > j

0 if (i, j) /∈ E

where the xij are indeterminates. At first, we will show how to go from the
maximum matching to the rank of the Tutte matrix. The next theorem is
from [26].

Theorem 5.0.3. Let G be a graph with a maximum matching of size m.
Then rakn(TG) = 2m.

Proof. We prove the theorem in two parts:

(i) rank(TG) ≥ 2m. Choose any matching of size m, and let U ⊆ V
be the set of vertices matched by it. Let G

′
be the subgraph of G induced

on U and so G has a perfect matching of size m. Since TGUU is the Tutte
matrix of G

′
, then det(TGUU) 6= 01. Since |U| = 2m, rank(TG) ≥ 2m.

(ii) rank(TG) ≤ 2m. Suppose rank(TG) = k. Let TGij be an invert-
ible matrix submatrix of TG, with | i | = | j | = k. We want to show that
G has a matching of size at least k

2
. If i = j, then we are done since the

restriction of G to the vertices of i must have a perfect matching by Tutte’s
Theorem [26]2.

Since det(TGij) 6= 0 and | i | = | j | = k, by Frobenius’s theorem [26], we
have that det(TGii) 6= 0. Since i = i, then as above G has a matching of
size k

2
. Thus, if TG has rank greater than 2m, then G has matching greater

than m which is a contradiction.
1Let A be a n × n matrix, and i and j be subsets of {1,2,...,n}. Then, Aij will denote

the submatrix of A obtained by choosing the rows of A corresponding to indices in i and
columns corresponding to indices in j.

2(Tutte’s Theorem)Let G be a graph, and let TG be its Tutte matrix, then |A| 6= 0⇔ there exist a perfect matching in G.
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Now, we would like to use the rank maintenance algorithm from Section
4.3, but the problem is that the entries of this matrix are indeterminates
and by applying that algorithm we would get polynomials with exponential
terms. We can solve this problem, by replacing the indeterminates of TG

with positive integer values. For a graph G, let w be a function that assigns
a positive integer weight to every edge (i,j) and let BG,w be the integer ma-
trix obtained from TG by replacing xij with 2w(i,j).

Now, we will see another theorem that will give us a way from maximum
matching to the rank of BG,w.

Theorem 5.0.4. If G is graph with a maximum matching of size m and
w is a weight assignment for the edges of G, then rank(BG,w) ≤ 2m. Fur-
thermore, if G has a maximum matching with unique minimal weight with
respect to w, then rank(BG,w) = 2m.

The proof of this theorem uses another theorem which is:

Theorem 5.0.5. ( [23], Lemma 2). Let G be a graph with a perfect match-
ing and w a weight assignment such that G has a unique perfect matching
with minimal weight with respect to w. Then det(BG,w) 6= 0.

Proof. (Theorem 5.0.4.) We know that the rank of a matrix is equal to the
size of the largest submatrix with non-zero determinant. Thus, rank(BG,w)
≤ rank(TG) and therefore, rank(BG,w) ≤ 2m by Theorem 5.0.3..

Now we want to show that if G has a maximum matching of unique
minimal weight with respect to w then rank(BG,w) ≥ 2m. We will adapt
the proof of Theorem 5.0.3. Let U be the set of vertices contained in the
unique maximum matching of G with minimal weight, and G

′
the subgraph

of G induced by U. Observe that G
′

has a unique minimal weight perfect
matching with respect to w. Restricting BG,w to rows and columns labeled
by elements from U yields the matrix BG ′ ,w ′ , where w

′
is the weight function

restricted to edges from G
′
. However, det(BG ′ ,w ′ ) 6= 0 by Theorem 5.0.5.

and, therefore, rank(BG,w) ≥ 2m since the matching is of size m and so the
matrix BG ′ ,w ′ is (2m × 2m)-matrix.

Now, our goal is to obtain weighting functions w1,....,wn2 with weights
in [4n], such that for every graph G over [n] there is an i ∈ [n2] such that G
has a maximum matching with unique minimal weight with respect to wi.
To accomplish this we will follow the technique of [27] and at first, we need
the Isolation Lemma as stated at Lemma 11.5 in [20].
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Lemma 5.0.6. (Isolation Lemma) Let m, M ∈ N and let F ⊆ 2[m] be a
non-empty set of subsets of [m]. If a weight function w ∈ [M][m] is uniformly
chosen at random, then with probability at least 1 - m

M
, the minimum weight

subset in F is unique; where the weight of a subset F ∈ F is
∑

i∈Fw(i).

We will give another version of the Isolation Lemma, the Non-Uniform
Isolation Lemma as stated in [27].

Lemma 5.0.7. (Non- Uniform Isolation Lemma) Let m ∈ N and let F1, ...,F2m
⊆ 2[m] be an enumeration of non-empty sets of subsets of [m]. There are
weight functions w1,...,wm from [4m][m] such that for any i ∈ [2m] with
Fi 6= ∅, there exists a j ∈ [m] such that the minimum weight subset of Fi
with respect to wj is unique.

Proof. We call a collection u1,...,um of weight functions bad for some Fi if
no F ∈ Fi is a minimum weight subset with respect to any uj. For each

F〉 6= ∅, the probability of a randomly chosen weight sequence U
def
= u1,...,um

to be bad is at most (1
4
)m, since if M = 4m from Lemma 5.0.6. we have

that the minimum weight subset in Fi is unique with probability 1 - m
4m

and
so for each Fi, 1 ≤ i ≤ m, the opposite happens with probability (1 - (1 -
1
4
))m = ( 1

4
)m. Thus, the probability that such a U is bad for some Fi is at

most 2m × ( 1
4
)m = (1

2
)m < 1, since each Fi is a subset of 2[m]. Hence there

exists a sequence U which is good for all Fi.

We get the following corollary:

Corollary 5.0.8. Let G1,...,G2n
2
3 be some enumerations of the graphs on

[n] and let F1,...,F2n2 be their respective sets of perfect matchings. There
is a sequence w1,...,wn2 of weight assignments assigning a value from [4n2]
to the edges [n2] such that for every graph G over [n] there is some i ∈ [n2]
such that if G has a perfect matching then it also has a perfect matching
with unique minimal weight with respect to wi.

After all this we saw, we conclude that for maintaining the size of max-
imum matchings of a graph G over [n], we will maintain the rank of matrix
BG,wi for all i ∈ [n2]. The rank of TG is the maximum rank among those
ranks thanks to Theorem 5.0.4..

Theorem 5.0.9. PerfectMatching and MaxMatching are in non-uniform
DynFO.

3The number of graphs is 2n
2

, since G is over [n] and so the number of edges is at
most n2.

60



More Problems in DynFO

Proof. We know that a perfect matching is a special case of a maximum
matching and we will only show that MaxMatching is in non-uniform DynFO.

The non-uniform bfo-tt reduction that we will use is the reduction from
MaxMatching to RankModp and since RankModp is in DynFO and from
an adaptation of Proposition 2.3.18. we have that MaxMatching is non-
uniform DynFO.

The procedure is to advice a dynamic algorithm with weighting functions
w1,...,wn2 that assign weights such that for all graphs with n vertices there
is a maximum matching with unique minimal weight as we have seen at
Corollary 5.0.8. Now every graph with n vertices has a maximum matching
with unique minimal weight with respect to wi and so that will give us the
rank of BG,wi for some wi by Theorem 5.0.4. Thus, Theorem 5.0.4. provides
us with the equivalence between the maximum matching of a graph G and
the rank of corresponding matrix BG,wi fro some wi.The advise is given to
the dynamic algorithm via the initialisation of the auxiliary relations. The
algorithm then maintains the ranks for the matrices BG,wi and outputs the
maximal such rank.

Recall that the weight functions assign values of up to 4n2 and that,
therefore, the determinant of each BG,wi can be size up to n! · (24n

2
)n.

Indeed, we have a (n × n)-matrix with values from {0,1,...,24n
2
− 1} and

if we follow the procedure for the determinant from Theorem 4.2.1., then
we will get that upper bound for the determinant. Then, it holds that
n! · (24n

2
)n ≤ 25n

3
, and thus it is sufficient to maintain the rank of those

matrices modulo up to 5n3 many primes, which are contained in the first
n4 numbers for large enough n by the prime number theorem. Indeed, from
the prime number theorem we know that the number of primes up to n4 is
equal to n4

logn4
= n4

4 logn
and for large enough n holds that n4

4 logn
> 5n3.

The dynamic program computes, for each of the weighting functions wi

and each prime p ≤ n4, the rank of BG,wi modulo p as it did in Section 4.3.

The non-uniform reduction (J ,φ) from MaxMatching to RankModp is
two-dimensional and 6-ary. Two dimensions are used to encode graphs as
matrices as described in Chapter 3. For parameter (p1,...,p6), the interpre-
tation J maps a given graph to an instance of RankModp that asks for the
rank of BG,wi mod p where wi is encoded by the first two parameters and p
is encoded by the remaining four parameter, since the amount of weighting
function is n2 and a prime can be up to 5n3. For example, for the rank of
BG,wn+4 mod 4n3 + k, where 4n3 + k is a prime, then the parameter for
the interpretation J will be ((1,4),(4,0,0,k)). Another example is the rank
of BG,w

n2
mod 5n2 + kn, where 5n2 + kn is a prime, then the parameter
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for the interpretation J will be ((n,0),(0,5,k,0)). For converting edges to
entries of BG,wi mod p, the reduction uses non-uniform relations since every
weighting function has different size.

For every pair (u2,u1,p1,p2,p3,p4), where (u2,u1) corresponds to the index
of the weighting function and (p1,p2,p3,p4) corresponds to the prime p, the
result relation RankModp(J (D,(u2,u1,p1,p2,p3,p4))) is the set {(k)},where k
is the rank of BG,wu2×n+u1 . Therefore, the relation Q consists of all 7-tuples
(u2,u1,p1,p2,p3,p4,k), for which k is the rank of BG,wu2×n+u1 . Thus, for each
(u2,u1,p1,p2,p3,p4), the wrap-up formula φ determines the highest rank of
all these instances.
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Chapter 6

Conclusion and Further Work

In this thesis, we presented and explained with many examples the notion
of dynamic complexity. We worked mostly with the dynamic complexity
class DynFO and the related reductions. We presented the proof that the
reachability query can be maintained in DynFO. The proof uses computa-
tional linear algebra problems such as the rank of the matrix and the rank of
matrix over Zp. As an immediate consequence of the result for reachability,
2-satisfiability can also be maintained in DynFO. By combining the linear
algebraic part of the proof that reachability is in DynFO with the Isolation
Lemma(Lemma 5.0.6), we presented the proof how the size of a maximum
matching can be maintained in DynFO with non-uniform initialisation.

In this thesis, we only studied the modification of one tuple for a prob-
lem. In the paper with title ”Reachability and Distances under Multi-
ple Changes” [10], it is showed that Reachability and Distances problems
can be maintained in DynFO(+, ×) under changes affecting O( logn

log logn
) ver-

tices, for graphs with n vertices. At first, the result that Reachability is in
DnyFO has been advanced into a very powerful tool: for showing that a
query can be maintained in DynFO, it essentially suffices to show that it
can be maintained for logn many change steps after initializing the auxiliary
data by an AC1 precomputation [9], where n is the size of the database’s
(active) domain n. This tool has been successfully applied to show that
all queries expressible in monadic second order logic can be maintained in
DynFO on structures of bounded treewidth.

Those new techniques motivate a new attack on a larger number of
changes. But updating a query after a number of changes that replaces
the whole database by a new database is essentially equivalent to the static
evaluation problem with built-in relations: the stored auxiliary data has to
be helpful for every possible new database, and therefore plays the role of
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built-in relations. Thus changes should be restricted in some way. The one
approach come to mind is to only allow changes of restricted size and this
approach gave the next theorem [10].

Theorem 6.0.1. Reachability can be maintained in DynFO(+, ×) under
changes that affect O( logn

log logn
) verticess of a graph, where n is the number

of vertices of the graph.

The distance query was shown to be in DynFO+Maj (or DynTC0) by
Hesse [15], where the class DynFO+Maj allows to specify updates with first-
order formulas that may include majority quantifiers (equivalently, updates
can be specified by uniform TC0 computations). Then, Hesse’s result is
generalized to changes of size polylogarithmic in the size of the domain.

Theorem 6.0.2. [10] Reachability and Distance can be maintained in
DynFO+Maj(+, ×) under changes that affect O(logcn) vertices of a graph,
where c ∈ N is fixed and n is the number of vertices of the graph.

A question for further research in dynamic complexity is whether Dis-
tances are in DynFO. The above approach sheds some light on this question.
It can be adapted so as to maintain information within DynFO(+, ×) from
which shortest distances can be extracted in FO+Maj(+, ×).

Theorem 6.0.3. [10] Distances can be defined by a FO+Maj(+, ×) query
from auxiliary relations that can be maintained in DynFO(+, ×) under
changes that affect O( logn

log logn
) vertices.

In the paper with title ”Dynamic complexity of Reachability:
How many changes can we handle?” [8], the authors extended these
results by showing that, for changes of polylogarithmic size, first-order up-
date formulas suffice for maintaining (1) undirected reachability, and (2)
directed reachability under insertions. As we have seen above, a subset of
the authors showed that the reachability problems can be maintained in
DynFO+Maj(+, ×) under changes that affect O(logcn) vertices of a graph
(Theorem 6.0.2). In this paper the authors make progress on handling
changes of polylogarithmic size in DynFO by attacking the challenge from
two directions. First, they establish two restrictions for which reachability
can be maintained under these changes.

Theorem 6.0.4. Reachability can be maintained in DynFO(+, ×) under

• insertions of polylogarithmically many edges; and
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• insertions and deletions of polylogarithmically many edges if the graph
remains undirected.

A question for further research is whether reachability for classes of di-
rected graphs can be maintained in DynFO(+, ×) under insertions and dele-
tions of polylogarithmic size. Candidate classes are graphs with bounded
treewidth, and directed acyclic graphs.
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