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ABSTRACT

In graph theory, a rigid graph is a graph that has a finite number of embeddings in Rd

up to rigid motions, with respect to a set of edge length constraints. An embedding
of graph in Rd is an assignment of vertices to points in Rd, which also induces a set
of edge lengths that correspond to the distances between the connected vertices. An
important class of rigid graphs is the class of minimally rigid graphs. A minimally rigid
graph, is a graph that is rigid and has the property that the removal of any edge yields
a graph that is not rigid. It is a major open problem to find tight upper bounds on the
number of the embeddings inRd. For a long period, only the trivial bound ofO(2d·|V |)
was known on the number of embeddings, that is derived from the direct application of
Bézout's Theorem. In [3], the bound was improved for d ≥ 5, using matrix permanents.
Recently in [5], the asymptotic bound was improved in all dimension. In the special
case of d = 2, the asymptotic upper bound was improved to O(3.7764|V |).

It is known that the number of solutions of a well­constrained algebraic system is
related to the number of embeddings. In particular, the number of the complex solutions
of such an algebraic system extends the notion of real embeddings in the complex space,
allowing us to bound the complex solutions, using tools from the complex algebraic
geometry. In this thesis, by counting outdegree­constrained orientations of a graph that
are related to the algebraic bounds [3], we improve the existing upper bounds, for the
class of minimally rigid graphs, on the number of embeddings.





ΣΎΝΟΨΗ

Στη θεωρία γραφημάτων (γράφων), ένα άκαμπτο γράφημα είναι ένα γράφημα που
έχει πεπερασμένο αριθμό εμβυθίσεων στο Rd, ως προς τις Ευκλείδιες κινήσεις, για
δεδομένα μήκη ακμών. Η εμβύθιση γραφήματος στο Rd είναι μια ανάθεση των
κορυφών σε σημεία στο Rd, η οποία δημιουργεί ένα σύνολο με μήκη ακμών που
αντιστοιχούν στις αποστάσεις μεταξύ των συνδεδεμένων κορυφών. Μια σημαντική
κλάση άκαμπτων γραφημάτων είναι η κλάση των ελαχιστικώς άκαμπτων γραφημάτων.
Ένα ελαχιστικώς άκαμπτο γράφημα, είναι ένα γράφημα που είναι άκαμπτο και έχει
την ιδιότητα ότι η αφαίρεση οποιασδήποτε ακμής του, δίνει ένα γράφημα που δεν
είναι άκαμπτο. Ένα σημαντικό ανοιχτό πρόβλημα είναι η εύρεση άνω φραγμάτων
στον αριθμό τον εμβυθίσεων στο Rd. Για ένα μεγάλο χρονικό διάστημα, μόνο το άνω
φράγμαO(2d·|V |) ήταν γνωστό στον αριθμό των εμβυθίσεων, που προέρχεται από την
άμεση εφαρμογή του θεωρήματος του Bézout. Στο [3], το φράγμα βελτιώθηκε για
d ≥ 5, χρησιμοποιώντας τους permanent πίνακες. Πρόσφατα στο [5], το ασυμπτωτικό
άνω φράγμα βελτιώθηκε για κάθε διάσταση. Στην ειδική περίπτωση του d = 2, το
ασυμπτωτικό άνω φράγμα βελτιώθηκε σε O(3.7764|V |).

Είναι γνωστό ότι ο αριθμός των λύσεων ενός τετράγωνου αλγεβρικού συστήματος
σχετίζεται με τον αριθμό των εμβυθίσεων. Συγκεκριμένα, ο αριθμός των μιγαδικών
λύσεων ενός τέτοιου αλγεβρικού συστήματος επεκτείνει την έννοια των πραγματικών
εμβυθίσεων στον μιγαδικό χώρο, επιτρέποντάς μας να φράξουμε τις μιγαδικές λύσεις
χρησιμοποιώντας εργαλεία από τη μιγαδική αλγεβρική γεωμετρία.

Σε αυτή την διπλωματική, μετρώντας τους outdegree­περιορισμένους
προσανατολισμούς ενός γραφήματος που σχετίζονται με τα αλγεβρικά φράγματα [3],
βελτιώνουμε τα υπάρχοντα άνω φράγματα, για την κλάση των ελαχιστικώς άκαμπτων
γραφημάτων, στον αριθμό των εμβυθίσεων.
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CHAPTER1
INTRODUCTION

Rigidity theory studies the properties of graphs that can have rigid embeddings in a
specified embedding space. Besides being a mathematical area with significant re­
search interest, it has also received much attention due to its applications in molecular
biology [14], robotics [22], and architecture [1, 10]. Let G = (V,E) be a simple
undirected graph, i.e. it does not contain multi­edges and self­loops. Let also Ed be a
d­dimensional Euclidean space. An embedding of G into Ed, is an assignment of the
vertices to points in Ed. It is clear that we can have infinite such embeddings, since
there are no constraints, by placing the vertices anywhere on the space.

In rigidity theory, a graph embedding is said to be rigid inRd if and only if it admits a
finite number of embeddings, up to rigid motions in Rd, i.e. rotations and translations,
while preserving the given edge lengths. Otherwise, the graph is called flexible. A
graph is called generically rigid if it is rigid for almost all its embeddings. A graph
G is called generically minimally rigid if it is generically rigid and any edge deletion
deprives G of its rigidity property.

Minimally rigid graphs have received a considerable amount of attention in the past,
especially in the case of d = 2 and d = 3, which are equivalent to Laman graphs and
Geiringer graphs (as it is called in [11]), respectively. Due to Maxwell, there is a
necessary condition for a graph to be rigid in Rd. In particular, if a graph G = (V,E)
is minimally rigid, then it holds that |E| = d · |V | −

(
d+1
2

)
, and for every subgraph

G′ = (V ′, E′) of G it should hold that |E′| ≤ d · |V ′| −
(
d+1
2

)
[15]. For example, in

the case of d = 2, a minimally rigid graph with n vertices, should have exactly 2n− 3
edges, and every subgraph of it withn′ vertices, should have at most 2n′−3 edges. Note
that for the Laman graphs, the Maxwell is condition is also sufficient, which provides a
full characterization for theminimally rigid graphs inR2. On the contrary, the Maxwell
condition is not sufficient for the minimally rigid graphs in R3 (see Figure 1.1 for the
counter example).

From an algebraic point of view, an embedding of a graph corresponds to a solution
of an algebraic system that is defined by the given edge length constraints. Thus, the
number of embeddings of a minimally rigid graph in Rd is equal to the number of the
real solutions of the corresponding algebraic system. The complex solutions of the same
system introduces the notion of an embedding to the complex space, and this allows us
to use tools from the complex algebraic geometry, for example, the Bézout's theorem.
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Figure 1.1: The double­banana graph satisfies Maxwell's condition in R3, but is not
rigid since its two rigid components (red and yellow) rotate around the dashed axis.

Regarding our algebraic systems, it is clear that the number of complex solutions bound
from above the number of real solutions, therefore we can work on the complex space.

An open question on rigid graph theory is to obtain tight upper bounds on the maxi­
mal number of embeddings of minimally rigid graphs in Rd, depending on the number
of vertices. The direct application of Bézout's theorem to the algebraic system, gives a
trivial bound of O(2d·|V |). Notice that, for the Laman graphs, the bound is of O(4n)
solutions. In [8], Borcea and Streinu improved the exact upper bound compared to the
trivial Bézout bound, however they did not manage to improve it asymptotically. Their
work yielded a bound of

2 ·
|V |−d−2∏

m=0

(
|V | − 1 +m

|V | − d− 1−m

)
(
2m+ 1

m

)
embeddings. The result is based on determinantal equations (and inequalities) of the
Cayley­Menger matrix [7], and a theorem on the degree of determinantal varieties [13].

Let G be a minimally rigid graph in Rd and P be its corresponding algebraic sys­
tem that counts its embeddings. There is a generalization of Bézout's theorem to multi­
homogeneous polynomials, called multi­homogeneous Bézout [18]. A d out­degree
constrained orientation of a graph (or simply d­orientation), is an assignment of direc­
tion to every edge of G, such that every vertex has out­degree d and every edge has a
direction. In [3], a relation between the multi­homogeneous Bézout of P and the out­
degree constrained orientations of G was proven, that allows us to count orientations,
in order to improve the upper bounds on the number of embeddings. The asymptotic
upper bounds for d ≥ 5 was also improved, by using the Brégman­Minc permanent
bound. In [5], by bounding the number of orientations of a graph, the asymptotic order
of the number of embeddings was improved for d ≥ 2. For the case of d = 2, the bound
is ofO(3.77n) solutions. This work led to the most recent bounds in all dimension≥ 2,
for the number of embeddings of minimally rigid graphs.

Our Contribution: In this thesis, we manage to improve the asymptotic upper
bounds on the number of embeddings of generically minimally rigid graphs for d ≥ 2.
As in [5], we apply an elimination process on a graphical structure to obtain upper
bounds on the number of outdegree­constrained orientations for fixed d. In particular,
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CHAPTER 1. INTRODUCTION

we harness Maxwell's condition in order to restrict the degree of the eliminated ver­
tices. We also treat vertices of certain degree profiles with a different approach from
[5]. More precisely, we use a delicate method relating certain sequences with the elim­
ination of path of vertices with these degree profiles. For the case of d = 2, our upper
bound on the number of embeddings is of O(3.46|V |), while for Geiringer graphs the
new upper bound is O(6.32|V |). Finally, we prove that there are graphs that can have
outdegree­constrained orientations approaching our new upper bound in the case of
d = 2.

Organization: We organize the thesis as follows. In Chapter 2, initially we intro­
duce some basic concepts presented previously in [3, 5]. Subsequently, we provide
some definitions and technical lemmas that will be used later for the elimination of
vertices with certain degree profiles. In Chapter 3, we give detailed description of our
elimination process in the case of dimension 2, establishing the new upper bound. This
case shall serve as basis for some induction hypotheses in higher dimensions. In Chap­
ter 4, we provide new upper bounds for d ≥ 3 generalizing the results for Laman graphs.
Then, in Chapter 5 we give examples of Laman graphs that have the biggest number of
orientations among the cases we computed. These results give a higher significance on
the tightness of our result. Finally, Chapter 6 we conclude and present some ideas that
could extend the present research.
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CHAPTER2
PRELIMINARIES

In this chapter, we present some basic principles of graph rigidity. In addition to that, we
state and prove several lemmata that will be useful in improving the new upper bound
formula.

2.1 Hennenberg steps
In this section we present a method to construct minimally rigid graphs in dimension d,
while starting from a complete graph Kd. The Hennenberg steps construct a superset
of the set of minimally rigid graphs in dimension d. For d = 2, there are two such steps
(see Figure 2.1); the Hennenberg type 1 step (H1) andHennenberg type 2 step (H2). The
H1 step, adds a vertex to the graph, and connects it, via edge, with two other vertices
of the graph. The H2 step requires a subset of 3 vertices, say A, with at least one edge
between them. Then, one of these edges is removed, and a new vertex is added to the
set of vertices, along with 3 new edges, joining the new vertex with A. This operation
can be seen as splitting an edge by adding a vertex between its two endpoints, which
consists of the new vertex, and connecting it with another vertex of the graph.

H1 H2 H1 H2 H3x H3v

2­degree edge split 3­degree edge split X­replacement double
vertex add in 2d vertex add in 3d V­replacement

Figure 2.1: Excerpt from [3]. Henneberg steps for Laman and Geiringer graphs.

These two steps, H1 and H2, construct all the minimally rigid graphs in d = 2, that
is the Laman graphs. In higher dimensions, there is a generalization of the Hennenberg
steps. In dimension d, H1 step introduces a vertex and d edges that connects it with
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2.2. ALGEBRAIC FORMULATION

the graph, while H2 step, splits an edge, and connects the new vertex with d− 1 other
vertices. These steps, always preserve minimal rigidity when applied. However, these
steps are not enough to construct all minimally rigid graphs in all dimensions, i.e. even
in space we require another step, Hennenberg type 3 step (H3), to construct a superset
of the corresponding minimally rigid graphs. In this new step, 2 edges are deleted and
the new vertex is connected with the endpoints of the deleted edges and 1 additional
vertex of the graph (see Figure 2.1 for the variations of this step). There is a conjecture
that states the following [20].

Conjecture 2.1. TheH1, H2, andH3 steps fully characterize theminimally rigid graphs
in R3.

2.2 Algebraic Formulation
Let G = (V,E) be a graph and p = {p1, p2, ..., p|V |} ∈ Rd·|V | be an embedding of G
in Rd. Every such embedding induces a set of edge lengths λ = (||pv − pu||){v,u}∈E ,
where || · || denotes the euclidean norm, that must coincide with the given edge lengths,
for the embedding to be valid. Given a set of edge lengths λ, the number of embeddings
(or simply embedding number) are equal to the number of real solutions of an algebraic
system that captures the edge lengths. A simple formulation of such a system is the
following

λ2
v,u =

d∑
j=1

(xv,j − xu,j)
2
, ∀{v, u} ∈ E (2.1)

where xv,j represents the i­th coordinate of vertex v. As it was mentioned before, the
complex solutions of such systems extend the notion of the embedding in the complex
space. In the sequel, as an algebraic system that captures the edge lengths, we will use
the following formulation, that was also used in [9, 19], and is called sphere equations
[2].

Definition 2.2 ([2]). Let G = (V,E) be a graph. We denote by λ the lengths of
the edges on G and by X̃u = {xu,1, ..., xu,d} the d variables that correspond to the
coordinates of a vertex u. The following system of equations gives the embedding
number for G:

||X̃u||2 = su, ∀u ∈ V

su + sv − 2⟨X̃u, X̃v⟩ = λ2
u,v, ∀(u, v) ∈ E \ E(Kd)

where ⟨X̃u, X̃v⟩ is the Euclidean inner product. The first set of equations shall be
calledmagnitude equations, while the second are the edge equations. Let X̃u contain an
additional variable, i.e. X̃u = {xu,1, ..., xu,d, su}. By using |X̃u| = d+ 1 coordinates
and setting su = 1, we can use this formulation to embed G on the unit d­dimensional
sphere Sd.

Minimally rigid graphs in Rd are also minimally rigid in Sd, and vice versa [21].
Note that, other spaces or norms could be used to formulate the algebraic system of the
embeddings [16, 21], but this would require different definitions and analysis in order
to correspond to them.

To compute the embedding number of such a system, first we need to remove any
rigid motions. To achieve that, we fix

(
d+1
2

)
coordinates, hence the system becomes

6



CHAPTER 2. PRELIMINARIES

Figure 2.2: The complete bipartite graphK6,4. It is minimally rigid in R3, but it does
not contain a triangle.

0­dimensional. In the case of d = 2, we have to fix 3 coordinates, that is, both coordi­
nates of a vertex and 1 coordinate of another vertex. This property has an extension in
a general dimension d, in which, if a graph contains a complete subgraph on d vertices
Kd = {v1, ..., vd}, then we can pick the coordinates of these vertices, so that the edge
length constraints are satisfied. In the sequel, we refer to such a complete subgraph
as fixed. It is reasonable to question, whether a minimally rigid graph in dimension d
always contains a Kd. In the case of d = 2, this is true, but this is not true in higher
dimensions. In particular, not all minimally rigid graphs in R3 contain triangle, i.e. bi­
partiteK6,4, which is aGeiringer graph that does not contain triangles (see Figure 2.2).
This is obvious, since bipartite graphs do not contain cycles of odd length. Note that
Geiringer graphs that do not contain triangles are very rare, and the 10­vertex K6,4 is
the first one.

2.3 Basic Lemmata and Notation
First, let us state the theorem that was proven in [3] that relates the number of embed­
dings of minimally rigid graphs inRd with the number of d­orientations. Consequently,
it gives us a combinatorial tool to calculate the multi­homogeneous Bézout. We have
modified this theorem to fit the discussion on the possible absence of complete sub­
graphs with d vertices for a minimally rigid graph in Cd (see [3, 5] for more details on
this subject and the underlying algebraic system).

Theorem 2.3 ([3]). Let G = (V,E) be a minimally rigid graph in Cd that also con­
tains a Kd′ as a subgraph, for some d′ ≤ d. The vertices of Kd′ are called fixed. If
d′ < d, then we introduce a set of partially fixed vertices, V ′ = {vd′+1, ..., vd}. Let
R(G,Kd′ , V ′) denote the number of orientations of G′ = (V,E \E(Kd′)), such that:

• the outdegree of the vertices ofKd′ is 0.

• if d′ < d, the outdegree if the partially fixed vertices vd′+1, ..., vd is d − d′ +
1, ..., d− 1, respectively.

• the outdegree of every other vertex inG, that is every vertex in V \(V ′∪V (Kd′)),
is d.

The embedding number of G in Cd is bounded from above by

2|V |−d · R(G,Kd′ , V ′).

Corollary 2.4 ([3]). An H1 move always doubles the m­Bézout bound up to the same
fixed Kd′ . Moreover, if a graph can be constructed only with H1 moves, then the m­
Bézout bound for this graph is exactly 2|V |−d.

7



2.3. BASIC LEMMATA AND NOTATION

Proof. Let R(G,Kd′ , V ′) be the number of outdegree­constrained orientations for a
graph G(V,E) up to a givenKd′ . This means that the m­Bézout bound is

mBe(G,Kd′) = 2|V |−d · R(G,Kd′ , V ′).

Now, let G∗ be a graph obtained by an H1­move on the graph G. Since H1 adds a
degree­d vertex toG, this means that there is only one way to reach outdegree d for the
new vertex of G∗. So the outdegree­constrained orientations ofG∗ up to the sameKd′

are exactlyR(G,Kd′ , V ′) and

mBe(G∗,Kd′) = 2|V |+1−d · R(G,Kd′ , V ′) = 2 ·mBe(G,Kd′).

The second statement of this corollary can be proven by induction: Starting from
Kd, only one orientation satisfies the requirements of Theorem 2.3 for each H1 move.
So, the m­Bézout bound of a minimally graph constructed only by H1 moves is 2|V |−d.

Remember that in d = 2, we always have aK2, i.e. an edge. However, either V ′ is
empty of non­empty, the asymptotic upper bound remains intact. So, now we are ready
to focus on bounding the number of d­orientations, instead. In our approach, we apply
an elimination process to the vertices of a graph, that at each step we increase a cost,
that eventually expresses a bound on the number of d­orientations. To do that, we need
to use a graphical structure that was also used in [5].

Definition 2.5. Let J = (VJ , EJ ,HJ) be a pseudograph, where VJ is the set of ver­
tices, EJ is the set of edges, and HJ is an additional set of edges that only have one
endpoint. The edges in HJ , have direction and they are directed outwards. To distin­
guish the two edge sets, we call the edges of EJ , normal edges, and the edges of HJ ,
hanging edges. The pair J ′ = (VJ , EJ) is called normal subgraph of J .

As a consequence, every vertex v of a pseudograph has a degree profile (r, h),
where r and h are equal to the number of normal and hanging edges incident to v,
respectively. In [5], the authors use a different notation for the degree profile, that is
(p, h), where h is the same as here, and p is equal to r + h. Here, since the focus is on
vertices with the same normal degree, we change the notation.

Regarding our method, we start by removing a Kd′ out of G, and therefore we
construct a pseudograph J = (VJ , EJ ,HJ), where VJ = V (G) \ V (Kd′), and
EJ = E(G) \ EG(Kd′). The hanging edges of J , consist of the edges that had the
one endpoint in VJ and the other in V (Kd′), and the out­degree of the partially fixed
vertices. If V ′ ̸= ∅, then for every partially fixed vertex v that shall have outdegree
d̂, we shall consider d − d̂ hanging edges. The number of d­orientations of J is equal
to R(G,Kd′ , V ′). These shall be called valid d­orientations, while every connected
component of a pseudograph constructed as described above shall be a connected d­
pseudograph. Let us remark that if a vertex v has degree profile (r, h) with r + h < d
or h > d, then it can have no valid d­orientation, since in the former case it can have
outdegree strictly less than d, while in the latter case it has already outdegree greater
than d.

Note that a minimally rigid graph in dimension d, is at least d­connected [17].
Hence, when we remove d­vertices out of it ­in order to construct the pseudograph­ we
cannot ensure that the removal of every such set of vertices does not break the connec­
tivity. However, in our analysis it suffices to bound the d­orientations of all connected

8



CHAPTER 2. PRELIMINARIES

v1

v2

v3

v4

v5 v3

v4

v5

Figure 2.3: An example of a Laman graph and a pseudograph constructed after the
removal of a fixedK2. (left) A Laman graphG, with fixed edge (v1, v2) (dashed blue).
Since the fixed vertices have outdegree 0, their incident edges (red) are uniquely ori­
ented. (right) The corresponding pseudograph. The red flexes represent the hanging
edges. The degree profiles for vertices v3, v4, v5 are respectively (2, 2), (2, 1), (2, 0).

d−pseudographs. In the following sections, we apply an elimination process to the ver­
tices of such pseudographs. This process has the following stopping condition, already
used in [5].

Lemma 2.6 ([5]). Let J = (VJ , EJ ,HJ) be a pseudograph such that J ′ = (VJ , EJ)
is a tree. Then

• the number of valid orientations for J is either 1 or 0,

• if G has a valid orientation, then |HJ | = (d− 1) · |VJ |+ 1,

where d is the fixed outdegree required.

This count is derived from the relation |EJ | = |VJ |+ 1 between the edges and the
vertices of a tree and the fact that in order to have a valid d−orientation, it is needed a
total of d · VJ edges and hanging edges. In other words, our goal is to eliminate every
cycle from the normal subgraph J ′. Notice that if we allowed the elimination of cut
vertices, then the edge count for c connected trees would be |EJ | = |VJ | + c, so the
relation between the hanging edges and the vertices would become |HJ | = (d − 1) ·
|VJ | + c. In order to restrict the parameters of the bound in our analysis only to total
number of vertices and hanging edges, we prefer to keep the pseudograph connected
throughout the elimination process.

Note that one could use a different stopping condition, namely a pseudograph that
represents a graph that can be constructed by H1 steps. Corollary 2.4 tells us that such
a graph can only have only one valid orientation 1, hence it can be considered as a
stopping condition.

During the elimination process, the removal of a vertex v corresponds to the ori­
entation of its incident edges. If an edge e = (v, u) is outdirected from v, it is also
removed in the next step of the elimination process. Otherwise, if e is directed inwards
v, then it remains in the next step as a hanging edge incident only to u.

Each vertex removal has a cost, which expresses the number of valid orientation
this vertex has, and it depends on the degree profile of this vertex, as well as the combi­
natorial properties of the pseudograph. A second quantity we use is the hanging edges
equilibrium (H.E.E.). This gives a hint about how fast the elimination process may
approach the tree condition.

1it would work even if we could find a condition on a graph that from that point henceforth the graph
would have at most a constant number of orientations

9



2.3. BASIC LEMMATA AND NOTATION

Lemma 2.7. Let J be a pseudograph and v be one of its vertices with degree profile
(r, h). The cost of the removal of a vertex v, expresses the quotient of the valid ori­
entations of J over the maximum number of valid orientations of J \ {v} and is equal
to (

r

d− h

)
(2.2)

while the H.E.E. is the difference between hanging edges in J \ {v} and J

r − d (2.3)

The total cost of the elimination process bounds the number of orientations. Notice
that while the cost depends both on the normal and the hanging degree of a vertex, the
H.E.E. depends only on the first one. This shall be used to group the elimination of
vertices with different hanging degree, but the same normal one.

Figure 2.4: The cost of a removal of a vertex is equal to the number of different valid
ways of adding direction on its edges. (left) Removal of a (3, 0) vertex in the case of
d = 2. The cost in this case is

(
3
2

)
= 3. Two edges shall be deleted, therefore only

one of its neighbours acquires a hanging edges. (right) Removal of a (3, 2) vertex in
the case of d = 3. This vertex already has 2 hanging edges, and needs one more to
be saturated. Therefore the cost is

(
3

3−2

)
= 3 and every neighbour acquires a hanging

edge in 2 scenarios.

These general aspects of the elimination process were also used in [5]. Now we will
present some new clues and concepts that will lead to the improved bounds.

First, remark that there are different scenarios for the distribution of hanging edges.
Therefore, we will give an additional count that determines in how many cases a neigh­
bour of the eliminated vertex acquires a new hanging edge or not.

Lemma 2.8. Let v be an eliminated vertex with degree profile (r, h) and u be one of
its neighbours. Then there are exactly(

r − 1

d− h

)
and

(
r − 1

d− h− 1

)
(2.4)

cases that u acquires or does not acquire a hanging edge respectively after the elimina­
tion of v.

Proof. Let us consider that u gets a hanging edge after the elimination of v. That means
that the edge e = (u, v) is directed towards v, so d − h edges incident to v shall be

10
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directed outwards it. The available edges after the orientation of e are r− 1, indicating

that there are
(
r − 1

d− h

)
ways to orient them. Since the cost for the elimination of v is(

r

d− h

)
, by Pascal's identity we derive the count for the case that u does not get a

hanging edge.

These quantities shall be used to determine the worst case scenarios for the vertices
that are eventually eliminated with different degree profiles.

Now we show that there is always an elimination process that does not create more
connected components of the d­pseudographs. Additionally, we impose certain restric­
tions on the normal degree of the removed vertex. For that reason, let us recall the
definition of the block­cut tree.

Definition 2.9 ([12]). LetG = (V,E) be a connected graph. There is a graphBG, such
that every vertex of BG represents either a biconnected component in G, or an articu­
lation point in G and its edges represent a biconnected component and an articulation
point that belongs to that biconnected component. This graph is called the block­cut
tree of G.

We may use the same definition for the block­cut tree (see Figure 2.5) of the normal
subgraph of every pseudograph.

v0

v2

v1
B1

B2

B3

B4

B1

v0
l(v0,v2)

v2

B4

B2

v1

B3

Figure 2.5: (left) An example graph. B1, B2, B3 and B4 are the biconnected compo­
nents. (right) The block­cut tree of the example graph.

The following lemma uses Maxwell's condition to bound the normal degree of the
eliminated vertices.

Lemma 2.10. Let G = (V,E),Kd′ and V ′ inducing a pseudograph J as above. Then
every connected component of J = (VJ , EJ ,HJ) has at least one non­cut vertex with
normal degree smaller or equal than 2d− 1.

Proof. Due to the Maxwell condition, for every subgraph of J ′ = (VJ , EJ) ⊆ G, we
get that |EJ | ≤ d · |VJ | −

(
d+1
2

)
. Consider a leaf of the block­cut tree BJ′ . We denote

the biconnected component that corresponds to a leaf of BJ′ by L. The total normal
degree of J ′[L] is at most 2d · |V (J ′[L])| − 2

(
d+1
2

)
. In it, there is at most one vertex

which is a cut­vertex of J ′, because L is a biconnected component. The cut vertex has
normal degree at least 2 in J ′[L]. Assume that the smallest normal degree for a non­cut
vertex in the leaf is 2d. Then, it follows that the total normal degree is of J ′[L] at least

11
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2d · |V (J [L])|−2(d−1), violating Maxwell's condition. This leads to a contradiction,
because Maxwell's condition shall be satisfied for J ′[L], so there are always vertices
with normal degree smaller or equal to 2d− 1.

Evidently, throughout the elimination process this property holds, since the normal
subgraph of any pseudograph derived from an elimination step is always a subgraph
of a minimally rigid graph. Notice that in [5], the bound on the valid d−orientations
was related to all connected pseudographs, while this lemma restricts the analysis to
pseudographs derived from minimally rigid graphs, i.e. d−pseudographs.

In our analysis, we need to distinguish two categories of elimination steps: single
vertex elimination step and path elimination step. The latter is used to reduce the effect
of vertices with degree profiles that would result to a bigger bound, if eliminated with
the first method.

Path vertex elimination steps were also used in [5]. Here, we alter this method to
group vertices with different hanging degree, but same normal degree. The following
definition describes these paths.

Definition 2.11. Let Fd,J be a family of pseudographs which are subset of J . A graph
Jd is contained into Fd,J if and only if Jd induces a maximal connected subgraph of
J , such that the normal degrees in J of all vertices is the same and equal to 2d− 1 and
has no cycles. Also J − Jd is connected.

Figure 2.6: An example subgraph J2 of a graph J that satisfies Definition 2.11. Notice
that all the vertices have normal degree 3 on J , but all vertices but the first one are
eliminated with normal degree 2.

If Jd has more than one vertices, after the elimination of the first one with normal
degree 2d − 1, all the other vertices in the path will be eliminated with normal degree
r = 2d−2. In our analysis the first vertex is eliminated with a single vertex elimination
step and the rest of the vertices with a path elimination step. Otherwise, if vertices with
degree profile (2(d − h), h) for 1 ≤ h ≤ d − 1 were always eliminated with a single
vertex elimination step, then the analysis would lead to bigger bounds on d­orientations.

In order to use path elimination step we need to use a variant of the definition of the
cost.

Definition 2.12. Let Jd = (v0, v1, . . . , vℓ) be a path of ℓ + 1 vertices, as in Defini­
tion 2.11, with ℓ ≥ 1. Let Cd(ℓ) be the total cost of removing these vertices in order.
The average cost of removing the path without the first vertex v0 is(

Cd(ℓ)

Cd(0)

)1/ℓ

12
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where Cd(0) is the cost of the removal of v0.
Moreover if there is an effective upper bound C∗

d(0) for Cd(0), then the ratio(
Cd(ℓ)

C∗
d(0)

)1/ℓ

is the eliminating average cost.

Using these definitions, the total cost and the average cost can be computed by
multiplying the cost of every elimination step, which can be either a single vertex elim­
ination step, or a path elimination step. The eliminating average cost is used when we
want to bound effectively the process by using an upper bound in the case of Cd(0),
instead of the exact cost. A necessary condition when using the average cost is that the
H.E.E. is not altered by this change.

In the following sections, we show that the total cost of our paths follows the pattern
of certain recursive sequences, in the worst case scenario. Here, we prove technical
lemmas, that are used in order to bound eventually the cost of the path removal. First,
we present a recursive formula for the total cost of the path, based on two other recursive
functions.

Lemma 2.13. Let Bd(ℓ) and Gd(ℓ) be the following recursive functions:

Bd(ℓ+ 1) =
αd

2
· (Bd(ℓ) + Gd(ℓ))

Gd(ℓ+ 1) =
αd

2
· Bd(ℓ) +

(
βd −

αd

2

)
· Gd(ℓ)

(2.5)

where αd =
(
2d−2
d−1

)
and βd =

(
2d−2

d

)
, and d ≥ 2. Given these functions we define the

sequence
Cd(ℓ) = αdBd(ℓ) + βd Gd(ℓ). (2.6)

Then Cd(ℓ) is defined recursively for l ≥ 1 by:

Cd(ℓ+ 1) = βd · Cd(ℓ) +
αd(αd − βd)

2
· Cd(ℓ− 1) (2.7)

Proof.

Cd(ℓ+ 1) = αdBd(ℓ+ 1) + βd Gd(ℓ+ 1)

=
α2
d

2
(Bd(ℓ) + Gd(ℓ)) +

αdβd

2
Bd(ℓ) + βd(βd −

αd

2
)Gd(ℓ)

=
α2
d

2
(αdBd(ℓ− 1) + βdGd(ℓ− 1)) +

αdβd

2
(Bd(ℓ)− Gd(ℓ))

+ βd(Cd(ℓ)− αdBd(ℓ))

=
α2
d

2
Cd(ℓ− 1) + βdCd(ℓ)−

αdβd

2
(Bd(ℓ) + Gd(ℓ))

= βd · Cd(ℓ) +
αd(αd − βd)

2
· Cd(ℓ− 1)

Notice that by the definition of the sequences, we have that Bd(ℓ) > Gd(ℓ), since
αd > βd, but for the initial condition Bd(0),Gd(0). In the sequel we set Bd(0) =
Gd(0) = 1, except for the mixed path case treated in Lemma 4.4.

13
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Now we are ready to bound the ratio of two consecutive terms of the sequence
Cd(ℓ). This is used to bound the cost of vertices eliminated with a path elimination
step.

Lemma 2.14. For all ℓ ≥ 0 and d ≥ 2 the ratio
Cd(ℓ+ 1)

Cd(ℓ)
is strictly bounded from

above by

D(d) =
α2
d + β2

d

αd + βd
,

if the initial cost Cd(0) = αd + βd =
(
2d−1

d

)
.

Proof. First, we will prove that it holds for ℓ ≥ 4, and then we will prove it for the 4
starting cases. The d subscripts are omitted in this proof, because they are not altered.

C(ℓ+ 1)

C(ℓ)
≤ α2 + β2

α+ β
⇐⇒

(α+ β) · C(ℓ+ 1) ≤ (α2 + β2) · C(ℓ) ⇐⇒
(α+ β) · C(ℓ− 1) ≤ 2 · C(ℓ) ⇐⇒ (2.8)
(α+ β) · C(ℓ− 1) ≤ 2β · C(ℓ− 1) + α(α− β) · C(ℓ− 2) ⇐⇒
C(ℓ− 1) ≤ α · C(ℓ− 2) ⇐⇒ (2.9)

β · C(ℓ− 2) +
α(α− β)

2
· C(ℓ− 3) ≤ α · C(ℓ− 2) ⇐⇒

α · C(ℓ− 3) ≤ 2 · C(ℓ− 2) ⇐⇒ (2.10)
α · C(ℓ− 3) ≤ 2β · C(ℓ− 3) + α(α− β)C(ℓ− 4) ⇐⇒
(α− 2β) · C(ℓ− 3) ≤ α(α− β) · C(ℓ− 4)

which is true since α ≤ 2β for d ≥ 2 and the other factors are positive.

Now, we should check if it holds for the remaining cases, i.e. for C(1)/C(0),
C(2)/C(1), C(3)/C(2), and C(4)/C(3).

For C(1)/C(0), we simply use the definition C(ℓ+ 1) = αB(ℓ+ 1)+βG(ℓ+ 1),
for ℓ = 0 and we find the values of B(1) and G(1) by using their definition. Recall that
B(0) = G(0) = 1. Hence, we have the following equality:

C(1)

C(0)
=

α2 + β2

α+ β
.

For the case of C(2)/C(1), we stop at the inequality 2.8 above, for ℓ = 1, and we have

(α+ β) · C(0) ≤ 2 · C(1)

(α+ β)2 ≤ 2 · (α2 + β2)

(α− β)2 ≥ 0

which is true.

For the case C(3)/C(2), we stop at the inequality 2.9, for ℓ = 2:
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C(1) ≤ α · C(0)

α2 + β2 ≤ α2 + αβ

which is true, since α ≥ β.

For the last case, consider inequality 2.10 at ℓ = 3. We have that

α · C(0) ≤ 2 · C(1)

αβ ≤ α2 + 2β2

which is clearly true.

Lemma 2.14 clearly shows that the following inequality holds for the average cost
of every sequence defined as in Lemma 2.13.(

Cd(ℓ)

Cd(0)

)1/ℓ

≤
(
Cd(1)

Cd(0)

)1/ℓ

.
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CHAPTER3
LAMAN GRAPHS

In this chapter, we develop a method that improves the existing upper bounds on the
embedding number of Laman graphs. The analysis for this dimension is simpler than
the ones regarding higher dimension and serves as base case for higher dimensions.
Our method relies on Theorem 2.3, which relates the bound on the embedding number
with the outdegree­constrained orientations. In this section we can remove subscripts
referring to the embedding space from Fd,J ,Jd, Cd,Bd,Gd, αd, βd.

We use an elimination process similar to [5] in order to improve the upper bound.
We remind that the tree condition (see Lemma 2.6) signifies the termination of the
process. Given a pseudograph J = (VJ , EJ ,HJ) and setting n = |VJ | and k = |HJ |,
we have that this condition is satisfied if k = n+ 1.

One of the main differences between the elimination method described here and the
one in [5], is the restriction on the normal degree of the eliminated vertices. Specializing
Lemma 2.10 to the case of d = 2, we have that connected 2­pseudographs derived from
the deletion of a fixed edge in a Laman graph have always a non­cut vertex with normal
degree less or equal to 3. This also happens for all connected pseudographs that evolve
through the elimination process, signifying that these that have valid 2­orientations may
have vertices with the following vertex profiles, cost and H.E.E. (see Equation 2.2):

• Vertices with normal degree 1 have H.E.E. = ­1: (1, 2), (1, 1), with cost=1.

• Vertices with normal degree 2 have H.E.E.= 0: (2, 2), (2, 0), with cost = 1, and
(2, 1), with cost = 2.

• Vertices with normal degree 3 have H.E.E.= 1: (3, 2), with cost = 1, and (3, 0),
(3, 1), with cost = 3.

The vertices that have cost=1 will be called trivial vertices in the sequel, since their
removal does not increase the total cost of the elimination process. Now we will de­
scribe the elimination process and the different cases treated. All vertices with normal
degree 3 are eliminated with a single vertex elimination step, their cost is bounded by
3 and generate 1 hanging edge. For the vertices with normal degree 2, we consider a
dichotomy described in the following definition.

Definition 3.1. We consider a pseudograph J and an elimination process bounding its
cost. The non­composite vertices with normal degree 2 are the eliminated vertices that
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• had already normal degree 2 in J .

• have normal degree 2 and they were generated by the removal of another non­
composite trivial vertex with normal degree 2 or by the removal of a vertex with
normal degree 1.

All the other vertices eliminated with normal degree 2 are called composite.

Notice that since non­composite (2, 1) vertices have one hanging edge and the
H.E.E. of trivial vertices that may generate them is ≤ 0, during the elimination pro­
cess of a pseudograph with k hanging edges. Thus, there can be eliminated at most k
of these vertices.

The composite vertices can be grouped in order to fit Definition 2.11 and subse­
quently the worst case scenario for their elimination follows Lemma 2.13 bounding the
average cost from the quantity indicated in Lemma 2.14. The dichotomy described and
the grouping are essential, because if single vertex elimination was considered for all
(2, 1) vertices, then the bound would be higher. This is the delicate part of our analysis.

The following lemma shows that we can consider only composite vertices (2, 1) in
J for our elimination process.

Lemma 3.2. There is always an elimination process such that all composite non­cut
vertices are created after the elimination of a vertex in FJ .

Proof. The only way to create a vertex with normal degree 2 is by eliminating the
neighbour of a vertex with normal degree 3. By Definition 2.11, if the eliminated vertex
has also degree 3, then it belongs to FJ , so our case holds.

If at a certain instance of the elimination FJ = ∅, then either there are no vertices
with normal degree 3, or all such vertices are cut vertices. In the first case, there is
nothing to prove. In the second case, we can continue the elimination process eliminat­
ing a vertex that lies in the leaf of the block cut tree. By Lemma 2.10 there is always a
non­cut vertex u in this biconnected component, with normal degree smaller than 3. If
the cut vertex v has normal degree 3 and u has normal degree 1, then after its elimina­
tion v is a non­composite vertex. If u has normal degree 2, then v remains a cut vertex
and cannot be eliminated before a further drop of degree in one of the next elimination
steps.

It is clear from Definition 2.11, that all vertices of J but the first one are eliminated
with normal degree 2, since when one vertex is eliminated, then the normal degree for
all its neighbours drops by 1 in the resulting pseudograph. The following corollary
shows how we can bound the average cost of such paths in the case of Laman graphs.

Lemma 3.3. The eliminating average cost for the elimination of composite vertices
can be set as less or equal to 5/3. This is a specialization of Lemma 2.14 for d = 2.

Proof. We show that the worst case scenario for the total and the average cost is cov­
ered by Equation 2.7 that results from the recursive Equations 3.1 (see Lemma 2.8 for
details). It is obvious that in the ℓ­th move the cost is exactly C(ℓ) = 2B(ℓ) + G(ℓ),
where B(ℓ),G(ℓ) denote the cardinality of vertices with degree profile (2, 1) and (2, 0)
or (2, 2) (which are trivial vertices) respectively. This definition for C(ℓ) is a special­
ization of Equation 2.6 in the case of d = 2. Lemma 2.8 gives the scenarios for the
distribution of the hanging edge. Thus, the elimination of a (2, 1) vertex results to two
different scenarios, indicating that the neighbour in the path becomes a (2, 1) vertex
in half of the cases, and a trivial one in the other cases (see Figures 3.1, 3.2). On the
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other hand for the neighbour of a trivial vertex there is only one scenario, it will be
either (2, 1) (see Figure 3.1) or again trivial (see Figure 3.2). Let us denote by G∗(ℓ)
the number of trivial vertices that create (2, 1) vertices and G′(m) the number of trivial
vertices that create other trivial vertices. This implies that G(ℓ) = G∗(ℓ) + G′(ℓ). So,
the cardinalities for the next vertex in J (if such exists) are:

B(ℓ+ 1) = B(ℓ) + G∗(ℓ)

G(ℓ+ 1) = B(ℓ) + G′(ℓ)

leading to the following relation for the total cost of a path in the (ℓ+ 1)­th step:

C(ℓ+ 1) = 2B(ℓ+ 1) + G(ℓ+ 1)

= 2B(ℓ) + 2G∗(ℓ) + B(ℓ) + G′(ℓ)

= 2B(ℓ) + (G∗(ℓ) + G′(ℓ)) + B(ℓ) + G∗(ℓ)

≤ C(ℓ) + B(ℓ) + G(ℓ)
= C(ℓ) + 2B(ℓ− 1) + G∗(ℓ− 1) + G′(ℓ− 1)

= C(ℓ) + C(ℓ− 1)

(3.1)

The last quantity proves our point1.
We need to specify the different initial conditions of the path in order to prove that

the total cost of the path permits to use D(2) = 5/3 as an upper bound for the average
cost. By Lemma 3.2, we consider only the elimination for paths of vertices in J , so
the initial vertices can have only normal degree 3. If v0 is a (3, 0) or a (3, 1) vertex
and has cost 3, then the sequence C(ℓ) in the worst case scenario is exactly the one of
Lemma 2.13 for d = 2.

If v0 is a (3, 2) vertex and v1 is eliminated as a (2, 1) vertex, then the ratio
C(1)/C(0) = 2 > 5/3. We overcome this situation by making use of the elimi­
nating average cost setting that C∗(0) = 3, while C(1) is not altered. This change
cannot surpass the number of orientations in our analysis, since the total cost of the
path is not altered. Furthermore, for for single vertex elimination in the case of r = 3
we have already considered a bound for the cost of vertices with such normal degree,
as mentioned before, which is 3. Since C(1) is smaller than the respective value of the
sequence in Lemma 2.13, the next terms will be also smaller, so the eliminating average
cost for all vertices but the first one is strictly bounded by 5/3.

Now we are ready to bound from above the number of valid 2­orientation.

Theorem 3.4. The total number of 2­orientations for a connected 2­pseudograph with
n vertices and k hanging edges derived by will be at most

3(n+1)/2 · (2/3)k

Proof. We consider that throughout the elimination process there have been removed t
vertices with normal degree 3,m non­composite (2, 1) vertices, ℓ vertices with normal
degree 2 in paths J , s2 trivial non­composite vertices and s1 vertices with normal
degree 1. Recall that the elimination process stops when the tree condition is satisfied.
Neglecting trivial vertices, the total cost is bounded by

1Notice that the worst case scenario for the cost sequence in dimension 2 has the same recursive definition
as the Fibonacci sequence.
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v0
v1

v2

cost = 3

2

v1
v2

cost = 5

v2

cost = 8

v1
v2

v2

v2

Figure 3.1: An example of a path elimination step (left to right). Weights on blue flexes
show that a result is produced multiple times. Above each step, there is the cost of
the corresponding removal. (left) The first vertex v0 has degree profile (3, 0) and is
eliminatedwith a single vertex elimination step. (middle) There are 3 different scenarios
for the distribution of hanging edges after the elimination of v0. In 2 of them v1 becomes
a (2, 1) vertex, while in the other case it becomes a (2, 2) vertex. The total cost for the
removal of v1 adding all cases is 2 · 2 + 1 = 5. (right) The elimination of vertex
v2 follows the same principle. The average cost for the elimination of v1 and v2 is
(8/3)1/2 < 5/3. Notice that if we did not apply the path elimination step, we should
have eliminated vertices v1 and v2 with cost 2 (which is the biggest) and the total cost
would be 12.

3t · 2m · (5/3)ℓ (3.2)
Now we will use the tree condition in order to find a bound up to n and k. If the

final number of vertices and hanging edges in the elimination process are n′ and k′

respectively then we have the following equations:

n′ = n− t−m− ℓ− s1 − s2
k′ = k + t− s1

Since n′ + 1 = k′, we conclude that

t ≤ n− k −m− ℓ+ 1

2
.

This results to

3t · 2m · (5/3)ℓ ≤ 3n/2 · 3−k/2 · 3−m/2 · 3−ℓ/2 · 31/2 · 2m ·
(
5

3

)ℓ

= 3n/2 ·
(
2

3

)k

·
(

5

33/2

)ℓ

· 31/2

≤ 3n/2 ·
(
2

3

)k

· 31/2
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v0
v1

v2

cost = 3

2

v1
v2

v2

v2

v1
v2

cost = 4

v2

cost = 5

Figure 3.2: Another example of a J ∈ FJ that induces a path in J . The example
is similar to Figure 3.1, with the only difference that v1 is a (3, 0) vertex now and the
total cost is lower. In this case, notice that the removal of v0, results to 2 trivial and 1
non­trivial cases for v1.

sincem is at most k.

Subsequently we have that given a pseudograph J derived from a Laman graph with
c connected components, then its number of valid 2­orientations is bounded by:

3(n+c)/2 ·
(
2

3

)k

. (3.3)

Nevertheless, we prove that an exact bound on the embedding number of Laman
graphs can be derived considering a fixed edge, whose removal does not create multi­
ple components. Recall from graph theory that given a connected graph G = (V,E),
a subset of vertices S ⊆ V is called vertex separator is its removal breaks the connec­
tivity.

Lemma 3.5. Let G be a Laman graph, then ∃e = (u, v) ∈ E(G) such that G′ =
(G \ {u}) \ {v} is connected.

Proof. Since G is a Laman graph, it is at least 2­connected [17]. If the minimum size
separator contains at least 3 vertices, then the lemma is proven. In the other case, we
denote a 2­vertex separator with S1. If we remove S1 fromG, then we get two compo­
nents G1, G

′
1.

If one of the two components, i.e. G1, does not contain a separator, then S1 is
called extreme. This means that either G[V (G1)] contains edges, but the deletion of
any 2 vertices does not break the connectivity, or there are no edges in G[V (G1)]. In
the latter case, every edge that is incident to a vertex inG1, has its other endpoint in S1.
If S1 is not an extreme separator, we repeat the process inG1 without loss of generality,
setting a new partition inG2, S2, G

′
2 as before. We end the process when a separator in

one of the two components is extreme.
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Let us denote the two components and the separator in the end of this process with
GS , G

′
S and S respectively. We consider GS to be the component with no separator.

If there is an edge in one of the components, then trivially the deletion of its endpoints
does not break the connectivity.

If there is no edge inGS , then let u, u′ be the vertices in S and v be a vertex inGS .
SinceG is 2­connected, then v has degree at less 2, so there are edges (u, v) and (u′, v).
Since there are no edges in GS and both u and u′ connect with both GS and G′

S , the
removal of v and one of these 2 cannot break the connectivity.

Theorem 3.6. Let G = (V,E) be a Laman graph. The embedding number of G in C2

and S2 is bounded from above by

16

37/2
·
(
2 · 31/2

)|V |−2

.

The asymptotic order of this bound is O(3.46|V |).

Proof. In [3] it is proven that the bound of the embedding number for a Laman graph
G with a 2­valent vertex v is the same with the number of orientations of the graph
G \ {v}, so by Theorem 2.3 the number of orientations is the same. This means that
for the general bound, we may consider only Laman graphs with minimum degree 3.
Since the number of hanging edges k is equal to the number edges incident to the fixed
vertices, but for the fixed vertex, we have that k ≥ 4. Also, Lemma 3.5 indicates that
there is always a fixed edge whose removal does not break connectivity.

By setting k = 4 and c = 1 in the upper bound on the 2­orientations given in
Equation 3.4, and combining it with Theorem 2.3 we derive the new upper bound.
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CHAPTER4
HIGHER DIMENSIONS

In this chapter we improve the bounds for all d ≥ 3. The elimination method here is
analogous with d = 2. The main difference is that paths with multiple normal degree
profiles shall be considered. Remark also that the case of Laman graphs is used as base
case for some of our proofs. The asymptotic bound derived in this section is given by
the following Theorem, that extends Theorem 3.6.

Theorem 4.1. Let G = (V,E) be a minimally rigid graph in dimension d ≥ 2. The
embedding number of G is bounded from above by

O

(2 · (2d− 1

d

)1/2
)|V |

 .

Let Cd(r, h) denote the cost of the removal of a vertex with r normal edges and h
hanging edges in dimension d. The following quantity

Cd(r, h)
d−1
r−1 (4.1)

is the asymptotic effect for the elimination of a vertex with degree profile (r, h), for
r ≥ 2. Notice that the exponent in this quantity is not affected by the hanging degree
of the vertices, so it is the same for all vertices with the same normal degree. We also
consider that the asymptotic effect of vertices with normal degree 1 is trivially 1. Let
us also remind that there is no reason to examine vertices such that r+h < d or h > d,
since they have no valid d­orientations.

The first step leading to the bound of d­orientations is to derive the maximal of the
asymptotic effect for certain cases of degree profiles. More precisely we prove that the
asymptotic effect of (2d−1, 0) vertices is bigger or equal to the asymptotic effect of all
other vertices examined in the following lemma. Thus, Cd(2d − 1, 0)

1
2 shall be called

target bound in the sequel.

Lemma 4.2. The asymptotic effect is maximized over all 1 ≤ r ≤ 2d−1with 0 ≤ h ≤
d for (r, h) = (2d− 1, 0), but for the cases (r, h) = (2(d− h), h) with 1 ≤ h ≤ d− 1.

Proof. The case of r = 1 is trivial by definition.
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For the non­trivial cases, we prove initially that Cd(r, 0)
d−1
r−1 is monotonically in­

creasing for all integers in r ∈ [d, 2d − 1]. This corresponds to the asymptotic effect
of vertices with no hanging edges. We are interested only in this interval since by
Lemma 2.10 there is an elimination process such that the maximum normal degree is
2d − 1 and r + h ≥ d. Observe that the term d − 1 is constant, so it suffices to prove
that the ratio

Ud(r) =
Cd(r + 1, 0)

Cd(r, 0)
=

(r + 1)r−1

(r + 1− d)r−1 ·
(
r
d

)
is bigger than 1 in this interval.

If we take the ratio
Ud(r + 1)

Ud(r)
we conclude that

Ud(r + 1)

Ud(r)
=

(
(r + 2)(r + 1− d)

(r + 1)(r + 2− d)

)r

is always smaller than 1 ∀d ≥ 2, so U(r) decreases and its minimum in [d, 2d− 1] is

U∗(d) = Ud(2d− 1) =
42d−2(
2d−1

d

) .
For d = 2 we have that U∗(d) = 4/3 > 1 and it can be easily checked that
U∗(d+ 1)

U∗(d)
> 1 proving that ∀d ≥ 2

Ud(2d− 1) > 1.

This implies that, we have that Cd(r + 1, 0)1/r > Cd(r, 0)1/(r−1) for every
r ∈ [d, 2d− 1], concluding our claim.

The cases for 1 ≤ h ≤ d and d − h ≤ r ≤ 2 · (d − h) − 1 can be related with
the bounds on the orientations in lower dimensions. Thus, we prove by induction that
if the maximum for the asymptotic effect holds for d − h it also holds for these cases
for d. We just proved that

Cd−h(r, 0)
(d−h−1)/(r−1) ≤ Cd−h(2(d− h)− 1, 0)1/2

holds if we consider d∗ = d− h.
So we need to prove the last part of the following inequality

Cd−h(r, 0)
(d−1)/(r−1) ≤ Cd−h(2(d− h)− 1, 0)(d−1)/(2(d−h)−2)

= Cd(2(d− h)− 1, h)(d−1)/(2(d−h)−2)

≤ Cd(2d− 1, 0)1/2.

(4.2)

This will be done by demonstrating that the ratio

Cd(2(d− h)− 1, h)2(d−h−1)−2

Cd(2(d− h− 1)− 1, h+ 1)2(d−h)−2

is always bigger than 1 for 0 ≤ h ≤ d. In other words, the shift h → h+1 reduces the
asymptotic effect. Considering d∗ = d − h as above, this shift turns to d∗ → d∗ − 1
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and the ratio becomes

W (d∗) =
Cd∗(2d∗ − 1, 0)2d

∗−4

Cd∗(2d∗ − 3, 1)2d∗−2
=

(
4d∗ − 2

d∗

)2d∗−4
1(

2d∗−3
d∗−1

)2
which is bigger than 1 for d∗ = 3, since 102 > 34.

Now the ratio

W (d∗)

W (d∗ − 1)
=

(
(4d∗ − 2)(d∗ − 1)

(4d∗ − 6)d∗

)4d∗−6

·


(
2d∗ − 3

d∗ − 1

)
(
2d∗ − 5

d∗ − 2

)


2

=

(
1 +

2

4d∗ 2 − 6d∗

)4d∗−6

is also bigger than 1, showing thatW (d∗) is increasing.
What remains is to deal with the case of (2(d − h), h∗) vertices with h∗ ≥ h + 1,

as well as the case of vertices with r ≥ 2(d− h)+ 1 and more or equal than h hanging
edges. Notice that in the first case if the term 2(d− h) in(

2(d− h)

d− h∗

)
,

if fixed, then this binomial coefficient decreases as h∗ ≥ h increases. Since we have
that Cd(2(d − h), h + 1) = Cd(2(d − h), h − 1) and vertices (2(d − h), h − 1) have
smaller asymptotic effect than (2(d − h) + 1, h − 1) vertices as proven before, our
hypothesis is valid.

The same comparison with (2(d − h) + 1, h − 1) vertices can be done for (2(d −
h) + 1, h∗) with h∗ ≥ h, since Cd(2(d − h) + 1, h) = Cd(2(d − h) + 1, h − 1) and
all vertices with more hanging edges have smaller cost. Finally, we remark that in the
previous 2 cases the cost function was maximized for vertices with h hanging edges,
from the properties of binomial coefficients. Thus, if we want to examine the case of
r ≥ 2(d − h) + 2, we can refer to the cases of vertices with less hanging edges that
shall have bigger cost. Our base case now, are the (2d− 1, 1) vertices and (2d− 1, 2)
ones. The first have asymptotic effect equal to the target bound, while the latter have
strictly smaller, concluding our proof.

The cases of vertices with degree profile (2(d − h), h), cannot be included in this
kind of analysis for all dimensions, since the ratio

Cd(2(d− h), h)2d−2

Cd(2d− 1, 0)2(d−h)−1

is strictly bigger than 1. Notice that this case is treated in dimension 2 for (2, 1) ver­
tices. What's more, this condition is inherited for vertices with the same normal degree
and increased hanging degree in bigger dimensions. For example in dimension 3, the
vertices with higher asymptotic effect than the target bound are both the (4, 1) vertices
and the (2, 2) vertices. The latter correspond to the (2, 1) vertices in dimension 2, since
they have the same cost.

We will treat these cases expanding the idea of grouping composite vertices pre­
sented in Section 3. Let us define the dichotomy between composite and non­composite
vertices in general dimension. We remind that trivial vertices are the ones that have cost
equal to 1.
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Definition 4.3. Let J be a pseudograph, in which we apply an elimination process
to bound the number of its d−orientations. The non­composite vertices with normal
degree 2(d − h), for 1 ≤ h ≤ d − 1 are the vertices with degree profile (2(d −
h), h), (2(d− h), h+ 1), (2(d− h), h− 1) such that

• they had exactly this degree in J .

• they have this degree profile and they were generated by the removal a trivial
vertex with normal degree r ≤ d.

All the other vertices eliminated with this degree profile are called composite vertices
with normal degree 2(d− h).

This definition serves to group all composite vertices for different path elimination
steps. The non­composite vertices with degree profile (2(d−h), h+1), (2(d−h), h−1)
have smaller asymptotic effect than the target bound, while the cardinality (2(d−h), h)
vertices is bounded by the number of initial hanging edges, since they can be generated
only by a drop in H.E.E.

Analogously with Lemma 3.2, there is always an elimination process such that no
composite non­cut vertex can be generated by vertices with degree profile other that the
ones belonging in the previous definition. The following lemma bounds the average
cost for these vertices.

Lemma 4.4. The removal of a composite path with normal degree 2(d− h) has elim­
inating average cost at most D(d− h+ 1).

Proof. First, we show that the cost function follows at worst case the recursion Equa­
tion 2.7. We will consider the case of a Jd path with more than one vertices, which
can be generalized in all other cases. Let Bd(ℓ) and Gd(ℓ) denote the cardinality of a
(2d−2, 1) and (2d−2, 0) or (2d−2, 2) vertices respectively. Since vertex v0 is elimi­
nated with normal degree 2d−1, so αd+βd = C(2d−1, 0), we set Bd(0) = Gd(0) = 1
which satisfies the cost function and the count for the distribution of hanging edges (see
Lemma 2.8). By the same Lemma, the elimination of a (2d−2, 1) vertex gives a hang­
ing edge to one of its neighbours in exactly

(
2d−3
d−1

)
cases, while in the rest

(
2d−3
d−2

)
cases

this neighbour does not acquire any hanging edge. Both these quantities are equal to
αd/2. Similarly in the cases of (2d−2, 2) vertices, a neighbour acquires a hanging edge
in βd − αd/2 cases and does not get any in αd/2 cases, while for (2d − 2, 2) vertices
this counts are reversed. This means that the worst case scenario for the cardinalities
follows Equation 3.1, leading to the desired recursive function for the cost. This gives
the upper bound D(d) for the average cost if the first vertex is eliminated as a vertex
with degree profile (2d − 1, 0). If the first vertex has normal degree (2d − 1, h) with
h ≥ 2, we can make a similar modification as with (3, 2) vertices in the case of Laman
graphs (see Lemma 3.3) and use the eliminating average cost for the paths.

The case of the removal of a single path is proven, but definition 4.3 and the adjust­
ment of Lemma 3.2 in dimensions d ≥ 3 allow the generation of composite vertices in
Jd−h with h ≥ 1, after the removal of another path Jd. So it remains to prove that the
removal of all vertices in both paths does not violate the eliminating average cost in our
analysis.

First we consider the case of the elimination of aJd path followed by the elimination
of a Jd′ path, with d > d′. Notice that if the removal of both paths increased the
connected components, the elimination would not be valid. Thus, we are allowed to
remove the paths with any order.
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The cost for elimination of the first path Jd follows the count set above. Let now
Bd′(0),Gd′(0) denote the cardinalities of vertices with normal degree 2d−2 in the final
step of the Jd removal, if Jd has more than 1 vertices, otherwise Bd′(0) = Gd′(0) = 1.
Bd′(1) and Gd′(1) are the cardinalities of vertices with normal degree 2d′ − 2 in the
first step of elimination of Jd′ . We also denote the cost of the paths Cd′(0) and Cd′(1)
respectively. The worst case scenario for the cost Cd′ , would be to consider Bd′(1) =
αd

2 (Bd′(0) + Gd′(0)) and Gd′(1) = αd

2 Bd′(0) + (βd − αd

2 )Gd′(0).
Now we prove that

Cd′(1)

Cd′(0)
≤ α2

d′ + β2
d′

αd′ + βd′
(4.3)

for all the cases in which the total cost of Jd follows the worst case scenario.
We have that

Cd′(1)

Cd′(0)
=

αd′Bd′(1) + βd′Gd′(1)

αdBd′(0) + βdGd′(0)

=
αd′ (αd · Bd′(0)/2 + αd · Gd′(0)/2)

αdBd′(0) + βdGd′(0)

+
βd′ (αd · Bd′(0)/2 + βdGd′(0)− αd · Gd′(0)/2)

αdBd′(0) + βdGd′(0)

=
αd′ (Cd′(0)/2− βd · Gd′(0)/2 + αd · Gd′(0)/2)

αdBd′(0) + βdGd′(0)

+
βd′ (Cd′(0)/2− αd · Gd′(0)/2 + βd · Gd′(0)/2)

αdBd′(0) + βdGd′(0)

=
αd′ + βd′

2
+

(αd′ − βd′) · (αd − βd)Gd′(0))

2(αdBd′(0) + βdGd′(0))

Since
α2
d′ + β2

d′

αd′ + βd′
− αd′ + βd′

2
=

(αd′ − βd′)2

2 · (αd′ + βd′)

and αd′ > βd′ , Inequality 4.3 is satisfied if

(αd − βd) · Gd′(0)

αdBd′(0) + βdGd′(0)
≤ αd′ − βd′

αd′ + βd′
.

The relation (d− 1) · αd = d · βd, holds for every d ≥ 2, so the inequality becomes

Gd′(0)

d · Bd′(0) + (d− 1) · Gd′(0)
≤ 1

2d′ − 1
⇒ (2d′ − d) · Gd′(0) ≤ d · Bd′(0).

Since 2d′ − d < d and Gd′(0) ≤ Bd′(0) the inequality is proven.
The sequence follows at the worst case the recursion established in Lemma 2.13,

so we may use the inequalities established in the proof of Lemma 2.14 to prove the
cases of Cd′(l + 1)/Cd′(l) with l ≥ 1. For with l ≥ 4 there is nothing to prove
since the inequality (αd′ − 2βd′) · Cd′(ℓ− 3) ≤ αd′(αd′ − βd′) · Cd′(ℓ− 4) always
holds as explained in Lemma 2.14. The case Cd′(3)/Cd′(2) is proved as equivalent to
Cd′(1)/Cd′(0) ≤ αd′ , which holds, sinceCd′(1)/Cd′(0) ≤ (α2

d′ +β2
d′)/(αd′ +βd′) ≤

αd′ .
Now for the last two cases, by the definition of the eliminating average cost,

we can always consider the ratio Cd′(1)/Cd′(0) = (α2
d′ + β2

d′)/(αd′ + βd′) as in
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Lemma 3.3. With that modification the inequalities established for Cd′(2)/Cd′(1) and
Cd′(4)/Cd′(3) in Lemma 2.14 remain the same.

Lemma 4.5. The asymptotic effect for the eliminating average cost of paths Jd−h+1

is always smaller than the asymptotic effect of (2d − 1, 0) vertices in the case of
d−orientations.

Proof. The asymptotic effect in the case of paths is D(d − h + 1)
d−1

2(d−h)−1 . First we
prove that this holds for h = 1. Recall that αd/βd = d/(d− 1).

D(d)2d−2

Cd(2d− 1, 0)2d−3
< 1 ⇐⇒

(α2
d + β2

d)
2d−2

(αd + βd)4d−5
< 1 ⇐⇒(

α2
d + β2

d

(αd + βd)2

)2d−2

· (αd + βd) < 1 ⇐⇒(
1− 2αdβd

(αd + βd)2

)2d−2

· (αd + βd) < 1 ⇐⇒(
1− 2d · (d− 1)

(2d− 1)2

)2d−2

·
(
2d− 1

d

)
< 1 ⇐⇒(

2d2 − 2d+ 1

(2d− 1)2

)2d−2

·
(
2d− 1

d

)
< 1

which holds for d = 2. So we need to show that the following function is monotonically
decreasing for d ≥ 2.

A(d) =

(
2d2 − 2d+ 1

(2d− 1)2

)2d−2

·
(
2d− 1

d

)
We have that

A(d+ 1)

A(d)
=

(
2(d+ 1)2 − 2(d+ 1) + 1

(2d+ 1)2

)2d

·
(
2d+ 1

d+ 1

)
(
2d2 − 2d+ 1

(2d− 1)2

)2d−2

·
(
2d− 1

d

)

=

(
2(d+ 1)2 − 2(d+ 1) + 1

(2d+ 1)2

)2d

· 2(2d+ 1)(
2d2 − 2d+ 1

(2d− 1)2

)2d−2

· (d+ 1)

=

(
8d4 − 2d2 − 2d+ 1

8d4 − 2d2 + 2d+ 1

)2d−2

· 2

(2d+ 1)3 · (d+ 1)

which is obviously less than 1 for all d > 0.
Now, since this inequality holds in dimension d, we use the fact that in smaller

dimensions

D(d− h+ 1)
d−h−1

2(d−h)+1 ≤ Cd−h+1(2(d− h+ 1)− 1, 0)1/2
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for h ≥ 2. This means thatD(d−h+1)
d−h−1

2(d−h)+1 is bounded using similar inequalities
as in Equation 4.2 from Lemma 4.2.

Finally, we prove that the asymptotic effect of non­composite (2(d−h), h) vertices
is maximized for h = d− 1.

Lemma 4.6. The following ratio is bigger than 1 for 1 ≤ h ≤ d− 2.

22(d−h)−1

Cd(2(d− h), h)

Proof. Let us denote d∗ = d− h as in Lemma 4.2 and by S(d∗) the above ratio. Since
the shift d∗ → d∗ + 1 corresponds to the shift h → h− 1. Taking the ratio

S(d∗ + 1)

S(d∗)
= 1 +

1

2d∗ + 1
,

one deduces that S(d∗) is clearly increasing. Since S(2) = 8/6, the condition holds.

Now we are ready to prove the bound on d­orientations.

Theorem 4.7. The number of d−orientations for a connected d­pseudograph with n
vertices and k hanging edges is bounded by

(
2d− 1

d

)(n+ 1
d−1 )/2

·

 2(
2d− 1

d

) 1
d−1


k

(4.4)

Proof. Let us list the basic categories of vertices to be eliminated and provide a notation
for their cardinalities.

• td vertices with degree profile (2d− 1, 0) or (2d− 1, 1) are eliminated.

• sr vertices with degree profile (r, h), such that their asymptotic effect is strictly
smaller than the target bound. For these vertices we consider an upper bound for
the cost of their elimination omitting h from the cost function:

Cd(r) = max
0≤h≤d

h̸=(r−2d)/2

Cd(r, h).

This definition allows us to use the eliminating average cost for path bounds.
Remark that the condition h ̸= (r − 2d)/2 applies only in the case of vertices
with even normal degree.

• ℓh vertices with normal degree 2(d−h), for 1 ≤ h ≤ d− 1 eliminated with path
elimination step.

• mh vertices with degree profile (2(d − h), h), such that their asymptotic effect
is bigger than the target bound.
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The total cost of the elimination process is bounded by

Cd(2d− 1, 0)td ·
∏

Cd(r)sr ·
∏

D(d− h+ 1)ℓh ·
∏

Cd(2(d− h), h)mh (4.5)

By Lemma 2.6 the elimination process stops when tree condition (d−1)·n′+1 = k′

is achieved, where n′ and k′ denote the number of vertices and hanging edges at this
instance. This means that

n′ = n− td −
∑

sr −
∑

ℓh −
∑

mh

k′ = k + (d− 1) · td +
∑

(r − d) · sr −
∑

(d− 2h) · ℓh −
∑

(r − d) ·mh

were k′ is derived by applying the H.E.E. formula (see Lemma 2.7). These equations
combined with tree condition lead to the following inequality on td:

td ≤ n

2
− 1 + k −

∑
(r − 1) · sr −

∑
(2(d− h)− 1) · ℓh −

∑
(r − 1) ·mh

2d− 2

Applying this inequality to Equation 4.5, it is deduced that the following quantity
bounds the number of orientations

Cd(2d− 1, 0)
n
2 −ω0 ·

∏( Cd(r)
C(2d−1,0)ω1

)sr
·
∏( D(d−h+1)

C(2d−1,0)ω2

)ℓh
·
∏(Cd(2(d−h),h)

C(2d−1,0)ω2

)mh

,

where ω0 = k−1
2d−2 , ω1 = r−1

2d−2 , and ω2 = 2(d−h)−1
2d−2 . Since the terms the asymptotic

effect of vertices (2d− 1, 0) is bigger than the asymptotic effect of vertices in the first
product and paths in the second product (see Lemmata 4.2 and 4.3) and the asymptotic
effect of non composite (2, d − 1) vertices is the biggest among the cases of vertices
with asymptotic effect exceeding the target bound (see Lemma 4.6), we deduce that the
orientations are bounded by

C(2d− 1, 0)
n
2 − k−1

2d−2

(
2

C(2d− 1, 0)
1

2d−2

)∑
mh

.

By the definition of non­composite vertices with asymptotic effect bigger than the target
bound, we have that

∑
mh is bounded by the initial number of hanging edges k. Thus,

the bound in Equation 4.4 follows.

d 2 3 4 5 6 7 8
Bézout 4 8 16 32 64 128 256
BES 4.89 8.94 16.7 31.7 60.7 117.1 226.8
BEV 3.78 6.84 12.68 23.89 45.53 87.46 168.9
new 3.46 6.32 11.83 22.44 42.98 82.84 160.4

Table 4.1: The base to the power of |V | for the asymptotic bound in dimensions 2 ≤
d ≤ 8. Bézout denotes the Bézout bound, BES is the bound derived in [3] using matrix
permanents, BEV is the bound derived in [5] that uses elimination techniques to bound
outdegree constrained orientations, and new is the bound derived in this paper. Note
that as we go on higher dimensions, the difference between our bound and the next best
increases.
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Lemma4.8. LetG be aminimally rigid graph in dimension d. There is a fixed subgraph
Kd′ in G, with d′ < d, that its removal does not break the connectivity of G.

Proof. The graph G is at least d­connected. Let S be the minimum separator of G.
Note that |S| ≥ d. Hence the removal of any subgraph of G with less than d vertices
cannot break its connectivity.

Now we are ready to prove Theorem 4.1.

Proof. First we prove that
2d−1

C(2d− 1, 0)
< 1. Observe that the ratio

2d ·
(
2d−1

d

)
2d−1 ·

(
2d+1
d+1

) =
d+ 1

2d+ 1
< 1

for all d ≥ 2. This implies that 2d−1 < C(2d − 1, 0) holds for every d ≥ 2, since for
d = 2 we have that 2 <

(
3
2

)
.

Lemma 4.8 indicates that there is always at least a fixedK2 that is not a separator for
d ≥ 3. The bound results applying Theorem 4.1 for d−orientations to Theorem 2.3.
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CHAPTER5
ON THE MAXIMAL NUMBER OF mBe.

In this section we provide examples of Laman graphs with maximal number of 2­
orientations, among certain cases we computed. Let us remark that an exhaustive search
over all Laman graphs with big number of vertices is almost infeasible, since their num­
ber is gigantic. For that reason, graphs were constructed by using repetitive Henneberg
steps [17] to Laman graphs with big embedding number (data for the embedding num­
bers was found in [11]). To provide these bounds, we calculate them using the code
from [6].

Given a Laman graph G(V,E), we denote with µ(G) the number of its complex
embeddings. Recall thatmBe(G, e) denotes the bound derived from Theorem 2.3 for
a fixed edge e ∈ E andR(G, e) the corresponding number of orientations.

Then applying Theorem 3.6, the following inequality holds:

µ(G) ≤ min
e∈E

(mBe(G, e)) ≤ mBe(G, e) ≤ 16

37/2
·
(
2 · 31/2

)|V |−2

since the bound can vary for different fixed edges.

Figure 5.1: The graph G29a is a Laman graph on 29 vertices. The dashed blue edge
corresponds to the fixed edge that yields the maximal m­Bézout. Note that k = 6 for
the specific fixed edge.
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In order to compute the asymptotic order of our bound, we consider only the non­
fixed vertices as in [2, 11]. This choice is made due to the underlying algebraic systems
that lead to the bound in [3]. We also exploit the fixed terms to examine if the base of
the exponent is increased. This is done both in the case of the bound on embeddings
from Theorem 3.6 and the bound on orientation from Theorem 3.4. More precisely, to
compute the asymptotic order ofmBe(G, e), we considermBe(G, e)1/(|V |−2).

In order to include the fixed term of the bound, we need to take into account that a
part of the fixed term is related to the target bound for the orientations which is 31/2 ≈
1.7321. So we consider the following equality

mBe(G, e) =
16

a7
· (2 · a)|V |−2

. (5.1)

Finally, the deletion of certain fixed edges may result to connected d­pseudographs with
more than 4 hanging edges, which is the default value used for Theorem 3.6. Thus, in
order to examine only the bound on orientations, we use also the relation

R(G, e) =
2k

α2k−1
k

· a|V |−2
k . (5.2)

The graph G29a is a 29−vertex graph and has the maximum asymptotic bound we
have computed (see Figure 5.1). For the edge e that maximizes this bound, we have
that mBe(G29a, e) = 21, 947, 282, 882, 560, so R = 163, 520. The asymptotic order
for these numbers, without taking into consideration the constant term are respectively
mBe(G29a, e)

1/(|V |−2) = 3.1198 and R(G29a, e)
1/(|V |−2) = 1.5599. Including the

constant term and considering the default value k = 4, we get a = 1.5866. Finally,
taking into account that both the fixed vertices have degree 4, we compute that taking
into account k = 6, we get a6 = 1.6329. We believe that with bigger computational
resources, these numbers can be further increased.

Figure 5.2: The graphG29b is also a Laman graph on 29 vertices and the dashed blue
edge corresponds to the fixed edge that yields the minimum m­Bézout. For that fixed
edge k = 5.

Although this graph has a big bound for this specific edge, its minimum bound is
much lower, namely 416, 611, 827, 712 with an asymptotic order of 2.6938|V |. Thus,
we ran computations aiming for graphs with big minimum bound.

The graph G29b is the 29­vertex graph with the maximum minimal asymptotic
bound we have computed (see Figure 5.2). For the edges e that minimizes the bound
for the specific graph, we have thatmBe(G29b, e) = 784, 502, 620, 160, which yields
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mBe(G29b, e)
1/(|V |−2) = 2.7576 as an asymptotic order. Divided by 2, we have that

the asymptotic order for the orientations is R(G29b, e)
1/(|V |−2) = 1.3788. Setting the

default value of hanging edges, we get a = 1.3431, while using the fact that actually
k = 5, the result is a5 = 1.3355. Notice that a and a5 in that case are smaller than the
asymptotic order ofR(G29b, e). That happens because the square of all these values is
strictly smaller than 2 (so the fraction in Equations 5.1 and 5.2 is smaller than 1).
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CHAPTER6
CONCLUSIONS AND FUTURE WORK

In this thesis we have managed to improve the upper bounds on the embedding number
of minimally rigid graphs, via bounding the number of outdegree constrained orienta­
tion for certain cases. This bound is still far from the lower bounds on the maximal
number of complex embeddings in the cases of dimension 2 and 3, but as we show
in Section 5, it seems to be close to the bound on the orientations for Laman graphs.
Thus, we consider that the upper bound on orientations may be sharp, but demanding
computations are needed to verify this conjecture.

More demanding computations are also required for improving the lower bounds
on the embedding number that may reduce the gap between lower and upper bounds.
In the case that the bound is indeed sharp on orientations, but loose for the embedding
number, one may consider other ways to improve upper bounds. One idea is to examine
if there are certain combinatorial properties for the fixedKd whose removal minimizes
the number of orientations. Another approach would be to consider tools from sparse
algebraic geometry on determinantal varieties of Cayley­Mengermatrices or even to use
a completely different formulation to represent the problem. A more efficient stopping
condition might improve the asymptotic cost of the elimination process. By taking
under consideration, the graph density and the average degree of a graph, one may
improve the upper bounds.

Finally, our bounds may be extended generally for all outdegree constrained d­
orientations. In that case the restriction on degree is not applied for (2d − 1)−valent
vertices, but for (2d)­valent vertices. This result may also have applications on the
multihomogeneous bound of certain polynomial systems, as demonstrated in [4].
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