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ABSTRACT

In this thesis, we develop a novel, non-constructive proof of the fixed point theorem
proposed by A. Charalambidis, G. Chatziagapis and P. Rondogiannis [|L]]. This theorem
proves the existence of a least fixed point of functions that possess a restricted form
of monotonicity, and are defined over some specially structured partially ordered sets,
which we will call lexicographic lattice structures. Our results give as a special case
the well-known Knaster-Tarski theorem when restricted to monotonic functions.

The initial proof of the theorem, as presented at LICS 2020, is constructive. Our
novel proof is simpler and it gives an alternative intuition and a deeper understanding
of the theorem. Furthermore, we prove that the sets of pre-fixed, post-fixed and fixed
points of function over those structures form a complete lattice. Our proofs have been
verified through the Coq proof assistant. Our results have direct applications in fields of
Computer Science where non-monotonic formalisms are being used, such as Artificial
Intelligence, Logic Programming and Formal Language Theory.






XYNOYH

311 SITAMUOTIKY OUTH GVOTTUGGOVLE Lol VEQ, [-KOTOCKEVAOTIKT amddeEn Tou
Bewpnpatog otabepov onpeiov, Tov Tpotddnke amd tovg A. Xapoarourion, I. Xatlno-
vamm, ko I1. Povroyidvwvn [I]]. To Bedpnpa avtd apopd oty dapén eldyiotov ota-
Bepov onpeiov piag KAGoNG cuvaptioemv mov dtabétovy éva Teploplopévo €180¢ po-
VOTOVIKOTNTOG, KoL Ol OTTO1ES ivall OPIGUEVES OE EIOIKMG SOUNUEVO LEPIKMG SLOTETAY-
péva cOvoia, To omoia ovopdalovpe douég AeCikoypapixod mhiéyuorog. Otav 1o Bedpnpa
epapudletal og LOVOTOVIKES GUVOPTICELS, divel G e101KT TepinTmon 1o KAaowd Bemd-
pnua tov Knaster-Tarski.

H apyum anddeién tov Bewpniuartog, 6mmg mapovcoialetar oto LICS 2020, sivor
KOTaoKeVOOTIKY. H mpotevopevn amddeln givat mo omAn amd TNV apyikn Kot divet
pa eVoALaKTIKY StaicBnon kot tepattépo eppabuvon oto Bedpnpa otabepod onpeiov.
EmupocOétmg, amodetcviovie 6Tt To GHVOAL TOV TPO-GTOHEPDV, LETO-CTAOEPDOV, Kol
otofepdv oNUEI®V TOV GUVOPTNCEDV TAVM GE OVTEG TIS OOUES, oynpatilovy TARPN
mAéypata. Ot anodeielc pag éyovv emaindevtel péom tov Coq. To amotehéopatd pog
&youv Gpeceg epapproyég oe meployés g IIANpoeopikng, 6OV ¥P1GLLOTOLOVVTOL [)-
povotovikoi poppacpotl, 6nwg oty Teyvnti Nonpoosuvvn, 6to Aoywod Ilpoypoppatt-
ouod kot ot Oewpia Tomkdv MAwccdv.
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CHAPTER 1

INTRODUCTION

Negation-as-failure is one of the many attempts that have been made in order to
extend logic programming. Intuitively negation-as-failure means that in order to deter-
mine if not p is valid, one has to examine whether p can be proved. If the process of
proving p terminates and fails, not p is valid. Otherwise, if p holds, then not p fails.
Even though negation-as-failure is trivial to implement, it is extremely difficult to for-
malize from a semantic point of view. The primary reason for this is that negation is in
general non-monotonic.

A huge leap in capturing the meanings of negation-as-failure was the introduction
of the well-founded semantics [[7], which utilizes a three-valued logic in order to formal-
ize the meaning of a logic program with negation. After that, P. Rondogiannis. and W.
Wadge presented a new approach [|L1]] based on an infinite-valued logic. This approach
is important because it leads to a unique minimum model in a program-independent
ordering. Moreover, if we restrict this model to a three-valued logic we get the well-
founded model.

It is shown in [[L 1] that the minimum model is the least fixed point of a non-monotonic
operator with respect to an ordering relation. In [(] only the set-theoretic essence is kept,
the logic programming related issues are omitted and some sufficient conditions are pre-
sented for a fixed point to exist.

In [d] two ordering relations are being used over a set L, namely < and C. The first
one corresponds to a "pointwise" comparison, whereas the second to a "lexicographic"
one. (L, <) is supposed to be a complete a lattice and (L, C) is later shown to form a
complete lattice. In my bachelor thesis [B] and in [[], we used only the "lexicographic"
comparison and we supposed that it forms a complete lattice. Omitting the first ordering
leads to a simpler proof and it becomes more clear that this theorem is a generalization
of the Knaster-Tarski theorem.

The rest of the paper is organized as follows: Chapter P defines the complete prelat-
tices, a generalization of complete lattices. Chapter B defines the specially structured
complete lattices that will be the objects of our study and investigates some properties
of these lattices. Chapter }| presents and proves the fixed point theorem. Chapter [ es-
tablishes some properties of the pre-fixed, post-fixed and fixed points of functions over
lexicographic lattice structures. Chapter | presents two applications of the theoretical
results obtained in the paper. Finally, Chapter [] concludes the study.



In the following, we assume familiarity with the basic notions of partially ordered
sets and particularly lattices (such as for example [5]).



CHAPTER 2

COMPLETE PRELATTICES

In mathematics, a preorder is a binary relation that is reflexive and transitive. In this
chapter, we will define as a complete prelattice a preordered set in which all subsets have
both a least upper bound and a greatest lower bound. The complete prelattices are very
similar to complete lattices, the only difference is that the binary relation of a complete
prelattice is not necessarily antisymmetric.

Definition 2.1. Suppose < is a binary relation over a set S. (S, <) is called a preorder
iff < is reflexive and transitive.

Definition 2.2. Suppose .S is a set and ~ is a binary relation over that set. Forall z € S
and for each Y, Z C S we will write:

cx~Yiffx ~yforally €Y.
e Y~zxiffy~axforally €Y.
e Y~ Ziffy~zforally €Y andz € Z.
Definition 2.3. Let (.5, <) be a preorder, X C S and x € S. z is called:
* a <-bottom element of S iff x < S.
» a S-top element of S iff S < x.
o an S-upper bound of X iff X < x.
e a <-lower bound of X iffx < X.

* a <-least upper bound of X iff x is an <-upper bound of X and for each y € S
such that y is an <-upper bound of X, z < y.

o a S-greatest lower bound of X iff z is a <-lower bound of X and foreachy € S
such that y is a <-lower bound of X, y < z.

Definition 2.4. Let (.5, <) be a preorder. (5, <) is called a complete prelattice iff for
any X C S, X has a <-least upper bound and a <-greatest lower bound in S.
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Lemma 2.5. Let (S, <) be a preorder, such that S has a <-bottom element and for
every non-empty X C S, X has a <-least upper bound in S. Then (.5, <) is a complete
prelattice.

Proof. Suppose X C S.If X # (, by the hypothesis S has a <-least upper bound
in S. If X = (), every element of S is an <-upper bound of X, so that the <-bottom
element of S is a <-least upper bound of X. Suppose now, LB = {s € § : s < X}.
LB contains the <-bottom element of .S, so that LB # (), and thus, by the hypothesis,
has a <-least upper bound in S, say y. Suppose x € X. We have that LB < z, so that
x is an S-upper bound of LB, and thus y < . Since that holds for any z € X, y is
a <-lower bound of X. Let z be a <-lower bound of X. We have that z € LB, and
therefore, z < y. Thus, y is a <-greatest lower bound of X. O

Lemma 2.6. Let (.S, <) be a complete prelatticeand v € S. Then ({x € S : v < z}, <)
is a complete prelattice.

Proof. Let S’ = {x € S : u < v}. Itis easy to show that any subset of a preorder
is a preorder. In order to prove that (S’, <) is a complete prelattice, by Lemma 2.9, it
is sufficient to prove that S’ has a <-bottom element and that every non-empty subset
X C S has a <-least upper bound in S’. Obviously v is a <-bottom element of .S’.
Suppose non-empty X C S’ and x € X. Since X C S, X has a <-least upper bound

in S, say y. We have that v < = < y. By the transitivity of <, v < x,sothaty € S’. [

Definition 2.7. Let S beasetand ~C S2. A function f : S — S is called ~-monotonic
iffforallz,y € S, x ~ y implies f(x) ~ f(y).

Theorem 2.8. Let (S, <) be a complete prelattice and f : S — S be a <-monotonic
function over S. Then, there exists some © € S such that x < f(x), f(z) < x and for
every y € Ssuchthat f(y) <y, z <.

Proof. Let P = {s € S: f(s) < s} and z be a <-greatest lower bound of P. Suppose
z € P. We have that f(z) < z. Since x is a S-lower bound of P, x < z. Since f
is <-monotonic, we have that f(x) < f(z), and by the transitivity of <, f(z) < z.
Thus, f(x) is a <-lower bound of P, so that f(x) < x. By the <-monotonicity of f,
f(f(z)) £ f(x), sothat f(z) € P, and thus z < f(x). Suppose now y € .S such that
fly) < y. We have thaty € P, so that z < y. O



CHAPTER 3

I—LEXICOGRAPHIC LATTICE STRUCTURES

In this chapter we will define the lexicographic lattice structures, which are the
objects of our study. Then we will investigate some of their properties.

3.1 Definitions

Consider a complete lattice (L, C), whose least element will be denoted by L and
the lub and glb operations by | | and [ | respectively. In order to define the notion of
a lexicographic lattice structure, we assume that C can be "constructed" using a se-
quence of preorderings {C, }o<x, Where & > 0 is an ordinal. Actually, as we are going
to see, every complete lattice (L, C) can be "constructed" in a trivial way using such
preorderings; using this trivial construction, we will be able to obtain as a special case
of our theorem the well-known Knaster-Tarski fixed point theorem. Of course, we will
be mostly interested in the case where L is "constructed” in a non-trivial way from the
preorderings; in this case our fixed point theorem will be applicable to a much broader
class of functions, namely functions that are potentially non-monotonic.

Before giving any formal definitions, we present the intuition behind the above no-
tions, using a well-known example. Let us take L to be the set of w-words (ie., k = w in
our example) over a finite alphabet 3. We assume that the elements of 3 are alphabeti-
cally ordered. Let us take the C relation to be the lexicographic comparison of w-words.
One can easily verify that the set of w-words under the lexicographic ordering, is a com-
plete lattice. Consider now for each a@ < w, the preordering =, to be the relation that
compares two w-words up to their a-th elements: given two w-words x and y, we write
x Cq y iff x and y are identical at all positions less than « and the sequence x contains
at position « a character of X that is alphabetically "smaller" than the corresponding
character of y at the same position. Notice now that the lexicographic ordering C can
be constructed using the relations T, : given two w-words x and y, it holds z C y iff
there exists some « such that z C,, y. In the following, we formalize the above ideas.
We start with some simple notational conventions:

Definition 3.1. Let (L, C) be a complete lattice. Let « > 0 be an ordinal and let {C,,
}a<x be a sequence of preorderings over L. Forall z,y € L, we write x C y ifz C y
and x # y. Forevery a < kand x,y € L, wewrite x =, yiffx C, yandy C,, x.



3.1. DEFINITIONS

We write x T, y iff © C, y but z =, y does not hold. We write x ~, y iffx =g y
for all 8 < a. For all @ < k, we define (z]o, = {y € L : = =, y}; moreover, for all
a < kwedefine [z], ={y € L:x =, y}.

In our setting, we will insist that the partial order C and the preorderings {C, }o<x
are closely related in the sense that the latter relations determine the former one:

Definition 3.2. Let (L, C) be a complete lattice. Let £ > 0 be an ordinal and let {C,,
ta<r be a set of preorderings over L. We will say that the relation C is determined by
the preorderings {C, } o<y if forall z,y € L, z C y iff x C,, y for some a < k.

We can now define lexicographic lattice structures:

Definition 3.3. Let (L, C) be a complete lattice. Let £ > 0 be an ordinal, let {C, } o<k
be a set of preorderings over L, and assume that C is determined by these preorder-
ings. The triple (L, C, {C, }a<x) Will be called a lexicographic lattice structure if the
following three properties hold:

Property 1. Forevery a < k and forall x,y € L, ifx C, y, then x =, y.
Property 2. Forall x,y € L, if x =, y, then x = y.

Property 3. For every « € L and for every ordinal o < &, | |[t]o = = and [ |[z]a =a
x.

The intuition behind the above definition can be outlined as follows. First of all,
one can think of the elements of L as entities consisting of « levels. More generally,
Property [lf states that each successive preordering relation provides a more accurate
comparison of the elements of L. Property P states that if two elements of L are indis-
tinguishable with respect to all our preordering relations, then the two elements must
coincide. Finally, Property [ states that if we consider the set of elements of L that have
the same "prefix" until their stratum o, then this set has a least and a greatest element.

One can verify that there exist several natural application domains in which lex-
icographic lattice structures can be used. One of the most natural ones, is the set of
w-words discussed earlier in this section. We can now state this in a more formal way.
Given a finite alphabet > whose elements are ordered by a relation <, consider the
triple (X%, C, {Cy }a<w), Where, for all z,y € 3¢ and for all & < w:

@ Co yiff [V < a(z(B) = y(B)) A (z(a) < y(@))]

and

x Cyiff o <wlVB < a(z(B) = y(8)) A (z(a) <y(a))]
It is not hard to check that the requirements of Definition B.3 are all satisfied. In partic-
ular, Property 3 holds because for every w-sequence x and every a < w, the C-least
(respectively, C-greatest) element of [z],, is the sequence that is identical to z at all
indices # < « and at all indices that are greater than « it has a constant value that
coincides with the alphabetically least (respectively, greatest) element of 3.

More generally, the application domains in which lexicographic lattice structures ap-
pear to be applicable, are sets that have a natural stratification and are accompanied by a
natural lexicographic ordering. Indicatively, we mention the set of infinite-valued inter-
pretations of logic programs with negation [|11]], the set of interpretations of higher-order
logic programs with negation [2], the set of interpretations of boolean grammars [|10, 8],
the set of transfinite sequences over complete lattices [4], and so on. Two of these ap-
plications will be presented in detail in Chapter .
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CHAPTER 3. LEXICOGRAPHIC LATTICE STRUCTURES

Remark 1. For every complete lattice (L, C) we can create a trivial lexicographic lat-
tice structure: simply take x = 1 and T to be equal to C. Obviously, T determines =
(because they coincide). Moreover, the triple (L, T, {C, }a<1) = (L, C, {C}) satisfies
the three properties of Definition B.3.

Remark 2. In our proofs we can safely assume that the ordinal x in the definition of
lexicographic lattice structures, is always a /imit one. The formal justification for this
remark is identical to the one given in [][page 23]. Intuitively, given a lexicographic
lattice structure (L, C, {C,, } a<x ), Where & is a successor ordinal, we can create a struc-
ture (L, C, {C, }a<x), where A is the least limit ordinal that is greater than &, and the
relations Cg, for & < 8 < A, are all equal to the identity relation over L. It can be easily
seen that the new structure is a lexicographic lattice one (ie., it satisfies the properties
of Definition B.3) and it can be used interchangeably with the initial structure for the
purposes of the paper.

Remark 3. Let (L,C, {C, },<«) be a lexicographic lattice structure. For all z,y € L
and o < kK, letusdefinex J yiffy C zand z J, yiff y T, =. The dual of a
proposition is obtained by replacing each occurrence of = by 1, each occurrence of
C by Jq, each occurrence of |_| by [ ], each occurrence of | |, by [, and finally, for
any relation o each occurrence of o-greatest by o-least and each occurrence of o-least
by o-greatest. It is clear that all of the properties in Definition B.3 imply the dual of
themselves. For each proposition P that can be proved using these properties, the dual
of P can be established by the dual of the proof of P. Therefore, our theory is closed
under dual operation.

In the rest of the paper, we will assume that we have a fixed lexicographic lattice
structure (L, C, {C,, } o< ). This will allow us to use k, L, C, and the preorderings C,,
freely in lemmas, definitions, and so on (avoiding in this way to repeat statements such
as "Let k > 0 be an ordinal, let L be a complete lattice, ...", and so on).

3.2 Some Consequences of the Properties

Lemma 3.4. Let « < s and let z,y,z € L such that z C, y and y T, z. Then,
T Cy 2.

Proof. Since xz C,, y, we also have © T, y. By the transitivity of C,, z T, z. Sup-
pose, for the sake of contradiction, that z =, z. By the transitivity of C,, y T,
(contradiction). Thus, x C,, 2. O

Lemma 3.5. Let a < k and suppose z,y € L. Ifx C yand z =, y thenx C,, y.

Proof. By the definition of C, we have © = y or x Tg y for some 5 < k. If x =y,
by Property P we get z =, v which implies that z T, y. If = Cg y for some f3, then it
must be the case that 5 > «, because z =g y forall 5 < a. If § = o, then x C, y, so
x C, y clearly holds. If 8 > «, by Property [I| z =, ¥, so that x C,, y again. O

Lemma 3.6. Let o < s, non-empty X C Landxz € L. If X ~, x then| | X =, x
and[ | X =, @.

Proof. We are going to prove that | | X ~,, x. By duality, we can prove similarly that
[1X =, . Let z be an element in X It is sufficient to prove that | | X =g z for all
B < a Wehavethat z C | | X.Ifz =| | X orz Cg || X for some 8 > a we are done.
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3.2. SOME CONSEQUENCES OF THE PROPERTIES

Assume, for the sake of contradiction, that z Tg | | X for some 8 < c. Lety = | |[2]g.
Clearly X C [z]s, so that y is a C-upper bound of X and therefore, | | X C y. By
Property B, y = g 2. By Lemma B4, yC 5 X, sothaty C | | X, which contradicts
LIXCy. O

Definition 3.7. Let a < k. A set X C L is called ~,-closed iff for all x,y € X,
T Ry Y.

Lemma 3.8. Let @ < xand X C L, such that X is non-empty and ~,-closed. Then
[1XCo X Co || X.

Proof. Suppose z € X. Since X is ~,-closed, X ~, z. By Lemma .4, [1X =
a0, || X.Since[]X CoC||X,byLemmaB.3,[1X Cy 2 Cy [ | X O

Lemma 3.9. Leta < xand X C L, such that X is non-empty and ~-closed. For any
x € Lsuchthat X C,, z,| | X C, x.

Proof. Suppose non-empty and ~,-closed X C L and z € L such that X T, z.
Let X1 = X N [2]a, X2 = X \ X; and y be the C-greatest element of [z],,. Clearly
Xy Cqo x. We have that X3 C y and Xo T o C y, so that y is a C-upper bound of X.
Thus | | X C y. Since X C, z, by Property | X ~, =. By LemmaB.4, | | X ~, 2.
Also by Property B, = =, ¥, so that, by Property [I, z ~,, y. Therefore, | | X ~, y. By
Lemma B.3 | | X C. y and by the transitivity of C,, | | X C, . O

Lemma 3.10. Let o < « be a limit ordinal and { X3} 3<,, be a sequence of subsets of
L, such that for all 8 < a, X is ~g-closed. Then (5_,, X is ~a-closed.

Proof. If( S<a X3 = () has less than two elements, it is trivially ~,-closed. Otherwise,
suppose .,y € ﬂ5<a Xg.Forevery 8 < a, z,y € X311, and because X g1 is ~®g41-
closed, z =g y, so we have that (5_,, X is ~a-closed. O

Definition 3.11. A non-empty set X C L is called complete iff for every non-empty
YCX,||YeXand[]Y € X.

Lemma 3.12. Let o < k, X C Land x € X. If X is complete, then X N [z], is
complete.

Proof. X N[x], is non-empty, since x € X N [z],. Suppose non-empty Y C X N [z],.
We have that Y C X and Y C [z],. Since X is complete, | |[Y € X and []Y € X.
Also, Y =, =z, so that, by Lemma @, LY ~qq1 x and [|Y =q41 @, and thus,
LY € [z]n and [|Y € [z]q. Therefore, | |Y € X N[z]pand [ Y € X N[x],. O

Lemma 3.13. Let o < x and X C L. If X is complete and ~,-closed, then (X, C,)
is a complete prelattice.

Proof. (X,C,) is a preorder, since C,, is reflexive and transitive over L. In order to
prove that (X, C,,) is a complete prelattice, by Lemma R.3, it is sufficient to prove that
X has a C-bottom element and that every non-empty subset Y C X has a C,-least
upper bound in X. Since X is complete, []X € X, and by Lemma B.§[] X isa C,-
bottom element of X. Suppose non-empty ¥ C X. Since X is complete, | |Y € X.
By Lemma B.§ and Lemma .9, | | Y is a C-least upper bound of Y. O

Lemma 3.14. Let o < « be a limit ordinal and { X3} 3« be a sequence of complete
subsets of L, such that for all # < v < a, and X 2 X.,. Then (5, X5 # 0.

8



CHAPTER 3. LEXICOGRAPHIC LATTICE STRUCTURES

Proof. Forevery 8 < a, let xg = [|Xpg. Let 2 = | [{zg : f < a}. Whenever
B < v < a, since X, is complete, we have that 2, € X,. Moreover, X,, C Xpg, so
that z, € Xg. Thus x3 T x, whenever 8 < 7 < a. Therefore, for each § < a,
z=|l{z, : B <~v < a}.Let f < a. Since for any ~ such that § < v < a, z, € X,
we have that {z, : § < v < a} C Xjg. Since Xz is complete and {x., : § < v < a}
is non-empty, because « is a limit ordinal, z € Xg. Since this holds for any 8 < a,
x € mﬁ<a Xg. O

Lemma 3.15. Let o < « be a limit ordinal and { X3} s, be a sequence of complete
subsets of L. If (5, X # 0 then 5_,, X3 is complete.

Proof. Suppose non-empty Y C [ s<a Xp- Forany B < aowe have that Y C X, and
because X is complete, | |Y € Xg and [ |Y € Xg. Since this holds for any 8 < «,

LY € Ngen Xpand[1Y € N5, X5 O

Definition 3.16. Let f : L — L be a function over L. A set X C L is called f-
compatible iff for each z € X, f(x) € X.

Lemma 3.17. Leta < &, f : L — L and {Xg}g<qo be a sequence of f-compatible
subsets of L. Then (;_,, Xp is f-compatible.

Proof. Suppose z € ﬂﬁ<a Xg. For every 8 < a, we have that x € Xg. Since Xp is
f-compatible, f(z) € Xp. Since this holds for any 8 < «, f(z) € N, X5 O



3.2. SOME CONSEQUENCES OF THE PROPERTIES
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CHAPTER 4

THE FIXED POINT THEOREM

In this chapter we develop the main fixed point theorem.

Definition 4.1. A function f : L — L is called stratified monotonic iff it is C -
monotonic for each o < k.

Theorem 4.2. Suppose that f : L — L is stratified monotonic and let v € L such that
v C f(v). Thenthesets P, = {z € L: (f(z) C2)A(wE z)}and F, ={z € L:
(f(2) = z) A (v C 2)} have least elements that coincide.

Proof. Let us define for each ordinal o <

L, a=0
Xo=9 {zeYs: fla)=paAVyeYs(fly) Esy 2 2Esy)}, a=B+1
ﬂ[ka Xg, otherwise

where
v _{ {reXsg:vlgz}, veXg
P71 Xa, otherwise

Suppose 8 < k and let « = 8 + 1. We claim that, if there exists some = such
that x € X,, then X, = Xg N [z]s. Suppose y € X,. Obviously y € Xjg. Since
f(z) Cp x and f(y) Cp y, by the definition of X, y =g x. Therefore, we have that
Xo € Xpg N [z]s. Suppose now z € Xg N [z|g. Ifv € X, thenv Cg =3 z, so
that y € Yp. Also, we have that z =g z, © =g f(z), and by the Cg-monotonicity
of f, f(z) = f(2), so that z =g f(z). Moreover, if for some y € Y3, f(y) Cg v,
we have x Cg y, so that z Cg y. Thus z € X N [z]g, and therefore, we have that
XpNizlg C X,, sothat X, = X5 N [z]s.

Now, we are going to prove by transfinite induction that for every ordinal o < &:

* Foreachy < a, X, D X,,.
o X, is ~,-closed.
* X, is complete.

* X, is f-compatible.
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When o = 0, the claims are trivial.

Suppose now that « = 5 + 1. We have that X, C Yz C Xjz. By the induction
hypothesis, for each v < 3, X, 2 Xjg, so that X, O X, for each v < «. Further-
more, by the induction hypothesis, X is ~3-closed, complete and f-compatible. By
Lemma B.13, (X, Cp) is a complete prelattice. If v € X, by LemmaR.d, ({x € X; :
v Cg x},Cg) is a complete prelattice. In any case (Y, Cg) is a complete prelattice.
Moreover, if v € X, since Xj is f-compatible and by Lemma B.3, v T4 f(v). There-
fore, by the Cg-monotonicity of f, for any x € X3, v Cg f(v) Cg f(z). So, we can
see f as a function from Y3 to Y3. By Theorem R.8, there exists some z € Y such
that f(z) =g «x and for each y such that f(y) Cg y, z Cg y. We have that z € X,
so by the previous claim, X, = X N [z]g. Forany y,z € X,, y =g © =3 z. By
Property , y ~3 z, and since y =g z, we have that y =, z, so that X, is ~,-closed.
By Lemma , Xq is complete. Finally, suppose z € X,,. Since X3 is f-compatible,
f(z) € Xga. Also, since z =g z, by the C g-monotonicity of f, f(z) = f(z), and we
have that f(z) =g =, so that f(z) € [z]g. Thus f(z) € X,.

Suppose now that « is a limit ordinal and our claims hold for all ordinals less than
a. X, is obviously well-defined. By definition, X, O X, whenever v < . Using
Lemma , X, 1s =, -closed. Using Lemma and Lemma , X, is complete.
Finally, by Lemma B.17, X, is f-compatible.

Let us define X, = (,.,. Xa. By Lemma B.14, X, is non-empty. So suppose
z € X,. By Lemma and Property [, z is the one and only one element of X,.. By
Lemma B.17, X, is f-compatible, so that f(z) = .

Now, we claim that v C z. If v € X, for all & < k, then v = x. Otherwise, let «
be the least ordinal such that v € X,. By the definition of X, when « is a limit ordinal,
« can not be a limit ordinal, so there exists some ordinal 5 such that « = 5 4 1 and
v € Xg.z € X,, so we have that v Cg x. Moreover, X, = X N [z]g. So ifv =3 z,
then v € X, would hold. Thus, v Cg =, so that v C x. Therefore x € F,, and since
F,CP,,x€P,.

Now we claim that if z € P,,thenx C z. If 2 € X, forall @ < &k, then x = z.
Otherwise, let « be the least ordinal such that z ¢ X,. By the definition of X, when «
is a limit ordinal, o can not be a limit ordinal, so there exists some ordinal 3 such that
a =+ 1and z € Xg. Because Xg is f-compatible, f(z) € X3. And since X is
~s-closed, by LemmaB.9, f(z) Cp 2. If v € X, then by Lemma B.3, v C4 2. In any
case z € Yj. Since z € X,, © Cg 2. Moreover, X, = Xg N [z]g. So if x =4 z, then
z € X, would hold. So z Cg #, and thus « T z. Therefore, « is the least element of
P,, and since F,, C P,, it is also the least element of F,. O
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CHAPTER 5

PRE-FIXED AND POST-FIXED POINTS

Definition 5.1. Let (.5, <) be a partial order, f : S — Sand x € S. z is called:
* a <-post-fixed point of f iff z < f(z).
* a <-pre-fixed point of f iff f(z) < x.
* a <-fixed point of f iff f(x) = .

In this chapter we demonstrate three more general fixed-point theorems, namely
that the set of fixed-points, the set of postfixed-points and the set of prefixed-points of
a stratified-monotonic function forms a complete lattice.

Lemma 5.2. (See [5, Theorem 2.31].) Let (S, <) be a partial order. (S, <) is a complete
lattice iff S has a <-bottom element and every non-empty subset X C S has a <-least
upper bound in S.

Lemma 5.3. Leta <k, X C Landz € X.Ifforall y € X eithery =, xory C z,
then | | X =, x.

Proof. Let X' = X N [z],. We have that X’ C [z],, so that X’ is a2, 1-closed. By
LemmaB.g, | | X’ =411 @, so that| | X’ € [z],. Foranyy € X \ X,y T2 C || X"
So | | X’ is an C-upper bound of X. Suppose z is an C-upper bound of X. Then z is
an C-upper bound of X', so that z C | | X’. Thus, | | X = | | X’, and we have that
L X" =4 . O

Lemma 5.4. Suppose that f : L — L is stratified monotonic and let X C L such that
forany x € X,z C f(z). Then | | X C f(| | X).

Proof. If | | X € X then f(|]X) = |JX and we are done. Moreover, if X = 0,
L0 =T1L C f([1L)- Assume therefore that | | X ¢ X and X # (). We are going to
show that f(| | X) is an C-upper bound of X . Suppose 2 € X. We have thatx C,, | | X
for some « < k. By the C,-monotonicity of f, f(x) C,, f(|X).If f(z) Ca f(L]X),
then z C f(z) C f(]| ] X), so we are done. So, we can assume that f(x) =, f(| | X).
We have that z C f(x). If ¢ Tg f(x) for some 5 < «, f(z) = f(|X), so, by
LemmaB.d, x Cs f(|]X), and thus z = f(] | X), so we are done. Assume therefore
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that either z = f(z) orz Cg f(x) for some 8 > «. In either case, x =, f(x), so that
r =, f(X).

By Lemma B.3, there exist some y € X such that y Z x and y #, 2. We have that
y Cg || X for some 3 < k. By the Cg-monotonicity of f, f(y) Cg f(| | X). Assume,
for the sake of contradiction, that 8 < «. If 8 < a, by Property [, + =4 | | X, and by
LemmaB.4, y C s « (contradiction). So, suppose that 5 = «. We have that y T f(y).
Ify =, f(y) for some v < a, by Property [I| we have that f(y) =, f(|X) =, 2,
so by Lemma B.4, y C. z (contradiction). Assume therefore that either y = f(y) or
y T~ f(y) for some vy > a. In either case, y T f(y), and since f(y) Cq f(||X) and
x =4 f(JX), we have that y C,, . Neither y C,, « nor y =, « can be true.

In any case we have a contradiction, so 3 > « must hold. Then by Property I,
Yy =4 | | X, and by Lemma B.4, x T, y. Also, by the C,-monotonicity of f, fly) =a
f(UX). Wehave thaty T f(y). Ify T, f(y) forsomey < o, 2 =, y T f(y) =4
fUX). Ify = f(y) ory T f(y) for some v > o, then y T, f(y), so that  Cq

Yy Co f(y) =a (L] X). Inany case, by LemmaB.4, 2 C f(| | X). Therefore, f(| | X)
is an C-upper bound of X, so that| | X C f( | X) O

Theorem 5.5. Suppose that f : L — L is stratified monotonic and let P be the set of
post-fixed points of f. Then, (P, C) is a complete lattice.

Proof. By Lemma .7 it is sufficient to prove that P has a C-bottom element and that
every non-empty subset X C P has a C-least upper bound in P. Obviously [ L is the
C-bottom element of P. Let X C P. By Lemma (.4, | X € P,sothat| | X is the
C-least upper bound of X. O

Also, by duality, we can also get the following theorem:

Theorem 5.6. Suppose that f : L — L is stratified monotonic and let P be the set of
pre-fixed points of f. Then, (P, C) is a complete lattice.

Theorem 5.7. Suppose that f : L — L is stratified monotonic and let P be the set of
fixed points of f. Then, (P, C) is a complete lattice.

Proof. Let X C P be a set of fixed points of f. We show that X has a least upper
bound in P. By a dual argument, one can also show that X has a greatest lower bound
in P. These two statements suffice to establish that (P, C) is a complete lattice.
Obviously, X is also a set of post-fixed points of f. By Lemma .4, | | X is a post-
fixed point of f. By Theorem .2, the set {z € L : (f(z) = ) A (X C x)} hasa
least element, say z. This element z is the least fixed point of f that is an upper bound
of all the elements of X. Therefore, z is the least upper bound of X in the partial order
(P, C). This completes the proof of the theorem. O
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CHAPTER O

APPLICATIONS

In this chapter we present two applications of the fixed point theorem developed in
this paper. The first is an application to the semantics of logic programs with negation
and the second an application regarding sequences of (possibly) transfinite length.

6.1 The infinite-valued semantics

In [[11] it is demonstrated that for every logic program P with negation, there exists
a special model which can be taken as its intended semantics. It is also shown in []11]
that this model is the least fixed point of the immediate consequence operator T'p of
the program P. The proof of this result is given in [[11] in a lengthy and somewhat
ad-hoc way. In the following, we demonstrate that this result is a simple consequence
of the theory developed in the present paper. To avoid an extensive presentation of the
material in [[L1]], we will introduce only the basic notions that are needed for this result
to be established. The interested reader should consult [[11]] for additional details.

The basic notion that needs to be introduced, is that of an infinite-valued interpre-
tation. Such interpretations are used in [|11] to give meaning to logic programs with
negation. Intuitively, an infinite-valued interpretation is a generalization of classical in-
terpretations of logic programs [9] to an infinite-valued logic which contains one truth
value F, and one T, for each countable ordinal «, together with a neutral truth value
0. Intuitively, Fy and T} are the classical False and True values and 0 is the undefined
value. The intuition behind the new values is that they express different levels of truth
and falsity. Let V' be this set of truth values, ie.,

V=A{F,:a<QlU{T,:a<Q}U{0}
where (2 is the first uncountable ordinal. We will need the following definition from [[L1]:

Definition 6.1. The order of a truth value is defined as follows: order(T,) = a,
order(F,) = « and order(0) = (.

Let Z be a non-empty set of variables. Intuitively, the variables in Z are used to con-
struct propositional logic programs in [|L1]]. For the purposes of this section, it suffices
to know that Z is just a non-empty set. Then:
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6.1. THE INFINITE-VALUED SEMANTICS

Definition 6.2. An infinite-valued interpretation (or simply, interpretation) I is a func-
tion from the set Z to the set of truth values V.

Following [|L1], we define various relations on interpretations:

Definition 6.3. Let I € VZ be an interpretation and letv € V. Then I || v = {2z €
Z | I(z) =v}.

Definition 6.4. Let I, .J € VZ be interpretations and o < Q. We write I =, J, if for
allﬁga,IH T/@ZJH T@andIH Fﬁ:JH Flg.

Definition 6.5. Let I,.J € VZ be interpretations and o < 2. We write I ,, J, if
forall 8 < a,I = Jandeither ] | T, C J || Toand I | F, D J || Fy, or
INToa CJ||Twand I || Fy D J || Fo. Wewrite I C,, JifI =, Jor I T, J. We
write I C J if there exists &« < Qsuchthatl —, J. Wewrite [ C Jif I Jorl = J.

We can now show that the set of infinite-valued interpretations together with the
above relations, forms a lexicographic lattice structure.

Lemma 6.6. Let L be the set of infinite-valued interpretations. Let the relations C and
{C4}a<q be as in Definition b.5. Then, the triple (L, C, {C, }a<q) is a lexicographic
lattice structure.

Proof. The set L is a complete lattice (see [6]). Property 1 holds directly due to Defini-
tion [6.3. To verify that Property 2 holds, let I, J be infinite-valued interpretations and
assume that forall o < Qitis I =, J. Forany a < it follows by the definition of the
=, relation (Definition .4) that given an arbitrary z € Z, I(z) = Ty, iff J(2) = T,
and I(z) = F, iff J(z) = F,; this implies that I(z) = 0 iff J(z) = 0. Therefore, for
all z € Z,1(z) = J(z), ie., I = J. To verify Property 3, consider an arbitrary inter-
pretation I and let & < €2 be an ordinal. The set [I],, has a C-least element .J defined
as:
J(z) = { I(z) iforder(I(z)) <«
Fo41 otherwise

and a C-greatest element K defined as follows:

| I(z) iforder(I(z)) <«
K(z) = { T,.1 otherwise
It is straightforward to verify using Definition 6.3 that .J and K are indeed the C-least
and C-greatest elements of [I],,. O

In [[11] an operator T» : L — L is defined for every logic program P, where L
is the set of infinite-valued interpretations. It is demonstrated that for every a@ < €,
T'p is a-monotonic. Moreover, it is demonstrated through a lengthy reasoning, that Tp
has a least fixed point (see Sections 6 and 7 in [|[L1]), which is taken as the intended
meaning of the program. This result can now be obtained in a much easier way as a
direct consequence of the theory developed in this paper: since Tp is a-monotonic for
all a < €, and since L is a lexicographic lattice structure, it follows from Theorem §.2
that Tp has a least fixed point.
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CHAPTER 6. APPLICATIONS

6.2 Transfinite sequences over complete lattices

In this section we consider (possibly transfinite) sequences over complete lattices.
This is actually a generalization of w-words discussed in Chapter . Sets of transfinite
sequences over complete lattices have been studied by Henry Crapo in [4], where they
are referred as lexicographic lattices. In this section we demonstrate that these sets
induce, in a natural way, lexicographic lattice structures.

In the rest of this section we assume that  is a fixed ordinal and (Q, <) is a complete
lattice. The set Q™ of the functions from « to () can be viewed as sequences of length
k over (). These sequences have an intuitive lexicographic order: suppose f,g € Q"
such that f # ¢ and let « be the least ordinal such that f(«) # g(«). Then f C g if

fla) <gla)and g C fifg(a) < f(a).

Definition 6.7. Let f,g € Q". We define f T, g if f(3) = g(p) forall 5 < « and
fla) < g(a). Wewrite f =, gif f C, gand g C,, f. Wewrite f C,, gif f C,, g but
f =a g does not hold. We write f C g if f C,, g for some o < k. We write f C g if
fCgorf=g.

The following lemmas hold:
Lemma 6.8. For each a < k, T, is a preorder.

Proof. Let a < k be an ordinal and f, g, h € Q". We have that f(5) = f(53) for all
B < aand f(a) < f(«a) by the reflexivity of <, so that f C,, f. Suppose now that

f Ca g Co h.Then f(B) = g(B) = h(B) forall 3 < aand f(B8) < g(B) < h(B).
by the transitivity of < and the equality, so that f T, h. Thus C,, is reflexive and
transitive. O

Lemma 6.9. (See [4, Proposition 2].) C is a partial order.
Lemma 6.10. (See [4, Theorem 1].) (Q*, C) is a complete lattice.
Lemma 6.11. C is determined by the sequence {C,, } o< -

Proof. Let f,g € Q. By definition, f C g iff f T, ¢ for some o < k. O

Definition 6.12. Let o > « be an ordinal and f € Q*. We define f|., f|* € Q" such
that:
f(B), B<a

41, otherwise

f‘a(ﬁ) = {

a f(ﬂ)a B<a
f12(B) = :
T, otherwise
where L is the least element and T is the greatest element of ().
Lemma 6.13. The triple (L, C, {C, } <) is a lexicographic lattice structure.

Proof. Property [1 holds by definition. For Property P, if for some f,g € Q", f =o g
forall o < k then f(a) = g(a) forall & < k, so that f = g. Finally, for Property B, for
any f € Q" and @ < K, f|, is the C-least element and f|* is the C-greatest element
of [2] - O
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6.2. TRANSFINITE SEQUENCES OVER COMPLETE LATTICES

We now derive a simple lemma for a class of functions over sequences that always
have a least fixed point. A function T' : Q" — Q" will be called past-dependent if,
intuitively speaking, for every f € Q" and for every ordinal & < k, the value of the
sequence T'(f) at index o depends only on the values that the sequence [ has at ordinal
indices that are strictly less than . More formally:

Definition 6.14. The function T : Q" — Q" will be called past-dependent if the
following condition holds: for each o < k and for all f, g € Q", if f(8) = g(p) for all
B <athenT(f)(B) =T(g)(B) forall B < a.

We have the following simple lemma:
Lemma 6.15. Every past-dependent function is stratified monotonic.

Proof. LetT : Q" — Q" be apast-dependent function. We show that T" is a-monotonic
for each a < k. Suppose a@ < k and let f,g € Q" such that f C, g. By definition,

f(B) = g(B) forall 5 < a. By hypothesis, T'(f)(8) = T(g)(B) for all 8 < «, so that
T(f) Ea T(9). O

Corollary 6.16. Every past-dependent function has a least fixed point and a greatest
fixed point.

Proof. Immediate by Theorem [.2. O

Example 6.17. Letk = wand @ = {a, b}. {a, b}* are the infinite strings over alphabet
{a, b}. Let < be the usual ordering on {a, b}. Obviously, ({a, b}, <) is a complete lattice.
Using Lemma .13, (L, C, {C, }a<w) is a lexicographic lattice structure and C is the
usual lexicographic ordering over strings.

Let's define T': {a,b}* — {a,b}* such that for all f € {a,b}* andn € w:

b, n=20
T(f)(n) =< f(n—1), nisodd
f(n—2), niseven and greater than 0
Although T is not monotonic under the lexicographic ordering, it follows by Lemma

that T is stratified monotonic. By Corollary .16, 7" has a least fixed point and a greatest
fixed point. O
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

We have presented a novel, non-constructive proof of the fixed point theorem pro-
posed by A. Charalambidis, G. Chatziagapis and P. Rondogiannis [|l]]. The initial proof
of the theorem, as presented at LICS 2020, is constructive. Even though the constructive
proofs are useful is some applications, non-constructive proofs often give a better intu-
ition of the results and highlight some hidden properties. Using the novel approach that
we developed, we proved that the set of fixed points of functions over lexicographic lat-
tice structures form a complete lattice, which was the main unresolved open question of
[]]. This result makes the analogy with the Knaster-Tarski theorem even firmer. Finally,
we have formally verified our proofs through the Coq proof assistant. The code can be re-
trieved from https://github.com/giannosch/lexicographic-fixed-point.

Most of the lexicographic lattice structures can be described as sequences over com-
plete lattices. This observation is important in our novel approach. It is interesting to
investigate whether we can give an alternative definition to lexicographic lattice struc-
tures based on such sequences.

Moreover, classical logic programming semantics are closely related with classical,
two-valued set theory, in the sense that for each model an atom is either an element of
the model, so it is true, or not, so it is false. Since logic programming with negation
can be described with infinite valued models, it may give rise to a novel, non-standard,
infinite-valued set theory. Rondogiannis and Wadge in [[L1] even defined some notion
of intersection between models in order to prove a theorem similar to the model intersec-
tion theorem is classical logic programming. It is interesting to explore the properties
of such set theory.
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