
Monero mining: CryptoNight Analysis

Orestis Konstantinidis
AL1180006

Examination committee:
Prof. Dr. Aggelos Kiayias, Department of Informatics and
Telecommunications, NKUA.

Prof. Dr. Aris Pagourtzis, School of Electrical and
Computer Engineering, NTUA.

Prof. Dr. Nikolaos Papaspyrou, School of Electrical and
Computer Engineering, NTUA.

Supervisor:
Dr. Aggelos Kiayias, Associate Professor,
Department of Informatics and
Telecommunications,
National and Kapodistrian University of
Athens.

Η παρούσα Διπλωματική Εργασία
εκπονήθηκε στα πλαίσια των σπουδών

για την απόκτηση του
Μεταπτυχιακού Διπλώματος Ειδίκευσης

«Αλγόριθμοι, Λογική και Διακριτά Μαθηματικά»
που απονέμει το

Τμήμα Πληροφορικής και Τηλεπικοινωνιών
του

Εθνικού και Καποδιστριακού Πανεπιστημίου Αθηνών

Εγκρίθηκε την από Εξεταστική Επιτροπή
αποτελούμενη από τους:

Ονοματεπώνυμο Βαθμίδα Υπογραφή

1. .

2. .

3. .

ABSTRACT

Bitcoin has been a successful implementation of the concept of peer-to-peer electronic
cash. Based on this technology several cryptocurrency projects have arisen, each one
focusing on its purposes and goals. Monero is a decentralized cryptocurrency focusing
on privacy and anonymity.

In a world of surveillance, Monero raises the alarm about one of the fundamental
human rights, which is continuously violated: Privacy. In addition, Monero is built to
achieve equality between miners. Corporations are taking over almost every successful
cryptocurrency, by making mining participation harder and harder for the hobbyists and
supporters. Monero tries to keep its community clean of unhealthy competition. This
is achieved through egalitarianism, which is based οn a cryptographic mining function.

This function is called CryptoNight and is part of the CryptoNote protocol, the heart
of Monero’s structure. The feature of this function that makes it egalitarian is a crypto-
graphic property, namedmemory-hardness. CryptoNight is alleged to be memory-hard.
But, still today, this is just a claim.

We put to the test this claim, trying to construct a formal mathematical proof, but
we fail to do so. We discuss the reasons for our failure and try to use them to construct
an attack on this feature. To our knowledge, we are the first to study this CryptoNight’s
property and the first to present graphically all the stages of CryptoNight’s functionality.

Finally, we present the knowledge gained and wish for this document to be useful
in the future to colleagues that want to contribute in this field. The aim of this work is
to contribute to Monero’s fight for privacy, anonymity and equality.

ΣΎΝΟΨΗ

Το κρυπτονόμισμα Bitcoin αποτελεί την πρώτη πετυχημένη εφαρμογή της ιδέας του
ηλεκτρονικού χρήματος χωρίς την διαμεσολάβηση τρίτων. Στην πορεία, πολλά κρυπτο-
νομίσματα βασίστηκαν στην συγκεκριμένη τεχνολογία, εστιάζοντας το καθένα στους
δικούς του στόχους και σκοπούς. Το κρυπτονόμισμαMonero είναι ένα τέτοιο εγχείρημα,
βασικός σκοπός του οποίου είναι η διασφάλιση της ιδιωτικότητας και της ανωνυμίας.

Σε έναν κόσμο όπου η παρακολούθηση εντείνεται, το εγχείρημα τουMonero σημαί-
νει τον συναγερμό για την διαρκή καταπάτηση ενός εκ των θεμελιωδών ανθρώπινων
δικαιωμάτων. Επιπλέον, καθώς οι επιχειρήσεις έχουν περιορίσει δραματικά τον υγιή
ανταγωνισμό σχεδόν σε όλα τα διαδεδομένα κρυπτονομίσματα, το Monero προσπαθεί
να τον διατηρήσει στην κοινότητά του. Ένα από τα δομικά στοιχεία τουMonero είναι η
διατήρηση της ισότητας μεταξύ των ”ανθρακωρύχων” (miners), η οποία επιτυγχάνεται
μέσω της ισονομίας (egalitarianism).

Η ισονομία είναι συνέπεια μιας ιδιότητας της κρυπτογραφικής συνάρτησης που
χρησιμοποιείται για την ”εξόρυξη” νομισμάτων. Η συνάρτηση που χρησιμοποιείται
στο Monero για αυτόν τον σκοπό λέγεται CryptoNight και είναι μέρος του CryptoNote
πρωτοκόλλου. Το στοιχείο της συνάρτησης που επιτυγχάνει την ισονομία είναι μια
κρυπτογραφική ιδιότητα, η οποία ονομάζεταιmemory-hardness. ΗCryptoNight συνάρ-
τηση θεωρείται ότι διαθέτει αυτήν την ιδιότητα. Όμως, μέχρι σήμερα αυτό παραμένει
ισχυρισμός. Απ’ όσο γνωρίζουμε, δεν υπάρχει μαθηματική απόδειξη για αυτόν τον
ισχυρισμό αλλά ούτε και κάποια επίθεση που να τον διαψεύδει.

Θέλοντας να ελέγξουμε την ορθότητα αυτού του ισχυρισμού, προσπαθήσαμε να
κατασκευάσουμε μια μαθηματική απόδειξη. Αναφέρουμε τους λόγους για τους οποίους
αποτυγχάνουμε να διατυπώσουμε μία τέτοια απόδειξη και προσπαθούμε να τους χρησι-
μοποιήσουμε για να καταρρίψουμε αυτόν τον ισχυρισμό. Απ’ όσο γνωρίζουμε, η παρού-
σα εργασία είναι η πρώτη που μελετά αυτήν την ιδιότητα για την συνάρτηση Cryp-
toNight και παρουσιάζεται για πρώτη φορά γραφικά η εσωτερική δομή της.

Τέλος, παρουσιάζουμε την γνώση που αποκτήσαμε και ελπίζουμε αυτή η εργασία
να φανεί χρήσιμη μελλοντικά σε συναδέλφους που θέλουν να συμβάλλουν στην έρευνα
στο ευρύτερο πεδίο. Στόχος αυτής της έρευνας είναι να συνεισφέρει στην προσπάθεια
του εγχειρήματος Monero για την διασφάλιση της ιδιωτικότητας, της ανωνυμίας και
της ισότητας.

ACKNOWLEDGEMENTS

I want to express my gratitude to Prof. Dr. Aggelos Kiayias for his supervision. I want
to thank explicitly Dionysis Zindros, for his crucial assistance in the progress of this
thesis, his support and his patience. I highlight the help I got from the thesis of Kostis
Karantias and his work. Christos Nasikas, colleague and friend, has offered academic
and personal guidance every time I needed it.

Along with Prof. Dr. Aggelos Kiayias, I am also thankful to the other two members
of my three-member committee, Prof. Dr. Aris Pagourtzis and Prof. Dr. Nikolaos
Papaspyrou, for the evaluation of my thesis.

During my master curriculum I had a huge offer of valuable courses and inspiring
professors. This program has been an important factor of my academic and personal
development.

My research was accompanied by a lot of interesting discussions and help from
friends that took the time to listen about my thoughts and interests. Among them I
should not neglect to name Yanna Papadodimitraki for her valuable contribution and
Vassilis Agiotis for the illustration of my thesis. I thank for the support and patience
my friends G.K., M.G., K.A., M.P. and C.V..

I also thank the Monero project and all of the people who decide to work in projects
that have significant political and social impact. They have been an example for me.

For his invalueable contribution to my personality and culture development as an
active member of society I have to thank my friend and my role model C.C.

Last, but most significantly, I want to salute all these people who do (or did) not
have the chance to study and those who chose not to, in order to fight for freedom.

i

CONTENTS

Acknowledgements i

0 Preface 1
0.1 Why Monero? . 1
0.2 An important thank you note . 1
0.3 Narrative . 2

1 Introduction 3
1.1 Decentralization . 3
1.2 Summary of Contribution . 5
1.3 Thesis structure . 6

I From decentralization to re-centralization 7

2 Preliminaries 9
2.1 Cryptography background . 9

2.1.1 Hash function . 9
2.1.2 Password Scramblers . 10
2.1.3 Memory-Hard Functions . 11
2.1.4 Pseudorandom Functions . 12
2.1.5 Pebbling game . 14

2.2 Bitcoin . 16
2.2.1 Transactions . 17
2.2.2 Inputs . 18
2.2.3 Outputs . 18
2.2.4 Blocks . 18
2.2.5 Merkle Trees . 19
2.2.6 Blockchain . 20
2.2.7 Mining . 20
2.2.8 Proof of Work (PoW) . 21
2.2.9 Simplified Payment Verification (SPV) 21
2.2.10 Smart contracts . 22

iii

CONTENTS

2.2.11 Scripts . 22
2.2.12 P2PKH . 23
2.2.13 Theoretical model . 23

2.3 Egalitarian Mining . 25
2.3.1 Egalitarianism . 26

3 Monero 29
3.1 Introduction . 29
3.2 History . 29
3.3 Specifications . 30

3.3.1 Account . 31
3.3.2 Keys . 31

3.4 CryptoNote . 32
3.4.1 Untraceable transactions . 32
3.4.2 Unlinkable transactions . 34
3.4.3 Stealth address construction 38
3.4.4 Double-spending proof . 41
3.4.5 Blockchain analysis resistance 42
3.4.6 More about CryptoNote . 42

3.5 Monero vs CryptoNote . 46
3.5.1 RingCT . 46
3.5.2 Bulletproofs . 47
3.5.3 Kovri I2P Network . 50

II Back to decentralization 53

4 Our Model 55
4.1 CryptoNight Description . 55
4.2 The three stages . 56

4.2.1 The first stage . 56
4.2.2 The second stage (memory-hardness) 59
4.2.3 The third stage . 62

4.3 Analysis . 64
4.3.1 Parameters . 65
4.3.2 AES as PRF . 65
4.3.3 Operations . 65

5 CryptoNight Analysis 67
5.1 Introduction . 67
5.2 Proof approach . 68

5.2.1 The model . 69
5.2.2 The road to proof construction 71

5.3 Attack approach . 71
5.3.1 Details . 72

6 Conclusion 75
6.1 Summary . 75
6.2 Future Work . 76
6.3 Epilogue . 77

iv

CONTENTS

Bibliography 79
Web resources . 82

v

CHAPTER0
PREFACE

0.1 Why Monero?

I would like to take a moment here and share the experience of selecting a research
topic. This was as important to me as the rest of my work. I am not talking about
concepts of ”good topic” or a list of ”factors to consider”. I am definitely not an expert
on this subject and you can find many valuable information about this process online.
I would like to share with you the impact of an argument, about selecting this topic
over other options, that was addressed to me by my colleague and friend, Dionysis
Zindros. He said to me that in his opinion this topic would be ”beneficial for theMonero
community”.

I strongly recommend before you select your topic of research to take an evening
of your time and read a paper titled ”The Moral Character of Cryptographic Work”,
written by Phillip Rogaway [64]. No matter how small this world makes you feel,
when you select a topic you have responsibility. I was lucky to work with people who
understood this and led me to take a moment and think about what cause I really wanted
to contribute to.

In our days, cryptographic work is a political action. There is no doubt about that.
Think through your intentions and the person you want to be before you select your
path. Remember, you have responsibility.

0.2 An important thank you note

During my research I had a lot of help from forum answers and conversations and
most of all, from the monero stack exchange users [56]. I would like to thank many
users for their valuable share of knowledge. I had help from a lot of users and several
stack exchange forums, who pointed me to the right direction or helped me clarify my
misunderstanding of notions from time to time.

1

0.3. NARRATIVE

I want to thank them for the aid, but most important, I want to thank everyone who
contributes to this knowledge sharing. It means a lot to me and gives me a perspective
on my occupation. I don’t see the work of a cryptographer as an 8-hour employment
to make ends meet. I hope my interests and efforts to be much more than a day job. I
feel part of a community that contributes to the real world and keeps me motivated and
convinced that our work makes the world a better place to live in. I thank you all for
your example.

0.3 Narrative
I will change the first person singular narrative. Apart from all the people I have al-
ready thanked, my personality has been shaped by my family, my friends, important
acquaintances and stories about my heros. All of them are part of me, part of who I am.

As a result, I see this work as a collaboration of all of us and that completes the list
of the reasons why I will keep a first person plural narrative from now on. I could not do
that in the above paragraphs because this section, as you can understand, is extremely
personal. I thank you all.

Another change will be the way I am addressing to you, my reader. It will be, from
now on, in a third person point of view. This is just a personal aesthetic choice. I thank
you for taking the time to read our work. I hope you find it enjoyable.

2

CHAPTER1
INTRODUCTION

If you don’t believe it or don’t get it, I
don’t have the time to try to convince
you, sorry.

Satoshi Nakamoto

1.1 Decentralization
Decentralized networks aim to eliminate the need for a central authority. Rather than to
hand over control to a central party, decentralized networks are run by the participants
themselves. This means that the entire system becomes more distributed.

As a result, any processes underpinned by decentralized technology become signif-
icantly harder to shut down. This is primarily due to the elimination of a single point
of failure in the system. It is worth noting that decentralization brings with it a lot of
positive effects. For one, it means that users will no longer need to put their trust in a
single central authority to perform a process.

A decentralized network consists of a so-called peer-to-peer network. This means
that data is distributed across numerous devices.

Ownership of users’ data

This is a simplistic view of decentralization but it highlights one of its most fundamental
strengths. The advent of cryptocurrencies and blockchains – which build on decentral-
ization – can be said to give back ownership of data to users. This is because it does
not rely on a single entity to handle users’ information. In an age where big data is in-
creasingly becoming a popular topic, decentralization can be seen as a solution to this
problem.

Companies like Google or Facebook are often accused of infringing on users’ pri-
vacy by collecting information regarding them. However, this is not something that is
exclusive to corporations. Governments could also abuse their power over such infor-
mation.

3

1.1. DECENTRALIZATION

This highlights the main problem with centralized entities, as the risk of abusive
behavior becomes more prevalent. Moreover, it is hard to stop this from taking place,
as such centralized entities are often crucial to the system as a whole. Nonetheless,
somemight object to the notion of preserving privacy through sharing informationmore
freely, across multiple devices. Although this approach might seem counterintuitive, it
is actually quite sound. As blockchains employ cryptography, the information can be
kept safe and private.

Egalitarian tool

It should be noted that the benefits of decentralization extend far beyond practical rea-
sons. In fact, decentralization is increasingly being heralded as a powerful egalitarian
tool.

As people around the world face certain oppressive regimes that attempt to seize
control over the free press or shut down users’ access to social media, decentralization
might prove evenmore useful in countering censorship. A government could shut down
a service like Twitter or Facebook comparatively easy. This could simply be achieved
by denying traffic going to any of Twitter’s or Facebook’s central servers.

Decentralized networks – on the other hand – make use of peer-to-peer networks,
which would be virtually impossible to censor. This is because a government would
then have to block all of the undesired points of the peer-to-peer network, rather than
just a central server.

Moreover, one of the most important draws of decentralized networks is that they
are open. As a result, anyone with the expertise to do so could potentially develop their
own services, processes, products or tools. In fact, decentralized networks can be seen
as nothing more than an underlying platform. What this platform allows for are the
benefits of decentralization.

This can be compared to the internet itself. The world wide web is nothing more
than an underlying platform that allows for applications to be built on top. The modern
notion of decentralized blockchain technology is less than a decade old. Decentralized
technology presents a plethora of new opportunities.

Overview

To sum up, the benefits that decentralized systems offer are:

• Users don’t have to put trust in a central authority

• It it less likely for a single point of failure to exist

• There is less censorship

• Decentralized networks are more likely to be open development platforms

• There is potential for network ownership alignment

The last point is the idea that the people who contribute value to a decentralized net-
work receive ownership or economic stake in the network, that becomes more valuable
as the network grows. This is one of the most exciting things that blockchain tech-
nology brings to decentralized networks, as it allows economics to be designed into
the networks themselves, to create the right incentives for early participants to become
value-contributing users.

4

CHAPTER 1. INTRODUCTION

1.2 Summary of Contribution
We study the claim that Monero’s mining function, CryptoNight, is memory-hard. Our
contributions in this thesis are as follows:

1. We represent graphically the functionality of CryptoNight

2. We introduce a mathematical model for CryptoNight function

3. We attempt to construct a formal mathematical proof of CryptoNight’s memory-
hardness property

4. We attempt to attack CryptoNight’s memory-hardness property

Graphical representation

To our knowledge, we are the first to present graphically the whole process of the Cryp-
toNight function. We believe that this will help any researcher who wants to analyze
or understand the way this function handles its components and the relation between
them.

Mathematical model

Then, we construct a mathematical model. We make intuitive but solid assumptions
about:

• The nature of the AES encryption operation and its output

• The distribution of the input

During this process we note implementation details that may be theoretically prob-
lematic about the addition and multiplication operations used. However, we proceed in
our analysis, assuming that these minor problems don’t exist. The reason is twofold –
one, these problems admit a relatively easy fix and, two, because of the nature of our
results we care to highlight other characteristics that didn’t allow us to succeed in our
attempts.

Proof

We fail to construct a formal mathematical proof of CryptoNight’s memory-hardness
property. We discuss the reasons for this result and present our thoughts and effort.
This analysis can be helpful for the person or team that wants to research this problem
or a similar one.

Attack

An attack on CryptoNight’s property seems improbable and we discuss the reasons
behind this claim. We hope that this analysis is helpful too, for future research on
CryptoNight.

5

1.3. THESIS STRUCTURE

1.3 Thesis structure
We tried to make this document readable. From this point of view, we tried to achieve
completeness, in the sense that the reader should not refer to external resources to under-
stand the basic arguments involved. Of course, a more keen reader can find references
for a detailed study of the notions involved in our work, but that is something that we
wanted to be as optional as possible.

In the first part, the reader will find an overview of the first complete implemen-
tation of a cryptocurrency. That was a paper published under the pseudonym Satoshi
Nakamoto [58], introducing the Bitcoin project to the world. This overview is certainly
not a detailed description of all aspects of Bitcoin, as this would be unproductive for the
discussion in this work. However, we believe that we give a satisfactory description of
the project and we hope that the reader will acquire an adequate understanding of the
structure of this novelty.

We introduce the reader to the concept of mining, based on the knowledge gained
through the study of the Bitcoin project. The purpose of this description is to introduce
the notion of egalitarianism and more precisely, the notion of egalitarian mining. This
notion was for a long time a folklore subject of dispute in the community, being a
starter for many passionate conversations. It was formally defined recently, in the work
of Dimitris Karakostas, Aggelos Kiayias, Christos Nasikas and Dionysis Zindros [45].

In the second chapter of the first part, we introduce another cryptocurrency, named
Monero, and the purposes of its community along with a technical description of its
features. The basic structure for Monero project is the CryptoNote protocol, described
in a paper published under the pseudonym Nicolas van Saberhagen [65]. We describe
its features as well.

Then, we get to the point where we can discuss the problem of interest of this thesis.
This is Monero’s mining function, CryptoNight. This function is part of the CryptoNote
protocol and it is the reason that Monero claims to offer egalitarianism in its mining
process. This feature’s existence is due to a known property, called memory-hardness.
This function is alleged to be memory-hard, although we found no formal research on
this matter. CryptoNight’s functionality and features are described in the first chapter
of the second part.

In the next chapter, we try to construct a formalmathematical proof of CryptoNight’s
memory-hardness property and we discuss the reasons we failed to do so. Using these
reasons, we attempt to construct an attack on this property.

Finally, we sumup our observations and try to highlight important knowledge gained
through this journey.

In the first part, the reader can find formal mathematical definitions of the notions
used or referred, in an effort for this thesis to be both readable and complete. That is
presented in the Cryptographic Background section of the first chapter. Constructions
and details about the Monero project, are included in the Monero chapter. However,
this information is not needed for the reader to keep up with the flow of our work or to
understand our remarks. Nevertheless, they were included for the sake of completeness
and for the reader, as he/she might find this information beneficial.

6

Part I

From decentralization to
re-centralization

7

CHAPTER2
PRELIMINARIES

Security is a binary state. A system
cannot be secure against malicious
attackers and insecure against other
”noble” parties. It is either secure or
insecure. And if the prospect of an
attack exists, then security collapses.

Edward Snowden

2.1 Cryptography background
Here we will include the formal mathematical definition of any cryptographic primi-
tive that the reader will need to study this thesis. Our goal is to make the citation and
references in this document an optional read. We believe that we can make this project
complete on its own and any available source will be needed only for the experienced
reader who may want to get a deeper understanding of the mechanics discused.

A great help, in order to keep this section as concrete as possible, was the work of
my collegue and friend Kostis Karantias. He had already defined some notions, which
are helpful in this thesis too. Some of his work is reproduced here. I thank him for his
help and appreciate his work. I definitely refer the reader to his thesis [46].

2.1.1 Hash function
We will define the syntax and the security model of the cryptographic hash function, as
introduced in [47]. We will slightly change their definition, because we assume no key
as input to the hash function. In our case, the only input is a message.

9

2.1. CRYPTOGRAPHY BACKGROUND

Definition 2.1 (Hash function - syntax). A hash function is a probabilistic
polynomial-time (p.p.t.) algorithmH satisfying the following:

• There exists a, polynomial in n, function l such that H is a (deterministic) p.t.
algorithm that takes as input any string x ∈ {0, 1}∗ and outputs a string:

H(x) ∈ {0, 1}l(n)

If for every n, H is defined only over inputs of length l′(n) and l′(n) > l(n), then we
say thatH is a fixed-length hash function with length parameter l′. An output of a hash
function is called a digest of the function.

Notice that in the fixed-length case we require that l′ be greater than l. This ensures
that the function is a hash function in the classic sense in that it compresses the input.
We remark that in the general case we have no requirement on l because the function
takes for input all (finite) binary strings. Thus, by definition, it also compresses.

We will now define security for this model. We begin by defining a game for a hash
function H , an adversary A and a security parameter n:

The collision-finding game Hash-collA,H(n): [47]

1. The adversary A outputs a pair x and x′.
Formally, (x, x′)← A(s).

2. The output of the experiment is 1 if and only if x ̸= x′ and H(x) = H(x′). In
such a case, we say that A has found a collision.

The definition of collision resistance for hash functions states that no efficient adversary
can find a collision except with negligible probability.

Definition 2.2. [47] A hash function H is collision resistant if for all probabilistic
polynomial-time adversaries A there exists a negligible function negl(·) such that

Pr[Hash-collA,H(n) = 1] ≤ negl (n) (2.1)

2.1.2 Password Scramblers
Passwords1 are user-memorizable secrets. Typical (user-chosen) passwords often suf-
fer from low entropy and can be attacked by trying out all possible password candidates.
If we let asside the case of a dedicated cryptographic protocol on an interactive session,
the next best protection are password scramblers performing key-stretching. Christian
Forler, Stefan Lucks and Jakob Wenzel [34], give three basic conditions a good pass-
word scrambler should satisfy at least:

1. Given a password pwd, computing PS(pwd) should be ”fast enough” for the
user.

2. ComputingPS(pwd) should be ”as slow as possible”, without contradicting con-
dition 1.

3. Given y = PS(pwd), there must be no significantly faster way to test q password
candidates x1, x2, . . . , xq for PS(xi) = y than by actually computing PS(xi)
for each xi.

1Passphrases and personal identification numbers (PINs) are considered ”passwords”, in this context.

10

CHAPTER 2. PRELIMINARIES

Tratidionally, most password scramblers satisfy condition 2 by iterating a crypto-
graphic primitive (a block cipher or hash function) many times. However, an adversary
with b computing units (cores) can try b different passwords in parallel. With today’s
availability of graphical processing units (GPUs), slowing down these kind of attacks
becomes a pressing question.

2.1.3 Memory-Hard Functions
We will define the notion of the memory-hard function in the Parallel Random Oracle
Model (pROM) of [2], as introduced in [3]. First, we will define the model along with
the associated complexity notions.

The parallel Random Oracle Model. We consider an algorithm A executing in the
pROM of [2]. Let this algorithm be repeated an arbitrary amount of times. After each
invocation we make states. At invocation i ∈ {1, 2, . . . } algorithm A keeps the state
σi−1 it produced. Next A can make calls qi = (q1,i, q2,i, . . .) to the fixed input length
random oracle H (ideal compression function). After it receives the digest of H , is
allowed to perform arbitrary computation before producing its output (the next state
σi). The state σ0 contains the input to the computation and no other state is kept by A.
Now, we need some complexity notions to be defined.

The cumulative memory complexity (CMC) is defined to be

cmc(A) = E
H

[
max
x,r

∑
i

|σi|

]

where |σ| is the bit-length of state σ, the expectation is taken over the choice ofH and
maxx,r denotes the maximum over all inputs and coins of A.

Moreover, the time complexity (TC), time(A) is the maximum running time of A
in any execution. Similarly, the space complexity (SC) is the largest state it ever outputs
in any execution.

Oracle function. Let f be a function over strings depending on the choice ofH . We
consider the scenario in which we want to compute f on m ∈ N+ arbitrary distinct
inputs. LetAf,m,q be the set of pROM algorithms that accomplish this, making at most
q queries to H . Then,

(a) f is an oracle function

(b) The amortized cumulative memory complexity (aCMC) of f is defined to be

cmcm,q(f) = min

{
cmc(A)

n
: n ∈ [m],A ∈ Af,n,q

}

This definition provides a good lower-bound on the amortized time complexity of a
function [2].

For more detailed information about the above, we refer the reader to the appendix
of [3]. The reader can find some technical details there that are beyond of the scope
of this thesis. Now we are ready to define properly the notion of the memory-hard
function.

11

2.1. CRYPTOGRAPHY BACKGROUND

Definition 2.3 (Memory-Hard Function). Let {fσ,τ}σ,τ∈N+ be a family of (oracle)
functions and N be a sequential pROM algorithm which, on input (σ, τ, x), outputs
fσ,τ (x) in time at most τσ using space at most σ. ThenF =

(
{fσ,τ},N

)
is an (h, g, t)-

memory-hard function (for up tom instances and q queries) if it has memory-hardness
at least h(·), memory-gap at most g(·) and throughput at least t(·) (all functions of σ
and τ).

cmcm,q(fσ,τ) ≥ h(σ, τ)
space(N) ∗ time(N)

cmcm,q(fσ,τ)
≤ g(σ, τ)

space(N)

time(N)
≥ t(σ, τ)

The above definition [3], although extremely rigid, is not that intuitive. In order
to describe memory requirements, we will mention another definition given in [34],
without causing any conflict with the above. Before we give the second definition, one
should notice that for any parallelized attack, using b cores, the required memory per
core is decreased by a factor of 1

b , and vice versa.

Definition 2.4 (Memory-Hard Function - intuitive). Let g denote the memory cost fac-
tor. For all α > 0, a memory-hard function f can be computed on a Random Access
Machine using space(g) space and time(g) operations, where space(g) ∈ Ω(time(g)1−α).

Thus, for space(·) time(·) = G2 with G = 2g , using b cores, we have(
1

b
· space(·)

)(
b · time(·)

)
= G2. (2.2)

In their paper a formal generalization of this notion is given but it is beyond of the
scope of this thesis. For more information about memory-hardness, the reader is refered
to their work [34].

2.1.4 Pseudorandom Functions
In cryptography, a pseudorandom function family, abbreviated PRF, is a collection of
efficiently-computable functions which emulate a random oracle in the following way:
no efficient algorithm can distinguish (with significant advantage) between a function
chosen randomly from the PRF family and a random oracle (a function whose outputs
are fixed completely at random). With that in mind, we must first recall the defini-
tion of oracle indistinguishability and then proceed to define a pseudorandom function.
Reproduced from [61]:

Definition 2.5 (Oracle Indistinguishability). Let {On}n∈N and {O′n}n be ensembles
whereOn, O

′
n are probability distributions over functions f : {0, 1}l1(n) → {0, 1}l2(n)

for some polynomials l1(·), l2(·). We say that {On}n and {O′n}n are computationally
indistinguishable (denoted by {O′n}n ≈ {O′n}n∈N) if for all non-uniform p.p.t. oracles
machines D, there exists a negligible function ϵ(·) such that ∀n ∈ N∣∣∣∣∣ Pr

[
F ← On : DF (·)(1n) = 1

]
− Pr

[
F ← O′n : DF (·)(1n) = 1

] ∣∣∣∣∣ < ϵ(n). (2.3)

12

CHAPTER 2. PRELIMINARIES

Definition 2.6 (Pseudorandom Function). A family of functions
{
fs : {0, 1}|s| →

{0, 1}|s|
}
s∈{0,1}∗ is pseudorandom if

• (Easy to compute): fs(x) can be computed by a p.p.t. algorithm that is given
input s and x

• (Pseudorandom):
{
s← {0, 1}n : fs

}
n
≈
{
F ← RFn : F

}
n
.

where, RFn is considered a family of functions that are random oracles.
The intuition in this section is that we can’t construct a function that actually im-

plements a random oracle. But, for practical purposes, we can construct a function
or family of functions that are in distriguishable from random oracles. That is good
enough for a security point of view and the next game is necessary in order to define
the security model for this mathematical element.

Algorithm 1 The game algorithm for a pseudorandom function fs (Adversary A)
1: function gamefsA (n)
2: b

$← {0, 1}
3: if b = 0 then
4: f ′ ←

{
{0, 1}n → {0, 1}n

}
5: else
6: f ′ ← fs
7: end if
8: b∗ ← Af ′

(1n)
9: if b = b∗ then

10: return 1
11: end if
12: return 0
13: end function

Based on the above algorithm we can now define the security model:

Definition 2.7 (Security model). Let fs be a pseudorandom function for some s ∈
{0, 1}n, where n is the security parameter. Then, ∀ p.p.t. adversarial algorithm Af ′ ,
with access to some random oracle function f ′, there exists a negligible function ϵ(·)
such that ∀n ∈ N:

∣∣∣∣∣ Pr
s

$←{0,1}n

[
Afs(1n) = 0

]
− Pr

f ′ $←
{
{0,1}n→{0,1}n

}[Af ′
(1n) = 0

] ∣∣∣∣∣ < ϵ(n). (2.4)

Notice that if someone knows s then it is easy to distinguish fs from a random
function. In order to consider this function indistinguishable from a random function,
one should keep seed s secret.

13

2.1. CRYPTOGRAPHY BACKGROUND

2.1.5 Pebbling game
Hellman presented in [42] a possibility to trade memory/space S against time T in
attacking cryptographic algorithms, i.e. he has introduced the idea of a time-memory
trade-off (TMT) in terms of generic attacks. Hence, we can assume that an adversary
with access to this algorithm and restricted resources is always looking for a sweet spot
to optimize S ·T . For, studying the TMT, one needs to choose a certain model. But first
we must introduce the reader to the notion of the directed acyclic graph. Reproduced
from [34]:

Definition 2.8 (Directed Acyclic Graph). Let Π(V, E) be a graph consisting of a set
of vertices V = (v0, v1, . . . , vn−1) and a set of edges E = (e0, e1, . . . , el−1), where
E = ∅ is a valid variant. Π(V, E) is a directed acyclic graph, if every edge in E consists
of a starting vertex vi and an ending vertex vj , with i ̸= j. A path through Π(V, E)
beginning at vertex vi must never reach vi again (else, there would be a cycle). If there
exists a path from a vertex vi to a vertex vj in the graph with i ̸= j, we will write
vi ≤ vj .

In 1970, Hewitt and Paterson introduced a method for analyzing TMTs on directed
acyclic graphs (DAG), called pebbling game. It has been occasionally used in crypto-
graphic context, see e.g. [28] for a recent example. The pebble game model is restricted
to DAGs with bounded in-degree and can be seen as a single-player game. The two fol-
lowing definitions are produced from [3]:

Definition 2.9 (Parallel/Sequential Graph Pebbling). Let G = (V, E) be a DAG and
let T ⊆ V be a target set of nodes to be pebbled. A pebbling configuration (of G)
is a subset Pi ⊆ V . A legal parallel pebbling of T is a sequence P = (P0, . . . , Pt)
of pebbling configurations of G where P0 = ∅ and which satisfies conditions 1 & 2
below. A sequential pebbling additionally must satisfy condition 3.

1. At some step every target node is pebbled (though not necessarily simultane-
ously).

∀x ∈ T ∃z ≤ t : x ∈ Pz. (2.5)

2. Pebbles are added only when their predecessors already have a pebble at the end
of the previous step.

∀i ∈ [t] : x ∈ (Pi \ Pi−1) ⇒ parents(x) ⊆ Pi−1. (2.6)

3. At most one pebble placed per step.

∀i ∈ [t] : |Pi \ Pi−1| ≤ 1. (2.7)

We denote with PG,T and P ||G,T the set of all legal sequential and parallel pebblings
of G with target set T , respectively. Note that PG,T ⊆ P ||G,T . In the case where
T = sinks(G), we will simply write PG and P ||G.

Definition 2.10 (Time/Space/Cumulative PebblingComplexity). The time, space, space-
time and cumulative complexity of a pebbling P = {P0, . . . , Pt} ∈ P ||G are defined to
be:

14

CHAPTER 2. PRELIMINARIES

Πt(P) = t Πs(P) = max
i∈[t]
|Pi| Πst(P) = Πt(P) ·Πs(P) Πcc(P) =

∑
i∈[t]

|Pi|.

For α ∈ {s, t, st, cc} and a target set T ⊆ V , the sequential and parallel pebbling
complexities of G are defined as

Πα(G,T) = min
P∈PG,T

Πα(P) and Π||α(G,T) = min
P∈P||

G,T

Πα(P).

When T = sinks(G), we simplify notation and write Πα(G) and Π||α(G).

We notice that the definition comes along with the intuition about these complex-
ities. For α ∈ {s, t, st, cc} and any G, the parallel pebbling complexity is at most as
high as the sequential, i.e., Πα(G) ≥ Π

||
α(G), and cumulative complexity is at most as

high as space-time complexity, i.e. Πst(G) ≥ Πcc(G) and Π||st(G) ≥ Π
||
cc(G).

15

2.2. BITCOIN

2.2 Bitcoin

Bitcoin [58] is a decentralized digital currency that enables instant payments to anyone,
anywhere in the world. Bitcoin uses peer-to-peer technology to operate with no central
authority: transaction management and money issuance are carried out collectively by
the network.

The original Bitcoin software by Satoshi Nakamoto was released under the MIT
license. Most client software, derived or ”from scratch”, also use open source licensing.

Bitcoin is the first successful implementation of a distributed cryptocurrency, de-
scribed in part in 1998 by Wei Dai on the cypherpunks mailing list. For the reader to
understand what this list was, we reproduce from cryptoanarchy.wiki [21]:

The Cypherpunks mailing list was started in 1992, and by 1994 had 700
subscribers. At its peak, it was a very active forum with technical discus-
sion ranging over mathematics, cryptography, computer science, political
and philosophical discussion, personal arguments and attacks, etc., with
some spam thrown in. An email from John Gilmore reports an average of
30 messages a day from December 1, 1996 to March 1, 1999, and suggests
that the number was probably higher earlier. The number of subscribers
is estimated to have reached 2000 in the year 1997.

It is during this period that the community was energised by a battle with the U.S.
intelligence establishment relating to the export of cryptography (which the U.S. Gov-
ernment had at the time classified as a munition).

This is a battle that the cypherpunk movement and broader civilian cryptography
community largely won, though some variations of government proposals still pop up
to this day. More about the cypherpunks mailing list and the archived conversations
can be found in cryptoanarchy wiki [21].

Building upon the notion that money is any object, or any sort of record, accepted
as payment for goods and services and repayment of debts in a given country or socio-
economic context, Bitcoin is designed around the idea of using cryptography to control
the creation and transfer of money rather than relying on central authorities.

Bitcoin is pseudonymous [46]: the identity of each user is only their address (a user
can have multiple addresses), which corresponds to an ECDSA public key [31]. This
address can be used to receive money from other users. Each user can spend money
only if they have their corresponding private key. A set of ECDSA keypairs comprises
a wallet.

As in fiat money, transfer of value in Bitcoin happens with transactions. A trans-
action has inputs and outputs (see sections 2.2.1, 2.2.2, 2.2.3). An output is where the
value creation happens for the receiver. An output can be later redeemed by using its
designated receiver’s private key and turned into an input to be used for another trans-
action.

Bitcoins have all the desirable properties of a money-like good. They are portable,
durable, divisible, recognizable, fungible, scarce and difficult to counterfeit.

16

CHAPTER 2. PRELIMINARIES

2.2.1 Transactions

A transaction is a collection of inputs and outputs. It uses the sum of the inputs’ values
as credit to debit each output accordingly. As it makes sense, a transaction is only valid
as long as all its outputs and inputs are valid. It should also be clear that the value of
the outputs should not exceed the value of the inputs, otherwise we would be creating
value out of thin air with new transactions. Specifically this is expressed as

∑
i∈inputs

i.value ≥
∑

o∈outputs
o.value

This is sometimes called the Law of Conservation. In cases where

∑
i∈inputs

i.value >
∑

o∈outputs
o.value

we call ∑
i∈inputs

i.value−
∑

o∈outputs
o.value

the transaction fee.
The transaction id is the digest of the two times hashing operation (SHA2562) on the

transaction data. In figure 2.1 the reader can see the notion described above in practice.

Figure 2.1: Transactions with their inputs and outputs [5]

17

2.2. BITCOIN

2.2.2 Inputs
An input is the way an output is redeemed. Specifically, it contains three things:

• The hash of the transaction where the output of interest is contained.

• An index clarifying which output in the transaction this input is referring to.

• A signature used for the validation of the output script.

As a convention, when we talk about the value of an input we mean the value of the
output it redeems.

2.2.3 Outputs
An output is a tuple (value, pubKeyScript). The value refers to an amount of Bitcoin
in Satoshi (where 108 Satoshi = 1B) and pubKeyScript is a boolean check in order for
value to be transferable (see section 2.2.11).

2.2.4 Blocks
A block is a collection of transactions. A valid block satisfies the following:

• there are no double spends (all the inputs are unique)

• Each transaction is included once

The block id is the digest (SHA256) of the block data.

Simplified Bitcoin Block Chain

Block 1
Header

Block 2
Header

Block 3
Header

Block 1
Transactions

Merkle Root

Block 2
Transactions

Hash Of Previous
Block Header

Hash Of Previous
Block Header

Merkle Root

Block 3
Transactions

Hash Of Previous
Block Header

Merkle Root

Figure 2.2: The block structure [58]

A block header contains mainly the hash of the previous block, a Merkle root hash
(see section 2.2.5) to commit to a set of transactions, and a nonce. Blocks are always
referenced by the hash of their block header. Once a transaction has been included in a
valid block it’s called confirmed.

18

CHAPTER 2. PRELIMINARIES

2.2.5 Merkle Trees
In this section we will describe a data structure needed by the meticulous reader in
order to understand the description of the Bitcoin protocol (see chapter 2.2). A Merkle
tree [53] is a data structure which allows a party to commit to a set of items using only
a single hash and prove the inclusion of any item in the committed set, by providing a
logarithmic proof in terms of the cardinality of the set.

More specifically, the hashes of the items consist the leaves of the tree and the last
level. The internal levels are defined recursively as follows: To create level k− 1 each
pair of level k, (A,B), is transformed as a node of valueH(A||B)which points to both
A and B for some hash functionH(·). If the number of nodes at level k is odd, the last
node at that level is paired with itself2.

Figure 2.3: A Bitcoin Merkle tree. Source: [5]

Merkle trees are useful in Bitcoin in order to commit to a set of transactions that
will be included in a block while keeping the block header of a constant size.

To provide proof of inclusion, all a prover has to do is provide a path of siblings up
to the root siblings and a bit vector left indicating whether each sibling is on the left or
the right. The verification process is shown in Algorithm 2 [46].

Algorithm 2 The Verify algorithm for a Merkle proof
1: function Verifyroot(leaf, siblings, left)
2: currentHash ← leaf
3: while left ̸= [] do
4: siblingIsLeft ← left.shift()
5: if siblingIsLeft then
6: currentHash ← H(siblings.shift() || currentHash)
7: else
8: currentHash ← H(currentHash || siblings.shift())
9: end if

10: end while
11: return currentHash = root
12: end function

2This specific construction is the one Bitcoin implements. There are various other constructions which
are beyond the scope of our work.

19

2.2. BITCOIN

2.2.6 Blockchain
Each block contains a SHA-256 cryptographic hash of the previous block [29], thus
linking it to the previous block and giving the blockchain its name. Now, the reader
can visualize the famous term blockchain. The blockchain is a chain of blocks. The
blockchain is public and it holds the history of all valid transactions in a cryptocur-
rency’s network. It holds the timeline of a cryptocurrency’s life. It is easy to see that,
by the definition of the blockchain, there can be no parallel chains. There is not such
thing in economics as two valid transaction histories.

It’s possible that there are contending chains of blocks. We then say, there is a fork
on the chain. On figure 2.4, the chain has forked on blocks 3 and 6.

We call any valid blocks which are not part of our active chain orphans. In our ex-
ample blocks 4b, 7a and 8a are orphans. As expected, orphan blocks, although typically
valid, cannot be part of the transaction history. So, transactions that are included in an
orphan block (and have not been included in another block yet) return back in the pool
(become unconfirmed3) and are expected to be included in a block in the future.

Figure 2.4: A blockchain (the orange blocks are orphans) [5]

2.2.7 Mining
We need to maintain a chronological sequence of transactions. In order to avoid several
types of attacks we need everyone to agree in some common transaction history. This
agreement is called consensus. Mining4 is the processing of transactions in the digital
currency system, in which the records of some cryptocurrency’s current transactions,
blocks (see section 2.2.4), are added to the record of past transactions, the blockchain
(see section 2.2.6). Miners keep the blockchain consistent, complete, and unalterable by
repeatedly grouping newly broadcast transactions into a block, which is then broadcast
to the network and verified by recipient nodes [29].

A block contains a list of transactions, the first of which is called the coinbase
transaction which is where value creation happens in Bitcoin. The miner crafts this
transaction granting them some amount of Bitcoins and this transaction is going to be
valid only if the block turns out valid. The amount of the coinbase transaction is fixed
by the Bitcoin protocol. This is a way Bitcoin uses to incentivize miners. However, this
doesn’t mean that anyone can generate Bitcoin out of thin air: we’ll see shortly how it
actually comes at a cost with Proof of Work (PoW) (see section 2.2.8).

3Note: The reader may find this peculiar. However, we observe that as the blockchain grows, older blocks
become ”safer” (less probability to become orphans). That means that after a transaction becomes confirmed
(included in a valid block), one should wait until this valid block is ”safe enough”.

4It is misleading to think that there is an analogy between gold mining and cryptocurrency mining. The
fact is that goldminers are rewarded for producing gold, while some cryptocurrency’sminers are not rewarded
for producing cryptocoins; they are rewarded for their record-keeping services.

20

CHAPTER 2. PRELIMINARIES

2.2.8 Proof of Work (PoW)
The key to making Bitcoin decentralized is a technique called Proof of Work (PoW).
Proof of Work was first invented in 1992 by Dwork et al. [27] as a measure of limiting
email spam and denial of service attacks and later explored by Back [8] as Hashcash.

We’ll examine a simplified model of Hashcash in order to explore the idea. Suppose
we want to send an email to someone. In order to prove we’ve done work, we include a
header (like X-Hashcash), which includes the receiver’s email address, and a nonce5.
The nonce is picked so that the hash of the header H(email||nonce) has its 20 most
significant bits be all 0. The only feasible way to find this is by brute-forcing the nonce.
Once the sender has found the nonce, it’s included in the header and sent.

The receiver can then very easily check whether the header hashes to a valid value.
If that’s so, the email it contains belongs to the receiver and the header is not being
reused. After this confirmation, the email can be considered not spam.

To reiterate, the idea is having a series of data to commit to and a hole for the nonce,
which is brute-forced to satisfy a necessary predicate on the hash, specifically that its
n most significant bits are all zeroes. This is exactly how Bitcoin implements Proof of
Work. Instead of the hole being on an email header the hole is on the block header. For
a block to be valid, its header has to satisfy a predicate like the above.

Bitcoin introduces a couple of differences. n varies according to the block gener-
ation rate. Specifically, to translate the previous predicate to Bitcoin terminology, the
hash of each block header has to satisfy

H(blockHeader) ≤ T (2.8)

where T is called the target. As the target goes up, the probability of being below it
goes up and generating a valid block is easier. Conversely, if the target goes down it’s
harder to generate a valid block. To express this, in Bitcoin, the value 1

T is called the
difficulty.

To account for the block generation rate, which Bitcoin tries to keep to 1 block per
10 minutes, every 2016 blocks the target (and subsequently the difficulty) is adjusted
accordingly. The target is calculated inside the Bitcoin software and is only a function
of the blocks previously seen (frequently called their view). So, as long as the Bitcoin
nodes agree on the view, they’ll agree on the target and all will consider the same set of
incoming blocks as valid.

2.2.9 Simplified Payment Verification (SPV)
The size of the blockchain has reached 197GB by the beggining of January 2019, which
makes it a very time consuming or even infeasible process to synchronise a full node.
Fortunately, a solution was proposed in the original white paper [58], which allows the
creation of so-called lite nodes.

Lite nodes only know the headers of the entire blockchain, which are constant-size
for each block (80 bytes). At the time of writing of this thesis, the size of all block
headers was∼45MB. The lite node then asks the network for transactions concerning it
(e.g. transactions concerning a specific public key). Full nodes of the network find such
transactions and return them to the requester. For each transaction, the block header of
the block it is included in, is returned along with a Merkle tree (see section 2.2.5) proof
of inclusion which the lite node can then verify.

5Hashcash headers actually contain 7 different fields which have been omitted here for simplicity. The
simplified version explained here is not making the same security guarantees as Hashcash.

21

2.2. BITCOIN

This protocol is reliable, as long as an adversary does not control the network of a
lite node.

2.2.10 Smart contracts
The idea of the smart contracts was first proposed by Nick Szabo [71]. The proposal
was about a computerized transaction protocol that executes the terms of a contract. A
set of promises, specified in digital form, including protocols within which the parties
perform on these promises. On blockchain, this idea can expand in a general purpose
computation.

The reader may be familiar with the notion of smart contracts because of the pop-
ular implementation in Ethereum blockchain. However, we should note here that the
original smart contract language is Bitcoin!

In the next section we will analyze the basic use of the Bitcoin Scripts.

2.2.11 Scripts
Bitcoin offers much more than just moving currency around. It allows us to actually
move currency conditionally, where the condition can be expressed as a Bitcoin script.
Bitcoin script is a stack-based language. An example of a Bitcoin script can be seen on
figure 2.5.

OP_HASH256
6fe28c0ab6f1b372c1a6a246ae63f74f931e8365e15a089c68d6190000000000

OP_EQUAL

Figure 2.5: A Bitcoin script [46]

This script introduces two kinds of formats. The first kind is commands prefixed
with OP_. These operations are called opcodes and they perform calculations on values
on the stack. The result is pushed again to the stack. The types of the calculations
are intuitive, e.g. OP_HASH256 calculates the SHA256 hash of the value on the top of
the stack, OP_EQUALS compares the top 2 values on the stack and pushes 1 if they are
indeed equal or 0 otherwise. The second kind is hex values. These values are simply
pushed to the stack. Usually they will be used as input for some operation.

It is easy for the reader to see that the script of figure 2.5 checks if the value on the
stack is the preimage of the given hash value and returns 1 (true) or 0 (false). More
information about Bitcoin scripts and details about the stack operations can be found
in [13]. In practice, this output confirms the success of the evaluation. Such a script is
called a pubKeyScript. However, in our example we assume the preimage was on the
stack. The way this is implemented in Bitcoin is running another script called scriptSig
that passes the parameters to pubKeyScript. The combination of these two scripts is
enough powerful and the calculations they perform can be used to make a transaction
in the Bitcoin network.

22

CHAPTER 2. PRELIMINARIES

2.2.12 P2PKH
Now, let’s see the standard script for conventional fund transfer in Bitcoin, called pay
to public key hash (P2PKH). Two types of payment are referred as P2PK (pay to public
key) and P2PKH (pay to public key hash). Satoshi later decided to use P2PKH instead
of P2PK for two reasons:

• Elliptic Curve Cryptography is vulnerable to a modified Shor’s algorithm for
solving the discrete logarithm problem on elliptic curves. That means, that in the
future a quantum computer might be able to retrieve a private key from a public
key. By publishing the public key only when coins are spent (and assuming that
addresses are not reused), such an attack is rendered ineffective.

• With the hash being smaller (20 bytes) it is easier to print and easier to embed
into small storage mediums like QR codes.

A Bitcoin address is only a hash, so the sender can’t provide a full public key in
pubKeyScript. When redeeming coins that have been sent to a Bitcoin address, the
recipient provides both the signature and the public key. The script verifies that the
provided public key does hash to the hash in pubKeyScript, and then it also checks the
signature against the public key. The reader can see the process in detail in table 2.1.

This is the standard script for conventional fund transfer in Bitcoin. Let’s say we
want to make sure only Bob can satisfy this script. The pubKeyScript is the following:

OP_DUP OP_HASH160 <Bob's address> OP_EQUALVERIFY6 OP_CHECKSIG

The scriptSig is then typically <Bob's signature> <Bob's public key>.
Bob’s signature will be available. We will see that it can be found on the hash of the

transaction containing the output. The script will then duplicate his public key, check
that it matches the one on the pubKeyScript and if it does, it will check that he has
provided a valid signature with that public key. If all these checks pass, the stack will
end up with 1 on top and the execution will be valid.

2.2.13 Theoretical model
A deeper analysis and security results on the mathematical model of the blockchain
technology can be found in two very important papers called ”The Bitcoin backbone
protocol: Analysis and Application” [37] and ”The Bitcoin backbone protocol with
chains of variable difficulty” [38]. We definitely refer the reader to the above work, if
he/she wants to aquire a deep understanding of the blockchain structure.

6This operation is a lot like OP_EQUAL but instead of pushing 1 or 0 to the stack, it fails the script if the
arguments are not equal or does nothing otherwise.

23

2.2. BITCOIN

Stack Script Description

Empty

<sig><pubKey>
OP_DUP OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

scriptSig and
scriptPubKey

<pubKey>
<sig>

OP_DUP OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Constants
added
to stack.

<pubKey>
<pubKey>
<sig>

OP_HASH160
<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Top stack
item
duplicated.

<pubKeyHashA>
<pubKey>
<sig>

<pubKeyHash>
OP_EQUALVERIFY
OP_CHECKSIG

Top stack
item
hashed.

<pubKeyHash>
<pubKeyHashA>
<pubKey>
<sig>

OP_EQUALVERIFY
OP_CHECKSIG

Constant
added.

<pubKey>
<sig> OP_CHECKSIG

Equality check
between the
top two stack
items.

True Empty.
Signature is
checked for top
two stack items.

Table 2.1: Bitcoin script process (successful) [13]

24

CHAPTER 2. PRELIMINARIES

2.3 Egalitarian Mining
To be accepted by the rest of the network, a new block must contain a Proof of Work
(PoW) (see section 2.2.8). The PoW requires miners to find a number called a nonce,
such that when the block content is hashed along with the nonce, the result is numeri-
cally smaller than the network’s difficulty target [58] and thus the PoW equation (see
equation 2.8) is satisfied. This proof is easy for any node in the network to verify, but
extremely time-consuming to generate, as for a secure cryptographic hash, miners must
try many different nonce values before meeting the difficulty target.

The primary purpose of mining is to set the history of transactions in a way that is
computationally impractical tomodify by any one entity. By downloading and verifying
the blockchain, nodes are able to reach consensus about the ordering of events in some
proof of work cryptocurrency [13].

As we noted in section 2.2.8, every 2,016 blocks the difficulty target is adjusted
based on the network’s recent performance, with the aim of keeping the average time
between new blocks at ten minutes. In this way, the system automatically adapts to the
total amount of mining power on the network. Between 1 March 2014 and 1 March
2015, the average number of nonces, miners had to try before creating a new block,
increased from 16.4 quintillion to 200.5 quintillion [15].

The proof of work system, alongside the chaining of blocks, makes modifications
of the blockchain extremely hard, as an attacker must modify all subsequent blocks in
order for the modifications of one block to be accepted. As new blocks are mined all
the time, the difficulty of modifying a block increases as time passes and the number
of subsequent blocks (also called confirmations of the given block) increases [29].

Mining is also the mechanism used to introduce coins into the system: Miners are
paid any transaction fees as well as a ”subsidy” of newly created cryptocoins. This both
serves the purpose of disseminating new cryptocoins in a decentralized manner as well
as motivating people to provide security for the system [13]. To elaborate on the second
part of this purpose, one can think about the structure of the consensus on the network.
The network agrees by majority. So an attacker who controls 51% of the mining power
can successfully attack this structure. As more honest miners contribute to the network,
the 51% attack becomes less feasible.

Figure 2.6: Mining options

Originally, Bitcoin mining was
conducted on the CPUs of individ-
ual computers, with more cores and
greater speed resulting in more prof-
itability. After that, the system became
dominated by multi-graphics card sys-
tems, then field-programmable gate ar-
rays (FPGAs) and finally application-
specific integrated circuits (ASICs), in
the attempt to find more hashes per
hour with less electrical power usage
(see figure 2.6).

Due to this constant escalation, it
has become hard for prospective new miners to start. This adjustable difficulty is an
intentional mechanism created to prevent inflation. To get around that problem, indi-
viduals often work in mining pools. Mining pools are groups of miners who join their
collective computational power and share their profit according to the contribution of
each party.

25

2.3. EGALITARIAN MINING

Bitcoin generally started with individuals and small organizations handling the min-
ing. At that time, start-up could be enabled by a single high-end gaming system. How-
ever, nowadays larger mining organizations might spend tens of thousands on one high-
performance, specialized, application-specific integrated circuit.

That creates a problem. In a system, which since its creation is supposed to dis-
tribute power among users, there has been a great power concentration in the hands of
big companies, like Bitfury or 21, that develop ASICs to mine Bitcoin. Because of the
extreme cost of ASICs and extreme hashrate, someone who uses a multi-graphics card
system or a CPU is out of competition. As a result, independent miners have largely
dried up.

2.3.1 Egalitarianism

Let’s consider several contexts where an adversary has an upper hand over the defender,
by using special hardware in an attack. These include password processing, hard-drive
protection, cryptocurrency mining, resourse sharing, code obfuscation, etc. Memory-
hard computing is a generic paradigm, which can protect the defender against attacks
in the aforementioned contexts. Every task is amalgamated with a certain procedure
requiring intensive access to RAM, both in terms of size and bandwidth, so that trans-
ferring the computation toGPU, FPGA, and evenASIC brings little to no cost reduction.

Cryptographic schemes that run in this framework become egalitarian in the sense
that both users and attackers are equal in the price-performance ratio conditions. When
the cryptographic scheme is a hash function used for cryptocurrency mining, we refer
to this notion as egalitarian mining.

But let’s step back a little and think about the need for such a notion. Do we actually
need it? Is egalitarian mining a way to destroy competition? Is it unfair? Shouldn’t a
miner be rewarded for the extra money he invested?

Many questions like the above have been asked and usually the answer is not de-
scriptive enough of what really memory-hardness introduces to the world. We will try
here to demonstrate concretely what it means for a cryptocurrency to offer egalitarian
mining.

Egalitarian mining does not destroy competition. The miner who invests more in
hardware is rewarded more. Each individual miner is rewarded according to the com-
putation power he offers to the community. The real difference is that it is really easy
for people to start mining with a single high-end gaming system. Hobbyists, who want
to support the community are welcome to mine. In Bitcoin system, this option is not
available. In order to support the community by mining, you have to invest a lot of
money on ASICs to be competitive. This means that, in general, the mining to support
the Bitcoin project or for fun is dead.

This is hurtful for a system, which by design is supposed to bring decentralization
in the financial market. Because, without hobbyists, we are actually left with big com-
panies handling almost all of the mining. Companies will comply with regulations that
the government of each country enforces and cannot be expected to react and inspire po-
litical movements. Since countries can and they have, historically, collaborated against
threats, a union of countries who can enforce regulations to companies that control
more than 51% of the hashing power, can bring a cryptocurrency to its knees, if seen
as a threat. That scenario does not fit in most definitions of security.

26

CHAPTER 2. PRELIMINARIES

One of the reasons that cryptocurrencies have a bootstrapping period is because
they need a big support community to distribute mining in order to guarantee security.
When the total hashing power is a few high-end gaming systems, acquiring 51% of
the hashing power is feasible. As the support expands, the security is satisfied for all
practical purposes. But whenmining is dominated by companies, then a totally trustless
system gives birth to a trusted party. That’s against the motivation for the inception of
a cryptocurrency and it raises questions like ”Why should I trust the mining companies
and support this cryptocoin? Do I trust my bankmore? After all, my bank is just another
company...”

Formal definition

Now the reader should have a good understanding about the notion of egalitarianism.
However, the claims for egalitarianism in several cryptocurrencies have been hand
wavy and no such claim is accompanied by exact data. Egalitarianism was a vague
and undefined term until quite recently. In 2019, Dimitris Karakostas, Aggelos Ki-
ayias, Christos Nasikas and Dionysis Zindros published a paper [45] aiming to end this
era of ambiguity. They presented a quantitative definition for this term and set the basis
for future work in this direction.

As a means towards establishing their definition, they define the egalitarian curve
f of a cryptocurrency. Reproduced from [45]:

The horizontal axis of this curve plots the financial capital which is
available for investment denominated in a fiat currency7, USD. The verti-
cal axis plots the Return On Investment (ROI), which measures the cryp-
tocurrency amount that is freshly generated in the investment period and
remains unspent at the end of the investment period, given an optimal al-
location of the initial capital.

They continue with the necessary definition of the egalitarian curve in order to
prepare a concrete and sound definition of the term egalitarianism. We reproduce here
the two definitions. Again, from the [45]:

Definition 2.11 (Egalitarian curve). Given a cryptocurrency c, an investment period
interval d, the set of all possible investment strategies B, we define the egalitarian
curve fc,d : R+ −→ R+ of c for investment period d as:

fc,d(v) =
max
B∈B

E[B(v)]− v

v

The value max
B∈B

E[B(v)] identifies the maximum expectation of returns across all
investment strategies B, i.e., the amount of returns which the optimal strategy ensures
for a given initial capital v.

7Fiat currency is legal tender whose value is backed by the government that issued it. The U.S. dollar is
fiat money, as are the euro and many other major world currencies. A fiat currency’s value is underpinned
by the strength of the government that issues it, not its worth in gold or silver.

27

2.3. EGALITARIAN MINING

Now, we are ready to reproduce their definition of the notion of interest:

Definition 2.12 (Egalitarianism). Given a cryptocurrency c, an investment period du-
ration d and an initial capital distribution D, we define the egalitarianism e of c for
investment duration d under initial capital distribution D as follows:

ec,d,D = −Varv←D[fc,d(v)]
where f is the egalitarian curve of c.

As they remark in their paper, the intuition behind this definition is that, to have
egalitarianism, the ROI must remain the same across different capital investments. As
such, any deviation from the mean is non-egalitarian. For further reading the reader is
refered to their work [45].

We are focusing on mining, but one should think about the possibilities of a Proof of
Work (PoW) (see section 2.2.8) mechanism in order to understand the contribution of
a memory-hard hash function. The PoW mechanism is actually a voting system. Users
vote for the right order of the transactions, for enabling new features in the protocol
and for the honest money supply distribution. Therefore, it is important that during the
voting process all participants have equal voting rights.

To sum up, for security and decentralization arguments, it is healthy for some cryp-
tocurrency’s mining power to be distributed among users. Memory-hardness sustains
the competition, but it makes it less harsh and keeps the door open for hobbyists to
support the community. It is extremely difficult for the corporate mining to acquire
tremendous power for two reasons and that is essential in a trustless system that aims
to remain trustless. The reasons are:

(α) It is not that lucrative for companies. If someone makes a big investment, he will
get big rewards but not insanely huge rewards leaving every hobbyist out of the
mining community.

(β) Even if a lot of companies decide to participate, it is difficult for them to acquire
a combined 51% of the total hashing power (It is no more about what devices
you buy, just how many).

Memory-hardness defends a system against the aforementioned prospect and thus
strengthens the notion of any PoW cryptocurrency’s security.

28

CHAPTER3
MONERO

They who can give up essential liberty
to obtain a little temporary safety
deserve neither liberty nor safety.

Benjamin Franklin

3.1 Introduction
Monero (XMR) is a decentralised open-source cryptocurrency. The project’s funda-
mental feature is privacy - it aims to be a digital medium of exchange with untraceable
payments, unlinkable transactions and resistance to blockchain analysis. The parties
behind a Monero transaction are not known; this results in considerable increase of
privacy compared to Bitcoin and its forks [73].

3.2 History
First, the construction was outlined in an October 2013 white paper by the pseudony-
mous figure Nicolas van Saberhagen and called CryptoNote protocol [65]. Later, in
2014, Bitcointalk forum user known as thankful_for_today forked the codebase of
Bytecoin (CryptoNote’s reference implementation) into the name BitMonero, which is
a compound of bit and monero (literally meaning coin in Esperanto [32]).

The release of BitMonero was very poorly received by the community that initially
backed it. Plans to fix and improve Bytecoin with changes to block time, tail emission
and block reward had all been ignored, and thankful_for_today simply disappeared
from the development scene. A group of users led by Johnny Mnemonic1 decided that
the community should take over the project and five days later they did, while also
changing the name toMonero.

1Fun fact: reference to a 90’s cult film character, incarnated by Keanu Reeves, who could store data into
his mind and worked as a data courier.

29

3.3. SPECIFICATIONS

Due to its privacy features, Monero experienced rapid growth in market capital-
ization and transaction volume during the year 2016, faster and bigger than any other
cryptocurrency that year. This growth was driven by its uptake in the darknet market.
From the beginning, Monero has been used by people holding other cryptocurrencies
like Bitcoin to break the link between transactions, with the other cryptocoins first con-
verted toMonero, then after some delay converted back and sent to an address unrelated
to those used before.

On January 10, 2017, the privacy of Monero transactions was further strengthened
by the adoption of Bitcoin Core developer Gregory Maxwell’s algorithm Confidential
Transactions [59], hiding the amounts being transacted, in combination with an im-
proved version of Ring Signatures.

In late 2017, malware and antivirus service providers blocked a JavaScript imple-
mentation of Monero miner Coinhive [20] that was embedded in websites and apps.
Coinhive generated the script as an alternative to advertisements; a website or app could
embed it and use website visitor’s CPU to mine the cryptocurrency, while the visitor
was consuming the content of the webpage.

However, some websites and apps did this without informing visitors and some
hackers implemented it in a way that drained visitors’ CPUs. As a result, the script was
blocked by companies that offer ad blocking subscription lists, antivirus services and
antimalware services.

Monero is actively encouraged to those seeking financial privacy, since payments
and account balances remain entirely hidden, which is not the standard for most cryp-
tocurrencies.

3.3 Specifications
Monero is [73]:

Untraceable Monero uses a digital signature scheme called ring signatures [59], which
shuffles users’ public keys in order to eliminate the possibility to identify a par-
ticular user.

Unlinkable Monero employs a specific protocol which generates multiple unique one-
time addresses that can only be linked by the payment receiver and are unfeasable
to be revealed through blockhain analysis.

Secure Monero is cryptographically secured. Moreover, the design of the algorithm
used consists in tremendous computational and electric capabilities, that an ad-
versary would need to even try to steal funds.

Private Privacy is basically provided by the idea of anonymous transactions without
any obligations to cooperate with third parties.

Analysis Resistant Monero’s blockchain analysis resistance results from unlinkabil-
ity, which is achieved by using a modified version of the Diffie-Hellman ex-
change protocol [26] that generates multiple one-time public addresses that can
only be simply gathered by the message receiver, but hardly analyzed by con-
fused foreigners inside the block explorer.

30

CHAPTER 3. MONERO

3.3.1 Account
In Monero, a wallet is called an account and it is a private account owned and operated
by a Monero user. An account contains all of the Monero transactions a user has sent
and received. Some user’s account balance is a sum of all the Monero received, less
the Monero sent.

A Monero account has two balances, a locked and an unlocked balance. The un-
locked balance contains funds that can be spent immediately, and the locked balance
contains funds that can’t be spent right away. A Monero user may receive a transaction
that has an unlock time set or he/she may have sent some Monero and is waiting for
the change to come back to his/her wallet, both of which situations could lead to those
funds being locked for a time.

An account resides only under user’s control, normally on his/her computer, and
cannot be accessed by anyone else if he/she practices good security [40].

3.3.2 Keys
A Monero account is based on two keys. They are called spend key and view key. The
spend key is special in that it is the single key required to spend your Monero funds,
whereas the view key allows you to reveal your transactions to a third party. That makes
sense in case of auditing or accounting purposes.

The spine of the Monero project is the CryptoNote protocol. All the above specifi-
cations are based on ideas that exist in the CryptoNote white paper [65]. Monero is the
most successful implementation of this protocol, among numerous efforts (CryptoNote-
Coin, Bytecoin, AEON, etc. [22]). Describing every implementation is impractical and
beyond the scope of this thesis.

However, it would be an inexcusable omission not to describe the features and speci-
fications of the CryptoNote protocol itself. For our purposes, wewill illustrate the above
withMonero project in mind and especially one specific element, the CryptoNight func-
tion (see chapter 4), which is the feature of interest in this thesis.

Unlike many cryptocurrencies that are derivatives of Bitcoin, Monero uses a proof
of work mechanism to issue new coins and incentivize miners to secure the network and
validate transactions. One key part, for Monero project to offer the above, is a proof-
of-work algorithm called CryptoNight, developed by the CryptoNote project [65]. On
top of typical security attributes, this algorithm is also suspected to be memory-hard.
The aim of this work is to study the memory-hardness property (see section 2.1.3) of
this algorithm.

31

3.4. CRYPTONOTE

3.4 CryptoNote

The CryptoNote Technology is designed to provide some of the most innovative pri-
vacy features predicated on advanced cryptography, an egalitarian approach towards
decentralization and censorship-resistance. CryptoNote, as described in the Bitcoin fo-
rum [12], is the technology that allows creation of privacy-centric cryptocurrencies.
The level of anonymity provided by CryptoNote isn’t possible with Bitcoin code base
by design. Bytecoin (BCN)was the CryptoNote reference implementation, andMonero
(XMR) is based on BCN’s code.

The CryptoNote protocol possesses significant algorithmic differences relating to
blockchain obfuscation. One of themain features of CryptoNote, are ring signatures [65]
that mask sender identities by mixing them and one-time keys that make transactions
unlinkable. Their combined effect gives a high degree of anonymity without any extra
effort on the part of the user.

Unlike Bitcoin, a user’s funds are not held in the address he/she gives out to others.
Instead, every time he/she receives a payment it goes to an unlinkable address generated
with random numbers. When he/she decides to spend the funds in that one-time address,
the amount will be broken down and the components will be indistinguishable from
identical outputs in the blockchain.

For example if 556.44 XMR are sent, the protocol will break it down into 500 + 50 +
6 + 0.4 + 0.04 and a ring signature will be performed with other 500’s, 50’s, 6’s, 0.4’s,
and 0.04’s in the blockchain. Unlike the CoinJoin mixing method [12], CryptoNote
mixes outputs not transactions. This means no other senders need to be participating
with some user at the same time or with the same amounts. Any arbitrary amount sent
at any time can always be rendered fundamentally indistinguishable (a mathematical
proof is given in the white paper [65]).

The degree of anonymity is also a choice rather than decided by the protocol: do
you want to be hidden as one among five or one among fifty? The size of the signature
grows linearly as O(n + 1) with the ambiguity, so greater anonymity is paid for, with
higher fees to miners.

3.4.1 Untraceable transactions

CryptoNote cryptographic scheme relies on the cryptographic primitive called a group
signature. First presented byD. Chaum and E. vanHeyst [18], it allows a user to sign his
message on behalf of the group. The idea is actually simple. After signing the message
the sender provides the keys of all the users of his group. A verifier is convinced that
the real signer is a member of the group but cannot be exclusively identified.

However, this primitive required a trusted third party (Group Manager) who could
trace the signer. The ring signature was introduced by Rivest et al. [63] and it was
an autonomous scheme without anonymity revocation. Based on this work various
modifications arose like linkable ring signature [51, 50, 6], a scheme that allowed to
determine if two signatures were produced by the same group member, traceable ring
signature [35, 36], a scheme that limited anonymity (it is possible to trace the signer
of two messages) and ad-hoc group signature [1, 78]. The last scheme focuses on the
arbitrary group formation. The other schemes rather imply a fixed set of members.

32

CHAPTER 3. MONERO

Based on [36] with a few modifications, in CryptoNote white paper [65] is pre-
sented the one-time ring signature. They weakened the traceability property and kept
the linkability. That is needed because they wanted some user’s public key to appear
in many foreign verifying sets and from the private key to generate a unique anony-
mous signature. In case of a double spend attempt, these two signatures will be linked
together. However, revealing the signer is not necessary.

Ring signatures are explained below. We will start with a normal signature scheme
shown in figure 3.1. Reproduced from CryptoNote [23]:

Figure 3.1: Normal signature: One participant, which allows one-to-one mapping. [23]

In figure 3.2 we show the ring signature concept.

Figure 3.2: Ring signature: Only proves that a signer belongs to a group. [23]

The result is shown in figure 3.3. The reader can think of it as decentralized and
trustless mixing.

Figure 3.3: High level of anonymity in cryptocurrency transactions. [23]

For an example of a complete CryptoNote transaction the reader is refered to sec-
tion 3.4.6. Due to figure’s size and complexity, it was improbable for us to manage to
describe this example here, without compromising readability.

33

3.4. CRYPTONOTE

3.4.2 Unlinkable transactions
First, we should clarify the problem which is solved with unlinkability. Even if a trans-
action is untraceable, when the receiver posts his/her public address anyone can check
all his/her incoming transactions (see figure 3.4). A naive solution is to create a bunch of
keys and addresses that can be sent privately to the payers (one distinct key per payer).
This approach is highly problematical since it:

a) Deprives the receiver of the convenience of having a single public address

b) Implies that the default use of the structure does not create unlinkable transactions

Figure 3.4: Linkable transactions. [23]

CryptoNote solves this problem. It creates automatically and by default multiple
unique one-time keys, derived from the single public key, for each peer-to-peer pay-
ment. The solution lies in a clever modification of the Diffie-Hellman exchange proto-
col [26]. Originally, it allows two parties to produce a common secret key derived from
their public keys. In CryptoNote protocol the sender uses the receiver’s public address
and his own random data to compute a one-time key for the payment.

The sender can produce only the public part of the key, whereas only the receiver
can compute the private part; hence the receiver is the only one who can release the
funds after the transaction is committed. He/she only needs to perform a single-formula
check on each transaction to establish if it belongs to him/her. This process involves
his/her private key, therefore no third party can perform this check and discover the
link between the one-time key generated by the sender and the receiver’s unique public
address.

Figure 3.5: Unlinkable transactions. [23]

34

CHAPTER 3. MONERO

vJmsp9MxWMj6jiUg8Rejh23pqRCthWQhwtUKvmLw2kcE83AHer1MchTN4DVacHt
43r8hSKBQpjPuqYDKuKgyVBkGkUdcsNAdnk2aZW

Figure 3.6: Bitcoin stealth address.

An important part of CryptoNote is the use of random data by the sender. It always
results in a different one-time key, even if the sender and the receiver both remain the
same for all transactions (that is why the key is called ”one-time”). Moreover, even if
they are both the same person, all the one-time keys will also be absolutely unique.

Stealth addresses

The structure of the above concept is inherited in all CryptoNote projects. But the
details of each implementation may differ. What we will present here is the implemen-
tation details of unlinkability, as found in the Monero project. The reader can find all
the information of this section and more in CryptoNote paper [65] andMonero project’s
code [55]. An additional valuable source of information and interactive conversation
venue that the reader is refered to is Monero stack exchange forum [56]. The imple-
mentation of CryptoNote’s unlinkable transactions in Monero project is mentioned as
stealth addresses or subaddresses.

Stealth address technology originated from CryptoNote technology, but Bitcoin
(e.g. libbitcoin) and its altcoins can also implement stealth addresses. For Bitcoin and
its altcoins, stealth addresses must be explicitly supported by the sender’s and recipi-
ent’s wallets, but such support is implicit to CryptoNote wallets.

For Bitcoin, stealth addresses are a bit longer than normal Bitcoin addresses (see
figure 3.6). However, the transactions associated with a stealth address looks no dif-
ferent than normal transactions on the Bitcoin blockchain. Stealth addresses contain
one public view (in CryptoNote vernacular) or scan (in Bitcoin vernacular) key, and
one or more spend public keys. These keys are always encoded in a stealth address to
support the first portion of Diffie-Hellman key exchange [26]. Bitcoin’s public/private
key pairs are derived from the secp256k1 elliptic curve [70], while CryptoNote uses
Ed25519 [9] (see section 3.4.6) derived public/private key pairs.

One can publish their stealth address on a business card, and sustain their pri-
vacy when funds are sent to a dynamically computed destination address by the sender
of funds. Stealth addresses essentially put the onus of dynamic address calculation,
typically associated with a recipient’s hierarchical deterministic (HD) wallet, on the
sender’s wallet. One stealth address is functionally akin to an HD wallet account, and
can thus be used over and over for many fund transfers. Stealth addresses provide con-
fidentiality for the recipient of transaction pairs that utilize information from a stealth
address.

So, simplifying a bit, in Bitcoin if there is one Bitcoin associated to the public key
P and if Bob knows the corresponding private key x such that P = xG2, then he can
spend the Bitcoin by submitting a message (transaction) to the network signed with x.

2G is the generator for the algebraic ring that is the base of the key construction. For our purpose, it
suffices to think G as a parameter of the user’s existence in the Monero network, which is public and thus
available to anyone.

35

3.4. CRYPTONOTE

There is one privacy issue, though: if Bob keeps using the same P to receive Bit-
coins, then any observer will be able to see all payments were made to the same entity
that controls P (Bob). This is the problem that stealth addresses solve.

Stealth addresses innately perform the first half of aDiffie-Hellman key exchange [26]
when a sender of funds receives a stealth address. In Bitcoin, two blockchain transac-
tions are required to complete the sending of funds to a stealth address that belongs to
the recipient of funds.

Since it is operationally improbable for two users’ wallets to communicate directly
to each other, the first transaction is a persistent OP_RETURN transaction that is used to
complete the second half of a Diffie-Hellman key exchange. The second transaction
is the actual sending of funds to a dynamically calculated destination address that is
strongly based upon an ephemeral random number generator in the sender’s wallet.

The second half of the Diffie-Hellman key exchange, the OP_RETURN, allows the re-
cipient’s wallet of a stealth transaction to dynamically calculate the private redemption
key associated with a particular transaction to redeem the funds at a later date.

Stealth addresses can be extended to support multisig. This is a multisig capability
that is more inherent to Bitcoin than CryptoNote.

In the context of stealth addresses, addresses are now composed of two public keys,
and the coins sent to Bob will not be sent to his stealth address on the blockchain, rather
the stealth address will be used by the sender to produce fresh new Bitcoin addresses
for every new transaction. These new addresses, even though generated by the sender
(Alice) and unknown to Bob until the transaction is made, will nonetheless be controlled
by Bob! Here is how it works:

Bob creates two pairs of private and public keys. Let’s denote them by (a,A) and
(b,B), where by definition

A = aG and B = bG (3.1)

Bob makes the pair of public keys (A,B) available to the network; this will be his
stealth address.

Alice wishes to send one Bitcoin to Bob. She wants to assign one Bitcoin to a public
key P such that Bob knows x and P = xG. She will construct such P using Bob’s
stealth address by using a hashing function H, choosing a random big number r, and
setting

P = H(rA)G+B (3.2)
Then, Alice sends the Bitcoin to P and the transaction is broadcast along withR = rG
(but not r, which can’t be recovered from R).

In order to get the money, Bob has to keep listening to the network for all new
transactions and check whether one or more of these transactions are money that he
should receive. When he sees Alice’s transaction, he checks if x := H(aR) + b and
realizes that:

xG = (H(aR) + b)G

= H(aR)G+ bG

= H(arG)G+B

= H(raG)G+B

= H(rA)G+B

= P

36

CHAPTER 3. MONERO

Bob can reconstruct x such that P = xG and is therefore the owner of the Bitcoin!
Notice that neither Alice nor any observer has the ability to derive x (because they don’t
know a and b), and that besides Alice and Bob no one knows that (x, P) was generated
from Bob’s stealth address (because they don’t know r).

Ignoring middleman snooping on IP addresses associated with stealth address trans-
action pairs, only the two core parties involved in a transaction pair will know any
identity details associated with sending funds to a stealth address. Hence, the need for
Kovri I2P technology (see section 3.5.3). So, stealth transactions by themselves don’t
provide 100% anonymity protection. Also Confidential Transactions (CT) technology
is needed by Bitcoin to mask details about the amount transferred by a transaction.

Note that, as mentioned, this protects Bob’s privacy, but it is still visible to the
network that Alice, the entity that used to control that Bitcoin, made a transaction. In
order to obfuscate that action, Monero implements the use of Ring Signatures [59],
which will allow Alice to, instead of directly signing the transaction, produce a proof
that her or several other people, did send a coin to Bob.

To sum up, in Monero, coins are received to a unique one-time stealth address. The
formula for stealth addresses, is as follows:

P = H(rA)G+B (3.3)

Where:

G The standard Ed25519 base point

A Bob’s public view key

B Bob’s public spend key

r The new random scalar Alice chose for this transaction

H A hashing algorithm that returns a scalar (i.e., the hash output is interpreted as an
integer and reduced modulo l)

P The final stealth address (one-time output key, the destination where funds will ac-
tually be sent)

So, in a nutshell:

• Stealth addresses take care of recipient’s privacy.

• Ring Signatures take care of sender’s privacy.

An example is presented in the next section. There, the reader can find a real world
construction of a Monero stealth address.

37

3.4. CRYPTONOTE

3.4.3 Stealth address construction
Here is a functional example for deriving a Monero stealth address. Here we will ex-
amine the developer mechanics, not cryptographic theory. Results below duplicate
functionality that is part of Crypto Note Test Address [24].

It is worth noting custom bytes_to_words, sc_reduce32, and secret_key_to_
public_key executables (coded in C or C++) below were named after Monero’s func-
tions that yielded output results. C++ coding insights came from main.cpp. The bx
command line is bitcoin-explorer, see [11].

Monero’s secret_key_to_public_key() functionality is using Ed25519 (see
section 3.4.6) technology but not in an inclusive way. Only the necessary computa-
tions for the production of stealth addresses are implemented. Results are different from
Tor [74] test vectors results that custom executables utilizing libsodium and ed25519-
donna yield, but Monero C/C++ code results match that fromCrypto Note Test Address.
Let us see the components and the calculations that take place in order to construct a
stealth address.

The example that is presented here was posted by user skaht on Monero stack
exchange forum [56]. The calculations were checked and confirmed.

• 256-bit hexadecimal-encoded seed is assumed to be:

198584347013dd91832be3d82529437db7cc8e1850e559cdd3872b29
ca819601

• Electrum mnemonic words3 corresponding to seed
(./bytes_to_words <above seed>)

$./bytes_to_words 198584347013dd91832be3d82529437db7cc8
e1850e559cdd3872b29ca819601

Output:

wallets drinks insult popular fall textbook scoop apology unsafe fifteen
cuffs pimple roster nerves pixels upstairs academy sprig eclipse leopard
peeled faxed gutter happens roster

• Private spend key calculation
(./sc_reduce32 <private spend key>)

$./sc_reduce32 198584347013dd91832be3d82529437db7cc8e185
0e559cdd3872b29ca819601

Output:

198584347013dd91832be3d82529437db7cc8e1850e559cdd3872b29ca819601

3These are the words that a wallet owner should remember in order to restore his wallet, if he forgets his
password.

38

CHAPTER 3. MONERO

• Private view key calculation
(./keccak4<private spend key> | ./sc_reduce)

$./keccak 198584347013dd91832be3d82529437db7cc8e1850e559c
dd3872b29ca819601
$./sc_reduce32 <the keccak output>

Output:

889DA12A88D36BCE0966AB1A79125779DD1F2FC6F1145DE131FD52A5B468796D

faa5defce980fdbd03b9dd4841371dfcdc1f2fc6f1145de131fd52a5b468790d

• Public spend key calculation
(./secret_key_to_public_key <private spend key>)

$./secret_key_to_public_key 198584347013dd91832be3d82529437
db7cc8e1850e559cdd3872b29ca819601

Output:

b66991d7d7c68513533d0560f820d75adfb0911487ba62274b759f7b3ccd4a90

• Public view key calculation
(./secret_key_to_public_key <private view key>):

$./secret_key_to_public_key faa5defce980fdbd03b9dd4841371
dfcdc1f2fc6f1145de131fd52a5b468790d

Output:

3c450f27cd6849d9130addb2c566d910c5ef9bf4cecaed547004496fda52a4ff

Note that the calculation of the stealth address (hexadecimal format) is:

prefix + public_spend_key + view_public_key +
keccak_checksum_postfix

4Hash function.

39

3.4. CRYPTONOTE

The prefix in Monero addresses is always 12 and is a marking of a Monero ad-
dress. In this context the character + is used to mark concatenation of strings. The
keccak_checksum_postfix computation is:

• Stealth address checksum calculation (./keccak <almost an address>):

$./keccak 12 +
b66991d7d7c68513533d0560f820d75adfb0911487ba62274b759f7b3
ccd4a90 +
3c450f27cd6849d9130addb2c566d910c5ef9bf4cecaed547004496fd
a52a4ff

Output:

ADD568169DBF2C6D3F595EE8610A189955BECD1EDF150627CBF2F2C49B0AEA71

• So, the hexadecimal format of a Monero stealth address is:

12b66991d7d7c68513533d0560f820d75adfb0911487ba62274b759f7
b3ccd4a903c450f27cd6849d9130addb2c566d910c5ef9bf4cecaed54
7004496fda52a4ffADD56816

In order to convert a hexadecimal representation of a stealth address in base58 for-
mat we calculate the base58 format of each 8 bytes and concatenate the results (pre-
sented between brackets). For the conversion, we used bx (bitcoin explorer [11]):

1. $ bx base58-encode 12b66991d7d7c685 (→ 48Y3H2eSZ6C)

2. $ bx base58-encode 13533d0560f820d7 (→ 4EUjY1B5viS)

3. $ bx base58-encode 5adfb0911487ba62 (→ GCbCLPcmMiy)

4. $ bx base58-encode 274b759f7b3ccd4a (→ 7aD69yqUsaH)

5. $ bx base58-encode 903c450f27cd6849 (→ R8GLE3rvSwr)

6. $ bx base58-encode d9130addb2c566d9 (→ dJtpZYG1peC)

7. $ bx base58-encode 10c5ef9bf4cecaed (→ 3oipCqfUvCc)

8. $ bx base58-encode 547004496fda52a4 (→ F89i86kuEjV)

9. $ bx base58-encode ffADD56816 (→ Vr5GCdj)

Finally, we get the Monero stealth address:

48Y3H2eSZ6C4EUjY1B5viSGCbCLPcmMiy7aD69yqUsaHR8GLE3rvSwrdJtpZYG
1peC3oipCqfUvCcF89i86kuEjVVr5GCdj

40

CHAPTER 3. MONERO

3.4.4 Double-spending proof
Fully anonymous signatures would allow spending the same funds many times which,
of course, is incompatible with any payment system’s principles. The problem can be
fixed and here we reproduce the description of this solution, as presented in [23].

A ring signature is actually a class of crypto-algorithms with different features. The
one CryptoNote uses is the modified version of the traceable ring signature [36]. In
fact, they transformed traceability into linkability. This property restricts a signer’s
anonymity as follows: if he/she creates more than one ring signature using the same
private key (the set of foreign public keys is irrelevant), these signatures will be linked
together which indicates a double-spending attempt.

To support linkability CryptoNote introduced a special marker being created by a
user while signing, which they called a key image. It is the value of a cryptographic
one-way function of the secret key, so in mathematical terms it is actually an image of
this key. One-wayness means that, given only the key image, it is impossible to recover
the private key.

On the other hand, it is computationally impropable to find a collision (two different
private keys, which have the same image). Using any formula, except for the specified
one, will result in an unverifiable signature. All things considered, the key image is
unavoidable, unambiguous and yet an anonymous marker of the private key.

Figure 3.7: Key image via one-way function. [23]

All users keep the list of the used key images (compared to the history of all valid
transactions, it requires an insignificant amount of storage) and immediately reject any
new ring signature with a duplicate key image. It will not identify the misbehaving
user, but it does prevent any double-spending attempts, caused by malicious intentions
or software errors.

Figure 3.8: Double-spending check. [23]

41

3.4. CRYPTONOTE

3.4.5 Blockchain analysis resistance
We reproduce from [23] the reasons, why blockchain analysis in Monero project is not
something that can be achieved.

There aremany academic papers dedicated to the analysis of the Bitcoin’s blockchain.
Their authors trace the money flow, identify the owners of coins, determine wallet bal-
ances and so on. The ability to make such analysis is due to the fact that all the transfers
between addresses are transparent: every input in a transaction refers to a unique out-
put. Moreover, users often re-use their old addresses, receiving and sending coins from
them many times, which simplifies the analyst’s work. It happens unintentionally: if
one has a public address (for example, for donations), one is sure to use this address in
many inputs and transactions.

CryptoNote is designed to mitigate the risks associated with key re-use and one-
input-to-one-output tracing. Every address for a payment is a unique one-time key,
derived from both the sender’s and the recipient’s data. It can appear twice with a
probability of a 256-bit hash collision. As soon as you use a ring signature in your
input, it entails the uncertainty: which output has just been spent?

Trying to draw a graph with addresses in the vertices and transactions on the edges,
one will get a tree: a graph without any cycles (because no key/address was used twice).
Moreover, there are billions of possible graphs, since every ring signature produces
ambiguity. Thus, you can’t be certain from which possible sender the transaction-edge
comes to the address-vertice. Depending on the size of the ring youwill guess from ”one
out of two” to ”one out of a thousand”. Every next transaction increases the entropy
and creates additional obstacles for an analyst.

3.4.6 More about CryptoNote
There are several noteworthy details about CryptoNote and several implementation de-
tails of this protocol in the Monero project. However, it would be unproductive and it
would harm the readability of this thesis to describe every aspect of this protocol. We
believe that the reader has now a good understanding of the backbone of Monero’s pri-
vacy and anonymity features. Nevertheless, before we start the CryptoNight description
(see section 4) we will elaborate on some additional details about CryptoNote. Repro-
duced from [23]:

Adaptive limits

A decentralized payment system must not depend on a single person’s decisions, even
if this person is a core developer. Hard constants and magic numbers in the code deter
the system’s evolution and therefore should be eliminated (or at least be cut down to
the minimum).

Every crucial limit (like max block size or min fee amount) should be re-calculated
based on the system’s previous state. Therefore, it always changes adaptively and inde-
pendently, allowing the network to develop on it’s own. CryptoNote has the following
parameters which adjust automatically for each new block:

42

CHAPTER 3. MONERO

Difficulty The general idea of our algorithm is to sum all the work that nodes have
performed during the last 720 blocks and divide it by the time they have spent to
accomplish it. The measure of the work is the corresponding difficulty value for
each of the blocks. The time is calculated as follows: sort all the 720 timestamps
and cut-off 20% of the outliers. The range of the rest 600 values is the time which
was spent for 80% of the corresponding blocks.

Maximum block size Let MN be the median value of the last N blocks sizes. Then
the hard-limit for the size of accepting blocks is 2 ·MN . It averts blockchain
bloating but still allows the limit to slowly grow with the time, if necessary.
Transaction size does not need to be limited explicitly. It is bounded by the size
of the block.

Smooth emission

In the CryptoNote description [23] one can find the following; the upper bound for the
overall amount of all digital coins is also digital:

MSupply = 264−1 atomic units (3.4)

This is a natural restriction based only on implementation limits, not on intuition like
”N coins ought to be enough for everybody”. To make the emission process smoother,
CryptoNote uses the following formula for block rewards:

BaseReward = (MSupply −A) >> 18 (3.5)

where A is the amount of previously generated coins. It gives a predictable growth of
the money supply without any breakpoints.

During our research, we found the above description peculiar and confusing. After
a while and some forum conversations, we understood that the actual implementation
restriction is that a single output cannot have an amount greater than 264−1 atomic units
(which is 1.84 · 1031 XMR).

Therefore the restriction that the above feature is referring to, is about individual
outputs and not the total sum of all outputs that can exist on the blockchain.

This is currently an implementation limitation related to Monero’s bulletproofs [40]
(see section 3.5.2) which proves that amounts are not negative, by proving they are less
than 264. Because Monero units are expressed as positive integers which are subject
to modular arithmetic, a very high number can be equivalent to a negative number
when added to another Monero amount, which is why this ”less than” check proves the
number is not effectively negative.

It’s easy for this limit to be increased, if necessary, in the future (it’s extremely
unlikely to be necessary). Note that this observation is specifically related to theoretical
limitations. It may be possible that certain Monero wallet implementations also store
amounts using a data storage technique that would prevent numbers larger than 264

from being stored.

43

3.4. CRYPTONOTE

CryptoNote Transaction

Here we will present a complete CryptoNote transaction from Bob to Carol. Again
reproduced from CryptoNote [23], we will subjoin an example and a figure showing
the details. The example below is illustrated in figure 3.9, in the next page.

Bob decides to spend an output, whichwas sent to the one-time public key. He needs
Extra (1), TxOutNumber (2), and his Account private key (3) to recover his one-time
private key (4).

When sending a transaction to Carol, Bob generates its Extra value by random (5).
He uses Extra (6), TxOutNumber (7) and Carol’s Account public key (8) to get her
Output public key (9).

In the input Bob hides the link to his output among the foreign keys (10). To prevent
double-spending he also packs the Key image, derived from his One-time private key
(11).

Finally, Bob signs the transaction, using his One-time private key (12), all the public
keys (13) and Key Image (14). He appends the resulting Ring Signature to the end of
the transaction (15).

CryptoNote elliptic curve

The elliptic curve ed25519 is both a signature scheme and a use case for Edwards form
Curve25519 [10]. EdDSA (Edwards-curve Digital Signature Algorithm) generalises
this signature scheme to any curve in Edwards form.

Curve25519 first arrived in 2006 [9], a few years before the Edwards normal form
papers on elliptic curves. Montgomery curves, the form of curve used for Curve25519,
was originally used to speed up elliptic curve factorisation [57]. The original proposal
for Curve25519 was for use as a Diffie-Hellman (key exchange) protocol [26]. This is
still its use and is now often called X25519.

Later, Edwards came up with his own form of elliptic curve [30]. Daniel J. Bern-
stein, Tanja Lange et al. researched these forms and realised they too were fast, espe-
cially for signatures and we got Ed25519 [10] using the Edwards form of Curve25519.
So far, we have the following nomenclature:

Curve25519, Curve41417, Ed448-Goldilocks generally the name of the curve itself.

X25519, X448, X41417 Diffie-Hellman key exchange schemes using the above curve.

EdDSA, Ed25519, Ed448 The first being the generic Edwards variant of DSA, plus
other fixes, the others being specific instances matched to their curve names.

Confusingly, Open Whisper Systems came up with XEdDSA [60]. To quote them:

XEdDSA enables use of a single key pair format for both elliptic curve
Diffie-Hellman and signatures.

Hence, X EdDSA is taken to mean ”exchange and EdDSA” of the given curve. In
this instance, the key exchange part still happens using the montgomery form of the
curve, but the signature part (EdDSA) uses the same curve in Edwards form.

44

CHAPTER 3. MONERO

Figure 3.9: A sample transaction from Bob to Carol. [23]

45

3.5. MONERO VS CRYPTONOTE

3.5 Monero vs CryptoNote
The reader understands now that the backbone for Monero’s anonymity and privacy
features is CryptoNote protocol. However, there are some differences. One that was
already pointed out is the stealth address feature. We have noted in section 3.4.2 that
the Monero stealth address implementation is unique. Other CryptoNote projects do
not share exactly the same calculations.

Moreover, Monero is actively developed as it is one of the most successful cryp-
tocoin projects and several additions have been made since its first introduction to the
world. Its backbone is still the CryptoNote protocol but in this section we will mention
additional features that strengthen the anonymity and privacy goals of the project.

3.5.1 RingCT
In the Section 3.4.1 we mentioned one-time ring signatures that were presented in
CryptoNote white paper.

In 2015, Shen Noether wrote a paper using a technique, introduced by Bitcoin Core
developer Gregory Maxwell in [52], of using a commitment scheme to hide the amount
of a transaction. The paper introduced RingCT (Ring Confidential Transactions) [59].
This signature scheme is called A Multi-layered Linkable Spontaneous Anonymous
Group signature and that is how transaction amounts are hidden in Monero. Repro-
ducing from [40]:

RingCTwas implemented in block 1220516 in January 2017. After Septem-
ber 2017, this feature became mandatory for all transactions on the net-
work.

For further information the reader is refered to Shen Noether’s paper [59].
The transaction structure remains similar to the structure in Bitcoin: every user

can choose several independent incoming payments (transactions outputs), sign them
with the corresponding private keys and send them to different destinations. Contrary to
Bitcoin’s model, where a user possesses unique private and public keys, in the proposed
model a sender generates a one-time public key based on the recipient’s address and
some random data.

In this sense, an incoming transaction for the same recipient is sent to a one-time
public key (not directly to a unique address) and only the recipient can recover the
corresponding private part to redeem his funds (using his unique private key). The
recipient can spend the funds using a ring signature, keeping his ownership and actual
spending anonymous.

46

CHAPTER 3. MONERO

3.5.2 Bulletproofs

Starting in 2018, Monero began testing yet another highly sophisticated piece of crypto-
graphicmagic: bulletproofs [17]. This technology is intended to address one of themain
drawbacks of RingCT [59]: the size of the zero-knowledge range proofs this scheme
produces. Bulletproofs are a big deal, as they can increase the privacy of digital cur-
rency transactions and at the same time dramatically decrease their size. The scalability
of confidential transactions have been a significant hurdle for the $1 billion blockchain,
with users long suffering high transaction fees as well as an ever-increasing cost of stor-
age for running a full node.

History

After working on the Confidential Transactions scheme [59], Greg Maxwell, Andrew
Poelstra and Pieter Wuille teamed up with researchers from the Stanford Applied Cryp-
tography Group to make it more efficient. Their research focused on applying a non-
interactive zero knowledge proof (NIZKP) system [41] to aggregate all the range proofs
of a Confidential Transaction and collectively prove their validity.

For context, the basic concept behind a zero-knowledge proof is to cryptograph-
ically prove that something exists, without knowing what that something is. This is
achieved through a set of challenges that, if completed successfully, can statically prove
that a party has a secret, without knowing what that secret is. This is the technology
employed by Zcash [79] to entirely shield senders, receivers and the amount of ZEC
(Zcash cryptocoin) sent in a transaction.

Zero-Knowledge proofs are an amazing and counter-intuitive cryptographic con-
cept, first proposed by Goldwasser, Micali and Rackoff [41] in a paper that introduced
the idea of interactive proof systems. The literature is extensive and if the reader wants
to learn about the more modern and practical references and implementations, he/she
can find the ZKP Science website [80] very useful.

The NIZKP system proposed by the bulletproof white paper [17] has both benefits
and drawbacks. On one hand, the use of NIZKP bulletproofs does not require a trusted
setup for parameter generation, like Zcash’s Powers of Tau ceremony [16]. On the other
hand, the verification of a bulletproof is more time consuming.

Details

In order to understand bulletproofs, the reader needs to understand what a range proof
is. According to [40]:

A range proof allows anyone to verify that a commitment represents an
amount within a specified range, without revealing anything else about its
value.

Monero uses a range proof in RingCT [59] to secure the amount being sent in a
transaction. Without range proofs, the amount sent could be hidden, but a sender could
cheat by making coins out of thin air. Range proofs prevent this from happening. Bul-
letproofs achieve this goal more efficiently.

47

3.5. MONERO VS CRYPTONOTE

From the whitepaper [17]:

Anew non-interactive zero-knowledge proof protocol with very short proofs
and without a trusted setup; the proof size is only logarithmic in the wit-
ness size. Bulletproofs are especially well suited for efficient range proofs
on committed values [...]

Beyond improving the privacy assumptions within confidential transactions [59],
bulletproofs have a much lower fingerprint (or size) relative to the proof systems used
in blockchain networks today. In fact, much like SegWit [66], bulletproofs can be seen
as an approach to vertical scalability as they can greatly decrease the size of a crypto-
graphic proof from over 10kB to less than 1kB.

The bulletproofwhite paper [17] focused on applyingNIZKPs to the Bitcoin blockchain
and stated that, if implemented, total size of Bitcoin’s UTXO5 set would be only 17 GB
(compared to 160 GB) if confidential transactions were to be implemented.

It’s worth noting that bulletproofs don’t actually contribute to privacy itself. Rather,
they simply ensure that the information stored within a confidential transaction doesn’t
contain any false information. Pseudonymous Monero cryptographer Sarang Noether,
who assisted with the bulletproofs’ integration, told CoinDesk [19]:

They’re not about anonymity; they are about assuring that the other stuff
we do for anonymity works correctly.

Under the previous range proof format, the size of XMR transactions scale mostly
linearly depending on the number of outputs (1 output = 7kB, 2 outputs = 13kB). Under
bulletproofs, transaction sizes scale logarithmically instead (1 output = 2kB, 2 outputs
= 2.5kB). The size of a bulletproof increases only logarithmically with both the size of
the range and the number of outputs. Reproducing from [40]:

This gives us two related types of bulletproofs: single-output and multiple-
output. A transaction with multiple outputs can either include several
single-output proofs or one multiple-output proof (which is smaller than
the separate proofs).

Therefore, this technology has the potential to greatly contribute to Monero’s scal-
ability. However, one problem arose. Again, reproduced from [40]:

An attacker could pack a transaction with many outputs; this tiny trans-
action would require low fees but would be computationally expensive to
verify, opening the door to denial-of-service attacks. Because of this, we
will need to adjust the fee structure away from transaction size and take
into account the verification scaling.

They explain that this means that the fees will scale properly and in a safe way. It does
not mean that fees go up.

5Unspent Transaction Output. UTXOs are processed continuously and are responsible for beginning and
ending each transaction. Confirmation of transaction results lies in the removal of spent coins from the UTXO
database. But a record of the spent coins still exists on the ledger. [43]

48

CHAPTER 3. MONERO

The space savings granted by bulletproofs may also enable the implementation of
additional obfuscation mechanisms. It is noteworthy that increasing the mandatory
number of outputs in a transaction can make it significantly harder to trace balances
by analyzing the blockchain. Decoys are used in ring signature inputs, but not in a
transaction’s outputs. Implementing a system of decoy outputs will certainly increase
the size of a transaction, but this increase may be trivial post bulletproof activation.

The impact

Transaction fees onMonero, the 10th largest cryptocurrency network, have fallen sharply.
Bulletproofs’ technology made the Monero network’s privacy features more scalable
by restructuring how its confidential transactions are verified.

According to data published by BitInfoCharts [54], average Monero fees fell from
about $0.54 cents to roughly $0.021 cents in two days, a 96% drop. Monero’s average
transaction size is now 3kb versus a pre-fork average of 18.5kb. In figure 3.10 we can
see the transaction size decrease since the implementation of bulletproofs.

Figure 3.10: July 2018 - October 2018. [54]

If we see this change in a broader time interval, the result is even more impressive:

Figure 3.11: July 2018 - October 2018. [54]

49

3.5. MONERO VS CRYPTONOTE

There were predictions that the drop of fees might open the door to additional uses
for XMR, the cryptocurrency that powers the Monero blockchain. Core developer hyc
said that the upgrade,

definitely [makes] the notion of micropayments more palatable again

3.5.3 Kovri I2P Network

Up to now, we have covered howMonero obfuscates information stored on the blockchain.
Ring signatures obscure the sender. Stealth addresses prevent outside observers from
knowing the receiving address. Finally, confidential transactions hide the amount of
Monero transmitted. However, some personally identifiable information may be leaked
at the network level when making a transaction. This privacy leak is addressed with
Kovri [49].

Kovri is a free, decentralized, anonymity technology based on I2P’s open specifi-
cations [44]. Kovri uses both encryption and sophisticated routing techniques to create
a private overlay-network across the Internet. This protected overlay allows users to
hide their geographical location and IP address.

Examples

In the presentation of the project in the Gitlab page [48] some examples that Kovri’s
use protects a user’s privacy are described. These examples will help the reader to
understand the significance of Kovri’s contribution to the anonymity level that Monero
project aims to offer. Let’s reproduce here these examples.

Suppose Alice wants to send Monero to Bob. Alice’s wallet creates a transaction
and then broadcasts it to the Monero network. The Monero network is made up of
nodes that communicate with each other by directing messages using IP addresses. This
means that it might be possible to geographically trace data as it travels over the open
Internet, from start to finish and everywhere in between. Even though the sender’s and
recipient’s wallet addresses - as well as the amount of Monero sent - remain private,
Alice is taking a risk in broadcasting her transaction as some nodes may be logging IP
addresses. An adversary with enough resources could attempt to associate transactions
with IP addresses to determine fromwhere transactions originate. This could potentially
lead to an adversary not relaying her transactions to the rest of the network; or arriving
at her front door!

Now let’s imagine a different scenario. Suppose Charlie wants to support the Mon-
ero network by running a full node at his home. After a few weeks, he receives a cease
and desist letter from his Internet Service Provider claiming that running a node is a
violation of the terms of service.

Or consider this, suppose Dave is an operator of a mining pool that donates a portion
of block rewards to a political party or controversial cause. Other nodes could purpose-
fully reject his solved blocks to express their disagreement with his political or social
views.

50

CHAPTER 3. MONERO

Alice, Bob, Charlie, and Dave all have at least one thing in common: their IP ad-
dresses were exposed. Users could try to hide IP addresses with the Tor [74] or a VPN;
however both of these strategies have serious weaknesses. The Tor network has ”semi-
trusted” Directory Authorities which give a handful of Tor node operators overreaching
influence into network consensus. Network consensus ultimately determines who is
allowed to relay traffic on the Tor network based on the views of the Directory Author-
ities. Furthermore, correlation attacks are easily possible with trusted VPNs, making it
easy for large attackers to de-anonymize a user’s traffic.

If Alice, Bob, Charlie, and Dave exclusively use Kovri to connect to the Monero
network, no one will know their IP address, making passive surveillance impractical,
while substantially improving Monero’s censorship resistance.

Technical Attributes

Kovri tunnels traffic through the I2P network utilizing garlic encryption and garlic
routing. The reader can find more about this technology in the I2P Network descrip-
tion [44]. Information travels within a private overlay-network by way of messages,
which are encrypted in layers each time the message is passed along to peers in the
network, similar to a Matryoshka doll.

For each inner doll there is a lock and public key to the next doll. Peers in the
network are not able to read the contents of the message being relayed, so information
sent from the sender to its destination (and vice-versa) are secured. The only informa-
tion visible to peers is the instruction for sending messages to the next peer. To achieve
greater privacy at a slight cost to performance, users are able to connect to several peers.

Essentially, Kovri covers an application’s Internet traffic to make it anonymous
within the network. Given this characteristic, Kovri is a great solution for anonymously
communicating over IRC, email, or accessing hidden services. As Kovri is an open
source project, the reader can find its full details in the project’s Gitlab page [48].

51

3.5. MONERO VS CRYPTONOTE

52

Part II

Back to decentralization

53

CHAPTER4
OUR MODEL

Democracy must be something more
than two wolves and a sheep voting
on what to have for dinner.

James Bovard

4.1 CryptoNight Description
In this section we will describe in detail the proposed implementation of the Cryp-
toNight hash function. This function is used in the Monero project in order to achieve
egalitarian mining. It is easy to understand why we characterize this implementation
as proposed, since each miner is free to use any implementation he/she can think of, as
long as it produces the right result.

The first step we took, to understand how CryptoNight actually works, was read-
ing Monero project’s reviews. However, as Monero core developer smooth_xmr has
posted on reddit [62] when asked specifically about Cryptonight function reviews:

CryptoNight was extensively reviewed, though not as part of a ”formal”
review process, by Professor David Andersen who also wrote the current
implementation of the hashing code.
[...] stating that it would likely achieve its goals of resisting extreme opti-
mizations and narrowing the performance gap between CPUs, GPUs, and
ASICs.

We tried to find and read this review, as it would be a great start for our work.
Unfortunately, as we discovered, the review was really informal and the best we could
find was a post in professor David Andersen’s personal blog [4]. There, one can find the
first, to our knowledge, graphical representation of the second stage of the CryptoNight
function (see section 4.2.2).

Again to the best of our knowledge, this thesis is the close second.

55

4.2. THE THREE STAGES

In the proposed implementation, a scratchpad1 is used (2MB) to ensure that the
memory needed fits the size of L3 cache (per core) in modern processors. In practice,
the miner should measure mining power and calculate efficiency.

In this chapter we will just show the proposed implementation of CryptoNight with
a minor analysis in the last section. We will demonstrate the three stages of the com-
putation and the role for each element. A really quick overview of these stages would
be something like this:

1. Initialize the scratchpad in a pseudo-random manner.

2. Read/write operations at pseudo-random addresses. (memory-hard part)

3. Use all the computations’ results to produce the output.

4.2 The three stages

Enough with the overview of the function and its history! Let’s dive into it and see in
detail its components as it is described in [67].

The input of this algorithm is a block and if the value of the Cryptonight function
satisfies the target (see equation 4.1), it is possible that this block is the next block in
the blockchain.

Cryptonight(block) ≤ Target (4.1)

So, the input of the function is a block of transactions along with the necessary
fields, which are specified by the Monero protocol. For our purposes, it is enough for
the reader to think of the procedure as simple as it gets. We accept that the only way to
meet the target is by bruteforcing. So, the miner tries many blocks as ”candidates” and
hopes for the best. Every time he/she ”tries”, he/she actually computes the Cryptonight
digest for some random block and checks whether the equation 4.1 is satisfied.

In this section, we will present CryptoNight’s inner computations graphically. The
illustration of this section is the work of the UI and graphic designer, Vasilis Agio-
tis [76]. His help is valuable, as the visual representation is needed. CryptoNight has a
relatively complex operation sequence and our analysis requires focus on details.

4.2.1 The first stage

The first stage of the algorithm sets the initial value of the scratchpad. In order to
prevent several attack schemes, the scratchpad must be initialized with data chosen in
a way, which is indistiguishable from the uniform distribution. This is the goal.

We will describe the first stage in several parts and discuss the role of each part
and its contribution regarding the properties of function’s output. The first stage is
presented graphically in figure 4.1. We recommend the reader to refer to the graphical
representation for clarity.

1A large area of memory used to store intermediate values during the evaluation of a memory-hard func-
tion.

56

CHAPTER 4. OUR MODEL

Description of the first stage

To begin, let’s prepare the tools:

1. Hash the input using Keccak [72] (b = 1600, c = 512).

2. Choose the first 32 bytes of the final state.

3. Interpret them as an AES-256 key.

4. Expand them to 10 round keys.

Keccak is the versatile cryptographic function that is most known as SHA-3. The
parameter analysis and the description of their part is beyond the scope of this thesis.
The reader is referred to their work.

We will consider Keccak a collision-free hash function. The next three steps pro-
duce random keys for encryption. We consider these keys random enough for the pur-
pose of their use. They are interpreted as keys and expanded according to [69]. Create
the scratchpad:

5. Allocate 2097152 bytes (2MiB).

The encryption part:

6. Split the bytes 64 to 191 into 8 blocks of 16 bytes each.

7. Encrypt the blocks as follows:

for i = 0..9 do:
block = aes_round(block, round_keys[i])

8. Fill 128 bytes of the scratchpad with the resulting blocks.

Repeat:

9. With the resulting blocks run step 7 again.

Each time 128 bytes are written, they represent the result of the encryption of the
previously written 128 bytes. The process is repeated until the scratchpad is fully ini-
tialized.

57

4.2. THE THREE STAGES

Figure 4.1: Scratchpad initialization. [76]

58

CHAPTER 4. OUR MODEL

Figure 4.2: Extracting a and b values. [76]

4.2.2 The second stage (memory-hardness)
The second stage of the algorithm uses the initialized scratchpad and two values that are
computed from the hashed input of the function. Its goal is to perform computations
on the scratchpad values (on all of them with high probability) and produce a final
scratchpad structure that can’t be computed otherwise or in stages (without huge time
complexity). The memory-hardness property is satisfied if and only if there is no other
way to compute the final state of the scratchpad using less memory than the size of the
scratchpad. That is the overview. Let’s see the details.

(The preparation part) The core structure of this stage is a loop. However, before il-
lustrating the computations that take place inside the loop, there are some computations
needed for preparation and two technical clarifications.

1. Compute the values of a and b.

Elements a and b are the two values which, along with the scratchpad, are given as input
to the loop. More specifically, the first 64 bytes of the hashed input (the Keccak state)
are split in two parts (32 bytes each part) and XOR-ed (⊕), and the resulting 32 bytes
are used to initialize variables a and b, 16 bytes each.

In figure 4.2 the reader can see the visualization of this preparation part.

59

4.2. THE THREE STAGES

Clarification 1:

The reader may notice in figure 4.3 that the function uses a 16-byte value as an
address in the scratchpad. Actually, the value is interpreted as a little-endian
integer. The 21 low-order bits are used as a byte index. To ensure the 16-byte
alignment, the four low-order bits of the index are cleared. This alignment is
essential, as the data is read from andwritten to the scratchpad in 16-byte blocks.

Clarification 2:

The main loop is iterated 524, 288 = 219 times. Every time, two blocks of the
scratchpad are written, so with high probability, the whole scratchpad will be
overwritten. In every iteration, along with the two blocks of the scratchpad,
values a′ and b′ are computed, which are used as input to the next iteration.

Now we are ready to describe the inner computations of the loop. We will divide
this stage into parts, as it will help us later in the analysis. The number of parts are
determined based on some intermediate values. We refer the reader to the graphical
representation of this stage, presented in figure 4.3.

Here, we note that the intermediate values are not memory requirements, as we
can implement the computations with only 32 bytes of memory (for a and b) plus the
memory needed for the scratchpad. But during theoretical analysis and understanding
of the function’s computations, these intermediate values seem natural stops of the train
of thought. So, after the step 1:

2. Interpret the value of a as a scratchpad address.

3. Read from this address.

4. Evaluate the AES function with data from step 3 and key the value of a.

Let’s call this intermediate value c. And let’s add a final step to this part:

5. Calculate c⊕ b and write the result to the address of step 2.

The value c is passed as b′, part of the input of the next iteration. The second part
involves another read from the scratchpad:

6. Interpret the value of c as a scratchpad address.

7. Read from this address. (We will refer to this intermediate value as d.)

8. Multiply2 c, d and add the value of a to the result.

9. Write the result of step 8 to the address of step 6.

This concludes the second part. The scratchpad is written twice per iteration. The only
thing that is left to conclude the description of the second stage, is the computation of
a′, part of the input of the next iteration. This is computed as follows:

10. Compute d⊕ (<the result of step 8>) to compute a′.

2The multiplication uses only the first 8 bytes of each argument, which are interpreted as unsigned 64-bit
little-endian integers and multiplied together. The result is converted into 16 bytes, and finally the two 8-byte
halves of the result are swapped [67].

60

CHAPTER 4. OUR MODEL

Figure 4.3: The memory-hard part. [76]

61

4.2. THE THREE STAGES

4.2.3 The third stage
The third stage of the algorithm uses the final state of the scratchpad to produce the
output. During this stage AES operation is used. At first, the function extracts 10 key
values from 32 bytes of the hashed input of the function, similar to the step 1 of the first
stage. Extracting keys:

1. Choose the bytes [32...63] of the final Keccak state.

2. Interpret them as an AES-256 key.

3. Expand them to 10 round keys.

After this, the function needs a starting value. It applies XOR-operation(⊕) on bytes
[64...191] of the hashed input and the first 128 bytes of the scratchpad. Let’s call these
values input and scratchpad[0].

4. input ⊕ scratchpad[0].

Now, using the first key of step 3 as key to the AES operation:

5. Encrypt the result of step 4.

Repeat the last two steps as follows:

• Take the encrypted result of the last step as input.

• Take the next 128 bytes of the scratchpad (scratchpad[1]).

• Use, as AES key, the next extracted key.

• Execute step 4 and step 5.

until the last bytes of the scratchpad are used to the aforementioned operations. After
the last bytes of the scratchpad are XOR-ed and encrypted,

6. Use the result to replace the bytes [64...191] of the hashed input.

We call the state of the hashed input after the above step as the modified Keccak state.
To produce the final result the function performs the next steps (see figure 4.4b).

6. Pass themodified Keccak state through Keccak-f (the Keccak permutation [72]).

7. Choose the 2 low-order bits of the first byte of the modified Keccak state.

8. Based on these bits choose a hash function:

case 00: BLAKE-256 case 01: Groestl-256
case 10: JH-256 case 11: Skein-256

9. Apply the chosen function to the modified Keccak state.

62

CHAPTER 4. OUR MODEL

The result of step 9 is the output of the CryptoNight function. For more information
about these functions, the reader is refered to the respective articles [7, 39, 77, 33].

Figure 4.4a: The third stage. [76]

63

4.3. ANALYSIS

Figure 4.4b: The third stage. [76]

4.3 Analysis
Now that we have described the way this function computes its output, we will try to
build a model for our theoretical analysis. There are several assumptions that we have
to make to abstract the function’s operation. For this purpose, we build our model and
define its security. At first, we have to focus on the part that is linked to the memory-
hardness property (see section 2.1.3). The reader now should have an understanding
about the general purpose of each stage.

The first stage sets the scene for the memory-hardness part. We will assume that
it initializes the scratchpad in a way, which is indistiguishable from the uniform dis-
tribution. It is safe to assume that, for an honest miner, the input is chosen uniformly
at random as well. Our goal is to focus on the second stage, analyze it and then try
to imagine, how an adversary miner can attack the memory-hardness property of this
function. Due to the aforementioned assumptions we can conclude that the input of the
second stage is chosen uniformly at random from its domain. Just to remember, the
second stage’s input is:

• a

• b

• Scratchpad, from now on denoted as SP

64

CHAPTER 4. OUR MODEL

4.3.1 Parameters
One of the first things that we need to do is to parametrize the input. We can’t talk about
complexity or security without the relative size between our objects or calculations.
Moreover, this kind of analysis can help to generalize results and conclusions.

We will arbitrarily choose n as symbol for the size of a and fix everything else
respectively. With that analysis in mind, we are fixing our language. Symbols:

Size of a: n
Size of b: n
Size of SP : βn = 2 · 106 bytes ≈ 2 · n5 (polynomial)
Value of SP in address x: SPx (of size n)

4.3.2 AES as PRF
The Advanced Encryption Standard (AES), also known by its original name Rijn-
dael [25], is a specification for the encryption of electronic data established by the U.S.
National Institute of Standards and Technology (NIST) in 2001 [69].

AES is a subset of the Rijndael block cipher developed by two Belgian cryptog-
raphers, Vincent Rijmen and Joan Daemen, who submitted a proposal to NIST during
the AES selection process. Rijndael is a family of ciphers with different key and block
sizes.

For AES, NIST selected three members of the Rijndael family, each with a block
size of 128 bits, but three different key lengths: 128, 192 and 256 bits.

AES has been adopted by the U.S. government and is now used worldwide. The
algorithm described by AES is a symmetric-key algorithm, meaning the same key is
used for both encrypting and decrypting the data.

In CryptoNight function AES is used for its properties as a cryptographic function.
If a different key and a different input is chosen every time, then it is safe to assume that
no prediction about the output of AES on this input can exist. To make this assumption
more formal, we assume that AES is a pseudorandom function (PRF) and the seed is
the key of AES.

In section 2.1.4 the reader can find the mathematical definition of PRFs. We define
the notion and then we define a game. Based on this game we describe a security model
to base the above assumption.

4.3.3 Operations
Apart from the AES use, the memory-hard stage of CryptoNight function performs one
addition, two XOR-operations and one multiplication. In order to be able to produce
conclusions, we try to analyze what the side effects of these operations are. All of these
operations get two inputs of 16 bytes size and produce a 16 byte result.

Let’s examine them one by one. In the case of the XOR operation, it is easy to see
that if the two inputs are chosen uniformly at random, then the result is also uniformly
chosen at random. In the case of addition, reproduced from CryptoNote [67]:

The 8byte_add function represents each of the arguments as a pair of 64-
bit little-endian values and adds them together, component-wise, modulo
264. The result is converted back into 16 bytes.

65

4.3. ANALYSIS

It is trickier to see the same here, but with a little effort one can see that if the input
is chosen uniformly at random, then the result is uniformly chosen at random too. In
the case of multiplication, reproduced from CryptoNote [67] again:

The 8byte_mul function, however, uses only the first 8 bytes of each argu-
ment, which are interpreted as unsigned 64-bit little-endian integers and
multiplied together. The result is converted into 16 bytes, and finally the
two 8-byte halves of the result are swapped.

The last case, is more complex. At first we notice the following: if one of the
inputs is null, then the result is also null. That could be a problem. We try to calculate
the probability that the result is null, due to the null value of one or both inputs. We
don’t care about the null value of the result due to modulo operation. That probability
is obviously equal to the probability that the result is equal with some other value. We
would like the ”extra” probability, that the value of the result is null due to input’s null
value, to be negligible.

Because of the special way CryptoNight function performs the multiplication, the
inputs’ sizes are 64 bits = 8 bytes = n

2 . In addition, considering that AES is a PRF
(assumption) and SP is unifomly random (at least at the first round by assumption),
then the two inputs are independent. The probability of one or both inputs to be null is:

1

2n/2
+

1

2n/2
− 1

2n/2 · 2n/2
=

2 · 2n/2 − 1

2n
<

1

2(n/2)−1
= negl(n) (4.2)

That seems to be fine for our analysis. But, the next problem is this: Multiplication
of two 8 byte numbers produces a result modulo 16 bytes (mod 2128). The reader can
see that the probability of a value to be an output of the multiplication declines, as the
values grow. Even after the swap that is performed at the end of the multiplication,
the problem persists. We have not a uniformly at random distributed result, even if the
inputs are chosen uniformly at random.

The above multiplication is perfomed this way because of the modern CPU regis-
ters’ size. The 8 bytes multiplication is optimized. ASICs couldn’t do this as fast as a
modern CPU could, but technology advances and now there are chips that do the same
computation roughly with the same time cost.

However, after our theoretical analysis we think that we should propose something
better. The time cost of a 16 byte multiplication or maybe an 8 byte multiplication
implementation that maps inputs’ uniform distribution can make a system less efficient
against ASICs, compared to the official implementation proposal, but not completely
inefficient. Nevertheless, this is a detail and does not make great difference in our
analysis. From now on, we can assume that the above problem is solved and we have a
multiplication implementation that produces a uniformly at random distributed result.

66

CHAPTER5
CRYPTONIGHT ANALYSIS

Nobody can give you freedom.
Nobody can give you equality or
justice or anything. If you’re a man,
you take it.

Malcolm X

5.1 Introduction
In order to prove that a function ismemory-hard (see section 2.1.3) we need to show that
no implementation exists, that can produce the same result using less memory without
significant time cost. In other words, using an implementation which needs less mem-
ory is not something that can give advantage to some miner because the time factor will
make the procedure equally or more expensive, even if the miner uses parallel compu-
tation techniques. Reproduced from CryptoNote [67]:

CryptoNight is a memory-hard hash function. It is designed to be ineffi-
ciently computable on GPU, FPGA and ASIC architectures.

InMonero mining, CPU’s cores are only efficient if they can use the super fast 2MB
cache over and over. Each core needs about 2MB for CryptoNight to stay cached. So a
miner should check how much L2 cache or - in rare cases - also L3 cache the CPU has.
Then divide by 2MB and this will be how many cores he/she can run at the same time.

There are several reasons to suspect that CryptoNight could be amemory-hard func-
tion. One of the most popular arguments was that a megabyte of internal memory is
an almost unacceptable size for a modern ASIC pipeline. But hardware is constantly
evolving and eventually there was recently an effort for Monero ASIC production. The
first documented effort was the ASIC called Antminer X3 by Bitmain [14]. The an-
nouncement was made in March 2018. Observing the raise of hashrate in the network,
it was obvious that there were ASICs used for mining.

Founded in 2013, Bitmain, is a firm that produces ASIC chips and mines Bitcoin.
The firm also operates Antpool, which according to observers is the largest Bitcoin
mining pool. An ASIC device by Bitmain has been mining Bitcoins for many years.

67

5.2. PROOF APPROACH

The reason Monero is planning to make Bitman’s Antminer X3 ineffective, is that
it could enable some forms of attacks. These attacks could result in the mining pool
taking over principal cryptocurrency’s hashrate. The act may enable double spending
of coins, false transaction histories and censoring payments.

Riccardo Spagni, in a response to a Twitter comment which sees ASICs as a good
thing [68], said:

Removing all of the hashrate distributed among tens of thousands of min-
ers, in favour of a handful of miners that can afford an overpriced machine
from a single manufacturer is GOOD for security? I doubt even you believe
that.

There were some thoughts like ”How did they do this? Isn’t CryptoNight memory-
bound?”. Well, one thing is that CryptoNight is ASIC-resistant, not ASIC-proof 1. But,
that was not the problem. Another thought is that L3 cache supports a lot of extra
functionality like being shared across cores, writing back to RAM, being behind two
other levels of cache, etc. which all makes it a lot less efficient (among other issues
with the approach). But, again, that was not the case in that particular effort.

L3 latency wasn’t the issue. ASICs just traded latency for bandwidth the same way
GPUs do. They were built on stacks of DRAM, not lightning fast caches. The costs of
cache complexity aren’t only latency but also power usage and die space. Raw speed
isn’t even necessarily the goal for either CPUs or GPUs or ASICs here, it is efficiency.

But Monero project reacted and announced upgrades bi-annually in order to keep
ASICs at bay. Upgrades are a problem, because upgrades produce bugs and vulnerabil-
ities. Especially when they are that frequent. On the other hand, upgrades in Monero
are minor, with no changes in the memory-hard part. From this experience, we un-
derstand that a formal proof, or even a better understanding of the memory-hardness
property in practice, is vital for its mining function in order to protect a cryptocurrency
from centralization.

5.2 Proof approach
Our starting plan was quite simple. The moment we understood the operations that took
place in the computation, we had a specific strategy in mind. We would prove:

First case (honest miner):

• If the input is uniformly at random chosen, then the output is of the same nature
and independent from the input. (one round)

• The above expands to the whole function, not just one round.

What we wanted to show, with the two steps above, is the following: No shortcuts
exist for the calculations involved. If the miner is honest, then the hash of the block
will be uniformly at random chosen and so will be the elements of the input (a, b and
SP) of the second stage. If that implies that the output of this process is also chosen
uniformly at random, then every operation on the input cannot be guessed except with
negligible probability, ergo no shortcut of this process exists.

Of course, another requirement is the input (a, b, SP) to be independent from the
output (a′, b′, SP ′), where SP ′ is the modified SP after the round. If this is not the

1ASIC manufacturers are discouraged from building an ASIC for Monero mining, but there is no formal
mathematical proof stating that an ASIC cannot be built.

68

CHAPTER 5. CRYPTONIGHT ANALYSIS

case, then there is a relation between two or more elements and in the nature of that
relation a chance for an attack may hide.

It is easy to expand the above hypothetical result to the function as a whole. Every
round produces a uniformly at random chosen result. Thus, the last round will produce
a uniformly at random distributed result too.

Second case (malicious miner):

• If the input is not chosen at random, then the output is still uniformly at random
chosen and independent from the input. (one round)

• The above expands to the whole function, not just one round.

If we had the results for the honest case, then the next step would be to show that
even if the miner is malicious he cannot do any better for himself. Even if the input is
not chosen uniformly at random, the result will be distributed uniformly. That means
that even if we ”fixed” the input to our taste, we could not guess the result except with
negligible probability. The second step follows a similar train of thought as in the case
of the honest miner.

If we managed to prove the above, that would be a proof of the CryptoNight’s
memory-hardness property. If we cannot find a shortcut for the process, then we cannot
find a way to calculate the result with less memory or less time. Let us elaborate on the
details of our research.

5.2.1 The model
Based on the aforementioned plan and with help from the observations and assump-
tions we made in section 4.3, we now use the model of computation we assume for
CryptoNight’s second stage (see figure 5.1) to begin our analysis.

The reader can see that there is a natural division of the process in three parts. The
first part is the set of all operations performed on the first address’ value. Explicitly,
that involves:

Read Input to an AES operation. Under our assumption, AES is a pseudorandom func-
tion (PRF).

Write The result of a XOR (⊕) operation.

The second part involves any operation performed on the second address’ value.
More precisely:

Read Store the value of the address.

Write The result of a multiplication and an addition.

The third part is not of much interest for our purposes. It extracts the two outputs
needed as input for next round of the second stage:

• A XOR (⊕) operation on the result of the addition that produces the first input of
the next round (a′).

• The result of the PRF operation (AES) that is passed as the second input of the
next round (b′).

69

5.2. PROOF APPROACH

Figure 5.1: The model. [76]

Here we note again (see section 4.3.3) the special nature of the multiplication. Just
for our purposes, we assume that it sustains the properties of its input. If the input
(the two integers, each of size n) is uniformly at random chosen then the output of the
multiplication is of the same nature. We strongly declare that this is not the case for
the specific implementation of this operation. However, we will see that even with this
assumption, we will not achieve our goal.

70

CHAPTER 5. CRYPTONIGHT ANALYSIS

5.2.2 The road to proof construction
Based on the above we begin our analysis. Under the following assumptions,

• a, b are uniformly at random chosen

• AES is a PRF

we get that the first address of the round is changed in a way that does not change the
distribution of the scratchpad. Everything seems fine.

For the second address we get the same result. Our assumptions are:

• AES is a PRF

• ∀c : SPc is uniformly at random chosen

• Multiplication and addition sustain the distribution of their inputs

Let’s see the values of a′ and b′:

a′ =
(
a+

(
PRF (a, SPa) · SPPRF (a,SPa)

))
⊕ SPPRF (a,SPa) (5.1)

b′ = PRF (a, SPa) (5.2)

Here we have a major problem. The problem is not the distribution of the output.
Under our assumptions that is appropriate. But,

• a′ is not independent from a

• b′ is not independent from b

• SP ′ (scratchpad after the round) is not uniformly at random chosen

The third statement comes out of the observation that the value of SPa, after the write
operation, is dependent on the value of b. These are observations that spoil our plan.

However, this is a hint to the possibility of the existence of a successful attack
on the memory-hardness property of CryptoNight function. Part of the input of this
stage (values of a, b) is produced right from the hashed input of CryptoNight (see sec-
tions 4.2.1, 4.2.2). If someone can control the value of a, or maybe some bits of a, then
he has a partial control of the value of a′ or at least some control over the range of a′.
The same apply to the values of b and b′.

This is, of course, nothing more than an intuition, so let’s see if we can achieve the
planning of said attack.

5.3 Attack approach
The above intuition, apart from the assumptions involved, implies a level of control over
the value of a or b or both. This can be done with grinding techniques. In a very high
level of abstraction, the miner can hash the input multiple times with Keccak, changing
every time something in the block (nonce, sequence of transactions, etc.). That will
give him a different digest every time, ergo a different value for a and b. This is quite
efficient, especially if an ASIC is involved.

But we will make a stronger assumption. We will assume that some adversarial
miner has a total control over the value of a and b. We will show that even in that case,
an attack seems impossible. Due to the nature of our results, it doesn’t make sense to
analyze the way an attacker can gain control over the value of a or b.

71

5.3. ATTACK APPROACH

5.3.1 Details
What is the level of impact that we can cause, if we could control the values of a and
b? What is the best we can do in order to achieve our goal?

If someone takes his/her time observing the process, he/she can see the only thing
that we can hope for. That is to find an address a, with a content SPa such that:

AES(a, SPa) = a

The reader can see the visualization of this scenario in figure 5.2. Now it is time
to measure the probability of this event. If this probability is negligible, we cannot
find anything more that we can do. We have βn addresses on the scratchpad and in the
CryptoNight description [67] we see that:

When a 16-byte value needs to be converted into an address in the scratch-
pad, it is interpreted as a little-endian integer, and the 21 low-order bits
are used as a byte index. However, the 4 low-order bits of the index are
cleared to ensure the 16-byte alignment.

This means that, for a uniformly at random chosen 16-byte number, the probability
for the value to be converted into a specific address in the scratchpad is:

1 · sizeof(address)
sizeof(SP)

=
1 · n
βn

=
n

2 · n5
=

1

2 · n4
=

1

poly(n)

That is, for all intents and purposes, not a negligible probability with respect to the
size of n. Hence, that is something that we can do efficiently enough. Let’s see what
this scenario gives us, as a round outcome. If the reader cares to do some math, he/she
will see that equations 5.1, 5.2 become:

a′ =
(
a+

(
a · (a⊕ b)

))
⊕ (a⊕ b) and b′ = a

This looks really promising. Until we see what happens to the next round. The one
thing that the reader is suggested to observe is that, although a′ is a function of a and
b, it is certainly not equal to either of them.

In the next round, the value a′ will point to a different location on the scratchpad
(SPa′) and the value PRF(a′, SPa′) will point to a random address in the scratchpad.
And this is exactly the moment we lose the control we had over the process.

72

CHAPTER 5. CRYPTONIGHT ANALYSIS

Figure 5.2: The attack scenario. [76]

73

5.3. ATTACK APPROACH

74

CHAPTER6
CONCLUSION

Arguing that you don’t care about the
right to privacy because you have
nothing to hide is no different than
saying you don’t care about free
speech because you have nothing to
say.

Edward Snowden

6.1 Summary

The intuition behind the nature of the problem lies in the relation between the first and
the second address written in each loop, in the second stage of the function. As we saw,
the first address is a random pointer produced from the input. This is something that
can be leveraged to some adversary’s advantage, at least in the first round. But the way
the second pointer is produced makes it hard to keep track of the computation.

Now, let’s take a step back. If we want to attack the memory-hardness property,
what exactly is our goal? Well, the train of thought is the following: If we managed to
compute the first 128 sequential bytes of the state of the scratchpad (after the second
stage), without using the rest of it, then it would be a win. We can compute in steps the
digest of the CryptoNight function, using just 128 bytes of the scratchpad in each step.

We can calculate the initialization of the first 128 bytes of the scratchpad, then move
on to the second stage and finally compute the first part of our solution, running just the
first step of the third stage. Then, we repeat the above for every other 128 bytes of the
scratchpad (15,625 times). This will give us the digest of the function, using 256 bytes
of memory (2·128, in order to remember last round’s outcome) and time complexity of
the same order of magnitude as the proposed implementation. That would complete a
successful attack.

75

6.2. FUTURE WORK

The reason we failed is that it seems impossible to control the pointers to the ad-
dresses in the second stage. We cannot compute the final stage of the scratchpad, 128
bytes at a time. We need all of it to produce a correct computation. Let’s see the details.

Without loss of generality, let the first address be a and the second address be b,
within some loop. Then,

b = AES(a, SPa)

Under the assumption that AES is a PRF, the above can be leveraged as we described
but for one round at most. Then, control is lost. The reason is that the output of a
PRF cannot be guessed with more than negligible probability. That means that we
can’t control the sequence of the addresses written in the second stage. Thus, we can’t
compute partially the final stage of the scratchpad. It has to be used as a whole.

6.2 Future Work
At first, our intuition was that the next step towards the goals of this thesis is to analyze
the relation between the inputs and the outputs in each round. Maybe there is something
there, we could not find. But with a closer look, it seems that if we cannot ”fix” the
relation to the equality one, then any control we might achieve by this analysis is lost
in the next round, due to our assumption that AES is a PRF.

It is obvious that a successful attack on the AES function could lead to a successful
attack on CryptoNight’s memory-hardness property. However, AES being a PRF, is a
reasonable assumption and it is expected to be hard to find a vulnerability in AES and
a distinction between AES and PRFs. AES is a cryptographic primitive that has been
thoroughly reviewed and checked.

We don’t know yet, whether the reverse is true. Namely, whether a successful attack
on CryptoNight’s memory-hardness property is a step towards a successful attack on
AES. This is a step that can follow our work, but it seems a really tricky and difficult
problem.

Fresh point of view

If someone wants to continue our research, we recommend a huge step back. Maybe
another model for the problem or something that is not produced from a similar point of
view. As we presented in this thesis, we have found problems very early in our analysis
and we couldn’t pass beyond the second round of the second stage.

If someone wants to perform a cryptographic analysis on CryptoNight’s memory-
hardness property, then he/she is supposed to analyze this second stage. This second
stage is the place where the origins and the basis of the memory-hardness property lie.

76

CHAPTER 6. CONCLUSION

6.3 Epilogue
This thesis is the first, to our knowledge, to analyze the memory-hardness property of
the CryptoNight function. We hope that our analysis is helpful to the researcher or the
researchers, who would like to continue this effort. We tried to make this document a
good start for further exploration of this interesting and valuable problem.

We wish good luck to the people that will continue this work and help the Monero
community in their effort for a better world. Surveillance amplification in the physical
and digital world is apparent in our days. We believe that progress in research for
anonymity and privacy in the public domain, solving important privacy issues that still
do not admit efficient solutions (see [75]), is something that many people seek. After
all, privacy is a fundamental human right that many - if not all - human rights are based
on. Without privacy, human rights, i.e., freedom of speech, collapse.

77

6.3. EPILOGUE

78

BIBLIOGRAPHY

[1] BenAdidaSusanHohenberger and Ronald L. Rivest. “Ad-Hoc-Group Signatures
from Hijacked Keypairs”. In: (Feb. 2019).

[2] Joël Alwen and Vladimir Serbinenko. “High Parallel Complexity Graphs and
Memory-Hard Functions”. In: Proceedings of the Forty-seventh Annual ACM
Symposium on Theory of Computing. STOC ’15. Portland, Oregon, USA: ACM,
2015, pp. 595–603. ංඌൻඇ: 978-1-4503-3536-2. ൽඈං: 10.1145/2746539.2746622.

[3] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. “Depth-Robust Graphs
and Their CumulativeMemoryComplexity”. In: (2016). ඎඋඅ: https://eprint.
iacr.org/2016/875.

[5] Andreas M Antonopoulos. Mastering Bitcoin: unlocking digital cryptocurren-
cies. O’Reilly Media, Inc., 2014.

[6] Man Ho Au et al. “Short Linkable Ring Signatures Revisited”. In: Public Key
Infrastructure. Ed. by Andrea S. Atzeni and Antonio Lioy. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 101–115. ංඌൻඇ: 978-3-540-35152-8.

[7] J. P. Aumasson. “SHA-3 proposal BLAKE”. In: http://131002.net/blake/
blake.pdf (2010). ඎඋඅ: https://ci.nii.ac.jp/naid/10030667226/en/.

[8] Adam Back et al. “Hashcash-a denial of service counter-measure”. In: (2002).
Original system developed in 1997. ඎඋඅ: ftp://sunsite.icm.edu.pl/
site/replay.old/programs/hashcash/hashcash.pdf.

[9] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In:
Public Key Cryptography - PKC 2006. Ed. by Moti Yung et al. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 207–228. ංඌൻඇ: 978-3-540-33852-9.

[10] Daniel J. Bernstein et al. “High-speed high-security signatures”. In: Journal of
Cryptographic Engineering 2.2 (2012), pp. 77–89. ංඌඌඇ: 2190-8516. ൽඈං: 10.
1007/s13389-012-0027-1.

[16] Sean Bowe, Ariel Gabizon, and Matthew D. Green. “A Multi-party Protocol for
Constructing the Public Parameters of the Pinocchio zk-SNARK”. In: Financial
Cryptography and Data Security. Ed. by Aviv Zohar et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2019, pp. 64–77. ංඌൻඇ: 978-3-662-58820-8.

79

https://doi.org/10.1145/2746539.2746622
https://eprint.iacr.org/2016/875
https://eprint.iacr.org/2016/875
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf
https://ci.nii.ac.jp/naid/10030667226/en/
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1007/s13389-012-0027-1

BIBLIOGRAPHY

[17] B. Bünz et al. “Bulletproofs: Short Proofs for Confidential Transactions and
More”. In: 2018 IEEE Symposium on Security and Privacy (SP). 2018, pp. 315–
334. ൽඈං: 10.1109/SP.2018.00020.

[18] David Chaum and Eugène van Heyst. “Group Signatures”. In: Advances in Cryp-
tology—EUROCRYPT ’91. Ed. byDonaldW.Davies. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1991, pp. 257–265. ංඌൻඇ: 978-3-540-46416-7.

[25] Joan Daemen and Vincent Rijmen. “AES Proposal: Rijndael”. In: (1999).
[26] W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE Trans.

Inf. Theor. 22.6 (2006), pp. 644–654. ංඌඌඇ: 0018-9448. ൽඈං: 10.1109/TIT.
1976.1055638.

[27] CynthiaDwork andMoniNaor. “Pricing via processing or combatting junkmail”.
In: Annual International Cryptology Conference. Springer. 1992, pp. 139–147.

[28] StefanDziembowski, TomaszKazana, andDanielWichs. “Key-evolution Schemes
Resilient to Space-bounded Leakage”. In: Proceedings of the 31st Annual Con-
ference on Advances in Cryptology. CRYPTO’11. Santa Barbara, CA: Springer-
Verlag, 2011, pp. 335–353. ංඌൻඇ: 978-3-642-22791-2. ඎඋඅ: http://dl.acm.
org/citation.cfm?id=2033036.2033061.

[30] HaroldM. Edwards. “A normal form for elliptic curves”. In:Bulletin of the Amer-
ican Mathematical Society 44.3 (2007), pp. 393–422. ൽඈං: 10.1090/S0273-
0979-07-01153-6.

[33] Niels Ferguson et al. “The Skein Hash Function Family”. In: (2008). ඎඋඅ: http:
//www.skein-hash.info/sites/default/files/skein1.1.pdf.

[34] Christian Forler, Stefan Lucks, and JakobWenzel. “Catena: AMemory-Consuming
Password Scrambler”. In: IACR Cryptology ePrint Archive, Report 2013/525
(2013). ඎඋඅ: http://eprint.iacr.org/2013/525/20140105:194859.

[35] Eiichiro Fujisaki. “Sub-linear Size Traceable Ring Signatures without Random
Oracles”. In: Topics in Cryptology – CT-RSA 2011. Ed. by Aggelos Kiayias.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 393–415. ංඌൻඇ: 978-3-
642-19074-2.

[36] Eiichiro Fujisaki and Koutarou Suzuki. “Traceable Ring Signature”. In: Public
Key Cryptography – PKC 2007. Ed. by Tatsuaki Okamoto and Xiaoyun Wang.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 181–200. ංඌൻඇ: 978-
3-540-71677-8.

[37] JuanGaray, Aggelos Kiayias, andNikos Leonardos. “The Bitcoin Backbone Pro-
tocol: Analysis and Applications”. In: Advances in Cryptology - EUROCRYPT
2015. Ed. by Elisabeth Oswald and Marc Fischlin. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 281–310. ංඌൻඇ: 978-3-662-46803-6.

[38] JuanGaray, Aggelos Kiayias, andNikos Leonardos. “The Bitcoin Backbone Pro-
tocol with Chains of Variable Difficulty”. In: Advances in Cryptology – CRYPTO
2017. Ed. by Jonathan Katz and Hovav Shacham. Cham: Springer International
Publishing, 2017, pp. 291–323. ංඌൻඇ: 978-3-319-63688-7.

[39] Praveen Gauravaram et al. “Grøstl – a SHA-3 candidate”. In: (2011). ඎඋඅ: http:
//www.groestl.info/Groestl.pdf.

[41] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of In-
teractive Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–
208. ൽඈං: 10.1137/0218012.

80

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
http://dl.acm.org/citation.cfm?id=2033036.2033061
http://dl.acm.org/citation.cfm?id=2033036.2033061
https://doi.org/10.1090/S0273-0979-07-01153-6
https://doi.org/10.1090/S0273-0979-07-01153-6
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://www.skein-hash.info/sites/default/files/skein1.1.pdf
http://eprint.iacr.org/2013/525/20140105:194859
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
https://doi.org/10.1137/0218012

BIBLIOGRAPHY

[42] M. Hellman. “A Cryptanalytic Time-memory Trade-off”. In: IEEE Trans. Inf.
Theor. 26.4 (2006), pp. 401–406. ංඌඌඇ: 0018-9448. ൽඈං: 10.1109/TIT.1980.
1056220.

[45] Dimitris Karakostas et al. “Cryptocurrency Egalitarianism: A Quantitative Ap-
proach”. In: (2019).

[46] Kostis Karantias. “Constructing Interoperable Blockchains Using NIPoPoWs”.
In: (2019). ඎඋඅ: https://arctan.gtklocker.com/thesis.pdf.

[47] JonathanKatz andYehuda Lindell. Introduction toModernCryptography (Chap-
man&Hall/CrcCryptography andNetwork Security Series). Chapman&Hall/CRC,
2007. ංඌൻඇ: 1584885513.

[50] Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. “Linkable Spontaneous
Anonymous Group Signature for Ad Hoc Groups”. In: Information Security and
Privacy. Ed. by HuaxiongWang, Josef Pieprzyk, and Vijay Varadharajan. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 325–335. ංඌൻඇ: 978-3-540-
27800-9.

[51] Joseph K. Liu and Duncan S. Wong. “Linkable Ring Signatures: Security Mod-
els and New Schemes”. In:Computational Science and Its Applications – ICCSA
2005. Ed. by Osvaldo Gervasi et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2005, pp. 614–623. ංඌൻඇ: 978-3-540-32044-9.

[53] Ralph C Merkle. “A digital signature based on a conventional encryption func-
tion”. In: Conference on the Theory and Application of Cryptographic Tech-
niques. Springer. 1987, pp. 369–378.

[57] Peter L. Montgomery. “Speeding the Pollard and elliptic curve methods of fac-
torization”. In: Mathematics of Computation 48.177 (1987), pp. 243–243. ൽඈං:
10.1090/s0025-5718-1987-0866113-7.

[58] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: forum
online (2008). ඎඋඅ: http://bitcoin.org/bitcoin.pdf.

[59] ShenNoether. “Ring Signature Confidential Transactions forMonero”. In: (2015).
ඎඋඅ: https://eprint.iacr.org/2015/1098.

[61] Abhi Shelat Rafael Pass. “A Course in Cryptography”. In: A Course in Cryptog-
raphy. 2010.

[63] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”. In: Ad-
vances in Cryptology — ASIACRYPT 2001. Ed. by Colin Boyd. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2001, pp. 552–565. ංඌൻඇ: 978-3-540-45682-7.

[64] Phillip Rogaway. “TheMoral Character of CryptographicWork”. In: IACRCryp-
tology ePrint Archive 2015 (2015), p. 1162. ඎඋඅ: https://web.cs.ucdavis.
edu/~rogaway/papers/moral-fn.pdf.

[65] Nicolas van Saberhagen. “CryptoNote v 2.0”. 2013. ඎඋඅ: https://cryptonote.
org/whitepaper.pdf.

[69] Information Technology Laboratory (National Institute of Standards and Tech-
nology). Announcing the Advanced Encryption Standard (AES) [electronic re-
source]. English. Computer Security Division, Information Technology Labora-
tory, National Institute of Standards and Technology Gaithersburg, MD, 2001,
52 p. : ඎඋඅ: https://nla.gov.au/nla.cat-vn4183631.

81

https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1109/TIT.1980.1056220
https://arctan.gtklocker.com/thesis.pdf
https://doi.org/10.1090/s0025-5718-1987-0866113-7
http://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2015/1098
https://web.cs.ucdavis.edu/~rogaway/papers/moral-fn.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/moral-fn.pdf
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://nla.gov.au/nla.cat-vn4183631

WEB RESOURCES

[71] Nick Szabo. “The idea of smart contracts”. In: Nick Szabo’s Papers and Concise
Tutorials 6 (1997).

[75] N. Unger et al. “SoK: SecureMessaging”. In: 2015 IEEE Symposium on Security
and Privacy. 2015, pp. 232–249. ൽඈං: 10.1109/SP.2015.22.

[77] Hongjun Wu. “The Hash Function JH”. In: (2011). ඎඋඅ: http://www3.ntu.
edu.sg/home/wuhj/research/jh/jh_round3.pdf.

[78] Qianhong Wu et al. “Ad Hoc Group Signatures”. In: Advances in Information
andComputer Security. Ed. byHiroshi Yoshiura et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 120–135. ංඌൻඇ: 978-3-540-47700-6.

Web resources
[4] David Andersen. Personal blog. ඎඋඅ: https://da-data.blogspot.com/

2014/08/minting-money-with-monero-and-cpu.html.
[11] Bitcoin Explorer wiki. ඎඋඅ: https://github.com/libbitcoin/libbitcoin-

explorer/wiki/bx-base58-encode.
[12] Bitcoin Forum. ඎඋඅ: https://bitcointalk.org/.
[13] Bitcoin Wiki. ඎඋඅ: https://en.bitcoinwiki.org/wiki/.
[14] Bitmain. ඎඋඅ: https://www.bitmain.com/.
[15] Blockchain. ඎඋඅ: https://www.blockchain.com/.
[19] CoinDesk. ඎඋඅ: https://www.coindesk.com/.
[20] Coinhive. ඎඋඅ: https://github.com/cazala/coin-hive/.
[21] Cryptoanarchy Wiki. 1998. ඎඋඅ: https://cryptoanarchy.wiki/.
[22] CryptoNote coins. ඎඋඅ: https://cryptonote.org/coins.
[23] CryptoNote description. ඎඋඅ: https://cryptonote.org/inside.
[24] CryptoNote Test Address. ඎඋඅ: https://xmr.llcoins.net/addresstests.

html.
[29] The Economist. The great chain of being sure about things. The Economist

Newspaper Limited. 2015. ඎඋඅ: https://www.economist.com/.
[31] Elliptic CurveDigital Signature Algorithm (wiki). ඎඋඅ: https://en.wikipedia.

org/wiki/Elliptic_Curve_Digital_Signature_Algorithm.
[32] Esperanto language. ඎඋඅ: http://esperanto.net/en/.
[40] GetMonero. ඎඋඅ: https://getmonero.org/.
[43] Investopedia dictionary. ඎඋඅ: https://www.investopedia.com/dictionary/.
[44] Invisible Internet Project. ඎඋඅ: https://geti2p.net/en/.
[48] Kovri Gitlab repository. ඎඋඅ: https : / / gitlab . com / kovri - project /

kovri.
[49] Kovri I2P Project. ඎඋඅ: https://kovri.io/.
[52] GregoryMaxwell.Confidential Transactions. ඎඋඅ: https://elementsproject.

org/.
[54] Monero fees charts. ඎඋඅ: https://bitinfocharts.com/.

82

https://doi.org/10.1109/SP.2015.22
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
https://github.com/libbitcoin/libbitcoin-explorer/wiki/bx-base58-encode
https://github.com/libbitcoin/libbitcoin-explorer/wiki/bx-base58-encode
https://bitcointalk.org/
https://en.bitcoinwiki.org/wiki/
https://www.bitmain.com/
https://www.blockchain.com/
https://www.coindesk.com/
https://github.com/cazala/coin-hive/
https://cryptoanarchy.wiki/
https://cryptonote.org/coins
https://cryptonote.org/inside
https://xmr.llcoins.net/addresstests.html
https://xmr.llcoins.net/addresstests.html
https://www.economist.com/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
http://esperanto.net/en/
https://getmonero.org/
https://www.investopedia.com/dictionary/
https://geti2p.net/en/
https://gitlab.com/kovri-project/kovri
https://gitlab.com/kovri-project/kovri
https://kovri.io/
https://elementsproject.org/
https://elementsproject.org/
https://bitinfocharts.com/

BIBLIOGRAPHY

[55] Monero project - Github. ඎඋඅ: https://github.com/monero-project.
[56] Monero stack exchange. ඎඋඅ: https://monero.stackexchange.com/.
[60] Open Whisper Systems. ඎඋඅ: https://signal.org/.
[62] Reddit. ඎඋඅ: https://www.reddit.com/.
[66] Segregated Witness proposal. ඎඋඅ: https://github.com/bitcoin/bips/.
[67] Seigen et al. CryptoNight. ඎඋඅ: https://cryptonote.org/cns/cns008.

txt.
[68] Riccardo Spagni. On Twitter. ඎඋඅ: https://twitter.com/fluffypony/

status/974670746772496385.
[70] Standards for Efficient Cryptography Group. ඎඋඅ: https://www.secg.org/.
[72] TeamKeccak. Keccak. ඎඋඅ: https://keccak.team/keccak.html.
[73] The Monero project. ඎඋඅ: https://monero.org/.
[74] Tor Project. ඎඋඅ: https://www.torproject.org/.
[76] Vasilis Agiotis. ඎඋඅ: https://www.linkedin.com/in/vassilis-agiotis-

829928172/.
[79] Zcash. ඎඋඅ: https://z.cash/.
[80] Zero-Knowledge proofs science. ඎඋඅ: https://zkp.science/.

83

https://github.com/monero-project
https://monero.stackexchange.com/
https://signal.org/
https://www.reddit.com/
https://github.com/bitcoin/bips/
https://cryptonote.org/cns/cns008.txt
https://cryptonote.org/cns/cns008.txt
https://twitter.com/fluffypony/status/974670746772496385
https://twitter.com/fluffypony/status/974670746772496385
https://www.secg.org/
https://keccak.team/keccak.html
https://monero.org/
https://www.torproject.org/
https://www.linkedin.com/in/vassilis-agiotis-829928172/
https://www.linkedin.com/in/vassilis-agiotis-829928172/
https://z.cash/
https://zkp.science/

	Acknowledgements
	Preface
	Why Monero?
	An important thank you note
	Narrative

	Introduction
	Decentralization
	Summary of Contribution
	Thesis structure

	I From decentralization to re-centralization
	Preliminaries
	Cryptography background
	Hash function
	Password Scramblers
	Memory-Hard Functions
	Pseudorandom Functions
	Pebbling game

	Bitcoin
	Transactions
	Inputs
	Outputs
	Blocks
	Merkle Trees
	Blockchain
	Mining
	Proof of Work (PoW)
	Simplified Payment Verification (SPV)
	Smart contracts
	Scripts
	P2PKH
	Theoretical model

	Egalitarian Mining
	Egalitarianism

	Monero
	Introduction
	History
	Specifications
	Account
	Keys

	CryptoNote
	Untraceable transactions
	Unlinkable transactions
	Stealth address construction
	Double-spending proof
	Blockchain analysis resistance
	More about CryptoNote

	Monero vs CryptoNote
	RingCT
	Bulletproofs
	Kovri I2P Network

	II Back to decentralization
	Our Model
	CryptoNight Description
	The three stages
	The first stage
	The second stage (memory-hardness)
	The third stage

	Analysis
	Parameters
	AES as PRF
	Operations

	CryptoNight Analysis
	Introduction
	Proof approach
	The model
	The road to proof construction

	Attack approach
	Details

	Conclusion
	Summary
	Future Work
	Epilogue

	Bibliography
	Web resources

