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ABSTRACT

In their Graph Minors series, Neil Robertson and Paul Seymour among other great results proved
Wagner's conjecture which is today known as the "Robertson and Seymour's theorem". In every
step along their way to the final proof, each special case of the conjecture which they were proving
was a consequence of a "structure theorem", that sufficiently general graphs contain minors or
other sub­objects that are useful for the proof ­ or equivalently, that graphs that do not contain a
useful minor have a certain restricted structure, deducing that way also a useful information for
the proof. The main object of this thesis is the presentation of ­relatively short­ proofs of several
Robertson and Seymour's theorem's special cases, illustrating by this way the interplay between
structural graph theory and graphs' well­quasi­ordering. We also present the proof of perhaps the
most important special case of Robertson and Seymour's theorem which states that embeddability
in any fixed surface can be characterized by forbidding finitely many minors. The latter result is
deduced as a well­quasi­ordering result, indicating by this way the interplay between topological
graph theory and well­quasi­ordering theory. Finally, we survey results regarding the well­quasi­
ordering of graphs by other than the minor graphs' relations.
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ΣΥΝΟΨΗ

Στη σειρά εργασιών Ελασσόνων Γραφημάτων, οι Neil Robertson και Paul Seymour μεταξύ άλλων
σπουδαίων αποτελεσμάτων, απέδειξαν την εικασία του Wagner που σήμερα είναι γνωστή ως
το Θεώρημα των Robertson και Seymour. Σε κάθε τους βήμα προς την συναγωγή της τελικής
απόδειξης της εικασίας, κάθε ειδική περίπτωση αυτής που αποδείκνυαν ήταν συνέπεια ενός "δομι­
κού θεωρήματος" το οποίο σε γενικές γραμμές ισχυριζόταν ότι ικανοποιητικά γενικά γραφήματα
περιέχουν ως ελάσσονα γραφήματα ή άλλες δομές που είναι χρήσιμα για την απόδειξη, ή ισοδύ­
ναμα, ότι η δομή των γραφημάτων τα οποία δεν περιέχουν ένα χρήσιμο για την απόδειξη γράφημα
ως έλασσον είναι κατά κάποιο τρόπο περιορισμένη συνάγοντας έτσι και πάλι μια χρήσιμη πληρο­
φορία για την απόδειξη. Στην παρούσα εργασία, παρουσιάζουμε ­σχετικά μικρές­ αποδείξεις
διαφόρων ειδικών περιπτώσεων του Θεωρήματος των Robertson και Seymour, αναδεικνύοντας
με αυτό τον τρόπο την αλληλεπίδραση της δομικής θεωρίας γραφημάτων με την θεωρία των
καλών­σχεδόν­διατάξεων. Παρουσιάζουμε ακόμα την ίσως πιο ενδιαφέρουσα ειδική περίπτωση
του Θεωρήματος των Robertson και Seymour, η οποία ισχυρίζεται ότι η εμβαπτισιμότητα σε
κάθε συγκεκριμένη επιφάνεια δύναται να χαρακτηριστεί μέσω της απαγόρευσης πεπερασμένων
το πλήθος γραφημάτων ως ελάσσονα. Το τελευταίο αποτέλεσμα συνάγεται ως ένα αποτέλεσμα
της θεωρίας των καλών­σχεδόν­διατάξεων αναδεικνύοντας με αυτό τον τρόπο την αλληλεπίδρασή
της με την τοπολογική θεωρία γραφημάτων. Τέλος, σταχυολογούμε αποτελέσματα αναφορικά με
την καλή­σχεδόν­διάταξη κλάσεων γραφημάτων από άλλες ­πέραν της σχέσης έλασσον­ σχέσεις
γραφημάτων.
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CHAPTER1
BASIC DEFINITIONS AND NOTATIONS

In this chapter we give the basic definitions needed for the understanding of the concepts which
we discuss in further chapters and we fix the notation we plan to use throughout this thesis. Some
terms which can be better understood in their proper setting will be introduced there. The only
knowledge assumed here is a familiarity with simple sentences of propositional and first­order
logic and with trivial set theory. We will systematically make use of the following logic and set­
theoretic symbols: →,⇒,⇔,¬,∧,∨,∀,∃,∄,∃!, :=,=:, ∅,∈, /∈,⊆,⊊,⊇,⊋,∪,∩. The semantics
of the these symbols will be the usual1.

1.1 Sets, relations and functions

For a rigourous introduction in set theory and logic, we refer the interested reader to [93] and [39]
respectively.

Definition 1.1.1 (partition). Given a set A, a set P will be said to be a partition of A if and only
if the following hold:

(i) (∀X ∈ P )[X ̸= ∅];

(ii)
⋃

X∈P X = A;

(iii) (∀X1, X2 ∈ P )[X1 ∩X2 = ∅].

Definition 1.1.2 (cardinality of a set\order of a set2). Given a set A the cardinality of A ­denoted
by |A|­ is the number of the elements of A. We also call the cardinality of a set as its order.

Notation 1.1.3 (natural, integer, rational and real numbers). We denote the sets of natural, integer,
rational and real numbers by N,Z,Q and R respectively.

Definition 1.1.4 (powerset of a set). Let X be a set, the powerset of X ­denoted by P(X)­ is the
set of all subsets of X , that is P(X) = {A|A ⊆ X}

1see e.g. [39, 93]
2When we define a new notion we use the symbol "\" between different equivalent names of this notion.
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Definition 1.1.5 (k­subset, k­subsets). Let X be a set and k be a positive integer. A k­subset of
X , is a subset of X which contains exactly k elements. The k­subsets of X ­denoted by [X]k­ is
the set of all subsets of X with order k, that is [X]k = {A|(A ⊆ X) ∧ (|A| = k)}.

Notation 1.1.6 (set of finite subsets). Given a set X , we denote by [X]<ω the set of all finite
subsets of X .

Definition 1.1.7 (Cartesian Product of sets). Let n ≥ 2 be a natural number and X1, . . . Xn be
sets. The Cartesian product of the sets X1, . . . Xn ­denoted by X1×, . . . ,×Xn and by Πn

i=1Xi­
is the set: {(x1, . . . , xn)|(x1 ∈ X1) ∧ . . . ∧ (xn ∈ Xn)}.

Definition 1.1.8 (n­ary Cartesian power of a set). Let n ≥ 2 be a natural number and X be a set,
then the Cartesian productX × . . .×X︸ ︷︷ ︸

n times

is said to be the n­ary Cartesian power of the set X .

We proceed with definitions relative with binary relations, the main binary relations that we
will consider throughout this thesis are the well­quasi­orders which we define in Chapter 2 (Defi­
nition 2.1.2).

Definition 1.1.9 (binary relation). Let A,B be a sets, a binary relation over the sets A,B is a
subset of A×B. A binary relation on A is a subset of A×A.

Notation 1.1.10. Given a binary relation, say R, we denote by xRy the fact that (x, y) ∈ R.

Definition 1.1.11 (reflexive/irreflexive/symmetric/antisymmetric/transitive relation). Let X be a
set and R be a binary relation on X . The relation R will be said to be:

• reflexive if and only if (∀x ∈ X)[xRx];

• irreflexive if and only if (∀x, y ∈ X)[xRy → x ̸= y];

• symmetric if and only if (∀x, y ∈ X)[xRy → yRx];

• antisymmetric if and only if (∀x, y ∈ X)[(xRy) ∧ (x ̸= y)→ ¬(yRx)];

• transitive if and only if (∀x, y, z ∈ X)[(xRy) ∧ (yRz)→ xRz].

Definition 1.1.12 (quasi­order). Let X be a set and R be a binary relation on X . The relation R
will be said to be a quasi­order if and only if is reflexive and transitive. If R is a quasi­order on
X , we will say that the set X is quasi­ordered by the relation R.

Definition 1.1.13 (extension of a quasi­order). Given a setX and two quasi­orders R1, R2 onX .
We say that the relation R2 is an extension of R1 if and only if R1 ⊆ R2. In this case, we also
say that R1 is a restriction of R2 or that R2 extends R1.

Definition 1.1.14 (partial order). Let X be a set and R be a binary relation on X . The relation R
will be said to be a partial order if and only if is reflexive, transitive and antisymmetric. If R is a
partial order on X , we will say that the set X is partially ordered by the relation R.

Observation 1.1.15. It follows immediate from the above definitions that every partial order is a
quasi­order.
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Definition 1.1.16 (strict partial order). LetX be a set andR be a binary relation onX . The relation
R will be said to be a strict partial order if and only if is irreflexive and transitive. If R is a strict
partial order on X , we will say that the set X is strictly partially ordered by the relation R.

Observation 1.1.17. It follows immediate from the above definition that every strict partial order
is antisymmetric.

Definition 1.1.18 (equivalence relation). Let X be a set and R be a binary relation on X . The
relation R will be said to be an equivalence binary relation if and only if is reflexive, symmetric
and transitive.

Definition 1.1.19 (classes of equivalence, representative of a class of equivalence). LetX be a set
and R be an equivalence relation onX . For every x0 ∈ X the set {x ∈ X|x ∼ x0} is the class of
equivalence of x0. Any element of a class of equivalence is said to be a representative of a class
of equivalence.

Definition 1.1.20 (chain). Let X be a set, R be a binary relation on X and let also A be a subset
of X . The set A will be said to be a chain ­w.r.t. R­ if and only if (∀x, y ∈ A)[(xRy) ∨ (yRx)].

Definition 1.1.21 (incomparable elements). Let R be a binary relation on a set X , and x, y ∈ X .
We say that x and y are incomparable ­w.r.tR­ elements ofX if and only if nor yRx neither xRy.
If x, y are incomparable elements of a set, we denote that by x|y.

Definition 1.1.22 (antichain). LetX be a set,R be a binary relation onX and let alsoA be a subset
ofX . The setAwill be said to be an antichain ­w.r.t. R­ if and only if (∀x, y ∈ A)[x ̸= y ⇒ x|y ].

Comment 1.1.23. We often use the symbol ≤ to denote a binary relation. In that case we denote
the fact that (x, y) /∈≤ by x ≰ y and the fact that (x, y) ∈≤ by x ≤ y.

Definition 1.1.24 (equivalent/minimum/minimal/maximum/maximal element w.r.t a quasi­order).
Let X be a nonempty set which is quasi ordered by a binary relation ≤. Two elements of X , say
x1, x2 will be said to be equivalent (w.r.t ≤) if and only if (x2 ≤ x1) ∧ (x1 ≤ x2). An element
x1 ∈ A will be said to be:

• A minimal element of A (w.r.t. ≤) if and only if (∀x ∈ A)[x ̸= x1 ⇒ x ≰ x1];

• a minimum element of A (w.r.t. ≤) if and only if (∀x ∈ A)[x1 ≤ x];

• a maximal element of A (w.r.t. ≤) if and only if (∀x ∈ A)[x ̸= x1 ⇒ x1 ≰ x];

• a maximum element of A (w.r.t. ≤) if and only if (∀x ∈ A)[x ≤ x1].

When it is clear from the context the quasi­order to which we refer we shall omit the reference
"w.r.t" in the above characterizations.

Definition 1.1.25 (function\map, domain of function, codomain of function). LetA,B be two sets,
a binary relation f ⊆ A × B will be said to be a function if and only if the following condition
holds:

(∀x ∈ A)[
(
(x, y1) ∈ f

)
∧
(
(x, y2) ∈ f

)
→ y1 = y2].

If f ⊆ A× B is a function, we denote that by f : A→ B, and we call the set A the domain of f
and the set B the codomain of f we also denote by f(x) = y the fact that (x, y) ∈ f .
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Binary relation Reflexive Irreflexive Symmetric Antisymmetric Transitive

Quasi­order • •
Partial order • • •
Strict partial order • • •
Equivalence binary relation • • •

Table 1.1: Binary relations.

Definition 1.1.26 (restriction of a function). Let f : A→ B be a function and A′ ⊆ A. Then the
restriction of f in A′ ­denoted by f |A′­ is the function f |A′ := {(x, y) ∈ f |x ∈ A′}.

Definition 1.1.27 (partial function). Let A,B be two sets, a binary relation f ⊆ A × B will be
said to be a partial function if and only if there exists a subset A′ ⊆ A such that f ⊆ A′ × B is a
function with its domain to be the set A′.

Definition 1.1.28 (image of a set via a function, image of a function). Given a function f : A→ B
and a set C ⊆ A the set {y ∈ B|(∃x ∈ C)[f(x) = y]} will be called the image of C via f3. and
will be denoted by f(C), if C = A then we call the set f(A) the image of f .

Definition 1.1.29 (injection\one­to­one function). Given a function f : A→ B, f will be said to
be an injection or an injective function or a one­to­one function if and only if (∀x, y ∈ A)[f(x) =
f(y)→ x = y].

Definition 1.1.30 (surjection\onto function). Given a function f : A→ B, f will be said to be an
surjection or an surjective function or an onto function if and only if (∀y ∈ B)(∃x ∈ A)[f(x) = y].

Definition 1.1.31 (bijection\bijective function). A function f will be said to be a bijection or a
bijective function if and only if is injective and surjective.

Definition 1.1.32 (inverse function). Given a one­to­one function f : A → B, the function
{(y, x)|(y ∈ B) ∧ (x ∈ A) ∧ (y = f(x))} ⊆ B × A will be said to be the inverse function
of the function f and will be denoted by f−1.

Definition 1.1.33 (composition of functions). Given two functions f : A → B and g : B → C,
the function {(x, z)|(x ∈ A) ∧ (z ∈ C) ∧ (z = g(f(x)))} ⊆ A × C will be said to be the
composition of f with g and will be denoted by f ◦ g.

Definition 1.1.34 (Cartesian Product of arbitrary many sets). Let I be an arbitrary set and {Xi|i ∈
I} be a family of sets, then the set

{x : I →
⋃
i∈I

Xi|(∀i ∈ I)[x(i) ∈ Xi]}

will be said to be the Cartesian product of the sets {Xi|i ∈ I} and will be denoted by Πi∈IXi.

Definition 1.1.35 (order homomorphism). LetX,Y be two sets quasi­ordered by the relations≤1

and≤2 respectively. A function f : X → Y will be said to be an order homomorphism if and only
if (∀x1, x2 ∈ X)[x1 ≤1 x2 → f(x1) ≤2 f(x2)].

3When it is clear from the context to which function we refer, we shall omit the reference "via f".
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Definition 1.1.36 (sequence, sequence on a set). A function is said to be a sequence if and only if
its domain coincidence with the set of natural numbers. Given a non­empty set X a sequence on
X is a sequence whose image is subset of X .

Definition 1.1.37 (term, n­th term, set of terms of a sequence). Given a sequence x on a setX , an
element of X is called a term of x if and only if it 's an element of the image of x. The image of
x is also called the set of terms of x. The n­th term of x is the elementX which equals with x(n)
and which will be also denoted by xn.

Notation 1.1.38. A sequence x will be also denoted as (xn)n∈N.

Definition 1.1.39 (antichain sequence). Given a set X , a binary relation R on X and a sequence
(xn)n∈N on X , (xn)n∈N will be said to be an antichain sequence or simply antichain ­w.r.t R­ if
and only if the set of its terms is an antichain w.r.t. R.

Definition 1.1.40 ((strictly) increasing/(strictly) decreasing). Given a set X , a quasi­order R on
X and a sequence (xn)n∈N on X , (xn)n∈N will be said to be a increasing sequence if and only
if (∀i ∈ N)[xiRxi+1], if moreover (∀i ∈ N)[¬(xi+1Rxi)] then (xn)n∈N will be said to be
strictly increasing. Analogously (xn)n∈N will be said to be an decreasing sequence if and only
if (∀i ∈ N)[xi+1Rxi], if moreover (∀i ∈ N)[¬(xiRxi+1)] then (xn)n∈N will be said to be strictly
increasing.

Definition 1.1.41 (well­founded binary relation). A binary relation ≤ on a set X is called well­
founded on X if and only if every non­empty subset of X has a minimal (w.r.t ≤) element, that
is: (∀A ⊆ X)[A ̸= ∅ ⇒ (∃y ∈ A)(∀x ∈ A)[¬(x ≤ y)]]. Equivalently, if and only if it contains
no countable infinite strictly decreasing chains: that is, there is no infinite sequence (xn)n∈N of
elements of X such that (∀n ∈ N)[xn+1 < xn].

1.2 Graphs

This section consists a brief, self­contained introduction to graph theory. Although we do not
follow in every notion the same notation, the main source for this section ­which we also suggest
as a further reading­ was the textbook of Diestel [30] in graph theory.

Definition 1.2.1 (graph, vertices and edges of a graph, vertex set and edge set of a graph). A graph
is an ordered pair of two sets such that the second element of this pair is subset of the 2­subsets of
the first element, that is, ifG is a graph such thatG = (V,E), then E ⊆ [V ]2. The elements of the
first set of the ordered pair are called vertices of the graph and those of the second set are called
edges of the graph. That way the first set of the ordered pair will be said to be the vertex set or the
set of vertices of the graph and the second will be said to be edge set of the graph. A graph with
vertex setX will be said to be a graph onX . That way, if we say that G is a graph on N we mean
that V (G) = N

The usual way to illustrate a graph ­which we also follow throughout this thesis­ is by drawing
a dot for each vertex of the graph and joining two of these dots by a line if the corresponding two
vertices form an edge.

Definition 1.2.2 (empty graph). The empty graph ­denoted by ∅­ is the graph (∅, ∅).
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1
2

3 45

6

Figure 1.2.1: An illustration of the graph
(
{1, 2, 3, 4, 5, 6}, {{3, 6}, {5, 4}, {5, 2}, {2, 4}}

)
. The

vertex 1 is an isolated vertex of the graph.

Definition 1.2.3 (order of a graph, finite/infinite/countable/uncountable graph, trivial graph). The
order of a graph G is the cardinality of its vertex set. Graphs could be finite, infinite, countable or
uncountable according to their order. A graph of order 0 or 1 will be said to be a trivial graph.

Notation 1.2.4. LetH be a graph. The vertex set and the edge set ofH will be denoted by V (H)
and E(H) respectively. This notation is independent of the specific name of those sets and is
depended only on the name of the graph.

Definition 1.2.5 (union, intersection, disjoint graphs). Let G,G′ be two graphs. Then their union
­denoted by G∪G′­ is the graph (V (G)∪ V (G′), E(G)∪E(G′)), analogously their intersection
­denoted by G ∩G′­is the graph (V (G) ∩ V (G′), E(G) ∩E(G′)). The graphs G,G′ will be said
to be disjoint if and only if G ∩G′ = ∅.

Notation 1.2.6. Given two graphs, sayG,G′, we denote byG\G′ the graph (V (G)\V (G′), E(G)\
E(G′)).

Definition 1.2.7 (complement of a graph). Let G be a graph, then the complement of G ­denoted
by Ḡ­ is the graph (V (G), [V ]2 \ E(G)).

Definition 1.2.8 (incident vertex with an edge, endpoints/ends/endvertices of an edge). LetG be a
graph. A vertex v ∈ V (G) will be said to be incident with an edge e ∈ E(G) if and only if v ∈ e.
Given an edge e ∈ E(G), two points that are incident to e are the endpoints of e. The endpoints
of an edge are also called ends and endvertices of this edge.

Definition 1.2.9 (adjacent vertices\neighbors, non­adjacent vertices). Let G be a graph. Two ver­
tices v, w of G will be said to be adjacent or neighbours if and only if {v, w} ∈ E(G). Two
vertices which are not adjacent will be said to be non­adjacent.

Definition 1.2.10 (the set of neighbors/ the neighborhood of a vertex). Let G be a graph and
v ∈ V (G). The set of all vertices which are adjacent with of v will be called the set of neighbors
of v or the neighborhood of v and will be denoted by NG(v).

Definition 1.2.11 (adjacent edges). Let G be a graph, two edges of G, say e, f such that e ̸= f
will be said to be adjacent if and only if they have one endpoint in common, that is, if and only if
|e ∩ f | = 1.

Definition 1.2.12 (degree\valency of a vertex, isolated vertex). Let G be a graph and v ∈ V (G).
The degree of v ­denoted by deg(v)­ is the number of edges that v is incident with or equivalently
the number |NG(v)|. An isolated vertex is a vertex which has degree 0.
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Definition 1.2.13 (minimum and maximum degree of a graph). Given a graph G the minimum
degree of G ­denoted by δ(G)­ is the minimum degree of a vertex of this graph, that is, δ(G) =
min{|NG(v)| |v ∈ V (G)}. Analogously the maximum degree of G ­denoted by ∆(G)­ is the
maximum degree of a vertex of this graph, that is,∆(G) = max{|NG(v)| |v ∈ V (G)}.

Definition 1.2.14 (k­regular/regular graph). If all the vertices of a graph have the same degree,
say k, then the graph is called k­regular, or simply regular.

Definition 1.2.15 (cubic graph). A 3­regular graph will be said to be a cubic graph.

Definition 1.2.16 (subcubic graph). A graphGwill be said to be subcubic if and only if∆(G) ≤ 3.

Definition 1.2.17 (homomorphism and isomorphism between graphs). Let G,G′ be two graphs.
A function φ : V (G) → V (G′) will be said to be a homomorphism from G to G′ if and only if it
preserves the adjacency of vertices, that is, (∀v, u ∈ V (G))[{v, u} ∈ E(G) ⇒ {φ(v), φ(u)} ∈
E(G′)]. If moreover, φ is bijective and its inverse function is also a homomorphism, then φ will
be said to be an isomorphism.

Definition 1.2.18 (isomorphic graphs). Two graphs, say G,G′, will be said to be isomorphic ­
denoted by G ≃ G′ ­if and only if there exist an isomorphism from V (G) to V (G′).

Observation 1.2.19. The relation ≃, as easily can be checked, is an equivalent relation. Hence a
specific graph may be isomorphic with infinitely many graphs which belong to the same class of
equivalence, we often use a representative of a class to refer any of its members.

Definition 1.2.20 (graph property). A set of graphs Q will be said to be a graph property if and
only if it is closed under isomorphism, that is, if and only if

(∀G,G′)[(G ≃ G′) ∧ (G′ ∈ Q)⇒ G ∈ Q].

Definition 1.2.21 (graph invariant). A function which takes graphs as arguments is called graph
invariant if and only of it maps isomorphic graphs to same values.

Definition 1.2.22 (complete graph\clique). For each positive natural number n, the graph Kn is
defined to be the following:(

{v1, . . . , vn}, {{vi, vj} |1 ≤ i < j ≤ n}
)
.

A graphG on n vertices will be said to be complete, or a complete graph on n vertices, or aKn or
a clique if and only if G ≃ Kn.

Definition 1.2.23 (triangle). A graph will be said to be a triangle if and only if it is aK3.

Definition 1.2.24 (path, path of length n, trivial path). For each natural number n, the graph Pn is
defined to be the following:(

{0, . . . , vn}, {{vi, vi+1} |0 ≤ i ≤ n− 1}
)
.

A graph G on n vertices will be said to be a path of length n or a Pn if and only if G ≃ Pn, a path
is any graph for which there exist a natural number n such that this graph is a path of length n. In
the case in which n = 0, the path P0 will be said to be a trivial path.
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P4

C4

Figure 1.2.2: On the left hand side it is illustrated a path of length 4 and on the right hand side a
cycle of length 4.

Notation 1.2.25. We often refer to a path by the natural sequence of its vertices, that is, given a
path of length n, say,

P =
(
{0, . . . , vn}, {{vi, vi+1} |0 ≤ i ≤ n− 1}

)
.

we may also denote P by (v0, . . . vn).

Comment 1.2.26. Throughout this thesis sometimes we enumerate a set of paths and we use the
symbol Pn to denote its n­th element, or we use this symbol to refer to another path. It will be
clear from the context when we do so.

Definition 1.2.27 (endpoints\ends of a path, vertices linked by a path). Let n ≥ 2, given a path P
of length n the vertices of P which correspond (via an isomorphism) to the vertices v0, vn of Pn,
will be said to be the endpoints or the ends of P , and will be also said to be linked by P .

Notation 1.2.28. Let P be a path and let v0, vn be its endpoints. We denote by P̊ the set
(
V (P )∪

E(P )
)
\ {v0, vn}.

Definition 1.2.29 (internally vertex­disjoint paths). Two paths, say P1, P2 will be said to be inter­
nally vertex­disjoint if and only if P̊1 ∩ P̊2 = ∅.

Definition 1.2.30 ((A,B)­path). LetG be a graph and letA,B ⊆ V (G). A path whose vertex set
and the edge set are subsets of V (G), E(G) respectively, and who has its one endpoint in A and
its other endpoint in B will be said to be an (A,B)­path.

Definition 1.2.31 (walk, closed walk). Let k be a positive natural number and G be a graph. An
alternating sequence of vertices and edges ofG, say v0, e0, v1, e1 . . . , ek−1, vk, will be said to be a
walk of length k in G if and only if (∀i < k)[ei = {vi, vi+1}]. If moreover v0 = vk the walk will
be said to be closed.

Definition 1.2.32 (cycle, cycle of length n). For each natural number n ≥ 3, the graph Cn is
defined to be the following:

{{v1, . . . , vn}, {{vi, vi+1} |1 ≤ i ≤ n− 1} ∪ {vn, v1}}.

A graphG on n vertices will be said to be a cycle of length n if and only ifG ≃ Cn, a cycle is any
graph for which there exist a natural number n such that this graph is a cycle of length n.
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K5 K2,3

Figure 1.2.3: On the left hand side it is illustrated a complete graph on 5 vertices and on the right
hand side a complete bipartite graph.

Definition 1.2.33 (k­partite graph, bipartite graph). Let k ≥ 2 be a positive integer. A graph G
will be said to be a k­partite graph if and only if its vertex set V (G) admits a partition into k sets
such for every edge e ofG the endpoints e belong to different sets of the partition, i.e. for each set
of the partition no two vertices of this set are adjacent. A 2­partite graph is called bipartite.

Definition 1.2.34 (complete k­partite graph, complete bipartite graph). Let G be k­partite graph
and consider a partition of V (G) which witness our assumption. The graph G will be said to be
complete k­partite graph if and only if every two vertices which belong to different sets of the
partition are adjacent. A complete 2­partite graph is called complete bipartite graph.

1.2.1 Operations on graphs & graphs' relations

Definition 1.2.35 (vertex deletion). Let G be a graph. The deletion of a vertex v ∈ V (G) trans­
forms G to the graph (V (G) \ {v}, {e ∈ E(G)|v /∈ e}). The resulting graph after applying the
deletion of a vertex v on G is denoted by G \ v.

Definition 1.2.36 (edge deletion). LetG be a graph. The deletion of an edge e ∈ E(G) transforms
G to the graph (V (G), E(G) \ {e}). The resulting graph after applying the deletion of an edge e
on G is denoted by G \ e.

Definition 1.2.37 (edge contraction, contraction vertex). Let G be a graph and let e = {u, v} be
an edge of G. The contaction of the edge e is the operation which consists in the deletion of e and
the addendum of a new vertex ve to the graph G which we connect with all the neighbours of u
and v (if some multiple edges are created we delete them). Thus the contraction of an edge e on a
graph G yields to the graph:(

V (G) ∪ {ve}, {E(G) \ e} ∪ {{ve, v′}|(v′ ∈ NG(u)) ∨ (v′ ∈ NG(v))}
)
,

which is denoted by G/e. The vertex ve will be said to be the contraction vertex.

Definition 1.2.38 (suppression of a vertex). Let G be a graph and v be a vertex of degree 2 of G,
then the suppression of v consists in the contraction of the one of the two edges which are incident
to v.

Definition 1.2.39 (subdivision of an edge, subdivision vertex). LetG be a graph and let e = {u, v}
be an edge of G. The subdivision of G is the operation which consists in the deletion of e and the
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addendum of a new vertex ve, and the two edges {u, ve}, {ve, v} in G. Thus the contraction of an
edge e on a graph G yields to the graph:(

V (G) ∪ {ve}, {E(G) \ e} ∪ {{u, ve}, {ve, v}}
)
.

Definition 1.2.40 (lift of two edges). Let G be a graph and let e1 = {x, y} and e2 = {x, z} be
two edges of G. The lift of those two edges is the operation which consists in the removal of e1
and e2 from G and the addendum of the edge {y, z}. Thus the lift of two edges e1 = {x, y} and
e2 = {x, z} on a graph G yields to the graph:(

V (G), E(G) \ {e1, e2} ∪ {{y, z}}
)
.

Comment 1.2.41. Notice that in the case the edge we are adding already present, the lift of two
edges may create a multiple edge. this is the only exception throughout this thesis where multiple
edges ­as a result of the application of an operation on graphs­ are allowed.

Based on the above operations we define several binary relations between graphs.

Graph 's relation vertex deletion vertex dissolution edge deletion edge contraction lift

Subgraph • •
Spanning subgraph •
Induced subgraph •
Minor • • •
Topological minor • • •
Induced minor • •
Weak immersion • • •

Table 1.2: Graphs' relations and correspondence operations.

Definition 1.2.42 (subgraph relation on graphs). Given two graphs, say H and G, the graph H
will be said to be a subgraph of G ­denoted byH ≤ G­ if and only if there exist a natural number
n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each i ∈ {1, . . . , n},
the graph Gi can be obtained from the graph Gi−1 by the deletion of one vertex or the deletion of
one edge.

Definition 1.2.43 (induced subgraph relation on graphs). Given two graphs, say H and G, the
graph H will be said to be an induced subgraph of G ­denoted by H ≤is G­ if and only if there
exist a natural number n and a sequence of graphs G0, . . . , Gn such that: G = G0, H = Gn and
for each i ∈ {1, . . . , n}, the graph Gi can be obtained from the graph Gi−1 by the deletion of a
vertex.

Definition 1.2.44 (topological minor relation on graphs). Given two graphs, say H and G, the
graph H will be said to be a topological minor of G ­denoted by H ≤tm G­ if and only if there
exist a natural number n and a sequence of graphs G0, . . . , Gn such that: G = G0, H = Gn and
for each i ∈ {1, . . . , n}, the graph Gi can be obtained from the graph Gi−1 by the deletion of a
vertex, or the deletion of an edge, or by the suppression of a vertex

10
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Definition 1.2.45 (induced minor relation on graphs). Given two graphs, sayH and G, the graph
H will be said to be a induced minor of G ­denoted by H ≤im G­ if and only if there exist a
natural number n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each
i ∈ {1, . . . , n}, the graph Gi can be obtained from the graph Gi−1 by the deletion of a vertex or
by the contraction of an edge.

Definition 1.2.46 (contraction relation on graphs). Given two graphs, say H and G, the graph H
will be said to be a contraction ofG ­denoted byH ≤c G­ if and only if there exist a natural number
n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each i ∈ {1, . . . , n},
the graph Gi can be obtained from the graph Gi−1 by the contraction of an edge.

Comment 1.2.47. Presented two graphs H,G such that H is a contraction of G we will also say
that the graph G can be contracted onto H .

Definition 1.2.48 (subdivision relation on graphs). Given two graphs, say H and G, the graph H
will be said to be a subdivision ofG ­denoted byH ≤s G­ if and only if there exist a natural number
n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each i ∈ {1, . . . , n},
the graph Gi can be obtained from the graph Gi−1 by the subdivision of an edge.

Definition 1.2.49 (weak immersion relation on graphs). Given two graphs, sayH andG, the graph
H will be said to be a weak immersion of G ­denoted by H ≤w

im G­ if and only if there exist a
natural number n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each
i ∈ {1, . . . , n}, the graph Gi can be obtained from the graph Gi−1 by the deletion of a vertex, or
by the deletion of an edge, or by a vertex suppressions.

Definition 1.2.50 (strong immersion relation on graphs). Given two graphs, sayH andG, we will
say that the graph H can be strongly immersed in the graph G, if and only if H can be obtained
from G by a sequence of vertex splittings (i.e., lifting some pairs of incident edges and removing
the vertex) and edge removals.

Definition 1.2.51 (S­maintaining contraction). Let G be a graph, let S ⊆ V (G), and let e =
{x, y} be an edge of E(G) such that not both its endpoints are in S. We say thatG′ is the result of
a S­maintaining contraction inG ifG′ is obtained if we remove x and y fromG, add a new vertex
vnew and make it adjacent with all vertices in the neighborhood of x or y inG that are still vertices
in G′. In the resulting graph, in case one, say x, of x and y is a member of S, we rename vnew by
x.

Notation 1.2.52. Let X and Y be sets. Let also α : X → Y and σ : X → 2Y . We will write
α ⋐ σ if and only if (∀x ∈ X)[α(x) ⊆ σ(x)].

Definition 1.2.53 (α­rooted minor). Let G and H be graphs and let α : V (H)→ V (G) be some
function mapping vertices ofH to vertices ofG . We say thatH is an α­rooted minor ofG if there
is a function σ : V (H)→ 2V (G) where α ⋐ σ and such that

• ∀x ∈ V (H) G[σ(x)] is a connected graph;

• ∀x, y ∈ V (H) x ̸= y ⇒ σ(x) ∩ σ(y) = ∅; and

• ∀{x, y} ∈ E(H) G[σ(x) ∪ σ(y)] is a connected graph.

11
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We call the function σ minor model of H in G.

The next observation offers a more dynamic way to define the notion of a α­rooted minor.

Observation 1.2.54. H is an α­rooted minor of G if and only if there is a sequence of α(V (H))­
maintaining contractions, edge removals, or vertex removals, that transformG to a graphH∗ such
that H is isomorphic to H∗ via some isomorphism ρ : V (H)→ V (H∗) where α ⊆ ρ.

Definition 1.2.55 (minor). We say thatH is a minor of G ­denoted byH ≤m G­ if and only ifH
is a ∅­minor of G.

The following is an immediate corollary of the above definition.

Corollary 1.2.56. Let H,G be two graphs, then H is a minor of G if and only if there exist a
natural number n and a sequence of graphsG0, . . . , Gn such that: G = G0,H = Gn and for each
i ∈ {1, . . . , n}, the graph Gi can be obtained from the graph Gi−1 by the deletion of a vertex, or
by the deletion of an edge, or by a contraction of an edge.

Observation 1.2.57. There exists no infinite strictly decreasing sequence of finite graphs with
respect to any of the aforementioned graphs' relations.

Notation 1.2.58. Throughout this thesis when we say that a graph has an H­minor we mean that
it has a minor isomorphic toH . We use analogue phrases for all the other graphs' relations that we
have denote in this subsection, for example sometimes we say that G has an H­subgraph instead
of saying G has a subgraph isomorphic to H .

Finally we have the following relation between minors and topological minors:

Proposition 1.2.59. Let G be a graph, then

(i) Every topological minor of G is also a minor of G;

(ii) If ∆(G) ≤ 3, then every minor of G is also a topological minor of G.

Definition 1.2.60 (graph property closed under a relation). Let Q be a graph property and ≤ be
a binary relation on graphs. The property Q will be said to be closed under the relation ≤ if and
only if (∀ graphs G,H)[(G ≤ H) ∧ (H satisfy Q)⇒ G satisfy Q]

1.2.2 Connectivity

Definition 1.2.61 (connected graph). A graph G will be said to be connected if and only if G ̸=
(∅, ∅) and any two of its vertices are linked by a path in G.

Definition 1.2.62 (acyclic). A graph will be said to be acyclic if and only if it has not a cycle as a
subgraph.

Definition 1.2.63 (forest, tree, leaf of a tree, inner vertices of at tree). A graph will be said to be a
forest if and only if it is acyclic. A connected forest will be said to be a tree. A vertex of tree will
be called a leaf if and only if has degree 1. Any vertex of tree which is not a leaf will be said to be
an inner vertex of the tree.

12
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Notation 1.2.64 (set of leaves of a tree). Let T be a tree. We denote by L(T ) the set of its leaves.

Definition 1.2.65 (cubic tree). A tree will be said to be cubic if and only if every inner vertex of
it has degree 3.

Definition 1.2.66 (connected component). Let G be a graph a subgraphH of G will be said to be
a connected component ofG if and only ifH is maximal connected ­with respect to the subgraph­
among the subgraphs of G, that is(

H is connected
)
∧
(
(∀F )[(F ⊆ G) ∧ (H ⊆ F )→ F is not connected]

)
.

Definition 1.2.67 ((A,B)­separator, minimal/minimum (A,B)­separator). Let G be a graph and
let A,B, S ⊆ V (G). The set S will be said to be an (A,B)­separator in G if and only if S
contains at least one vertex of every (A,B)­path of G. Given two vertices, say a, b of G the set
of vertices S will be said to be an (a, b)­separator if and only if S it is an ({a}, {b})­separator. In
the case that S is an (a, b)­separator we say that S separates a from b in G. An (A,B)­separator
is said to be a minimal (A,B)­separator if and only if every proper subset of S is not an (A,B)­
separator. An (A,B)­separator S is said to be a minimum (A,B)­separator if and only if every
other (A,B)­separator in G contains more vertices than S.

Definition 1.2.68 (separator, minimal separator, minimum separator). LetG be a connected graph
and S ⊆ V (G). The set of vertices S will be said to be a separator of G if and only if it separates
any two vertices of G. A separator S is said to be a minimal separator if and only if every proper
subset of S is not a separator. A separator S is said to be a minimum separator if and only if every
other separator of G contains more vertices than S.

Definition 1.2.69 (bridge). Let G be a graph and e be an edge of G. The edge e will be said to be
a bridge of G if and only if e do not lie in any cycle of G.

Definition 1.2.70 (cut­vertex). LetG be a graph. A vertex v ofG will be said to be a cut­vertex if
and only if the set {v} is separator of a connected component of G.

Definition 1.2.71 (k­connected graph). Let k be a positive integer, a graph G will be said to be
k­connected if and only if it |V (G)| > k and every separator of G has at least k vertices.

Definition 1.2.72 (block of a graph). Let G be a graph. A subgraph H of G will be said to be a
block of G if and only if it is maximally connected and it none of its vertices is a cut­vertex ofH .
Thus, every block of G is either maximal 2­connected subgraph of G, or a bridge, or an isolated
vertex.

The following theorem of Karl Menger is one of the cornerstones of graph theory, and we will
use it extensively in further chapters.

Theorem 1.2.73 (Menger [91]). For every graph G and given any two sets , say A,B, of vertices
ofG, the cardinality of the minimum (A,B)­separator equals to the maximum number of pairwise
internally vertex­disjoint (A,B)­paths.

Having formulate the basic definitions of graphs, we can now state, for historical interest,
the Seven Bridges of Königsberg Problem which typically consists the "birth certificate" of graph
theory as a branch of mathematics.

First is needed to define what an Eulerian cycle is.

13
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Definition 1.2.74 (Eulerian cycle, Eulerian graph). A closed walk in a graph will be said to be an
Eulerian cycle if and only if it traverse every edge of the graph exactly once. A graph will be said
to be Eulerian if and only if it admits4 an Eulerian cycle.

Figure 1.2.4: The seven bridges of Königsberg.

«It said that the people of Königsberg5 used to entertain themselves by trying to devise a route
around the city which would cross each of the seven bridges just once. Since their attempts had
always failed, many of them believed that the task was impossible, but it was not until the 1730s
that the problem was treated from a mathematical point of view and the impossibility of finding
such a root was proved. In 1736, one of the leading mathematicians of the time, Leonhard Eu­
ler, communicate with other mathematicians in the problem, and gave a general method for other
problems of the same type»6 So the the Königsberg bridge problem can be formulated as follows:

Can all the seven bridges of the city of Königsberg (Figure 1.2.4), be traversed in a
single trip without doubling back, with the additional requirement that the trip ends
in the same place it began?

Euler's treatment of the Königsberg bridge problem involved twomajor steps. First he replaced
the map of the city by a simple diagram (that is, by a graph!) which was encapsulate only those
informations which were necessary for the problem and then he formulate the problem in such
a way that the diagram became unnecessary.7 In nowadays ­graph theory­ terms the Königsberg
bridge problem can be formulated as follows:

4We shall often use some terms which we have not formally define, as long as their meaning is obvious.
5A/N. On 4 July 1946 the Soviet authorities renamed Königsberg to Kaliningrad.
6Biggs, Lloyd, and Wilson [13, page 2]
7For an analytical presentation of the article in which Euler dealt with this problem and in general of the history of

graph theory, we refer the interested reader in [13].

14



CHAPTER 1. BASIC DEFINITIONS AND NOTATIONS

Does the underlying graph (Figure 1.2.5), where bridges correspond to edges, admits
an Eulerian cycle.

A

B

C

D

Figure 1.2.5: On the left hand side a figure from Euler's paper [46] and on the right hand side is
illustrated the multigraph which correspond to the seven bridges of Königsberg problem.

Euler [46] proved in 1736 the following theorem.

Theorem 1.2.75 (Euler [46], 1736). A connected graph is Eulerian if and only if every vertex of
the graph has even degree.

1.2.3 Directed graphs

Definition 1.2.76 (directed graph). A directed graph is an ordered pair of two sets such that the
second set of this pair is subset of the Cartesian square of the first set. The elements of the first
set of the ordered pair are called vertices of the graph and those of the second set are called edges
of the graph. That way the first set of the ordered pair will be called the vertex set or the set of
vertices of the graph and the second will be called edge set of the graph.

Notation 1.2.77. LetD be a directed graph. The vertex set and the edge set ofD will be denoted
by V (D) and E(D) respectively. This notation is independent of the specific name of these sets
and is depended only on the name of the graph.

Definition 1.2.78 (head and tail of an edge of a directed graph, loop edge). Let D be a directed
graph and e = (u, v) ∈ E(D) be an edge ofD, then the vertex v will be called the head of the edge
e and will be denoted by head(e) and the vertex u will be called the tail of e and will be denoted
by tail(e). The edge e will be said to be an edge from u to v. If u = v then the edge e will be said
to be a loop.

Definition 1.2.79 (multiple and parallel edges of a directed graph). Note that a directed graph may
have several edges between the same two vertices, say u, v. Such edges are called multiple edges;
if they have the same direction (say from u to v), they are parallel.

Definition 1.2.80 (orientation of an undirected graph, underlying graph of a directed graph). A
directed graph D is an orientation of an undirected graph G if and only if(
(V (D) = V (G))∧(E(D) = E(G))

)
∧
(
(∀e ∈ E(G)[e = {x, y} → {head(e), tail(e)} = {x, y}])

)
.
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Given a directed graphD if there exists a graphG such thatD is an orientation ofG then then the
graph G will be said to be the underlying (undirected) graph of D.

Comment 1.2.81. Throughout this thesis, if not stated otherwise, the graphs that we consider will
be finite and undirected.

1.3 Topology

In this section, we present those definitions from topology that are necessary, in order to formally
define in the next section surfaces. For a rigorous introduction in topology of surfaces, we refer
the interested reader to [74].

Definition 1.3.1 (topology on a set). Let X be a set. If T ⊆ P(X), then T will be said to be a
topology on X , if and only if:

(i) ∅, X ∈ T;

(ii) T is closed under finite intersections, i.e. if n ∈ N andG1, . . . , Gn ∈ T, then
⋂n

i=1Gi ∈ T;

(iii) T is closed under unions, i.e. if I is a set and (∀i ∈ I)[Gi ∈ T], then
⋃

i∈I Gi ∈ T.

Definition 1.3.2 (topological space). A topological space is an ordered pair (X,T), such that X
is a set and T is a topology on X .

Definition 1.3.3 (point of topological space). Let (X,T) be a topological space, any element ofX
we be called also a point ofX , or a point of the topological space when it is clear from the context
to which topological space we refer.

Comment 1.3.4. Given a set X on which is defined a topology, when it is clear from the context
which is that topology or when it does not matter for our purposes which is the specific topology
we may identify our reference to the topological space (X,T) (which T is the topology defined on
X) with our reference to the set X , that is, we call the set X a topological space.

Definition 1.3.5 (open sets). Let (X,T) be a topological space. The elements of T are called open
sets (of T or of (X,T)).

Definition 1.3.6 (closed sets). Let (X,T) be a topological space and let F be a subset of X . The
set F will be said to be closed if and only if its complement is an open set, that is F is closed if
and only if X \ F ∈ T.

The proposition below follows immediate form the definitions of closed and open sets and De
Morgan's laws.

Proposition 1.3.7. Let (X,T) be a topological space. Then the following hold:

(i) ∅ and X are closed sets;

(ii) the union of finitely many closed sets is a closed set;

(iii) the intersection of arbitrary many closed sets is a closed set.
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Definition 1.3.8 (neighbourhood of a point). Let (X,T) be a topological space and x be a point
of it. A neighbourhood of x is any set V which has an open subset G ⊆ V such that x ∈ G.

Definition 1.3.9 (subspace\relative topology, subspace of a topological space). Let (X,T) be a
topological space and let also Y ⊆ X , then the set TY is a topology on Y . The topology TY is
called the subspace topology or the relative topology w.r.t T and the topological space (Y,TY ) is
called a subspace of the topological spaceX .

Definition 1.3.10 (Hausdorff topological space). A topological space (X,T) will be called Haus­
dorff if and only if:

(∀x, y ∈ X)(∃G1, G2 ∈ T)[(x ∈ G1) ∧ (y ∈ G2) ∧ (G1 ∩G2 = ∅)]

Definition 1.3.11 (connected topological space). A topological space (X,T) will be said to be
connected if and only if X cannot be written as a union of two non­empty disjoint open sets.

Definition 1.3.12 (continuous function between two topological spaces). Let (X,TX) and (Y,TY )
be two topological spaces. Then given a function f : X ←→ Y , f will be said to be continuous
if and only if whenever a set A is an open set in Y , f−1(A) is an open set in X , that is, (∀A ∈
TY )[f

−1(A) ∈ TX ].

Definition 1.3.13 (homeomorphism between topological spaces). Let (X,TX) and (Y,TY ) be
two topological spaces. Then given a function f : X ←→ Y will be said to be an homeomorphism
from X to Y if and only if f is one­to­one, onto, continuous and the function f−1 : Y → X is
also continuous

Definition 1.3.14 (homeomorphic topological spaces). Two topological spaces, say (X,TX) and
(Y,TY ) will be said to be homeomorhic ­denoted by X ≃ Y ­ if and only if there exist a homeo­
morphism f : X → Y .

Definition 1.3.15 (open cover, finite cover, open subcover). Let (X,TX) be a topological space
and A ⊆ X . A open cover of A is any collection U of open sets of the topological space X such
that the setA is a subset of their union, that is,

(
U ⊆ TX

)
∧
(
A ⊆

⋃
u∈U U

)
. Given an open cover

U of a set A a subcollection U ′ ⊆ U will be said to be a subcover if and only if U ′ is an open cover
of A. A cover is said to be a finite cover if and only if it consists in finitely many sets.

Definition 1.3.16 (compact topological space). A topological space X is called compact if and
only if every open cover of X has a finite subcover.

Definition 1.3.17 (Euclidean metric\ordinary metric, Euclidean distance of two points). Let n be
a positive natural number, then the Euclidean metric or the ordinary metric on the set Rn, is the
function d : Rn × Rn → R which is such that:

(∀x, y ∈ Rn)[
(
x = (x1, . . . , xn)

)
∧
(
y = (y1 . . . yn)

)
→ d(x, y) =

√
(x1 − y1)2 . . . (xn − yn)2].

Given two points, say x, y, of Rn, the Euclidean distance of those points ­denoted by ∥x− y∥­ is
the non­negative real number d(x, y)

Definition 1.3.18 (Euclidean norm\Euclidean length). Let n be a positive natural number and
x ∈ Rn the non­negative real number d(x, 0) which is laso denoted by ∥x∥ will be said to be the
Euclidean norm or the Euclidean length of x.
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Definition 1.3.19 (open disc, closed disc, sphere of R⋉). Let n be a positive natural number, r be
a positive real number and x ∈ Rn. Then

• The set {y ∈ Rn|∥x− y∥ < r} ­denoted by Dn(x, r)­ will be said to be the open disc with
center x and radius r;

• the set {y ∈ Rn|∥x− y∥ ≤ r} ­denoted by D̄n(x, r)­ will be said to be the closed disc with
center x and radius r;

• the set {y ∈ Rn|∥x−y∥ = r} ­denoted by Sn(x, r)­ will be said to be the spherewith center
x and radius r.

Definition 1.3.20 (Euclidean topology on Rn). Let n be a positive natural number, then it is easy
to see that the set

{G ⊆ Rn|(∀x ∈ G)(∃r ∈ R+)[
(
D(x, r) ⊆ G

)
∧
(
x ∈ D(x, r)

)
]}

is a topology on Rn. This topology is called the Euclidean topology onRn and the set Rn supplied
with this topology is the Euclidean space.

Comment 1.3.21. When we refer to Rn as a topological space, we mean the Euclidean space.

1.3.1 Creating new topological spaces from old ones

In topology we often want to construct more complex objects from simpler ones using «gluing»
methods. These situations may, at first glance, look different, but they are essentially manifesta­
tions of a general construction. The concept of quotation topology essentially encompasses the
typical description of this construction.

Figure 1.3.1: Identifying the opposite sides of a rectangle in order to create a cylinder.

Definition 1.3.22 (quotient topology). Let (X,T) be a topological space, let Y be a set and f :
X → Y be an surjection. We definite the quotient topology T′ on Y as follows: T′ := {U ⊆
Y |f−1(U) ∈ T}.

Comment 1.3.23. Note that in the above ­provided the topological space (X,T), the set Y and
the function f ­ the topology T is the smallest one (w.r.t. inclusion), with which we can supply the
set Y in order to make the function f continuous.
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Definition 1.3.24 (identification topology). Let (X,T) be a topological space and let also∼ be an
equivalent relation onX then the identification space ofX w.r.t ∼ ­denoted byX/ ∼ ­ is defined
to be the set of the equivalent classes of the relation ∼, that is, X/ ∼:= {[x]∼ |x ∈ X}.

Comment 1.3.25. The new space X/ ∼ is just a fancy way of saying that a new space is created
by taking the space X and gluing x to any y that satisfies y ∼ x.

1.4 Surfaces

In this section we introduce those elements of surfaces which are needed for the understanding of
the proof of the "Kuratowski theorem for general surfaces" (Theorem 3.1.5). For this section we
followed Appendix B of [30].

Definition 1.4.1 (surface). A surface is a compact connected Hausdorff topological space Σ in
which every point has a neighbourhood which is homeomorphic (as a topological space with the
subspace topology) to the Euclidean plane R2.

Comment 1.4.2 (closed surfaces). A surface is closed if it is compact, connected and has no bound­
ary, here we consider closed surfaces.

Definition 1.4.3 (unit circle). The set S2(0, 1) ⊆ R2 will be called the unit circle and will be
denoted by S1.

Definition 1.4.4 (sphere). The set S3(0, 1) ⊆ R2 will be called the sphere and will be denoted by
S2.

Definition 1.4.5 (cylinder). The cylinder is the topological space contracted from the subspace
unit squareX of R2, where X = {(x, y)|(0 ≤ x ≤ 1) ∧ (0 ≤ y ≤ 1)} by identifying its opposite
sides. The middle cycle of the cylinder is the subspace D1(0, 1)× {12}.

Definition 1.4.6 (arc\cycle\open disc\closed disc\disc in a surface). Given a surface Σ, an arc, a
circle, an open disc and a closed disc inΣ, are subsets ofΣwhich are homeomorphic (as topological
spaces equipped with the subspace topology) to the real interval [0, 1], to the unit cycle S1, to the
open disc D2(0, 1) with center 0 and radius 1 and to the closed disc D̄2(0, 1) with center 0 and
radius 1 respectively. A disc in Σ is any open or closed disc in Σ.

Definition 1.4.7 (components of a surface). Let Σ be a surface and X ⊆ Σ and consider the
following binary relation on X:

∼ := {(x, y)|
(
(x, y) ∈ X ×X

)
∧
(
there is an arc in Σ from x to y

)
}.

It is easy to see that the relation∼ is reflexive, symmetric and transitive and thus∼ is an equivalent
relation on X . The equivalence classes of points in X with respect to ∼ will be said to be the
components of X . Thus, two points of a set in a surface belong to the same component of the set
if and only if they can be joined by an arc.

Observation 1.4.8. Every surface being by definition connected has only one component.
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Figure 1.4.1: Deducing the Möbius strip by identifying the opposite sides of a rectangle in the
appropriate manner.

Definition 1.4.9 (frontier of a set, boundary cycle). Given a surfaceΣ and a subsetX ofΣ, the set

{y ∈ Σ|(∀U ⊆ Σ)[U is a neighbourhood of y → (U ∩X ̸= ∅) ∧ (U ∩ (Σ \X) ̸= ∅)}]

will be said to be the frontier ofX . The frontier F ofX separates Σ \X fromX: sinceX ∪F is
closed, every arc from Σ \X to X has a first point in X ∪ F , which must lie in F . A component
of the frontier ofX that is a cycle in Σ is a boundary cycle inX . A boundary cycle of a disc in Σ
will be said to bound that disc.

Definition 1.4.10 (Möbius strip, middle cycle of Möbius strip). AMöbius strip is any space home­
omorphic with the topological space [0, 1] × [0, 1] with the Euclidean Topology, after the identi­
fication of any two points (1, y), (0, 1 − y) for all y ∈ [0, 1]. Its middle cycle is the subspace
{(x, 12)|0 < x < 1} ∪ {p}, where p is the point resulting from the identification of the

(
1, 12

)
with(

0, 12
)
.

Definition 1.4.11 (strip neighborhood, two­sided, one­sided). It can be shown that any cycle C in
a surface Σ is the middle cycle of a suitable cylinder or Möbius strip N . This cylinder or Möbius
strip is called strip neighborhood of C. If this strip neighborhood is a cylinder, then then N \ C
has to components and we call the cycle C two sided; if N is a Möbius strip, then N \C has only
one component and C is called one­sided.

Definition 1.4.12 (separating cycle). Since any surface Σ is connected, given a cycle Σ, Σ \ C
cannot have more components than N \ C, (where N is the strip neighborhood of C), we call C
separating cycle ifΣ\C has two components and non­separating ifΣ\C has only one component.

Below we describe the two main operations, which we can apply in a simper surface and take
a more complex one. Actually the classification theorem (Theorem 1.4.15) states that by applying
finitely many times these operations in a sphere we can take any surface.

Definition 1.4.13 (adding a handle to a surface). To add a handle to a surface Σ, we remove two
open discs whose closures in Σ are disjoint, and identify with the cycles S1 × {0} and S1 × {1}
of a copy of the cylinder S1 × [0, 1] disjoint from Σ.

Definition 1.4.14 (adding a crosscap). To add a crosscap in a surface Σ, we remove an open disc
from Σ and we identify opposite points on its boundary cycle in pairs.
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D1 D2

−→

C1
C2

Figure 1.4.2: Illustration of Definition 1.4.13. In the case illustrated above we are adding a handle
to a sphere, D1, D2 are two open disks whose closures are disjoint in Σ, the operation of adding
a handle consists in identifying the boundaries of these open disks with the cycles C1, C2 respec­
tively.

Theorem 1.4.15 (The classification theorem). Any closed surface is homeomorphic either to the
sphere, or to the sphere with a finite number of handles added, or to the sphere with a finite num­
ber of discs removed and replaced by Möbius strips. No two of the aforementioned surfaces are
homeomorphic.

Definition 1.4.16 (Embedding of a graph in a surface, face of a graph in a surface, boundary of a
face). Let G be a graph and Σ be a surface. An embedding of G in Σ is a map σ with domain
the set V (G) ∪ E(G), that maps the vertices of G to distinct points in Σ and its edges {x, y} to
σ(x) − σ(y) arcs in Σ, so that no inner point of such an arc is the image via σ of a vertex or
lies in another arc. We then write σ(G) for the union of all those points and arcs in Σ i.e., for
σ(V (G)) ∪ σ(E(G)). A face of G in Σ is a component of Σ \ σ(G), and the subgraph of G that
σ maps to the frontier of this face is its boundary. Note that while faces in the sphere are always
discs (if G is connected), in general they need not be.

Definition 1.4.17 (planar graph). Agraphwill be said to be planar if and only if it can be embedded
in the sphere.

Definition 1.4.18 (plane graph). A plane graph is an ordered pair (V,E) of finites sets with the
following properties (the elements of V are called again vertices and the elements of E edges):

(i) V ⊆ R2;

(ii) every edge is an arc between two vertices;

(iii) different edges have different sets of endpoints;

(iv) the interior of an edge contains no vertex and no point of any other edge.

A plane graph (V,E) defines a graph G on V in a natural way. As long as no confusion can arise,
we can use the name G of this abstract graph also for the plane graph (V,E) or for the point set
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V ∪
(⋃

e∈E e
)
. Similar notational conventions will be used for abstract versus plane edges, for

subgraphs, and so on.

We state some theorems and lemmas below without proofs.

Lemma 1.4.19. Any two planar embeddings of a 3­connected graph are equivalent.

Lemma 1.4.20. Every surface other than the sphere contains a non­separating cycle.

Theorem 1.4.21. For every surface Σ there exist an integer χ(Σ) such that whenever a graph G
eith n vertices andm edges is embedded in Σ so that there are l faces and every face is a disc, we
have

n−m+ l = χ(Σ).

Definition 1.4.22 (Euler characteristic of a surface). For every surface Σ the integer χ(Σ) of the
above theorem is said to be the Euler characteristic of Σ.

Definition 1.4.23 (Euler genus of a surface). For every surface Σ the natural number 2− χ(Σ) is
said to be the Euler genus of Σ and it is denoted by ε(Σ).

Lemma 1.4.24.

(i) Adding a handle to a surface raises its Euler genus by 2.

(ii) Adding a crosscap to a surface raises its Euler genus by 1.

The following two lemmas will be used at the proof of Theorem 3.1.5.

Lemma 1.4.25 ([30, Lemma B6]). Let Σ be a surface, and let C be a finite set of disjoint cycles in
Σ. Assume that Σ \

⋃
C has a componentD0 whose closure in Σ meets every cycle in C, and that

no cycle in C bounds a disc in Σ that is disjoint from D0. Then ε(Σ) ≥ |C|.

Lemma 1.4.26 ([30, Lemma 4.1.2]). Let P1, P2, P3 be three arcs, between the same two endpoints
but otherwise disjoint.

(i) R2 \ (P1 ∪P2 ∪P3) has exactly three regions, with frontiers P1 ∪P2, P2 ∪P3 and P1 ∪P3.

(ii) If P is an arc between a point in P̊1 and a point in P̊3 whose interior lies in the region
R2 \ (P1 ∪ P3) that contains P̊2, then P̊ ∩ P̊2 ̸= ∅.
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CHAPTER2
BASICS OF THE WELL­QUASI­ORDERING THEORY

As remarked by Luscanne [89], the concept of well­quasi­ordering goes back at least in the begging
of the 20th century, since among the forerunners is Janet [65] whose paper appeared in 1920. Jean
H. Gallier notes in [52] that Irving Kaplanski told him that this notion is defined and used in his
Ph.D thesis [68] in 1941, in which unfortunately we couldn't access, that's whywementionGallier's
reference. However, a clear evidence which places Irving Kaplanski among the forerunners of the
well­quasi­ordering theory is an exercise which he suggests in textbook of 1948 [14, Exercise 8,
p.39]. In this exercise, he claims the equivalence of conditions (ii) and (iii) of the characterizations
of the well­quasi­order notion given by Theorem 2.1.7. Richard Rado in 1954 [100], appears to be
aware of this theorem that Kaplanski proposed as an exercise.

Joseph Kruskal in an extended historical recursion and general presentation of the well­quasi­
ordering concept in [82] ­which we suggest as a further reading­ notes that notions­forerunners of
the well­quasi­ordering concept can be found at [84], in which Georges Kurepa in 1937 invented
a concept which is closely related to well­quasi­ordering. He also mentions as forerunners the
conjecture for finite trees that Andrew Vazsonyi made in 1937, which we discuss in Section 3.2
and a problem proposed by Paul Erdős [45] in 1949, which we discuss in Section 2.5.

The aforementioned Erdős' problem appears to play a crucial role to the well­quasi­ordering
concept since the first clear uses (but under different names) and theorems considering the well­
quasi­ordering notion appeared in papers which are closely related to the solution of this problem.

Particularly, Paul Erdős and Richard Rado in 1952 provided a solution to the Erdős' problem
in [44]. In a note at the end of this paper (see [45, p.256­257]) they define the notion of a partially
well­ordered set (see Definition 2.1.3) which is equivalent to the notion of a well­quasi­ordered set
and they state without proof a result which says essentially that the set of finite subsets of a partially
well­ordered set is also partially well­order (this is Theorem 2.5.5). They also state that G. Higman
and B.H. Neumann, independently of each other and of themselves, proved essentially that the set
of finite sequences from elements of a partially well­ordered set is partially well­ordered (this is
Theorem 2.6.4).

In the same year Graham Higman [64] became the first (known to us) who clearly developed
the theory of well­quasi­ordering. In [64] Higman proved a theorem which has as a corollary
the Erdős' problem and defined the "finite basis property" of a set (see Definition 2.1.5), which
is equivalent with the property of a set to be well­quasi­ordered and proved several theorems for
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spaces with the finite basis property, most of these theorems are presented in this chapter.
In the introduction of [64] Higman notes that the "finite basis property" is equivalent with the

"partial well­orders" of Paul Erdős and Richard Rado and he thanks them for letting him see an
unpublished manuscript of them, [42] which ­according to Kruskal­ was probably an early version
of [100] or [44]. Thus Higman was aware of the "partial well­orders" when he was writing [64].

The theory was further developed in 1954 under the name "partial well­orders" by Rado [100].
Finally, ­as far as we know­ the first one to use the name "well­quasi­order" was Josheph Kruskal
in 1960 in [81] where he proved Vazsonyi's conjecture. The theory was further developed by Nash­
Williams [95, 97] who also defined the concept of "better­quasi­orders", which is even complicated
to define and thus ­since we will not use it­ we just mention.

Well­quasi­orders have also several applications in computer science and algorithms, which
we do not mention here.1

In this section we prove several characterizations of the well­quasi­order notion, and theorems
considering well­quasi­ordered spaces.

2.1 Definition and characterizations of the well­quasi­order notion

Definition 2.1.1 (good and bad sequences). Let ≤ be a quasi­order on a set X , given a sequence
(xi)i∈N on X a pair (xi, xj) of its terms will be said to be a good pair of (xi)i∈N if and only if
(i < j)∧ (xi ≤ xj). The sequence itself will be said to be a good sequence ­w.r.t. ≤­ if and only if
it has at least a good pair, that is, (∃i, j ∈ N)[(i < j) ∧ (xi ≤ xj)]. A bad sequence is a sequence
that is not good.

Definition 2.1.2 (well­quasi­order). Let≤ be a quasi­order on a setX . The quasi­order≤ will be
said to be a well­quasi­order on X if and only if every infinite sequence onX is good (w.r.t. ≤).

Definition 2.1.3 (partial well­order). Let ≤ be a quasi­order on a set X . The quasi­order ≤ will
be said to be a partial well­order onX if and only if every nonempty subset ofX has at least one
but no more than a finite number of (non equivalent) minimal elements (w.r.t. ≤).

Definition 2.1.4 (closure of a set, closed set, open set). Let X be a nonempty set and ≤ be a
quasi­order on X . Given a set A ⊆ X , we define as the closure of A ­denoted by cl(A)­ the set
{x ∈ X|(∃y ∈ A)[y ≤ x]}. A set will be said to be closed if and only if it is equal with its closure.
A set will be said to be open if and only if its complement is a closed set.

Definition 2.1.5 (finite basis property). Let ≤ be a quasi­order on a set X . The quasi­ordered set
X will be said to has the finite basis property if and only if every closed subset ofX is the closure
of a finite set.

Observation 2.1.6. Let X be a nonempty set and ≤ be a quasi­order on X . Then the union of
closed subsets of X is a closed subset of X .

Theorem 2.1.7 (characterizations of the well­quasi­order notion). Let ≤ be a quasi­order on a set
X , then the following conditions are equivalent:

(i) the quasi­order ≤ is a well­quasi­order;
1see e.g. [29, 60]
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(ii) every infinite sequence onX has an infinite increasing subsequence;

(iii) the set X contains nor an infinite antichain neither an infinite strictly decreasing sequence;

(iv) every quasi­order that extends ≤ (including ≤ itself) is well­founded;

(v) every nonempty subset of X has at least one but no more than a finite number of (non­
equivalent) minimal elements, that is, ≤ is partial well­order;

(vi) every closed subset ofX is the closure of a finite set, that is,X has the finite basis property;

(vii) there exists no infinite strictly increasing (w.r.t. inclusion) sequence of closed subsets ofX;

(viii) there exists no infinite strictly decreasing (w.r.t. inclusion) sequence of open subsets ofX .

Proof. (i) ⇒ (ii): Let (an)n∈N be an arbitrary but fixed sequence on X . We call a term am of
the sequence (an)n∈N terminal if there is no n > m such that am ≤ an. The number of terminal
members of (an)n∈N should be finite, since otherwise by choosing them in the series that they
appears in (an)n∈N we would form a bad sequence (w.r.t ≤) contradicting to our assumption that
the relation ≤ is a well­quasi­order on X . Therefore there exist a n0 ∈ N such that (∀nN)[n ≥
n0 ⇒ (∃m ∈ N)[(m > n) ∧ (an ≤ am)]
We now proceed to the inductive construction of an infinite increasing subsequence (akn)n∈N of
(an)n∈N as follows:

Induction Basis: k1 = n0

Induction Hypothesis: We have choose natural numbers k1 < . . . < kn−1 such that (∀i ∈ {1, n−
2})[aki ≤ aki+1

].
Induction Step: We are choosing as kn the least natural number such that kn is greater that kn−1 and
akn−1 ≤ akn . Observe that such a choice is possible since provided by our induction hypothesis
that kn−1 > n0 it follows that akn−1 in not terminal.
Induction Conclusion: (akn)n∈N is an increasing subsequence of (an)n∈N.

Since (an)n∈N was an arbitrary infinite sequence inX , condition (ii) follows.

(ii)⇒ (iii): This is immediate.

(iii)⇒ (iv): Towards a contradiction, let suppose that ≤′ is a quasi­order extending ≤ and leq
′ is

not well­founded. Let (an)n∈N be a strictly decreasing sequence which witnesses that leq′ is not
well­founded. We now distinguish the following two cases:
Case 1: Either there are infinite elements in the sequence (an)n∈N related under ≤ and hence we
can derive from (an)n∈N an infinite strictly decreasing sequence on X (w.r.t ≤) contradicting to
(iii);
Case 2: either, infinitely many elements of (an)n∈N are incomparable (w.r.t ≤) between them.
Then the set of those incomparable elements forms an infinite antichain onX which again contra­
dicts to (iii). Thus condition (iv) follows.

(iv)⇒ (v): Let A ⊆ X be a nonempty set, since the relation ≤ is well­founded it follows that the
set A has at least one minimal element. Towards a contradiction we suppose that the set A has
infinitely many non­equivalent minimal elements, let {a1, a2, . . .} be the set of those elements.
Consider now the relation ≤′

=≤ ∪{(ai, aj)|(j ∈ N) ∧ (i = j + 1)}. The relation ≤′ is an
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extension of the relation leq which is not well­founded because the sequence (an)n∈N is an infinite
decreasing sequence (w.r.t ≤′), We have thus derive a contradiction and hence the condition (v)
follows.

(v)⇒ (vi): Let A ⊆ X be a closed set. If A = ∅, note that cl(∅) = ∅, hence A is the closure of ∅
which is a finite set. If A ̸= ∅, then the set A has a finite ­but no zero­ number of non­equivalent
minimal elements. Let n be the number of those elements and let the set {a1, . . . , an} be a set of
n non­equivalent elements of A. Since {a1, . . . , an} ⊆ A, by the definition of the closure of a set
it follows that cl({a1, . . . , an}) ⊆ cl(A). Let a be an arbitrary but fixed element of the setA, then
(∃i ∈ {1, . . . , n})[ai ≤ a] and thus a ∈ cl({a1, . . . , an}). Since a was an arbitrary element of the
set A, it follows that A ⊆ cl({a1, . . . , an}). By our assumption that the set A is a closed set, we
have A = cl(A). Thus we conclude that A = cl({a1, . . . , an}), and hence indeed the set A is the
closure of a finite set. As the set A was an arbitrary set, (vi) follows.

(vi) ⇒ (vii): Toward a contradiction we suppose that there exist an infinite strictly increasing
sequence of closed subsets ofX . Let (An)n∈N be such a sequence. Consider the setA =

⋃
i∈NAi,

by Observation 2.1.6, it follows that the set A is closed and thus it is equal with a closure a finite
set let B = {x1, . . . , xn} ⊆ X be such a set. Since A = cl({x1, . . . , xn}), it follows that
{x1, . . . , xn} ⊆ A and thus (∀i ∈ {1, . . . , n})(∃j ∈ N)[xi ∈ Aj ]. Since the sequence (An)n∈N is
strictly increasing it follows that there exist j ∈ N such that {x1, . . . , xn} ⊆ Aj but this implies
that cl({x1, . . . , xn}) ⊆ Aj and thus cl({x1, . . . , xn}) = Aj . Hence, A = Aj which contradicts
with our assumption that (An)n∈N is a strictly increasing sequence. Thus no such a sequence exists
and (vii) follows.

(vii)⇔ (viii): Just observe that (An)n∈N is a strictly increasing sequence of closed sets if and only
if (X \An)n∈N is a strictly decreasing sequence of open sets.

(viii)⇒ (i): Since (vii)⇔ (viii), it sufficient to prove that (vii)⇔ (i). Towards a contradiction we
suppose that the condition (vi) holds but the relation ≤ is not a well­quasi­order on the set X and
let (xn)n∈N be a sequence which witness that, i.e. (xn)n∈N is a bad sequence. Thus (∀i ∈ N)(∀j ∈
N)[i < j ⇒ xi ≰ xj ] and hence it is immediate that the sequence cl({x1}) ⊂ cl({x1, x2}) ⊂
cl({x1, x2, x3}) . . . is a strictly increasing sequence of closed subset of X , contradicting to our
assumption thus the relation ≤ is indeed a well­quasi­order on X and the condition (i) holds.

Comment 2.1.8. The analogue of the characterization that is given by condition (v) of Theo­
rem 2.1.7 for the well­quasi­order notion with the definition of the well­founded binary relations
(Definition 1.1.41) "justifies" the existence of the adjective well in the name «well­quasi­order».

It is interesting to observe that the property of being well­quasi­order for a binary relation is
stronger than the property of being well­founded. Indeed, it is not true in general that any quasi­
order that extends a given well­founded quasi­order is well­founded, however condition (iv) of
Theorem 2.1.7, indicates that this property characterizes every well­quasi­order.

2.2 Subsets and images via order homomorphisms

Theorem 2.2.1. LetX be a set, ≤ be a well­quasi­order onX , Y a quasi­ordered set by a relation
⪯ and f : X → Y be an order homomorphism. Then, for every A ⊆ X the set A is well­quasi­
ordered by the relation ≤ and the set f(A) is well­quasi­ordered by the relation ⪯.
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Proof. The fact that every subset of a well quasi­ordered set is well­quasi­ordered by the same
relation with its superset, is immediate from the definition of the well­quasi­order notion.

For the images of subsets of X via an order homomorphism, let A be an arbitrary but fixed
subeset of X and observe that if (yn)n∈N ⊆ f(A) is an infinite bad sequence (w.r.t ⪯) on f(A),
then the sequence (f−1(yn))n∈N is an infinite bad sequence (w.r.t. ≤) on A and thus onX , which
is an absurd. Hence there exist no bad sequence on f(A) and thus f(A) is well­quasi­ordered by
the relation ⪯, since A is was an arbitrary subset of X the theorem follows.

2.3 Induction schemes for well­quasi­ordered spaces

In this section we prove two induction schemes for well­quasi­ordered spaces. The first is an im­
plication of the characterization of the well­quasi­order notion by condition (iii) of Theorem 2.1.7
and shows that we can induct over the elements of a well­quasi­ordered space and the second fol­
lows from condition (viii) of Theorem 2.1.7 and shows that we can induct over the open sets of a
well­quasi­ordered space.[64, Theorem 2.4]

Notation 2.3.1. Let X be a set and Π be a statement for the elements of X . If x ∈ X , we denote
by Π(x) the fact that the statement Π is true for the element x.

Theorem 2.3.2 (Induction scheme I). Let X be a set that is well­quasi­ordered by a relation ≤,
and let Π be a statement for the elements ofX , such that:

(i) If x is a minimal element ofX , then Π(x);

(ii) For all x ∈ X , Π(x) provided that Π(y) for all y < x.

Then (∀x ∈ X)[Π(x)].

Proof. Towards a contradiction we suppose that the statement Π is not true ∀x ∈ X . We now
proceed to the inductive construction of an infinite strictly decreasing sequence ofX , as follows:

Induction Basis: We are choosing an element x0 ∈ X , such that the statement Π is not true for x0.
Induction Hypothesis: We suppose that we have chosen n elements of the set X , such that x0 >
. . . > xn−1 and the statement Π is not true for the element xn−1.
Induction Step: From our assumptions (i), (ii) for the statement Π, it follows that xn−1 is not a
minimal element ofX and that there exist xn ∈ x such that xn−1 > xn and the statement Π is not
true for xn. We are choosing xn as the (n+ 1) term of our sequence.
Induction Conclusion: For each n ∈ N we have chosen an element xn, such that xn > xn+1.
Hence, we have construct the desired sequence.

Thus by assuming that the statement Π is not true ∀x ∈ X , we have construct an infinite strictly
decreasing sequence on X which by Theorem 2.1.7 contradicts to the fact that X is well­quasi­
ordered. Hence our assumption was false and the proof is complete.

Notation 2.3.3. Let X be a set and Π be a statement for the subsets of X . If A ⊆ X , we denote
by Π(A) the fact that the statement Π is true for the set A.

Note that the emptyset is the "smallest" ­with respect to set­inclusion­ open set of any well­
quasi­ordered space.
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Theorem 2.3.4 (Induction scheme II). Let X be a set that is well­quasi­ordered by a relation ≤,
and let Π be a statement for subsets of X , such that:

(i) Π(∅);

(ii) For all open subsets A ⊆ X , we have Π(A) provided that Π holds for all downward closed
proper subsets B ⊂ A.

Then Π(X).

Proof. Towards a contradiction we suppose that the statementΠ is not true for the setX . We now
proceed to the inductive construction of an infinite strictly decreasing chain of open subsets ofX ,
as follows:

Induction Basis: We are choosing an open A0 ⊊ X , such that the statement Π is not true for A0.
Observe that such a choice is possible since by our assumption that the statement Π does not hold
for the set X and our assumptions (i), (ii) for the statement Π it follows the existence of at least
one such a set.
Induction Hypothesis: We suppose that we have chosen n open subsets ofX , such thatA0 ⊋ . . . ⊋
xn−1 and the statement Π is not true for the open set An−1

Induction Step: From our assumptions (i), (ii) for the statement Π, it follows that An−1 is not the
empty set and that there exist an open An ⊂ X such that An−1 ⊋ An and the statement Π is not
true for An. We are choosing An as the (n+ 1) term of our sequence.
Induction Conclusion: For each n ∈ N we have chosen an open set An, such that An ⊋ An+1.
Hence, we have construct the desired chain.

Thus by assuming that the statement Π is not true for the set X , we have construct an infinite
strictly decreasing chain of open subsets ofX which by Theorem 2.1.7 contradicts to the fact that
X is well­quasi­ordered. Hence our assumption was false and the proof is complete.

2.4 Nash­Williams's minimal bad sequence argument

Theminimal­bad­sequence argument was first used by Nash­Williams [95] in his proof of the well­
quasi­ordering of finite trees by the topological minor relation which we present in Subsection
3.2.2.

Definition 2.4.1 (minimal bad sequence). Let ≤ be a quasi­order on a set X and (xn)n∈N be a
bad sequence on X . We say that (xn)n∈N is a minimal bad sequence on X if and only if for each
n ∈ N the element xn of X is minimal (w.r.t ≤) such that a bad sequence of X has x0, . . . , xn as
its initial segment, i.e. for each n ∈ N and each y ∈ X with y ≤ xn there is no bad sequence of
X that has x1, . . . , xn−1, y as its initial segment.

Lemma 2.4.2. Let X be a set, let also ≤ be a quasi­order on X that is well­founded but is a not
well­quasi­order in X , then there exist a minimal bad sequence onX .

Proof. We proceed to the inductive construction of a minimal bad sequence (xn)n∈N in X as
follows:
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Induction Basis: We are choosing x0 to be a minimal (w.r.t ≤) element of X such that a bad
sequence on X has this element as its first term. Observe that such a choice is possible since by
our assumption that X is not well­quasi­ordered it follows that X has at least one bad sequence,
and by our assumption that the relation ≤ is well founded, it follows that the set of the first terms
of all bad sequences of X has at least one minimal element.
InductionHypothesis: We assume that we have choose elementsx0, . . . , xn−1 such thatx0, . . . , xn−1

is an initial segment of a bad sequence inX and the element xn−1 is minimal (w.r.t ≤) such that a
bad sequence in X has x0, . . . , xn−1 as its initial segment.
Induction Step: We are choosing xn to be a minimal (w.r.t≤) element ofX , such that x0, . . . , xn is
an initial segment of a bad sequence inX . Again such a choice is possible since from the induction
hypothesis there exist at least one bad sequence in X with x0, . . . , xn−1 as its initial segment and
from the our assumption that ≤ is a quasi­order onX it follows that the set of nth terms of all bad
sequenced of X that have x0, . . . , xn−1 as their initial segment has at least one minimal element.
Induction Conclusion: Obviously (xn)n∈N is a bad sequence inX and ∀n ∈ N if (yn)n∈N is a bad
sequence in X such that yi = xi, ∀i ∈ {0, . . . , n− 1} then yn ≰ xn.

2.5 Finite sets: Erdős & Rado's theorem

Paul Erdős in [45, Problem 4358] proposed as a problem the proof of the following theorem:

Theorem 2.5.1. If a set X of positive integers does not contain any infinite subset no element of
which divides any other element, then neither does Π(X), the set of integers which can be written
as products of elements of X .

The assumption for the set X to the above theorem, which requires that X has no infinite
antichain with respect to the divisibility relation, is equivalent with the requirement thatX is well­
quasi­ordered by the divisibility relation. To conclude that, recall the condition (iii) of Theo­
rem 2.1.7 and note that no infinite strictly decreasing (w.r.t to the divisibility relation) sequence of
positive integers exists.

The main result of this section, which is Theorem 2.5.5, was prooved by P. Erdős and R. Rado
in [42] and used for the proof of Theorem 2.5.1.

Notation 2.5.2. Given a set X we will denote by [X]k the set of all subsets of X consisting of
exactly k elements. With [X]<ω we will denote the set of all finite subsets ofX .

Below we define a quasi­order on the set of finite subsets of a quasi­ordered set.

Definition 2.5.3. Given a set X that is quasi­ordered by the relation ≤. We define the relation
⊑ on [X]<ω as follows: For two finite subsets A,B of X , A ⊑ B if and only if there exist an
injective mapping f : A→ B such that (∀a ∈ A)[a ≤ f(a)].

Observation 2.5.4. Given a set X that is quasi­ordered by the relation ≤, the set [X]<ω is quasi­
ordered by the relation ⊑, as the latter defined above: For the reflexivity of ⊑, observe that if
A ∈ [X]<ω, then identity function I : A → A witness that A ⊑ A. For the transitivity of ⊑, let
A,B,C ∈ [X]<ω such that A ⊑ B and B ⊑ C, let also f, g be the functions that witness those
relations respectively, then the function f ◦ g witness that A ⊑ C.
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Theorem 2.5.5. LetX be a set and ≤ be a binary relation onX . If ≤ is a well­quasi­order onX ,
then ⊑ is a well­quasi­order on [X]<ω.

Proof. Towards a contradiction we suppose that≤ is a well­quasi­order onX , but⊑ is not a well­
quasi­order on [X]<ω. Then by Lemma 2.4.2 there exist a minimal (w.r.t the order of its elements)
bad sequence, say (An)n∈N on [X]<ω. Since (An)n∈N is a bad sequence in [X]<ω, it follows that
An ̸= ∅, ∀n ∈ N, otherwise we could find infinite good pairs in (An)n∈N since ∅ ⊑ An, ∀n ∈ N.

For each n ∈ N, we are choosing an element an ∈ An and considering the set Bn := An \
{an}. Since (an)n∈N ⊆

⋃
n∈NAn ⊆ X , from our hypothesis that X is well­quasi­ordered and

Theorem 2.1.7 it follows that the sequence (an)n∈N has an increasing subsequence. Let (ani)i∈N
be such a subsequence. Let n0 ∈ N be an arbitrary but fixed natural number, from the minimality
of (An)n∈N and the fact that |Bn| < |An|, ∀n ∈ N it follows that the sequence:

A0, . . . , An0−1, Bn0 , Bn1 , Bn2 , . . .

is a good sequence and hence, has at least one good pair.
Let us consider such a pair. Since (An)n∈N is a bad sequence the pair cannot have the form

(Ai, Aj), but neither the form (Ai, Bj) because Bj ⊑ Aj . Therefore we conclude that it has the
form (Bi, Bj). Extending the injection that witness the relation Bi ⊑ Bj to map the element ai
to the element aj we deduce an injection that witness Ai ⊑ Aj and thus that the pair (Ai, Aj) is
a good pair of the bad sequence (An)n∈N, which is a contradiction. Hence our assumption was
false, the set [X]<ω is indeed well­quasi­ordered by the relation ⊑ and proof of the theorem is
complete.

2.6 Finite sequences & finite words: Higman's theorem

Notation 2.6.1. Let X be a set, we denote by V (X) the set of all finite sequences of elements of
X . We denote by ε the empty sequence, which is trivially a finite sequence ofX .

Below we define a quasi­order on the set of finite sequences which are formed from elements of a
quasi­ordered set.

Definition 2.6.2. Given a set X that is quasi­ordered by the relation ≤. We define the relation ⊑
on V (X) as follows: For two finite sequences x = (xi)

n
i=1, y = (yi)

m
i=1 ∈ V (X) of X , x ⊑ y

if and only if there exist a strictly increasing function f : {1, . . . , n} → {1, . . . ,m} such that
(∀i ∈ {1, . . . , n})[xi ≤ yf(i)].

Observation 2.6.3. Given a set X that is quasi­ordered by the relation ≤, the set V (X) is quasi­
ordered by the relation ⊑, as the latter defined above: For the reflexivity of ⊑, observe that if
x = (xi)

n
i=1 ∈ V (X), then the the identity function I : {1, . . . , n} → {1, . . . , n} witness that

x ⊑ x. For the transitivity of ⊑, let x, y, z ∈ V (X) such that x ⊑ y and y ⊑ z, let also f, g be the
functions that witness those relations respectively, then the function f ◦ g witness that x ⊑ z.

Theorem 2.6.4 (Higman [64, Theorem 4.3]). LetX be a set and ≤ be a quasi­order onX . If ≤ is
a well­quasi­order on X , then ⊑ is a well­quasi­order on V (X).

Theorem 2.6.5 (Higman [64, Theorem 4.4]). IfX is an set of words formed from a finite alphabet,
it is possible to find a subset X0 of X such that, given a word w ∈ X , it is possible to find a
word w0 ∈ X0 such that the letters of w0 occur in w in their right order, though not necessarily
consecutively.
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2.7 Finite cartesian product: Higman's theorem

Definition 2.7.1. LetX,Y be two sets that are quasi­ordered by the relations≤1,≤2 respectively.
We define the relation⊑ on the cartesian product ofX,Y as follows: ⊑= {((x1, y1), (x2, y2))|(x1 ≤1

x2) ∧ (y1 ≤2 y2)}.

Observation 2.7.2. Given two quasi­ordered sets, the relation ⊑ on their cartesian product as
defined above is a quasi­order on it.

The following was proved by Higman [64, Theorem 2.3].

Theorem 2.7.3. Let X,Y be two sets that are well­quasi­ordered by the relations ≤1,≤2 respec­
tively, then their cartesian productX × Y is well­quasi­ordered by the relation ⊑.

Proof. Let ((xn, yn))n∈N be an arbitrary but fixed infinite sequence on X × Y . From our as­
sumption that X is well­quasi­ordered and Theorem 2.1.7, it follows that the infinite sequence
(xn)n∈N has an infinite increasing (w.r.t. ≤1) subsequence, let (xkn)n∈N be such a sequence. For
the same reasons the infinite sequence (ykn)n∈N has an infinite increasing (w.r.t. ≤2) subsequence,
say (ykln )n∈N. Then the sequence (xkln , ykln )n∈N is an infinite increasing (w.r.t. ⊑) subsequence
of ((xn, yn))n∈N. Since ((xn, yn))n∈N was an an arbitrary infinite sequence on X × Y , by Theo­
rem 2.1.7 follows that the set X × Y is well­quasi­ordered by the relation ⊑.

Definition 2.7.4. Let X1, . . . Xn be n sets that are quasi­ordered by the relations ≤1, . . . ,≤n re­
spectively. We define the relation ⊑ on the cartesian product of X1, . . . , Xn as follows: ⊑=
{
(
(x1, . . . , xn), (y1, . . . , yn)

)
|(x1 ≤1 y1) ∧ . . . ∧ (xn ≤n yn)}.

Observation 2.7.5. Given n quasi­ordered sets, the relation⊑ on their cartesian product as defined
above is a quasi­order on it.

By induction and using Theorem 2.7.3 for the induction base and the induction step we get the
following:

Theorem 2.7.6. Let X1, . . . Xn be n sets that are quasi­ordered by the relations ≤1, . . . ,≤n re­
spectively, then their cartesian productX1, . . . , Xn is well­quasi­ordered by the relation ⊑.

2.8 An application of well­quasi­ordering theory on graphs

Theorem 2.8.1. Let X be a set of graphs that is well­quasi­ordered by a relation≤ and letQ ⊆ X
be a property of graphs that is closed under the relation ≤. Then there exist an integer k (only
depending on Q) and graphs H1,H2, . . . , Hk such that an arbitrary graph G ∈ X satisfies Q if
and only if (∀i ∈ {1, 2, . . . , k})[Hi ≰ G].

Proof. Let F be the complement of Q on X . Notice that F is a closed set and hence by Theo­
rem 2.1.7 there exist a finite set of graphsH such that F = cl(H). The setH is the desired set of
graphs and the desired integer k is the cardinality ofH.
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CHAPTER3
WELL­QUASI­ORDERING GRAPHS BY THE MINOR RELATION

Robertson and Seymour's theorem states that graphs are well­quasi­ordered by the minor relation.
In this chapter we present ­relatively short­ proofs of several special cases of Robertson and Sey­
mour's theorem. In particular, we prove that trees, graphs of bounded branch­width (similarly of
bounded tree­width), planar graphs and graphs which exclude a fixed planar graph as a minor are
well­quasi­ordered by the minor relation. We also give a direct proof of perhaps the most inter­
esting special case of Robertson and Seymour's theorem which states that embeddability in any
fixed surface can be characterized by forbidding finitely many minors. In order to derive some
of our results we introduce the notions of graph's branch­decomposition and branch­width and we
prove a Menger­like property of branch­decompositions. For the same purpose we also prove two
"structure theorems" which characterize the "rough" structure of a planar graph which exclude a
fixed grid as a minor and the "rough" structure of an arbitrary graph which does so. Since most
of the results presented in this chapter are cornerstones of Neil Robertson and Paul Seymour's
Graph Minors series [104] we begin by presenting the main motivations of their work and by il­
lustrating the interplay between "structure theorems", results considering graphs' embeddings and
well­quasi­ordering theorems in their approach to Wagner's conjecture.

3.1 Introduction

In their Graph Minors series Robertson and Seymour [104] among other great results proved (in
[114]) Wagner's conjecture, today known as the Robertson and Seymour's theorem. Robertson
and Seymour's theorem states that in any infinite set of graphs there exist two such that the one
is isomorphic to a minor of the other, since there exist no infinite strictly decreasing sequences of
finite graphs with respect to the minor relation another formulation of Robertson and Seymour's
theorem is that graphs are well­quasi­ordered by the minor relation. Robertson and Seymour's
theorem and the notions and methods developed for its proof have been worked and is still working
as a model for the study of other graphs' relations and for the development of analogue tools and
methods and the deduction of analogue results for the appropriate for directed graphs notion of
minor. Because of the above and the deep interplay among the areas of structural graph theory,
topological graph theory and graph's well­quasi­ordering theory in the Graph Minors series we
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chose the special cases of Robertson and Seymour's theorem as paradigms in order to indicate
this interplay. As the understanding of the results presented in this chapter is a major step in the
understanding of the whole Graph Minors Project, this section intends to illustrate some answers
to the following questions:

• Which theorems and conjectures motivate Robertson and Seymour's Graph Minors series?

• Which theorems and proofs' techniques regarding well­quasi­ordering played an important
role in the first steps of the Graph Minors series?

• Which was Robertson and Seymour's general approach to Wagner's conjecture and which
proofs' techniques worked as a paradigm for it?

• Howdoes structure theorems, theorems regarding graphs' embeddings andwell­quasi­ordering
theorems are connected each other?

• Which are the most important results of the Graph Minors series?

Definitely our starting point in order to answer the first question has to be the characterization
of planar graphs in terms of forbidden topological minors (Theorem 3.1.1) by Kazimierz Kura­
towski [83] in 1930, which is one of the most famous results in graph theory. This theorem where
previously proved ­although never published­ around 1927 by Lev Semyonovich Pontryagin, and
at the same year with Kuratowski's publication1 by Orrin Frink & Paul Smith2.

Theorem 3.1.1 (Pontryagin ­ Kuratowski [83] ­ Orrin Frink & Paul Smith [51]). A graph is planar
if and only if it has no topological minor isomorphic toK5 orK3,3.

In 1937 Klaus Wagner [125] restated and proved the above characterization of planar graphs
in terms of minors instead of topological minors.

Theorem 3.1.2 (Wagner [125]). A graph is planar if and only if it has no minor isomorphic toK5

orK3,3.

K5 K3,3

Figure 3.1.1: Forbidden minors for planar graphs.

Recall from Definition 1.2.60 that a property of graphs, sayM, is said to be minor­closed if
and only if (∀G ∈ M)[H ≤m G → H ∈ M]. Given a minor­closed property of graphs, say

1But independently of it.
2For more details on the history of the theorem which characterize the planar graphs we refer the interested reader

in [72].
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M, this property can be characterized by the set of all minor­minimal graphs which are not in
M. This set is called the set of forbidden minors, or the Kuratowski set ofM. We remark that
the set of forbidden minors for every minor­closed property of graphs is an antichain with respect
to the minor relation. Graph properties which are minor­closed occur frequently in graph theory.
For example embeddability in any fixed surface is such a property. Wagner's reformulation of
Kuratowski's theorem is the first theorem which characterize a ­non­trivial­ graph property which
is closed under taking minors by a set of forbidden minors. Another such characterization of a
minor­closed graph property was given by Dirac [38] in 1952, who proved the following theorem:

Theorem 3.1.3 (Dirac [38]). A graph is series­parallel if and only if has no minor isomorphic to
K4.

An immediate and natural question which arise from the above, is if a similar with Kuratowski­
Wagner's result holds for other surfaces and more generally if there exist such characterizations for
other minor­closed graph properties.

In 1930's Paul Erdős and Denes König conjectured that embeddability in any fixed surface can
be characterized by forbidding finitely many graphs as topological minors and thus it is a general­
ization of Kuratowski's theorem. Robertson and Seymour [110] indicate Erdős as responsible for
the conjecture, Thomassen [122] indicates both Erdős and König, finally Bodendiek and Wagner
[16] indicate only König. We only found the conjecture written, by König, and for the case of
orientable surfaces, in the first ­ever published­ book considering graph theory, which was written
by König [76, see at the top of page 199] in 1936.

Conjecture 3.1.4 (Paul Erdős and Denes König [76]). For any surface Σ, there exist a positive
integer n and graphs G1, . . . , Gn such that an arbitrary graph G is embeddable in Σ if and only if
G has no topological minor isomorphic which is isomorphic to a graph in {G1, . . . , Gn}.

A constructive proof for the case of non­orientable surfaces was given by Archdeacon and
Huneke [3] and a non­constructive proof for general surfaces and thus a complete proof of the
conjecture was published by Robertson and Seymour [110] in 1990. Actually, Robertson and Sey­
mour in Section 2 of [110] proved that Conjecture 3.1.4 is equivalent with the following theorem
which they proved in the same paper.

Theorem 3.1.5 (Robertson and Seymour [110]). For any surface Σ, there exist a positive integer
n and graphs G1, . . . , Gn such that an arbitrary graph G is embeddable in Σ if and only if G has
no minor isomorphic which is isomorphic to a graph in {G1, . . . , Gn}.

The proof by Robertson and Seymour [110] of the above theorem is long and difficult. How­
ever, there is now a remarkably accessible proof based on their original ideas which we present
this proof is in Section 3.7.

In 1937 ­as mentioned by Lovász [88]­ Vázsonyi, made the following conjecture:

Conjecture 3.1.6 (Vázsonyi's 1937). There is no infinite set {T1, T2, . . .} of ­finite­ trees such that
Ti is not isomorphic to a topological minor of Tj for all i ̸= j.

Since there exists no infinite strictly decreasing sequence of (finite) trees with respect to the
topologicalminor relationVázsonyi's conjecture is equivalent with the statement that trees arewell­
quasi­ordered by the topological minor relation. The conjecture proved independently in 1960 by
Kruskal [81] and Tarkowski [116]. A much shorter and elegant proof was given by Nash­Williams
[95] in 1963, we present Nash­Williams' proof in Subsection 3.2.2.
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Theorem 3.1.7 (Kruskal [81], Tarkowski [116]). Trees are well­quasi­ordered by the topological
minor relation.

An immediate corollary of the above theorem is the following:

Theorem 3.1.8 (Kruskal [81], Tarkowski [116]). Trees are well­quasi­ordered by the minor rela­
tion.

Observation 3.1.9. The set of all graphs is not well­quasi­ordered by the topological minor re­
lation, in Figure 3.1.2 is illustrated an infinite antichain of graphs with respect to the topological
minor relation.

. . .

Figure 3.1.2: An infinite antichain of graphs with respect to the topological minor relation.

Probably motivated by Kuratowski's theorem, Erdős and König's conjecture, the proof of Váz­
sonyi's conjecture, Dirac's theorem, other similar results and the fact that the topological minor
relation is not a well­quasi­order for graphs in general. Karl Wagner in 1960's and probably in
[124] made the following conjecture3:

Conjecture 3.1.10 (Wagner [124]). If G1, G2, . . . is any infinite sequence of graphs, then there
exist i, j with j > i ≥ 1 such that Gi is isomorphic to a minor of Gj .

So, to give an answer to the first question that we set in this section, the main motivation of
the Graph Minors series was Wagner's conjecture, which in its full generality was proved in Graph
Minors XX [114].

Theorem 3.1.11 (Robertson ans Seymour's theorem, Robertson and Seymour [114]). IfG1, G2, . . .
is any infinite sequence of graphs, then there exist i, j with j > i ≥ 1 such that Gi is isomorphic
to a minor of Gj .

Although we do not deal with infinite graphs in this thesis, we remark that Robin Thomas [119]
proved that Robertson and Seymour's theorem cannot generalized to uncountable graphs. The
problem considering whether or not countable graphs are well­quasi­ordered by the minor relation
is wide open. The following are different formulations of Robertson and Seymour's theorem4

3Robertson and Seymour always (see e.g. [104, 107]) referred to the Robertson ans Seymour's theorem asWagner's
conjecture. Diestel [30] notes that «Wagner did indeed discuss this problem in the 1960s with his then students, Halin and
Mader, and it seems that Mader conjectured a positive solution. Wagner himself always insisted that he did not—even
after the Robertson ans Seymour's theorem had been proved». Lovász [88] also refer to the Robertson ans Seymour's
theorem as Wagner's conjecture and he refer the same textbook [124], which Robertson and Seymour [114] refer. We
remark that we couldn't access this textbook [124], but we notice that in the introduction of their paper "Solution to
König's graph embedding problem", Bodendiek and Wagner [17], make direct reference to the Wagner's conjecture
under the name "Wagner's well­quasi­ordering conjecture".

4Throughout this thesis whenever we refer to Robertson and Seymour's theoremwemay refer at any of its equivalent
formulations.
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Theorem 3.1.12 (Robertson and Seymour's theorem, Robertson and Seymour [114]). Every an­
tichain of graphs with respect to the minor relation is finite.

Theorem 3.1.13 (Robertson and Seymour's theorem, Robertson and Seymour [114]). Graphs are
well­quasi­ordered by the minor relation.

Theorem 3.1.14 (Robertson and Seymour's theorem, Robertson and Seymour [114]). For every
minor­closed graph class the set of forbidden minors is finite.

The latter of the above formulations of Robertson and Seymour's theorem, illustrates clearly
the relation of Wagner's conjecture with Erdős and König's conjecture. The former extended the
finite basis property of graphs embeddable in a fixed surface which was conjectured in the latter
to arbitrary minor­closed classes of graphs.

The second main motivating problem (see [107]) for the GraphMinor series was the k­Disjoint
Paths Problem, which given a graph G and k pairs of vertices of G asks whether or not there exist
k mutually vertex­disjoint paths of G joining the pairs. If k is a part of the input then the above is
an NP­complete5 problem. However, for any fixed number of pairs Robertson and Seymour [112]
obtained a polynomial­time algorithm.

Theorem 3.1.15 (Robertson and Seymour [112]). For every fixed positive integer k, there is a
polynomial­time algorithm for the k­Disjoint Paths Problem. Actually the time complexity of the
algorithm is O(|V (G)|3), where G is the input graph.

For the question regarding the theorems and proofs' techniques of the well­quasi­ordering the­
ory, which played an important role in the Graph Minors series, we restrict ourselves to refer
the minimal bad sequence argument which Nash­Williams [95] (Lemma 2.4.2) used for the proof
of the well­quasi­ordering of finite trees and Higman's [64] "finite sequences" theorem (Theo­
rem 2.6.4). These theorems were basic ingredients for the proofs of the well­quasi­ordering of
graphs of bounded tree­width [109] (Theorem 3.4.1) and of Kuratowski's theorem for general
surfaces[110] (the characterization of the embeddability for any fixed surface Theorem 3.1.5).

Regarding their "structure theorem"­approach to Wagner's conjecture Robertson and Seymour
refer in [107] that «the starting point for the project was Mader's use of a theorem of Erdős and
Pósa». Erdős and Pósa [43] in 1965 proved the following structure theorem.

Theorem 3.1.16. [Erdős and Pósa [43]] Given a natural number k there exists a natural number
k′ such that for every graph G

• Either G has k vertex­disjoint cycles, or

• there exists a set of vertices X ⊆ V (G), such that |X| < k′ and the graph G \X contains
no cycles.

Mader [90] using the above theorem, proved the following.

Theorem 3.1.17 (Mader [90]). Let k be a positive integer. The set of all graphs with no k­vertex­
disjoint cycles as subgraphs is well­quasi­ordered by the topological minor relation.

5We do not define neither the notion of NP­completeness nor other notions considering algorithms in this thesis. We
refer the interest reader in any textbook of algorithms (e.g. [25])
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Robertson and Seymour described their "structure theorem"­approach to Wagner's conjecture in
[107] as follows:

Let Σ be a "structure" of graphs, for example being planar, or having genus ≤ k, or
being divisible into small cutsets. Let us identifyΣwith the class of graphs possesing
this structure. Now suppose that we wish to show that Σ is well­quasi­ordered by
minors, and suppose that we can prove a structure theorem within Σ of the following
kind.

For every H ∈ Σ there is a structure Σ′(H) such that G ∈ Σ′(H) for every graph
G ∈ Σ with no minor isomorphic toH .

Then it is suffices to prove that for H ∈ Σ, Σ′(H) is well­quasi­ordered by minors.
For if C is an infinite antichain with C ⊆ Σ, choose H ∈ C, and then C \ H is an
infinite antichain in Σ′(H).

The proofs, that planar graphs and graphs which exclude a fixed planar graph as a minor are
well­quasi­ordered by the minor relation which are presented in Section 3.5 and Section 3.6 re­
spectively, are typical applications of the above scheme.

The question regarding the interplay of graph's embeddings and well­quasi­ordering theorems
in the Graph Minors series, has been partially answered by our mention to the proof [110] of the
Erdős and König's conjecture which was a well­quasi­ordering result. Moreover, Robertson and
Seymour need surface embeddings6 for the proof of Wagner's conjecture in [114].

Beyond the Robertson­Seymour's theorem and the polynomial­time algorithm for the k­Disjoint
Paths Problem (with k fixed), among the greatest results of the Graph Minors series are a polyno­
mial time algorithm for testing if an arbitrary graph has a fixed graphH as a minor, the proof [103]
of Nash­Williams immersion conjecture (Theorem 4.2.3) and a powerful structure theorem which
captures, for any fixed graph H , the common structural features of all the graphs which do not
contain a minor isomorphic to H . For the statement of the latter theorem we refer the interested
reader in [71].

Theorem 3.1.18 ([112]). For a fixed graph H , there exist an algorithm which decides whether a
given graph G contains a minor isomorphic toH in time O(|V (G)|3).

The above combined with Robertson and Seymour's theorem has the following immediate
corollary.

Corollary 3.1.19. For every minor­closed property Q of graphs there exist a polynomial­time
algorithm which presented an arbitrary graph, say G, decides whether or not G ∈ Q.

We suggest as further readings on the issues discussed above, the present chapter and the fol­
lowing [12, 32, 47, 70, 88, 102].

3.2 Trees

In this section we present the proof of Kruskal's Tree theorem which has as a corollary Vazsonyi's
conjecture. Kruskal's Tree theorem states that the set of all "structured" trees that their vertices

6See for example the sketch of the proof of Robertson and Seymour's theorem by Diestel [32].

38



CHAPTER 3. WELL­QUASI­ORDERING GRAPHS BY THE MINOR RELATION

are labeled from a well­quasi­ordered set is well­quasi­ordered by an extension of the topological
minor relation. We also give a more direct proof of Vazsonyi's conjecture in Subsection 3.2.2. Both
proofs are due to Nash­Williams [95], who also proved in 1965 in [97] the well­quasi­ordering of
all trees ­finite and infinite­ by the topological minor relation, which was a Kruskal's conjecture
([81, Conjecture 1]). We remark that Higman [64] ­not in graphtheoretic­terms­ proved the special
case of Vazsonyi's conjecture which considers trees with bounded vertex degrees7.

3.2.1 Vazsonyi's conjecture and Kruskal's tree theorem

In this subsection we set up some notation that we will not use further in this thesis. Some of the
notation have been chosen in order to be compatible with the notation that is used in [81].

Notation 3.2.1 (the set of all finite trees). We denote by T ♯ the set of all finite trees.

Proposition 3.2.2. Vazsonyi's Conjecture holds if and only if the set T ♯ is well­quasi­ordered by
the topological minor relation.

Proof. From Theorem 2.1.7 which gives alternatives characterizations of the well­quasi­order no­
tion, it follows that the set T ♯ is well­quasi­ordered by the relation ≤tm if and only if the set T ♯

contains nor an infinite antichain neither an infinite strictly decreasing sequence (w.r.t. ≤tm).
Since by Observation 1.2.57 there exist no infinite strictly decreasing sequence of graphs w.r.t. the
topological minor relation, it follows that the set T ♯ is well­quasi­ordered by the relation ≤tm if
and only if it does not contain an infinite antichain (w.r.t. ≤tm) and hence T ♯ is well­quasi­ordered
by the relation ≤tm if and only if Vazsonyi's Conjecture holds.

Definition 3.2.3 (structured tree). A tree T is said to be structured if:

(i) T is a rooted tree, i.e a particular vertex called root of T , is specified;

(ii) every edge of T is oriented so that it points away from the root of T ;

(iii) for each vertex v of T , the edges that has as tail (initial vertex) the vertex v, are linearly
ordered.

Notation 3.2.4 (the set of all finite structured trees). We will denote by T the set of all finite
structured trees.

Definition 3.2.5 (monomorphism between structured trees). Let T1, T2 ∈ T . Then ω : V (T1)→
V (T2) is said to be a monomorphism if:

(i) ω is an embedding which witness that T1 is a topological minor of T2 when the structure on
T1 and T2 is disregarded;

(ii) ω maps each vertex of T1 to a vertex of T2;

(iii) ω maps each edge of T1 to an oriented path of T2, and does so in an orientation preserving
manner;

7See at the last page of [81] for what exactly Higman proved, and how it is related to Kruskal's Tree theorem
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(iv) for each vertex v of T1, ω maps the edges which has as tail the vertex v into paths which
initiate with the vertex ω(v) in a manner which is strictly order­preserving (w.r.t. the linear
ordering of the edges of T1 which have as tail the vertex v and the linear ordering of the
edges of T2 which have as tail the vertex ω(v)).

Definition 3.2.6 (relation ≤s
tm on T ). Let T1, T2 ∈ T , then T1 ≤s

tm T2 if and only if there exist a
monomorphism ω : V (T1)→ V (T2).

Definition 3.2.7 (the disregarding structure function ]). We define the function ] : T → T ♯ as the
function that maps each structured tree T to its corresponding ordinary tree which is obtained by
disregarding the structure of T .

Observation 3.2.8. Let T1, T2 ∈ T be two structured trees such that T1 ≤s
tm T2, then it follows

by Definition 3.2.6 that ](T1) ≤tm ](T2). Thus the function ] is an order homomorphism.

Observation 3.2.9. The disregarding structure function ] is an onto function. To see that just
observe that if T ′ ∈ T ♯ is an ordinary tree, then T ′ can easily transformed to a structured tree T in
such a way that ](T ) = T ′.

Lemma 3.2.10. If the set of all finite structured trees T is well­quasi­ordered by the relation≤s
tm,

then the set of all finite trees T ♯ is well­quasi­ordered by the relation ≦.

Proof. It follows immediate from Observation 3.2.8, Theorem 2.2.1 and Observation 3.2.9.

Definition 3.2.11 (structured tree over a set). Let X be a nonempty set that is quasi­ordered by
a relation ≤, let also T ∈ T be a structured tree and t : V (T ) → X be a function that maps
each vertex of the structured tree T to an element of the set X . We call t a structured tree over X
Intuitively, we can visualize t as a structured tree in which each vertex is labeled with an element
of the set X . We call T the carrier of t.

Notation 3.2.12. Given a set X , we denote by T (X) the set of all finite structured trees overX .

1

1

2

2 3

1

1

2

2 3

a

a c

b c a

root root

Figure 3.2.1: On the left hand side we illustrate a structured tree T over the set {a, b, c}. In the
middle we have its carrier, the structured tree [(T ), and on the right hand it is illustrated the tree
]([(T )) that is obtained by disregarding the structure of [(T ).
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Definition 3.2.13 (monomorphism between elements of T (X)). Let X be a nonempty set that
is quasi­ordered by a relation ≤, let also t1, t2 ∈ T (X) be two structured trees over X and let
T1, T2 ∈ T be the carriers of t1, t2 respectively. A function ω : V (T1) → V (T2) is said to be a
monomorphism ω : t1 → t2 if it fulfills all the requirements of Definition 3.2.5 and also has the
following additional property:

(∀v ∈ V (T1))[t1(v) ≤ t2(ω(v))].

Intuitively this requires that ω maps each vertex of T1 to a vertex of T2 with "greater" (w.r.t ≤)
label.

Definition 3.2.14 (relation ≤sl
tm on T (X)). Let X be a nonempty set that is quasi­ordered by a

relation≤ and let t1, t2 ∈ T (X) be two structured trees overX , then t1 ≤sl
tm t2 if and only if there

exist a monomorphism ω : t1 → t2.

Definition 3.2.15 (unlabeling function [). Let X be a nonempty set that is quasi­ordered by a
relation ≤. We define the function [ : T (X) → T as the function that maps each structured tree
over X to each carrier.

Observation 3.2.16. LetX be a nonempty set that is quasi­ordered by a relation≤, the unlabeling
function [ : T (X)→ T is onto and preserves the relation ≤sl

tm i.e. is an order homomorphism.

Lemma 3.2.17. LetX be a nonempty set that is quasi­ordered by a relation≤. If the set T (X) of
the finite structured trees over X is well­quasi­ordered by the relation ≤sl

tm, then the set T of all
structured trees is well­quasi­ordered by the relation ≤s

tm.

Proof. It follows immediate from Observation 3.2.16 and Theorem 2.2.1.

T (X) T T ][ ]

T (X) wqo T wqo T ] wqoX wqo =⇒ =⇒ =⇒

Figure 3.2.2: The tree Theorem 3.2.18

From Lemma 3.2.17 and Lemma 3.2.10 it follows immediate that given a non empty quasi­ordered
set X , if T (X) is well­quasi­ordered by the relation ≤sl

tm then the set of all finite trees T ♯ is well
quasi­ordered by the topological minor relation ≤tm which by Proposition 3.2.2 implies the truth
of Vazsonyi's Conjecture 3.1.6. Thus to prove Vazsonyi's Conjecture 3.1.6 it sufficiency to prove
that there a exist a non empty quasi­ordered setX such that the set T (X) is well­quasi­ordered by
the relation ≤sl

tm. Kruskal in [81] proved the following stronger statement:

Theorem 3.2.18 (Tree Theorem). LetX be a nonempty set that is quasi­ordered by a relation, say
≤. If X is well­quasi­ordered by the relation ≤, then T (X) is well­quasi­ordered by the relation
≤sl

tm.
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Proof. Towards a contradiction we suppose that the setX is well­quasi­ordered by the relation≤,
but the set T (X) of all structured trees over X is not well­quasi­ordered by the relation ≤sl

tm. By
our assumption and Lemma 2.4.2, there exist a minimal (w.r.t. the number of vertices of the carrier
of each of its terms) bad sequence on T (X). Let (tn)n∈N be such a sequence. For each n ∈ N, we
denote by rn the root of the carrier of tn.

Claim 3.2.19. The sequence ([(tn))n∈N has finitely many one­node trees as its members.

Proof of claim. Towards a contradiction we suppose that the claim does not hold, therefore the
subsequence ([(tkn))n∈N of all the one­node trees of ([(tn))n∈N is infinite. Then the sequence
(tkn(rkn))n∈N of the labels of the roots of its of those one­node trees is an infinite sequence onX
and thus ­by our assumption that X is well­quasi­ordered­ the sequence (tkn(rkn))n∈N is a good
sequence onX and hence it has at least one good pair. Let (tki(rki), tkj (rkj )) be such a pair. Then
(tki , tkj ) is a good pair of the sequence (tn)n∈N, contradicting to our assumption that (tn)n∈N is a
bad sequence. Thus the claim holds.

Let (tln)n∈N be the infinite subsequence of (tn)n∈N such that for each n ∈ N the carrier of
tln has at least two vertices. Consider now the infinite sequence (tln(rln))n∈N of the labels of
the roots of the elements of (tln)n∈N. By our assumption that ≤ is a well­quasi­order on X and
Theorem 2.1.7 it follows the existence of an infinite increasing subsequence of (tln(rln))n∈N. Let
(tlmn

(rlmn
))n∈N be such a sequence.

For each n ∈ N, let {T1, . . . , Tdeg(rlmn
)} be the set of the deg(rlmn

) connected components of
the tree [(tlmn

) \ rlmn
. We consider each of these connected components as a structured tree with

its root to be the vertex that neighboring with rlmn
in [(tlmn

) and its structure to be the structured
that is induced by [(tlmn

) and we set

Almn
:= {tlmn

|V (Ti) : 1 ≤ i ≤ deg(rlmn
)}.

Claim 3.2.20. The set A :=
⋃

n∈NAlmn
is well­quasi­ordered by the relation ≤sl

tm.

Proof of claim. To prove our claim it is sufficient to show that every sequence in A is a good
sequence. Let (tk)k∈N be an arbitrary but fixed sequence in A. For each k ∈ N, let n = n(k) be
such that tk ∈ Almn

. Let n0 = min{n(k)|k ∈ N} and k0 be one arbitrary but fixed element of the
set {k|n(k) = n0}. Recall, that (tn)n∈N is a bad sequence, thus from the minimal choice of tn(k)
and the fact that V (tk) ⊊ V (tnk0

), we derive that the sequence:

t0, . . . , tn(k0)−1, t
k0 , tk0+1, . . .

is a good sequence and thus has at least one good pair. We will show that both elements of every
good pair of this sequence belong at the sequence tk0 , tk0+1, . . . and hence every such a pair is a
good pair of the sequence (tk)k∈N.

Let (t, t′) be a good pair of the sequence t0, . . . , tn(k0)−1, t
k0 , tk0+1, . . .. Since (tn)n∈N is a

bad sequence, t cannot be among the first n(k) elements t0, . . . , tn(k0)−1 of our sequence, because
then: t′ would be some ti with i ≤ k0 and we would have:

t ≤sl
tm t′ = ti ≤sl

tm tn(i)
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Remembering the choice of k0 we note that n(k0)−1 < nk0 ≤ ni, and thus (t, tn(i)) is a good pair
of (tn)n∈N contrary to the fact that (tn)n∈N is a bad sequence. Hence t indeed is not among the
first n(k) elements of the sequence t0, . . . , tn(k0)−1, t

k0 , tk0+1, . . . and thus (t, t′) is a good pair of
(tk)k∈N. The sequence (tk)k∈N was an arbitrary sequence in A, and hence every sequence in A is
a good sequence and the proof of our claim is complete.

Note that since A is well­quasi­ordered by the relation ≤sl
tm, Theorem 2.5.5 implies that the set

[A]<ω is well­quasi­ordered by the extension of ≤sl
tm. Hence the sequence (An)n∈N of [A]<ω has

at least one good pair. Let (Ai, Aj) be such a pair and let f : Ai → Aj be the injection that
witnesses the relation Ai ⊑ Aj , then t ≤sl

tm f(t) for every t ∈ Ai and thus for each t ∈ Ai there is
a monomorphism ωt : t → f(t) which witness the relation t ≤sl

tm f(t). We consider the function
ω : V (ti) → V (tj) with ω = (

⋃
t∈Ai

ωt) ∪ (ri, rj). Notice that ω is a monomorphism which
witness the relation ti ≤sl

tm tj .
By our assumption that the set T (X) is not well­quasi­ordered by the relation ≤sl

tm we have de­
rived the contradiction that the bad sequence (tn)n∈N has a good pair, the pair (ti, tj). Hence our
assumption was false and the proof of Theorem 3.2.18 is complete.

Corollary 3.2.21. The set T ♯ is well­quasi­ordered by the relation≤tm i.e by the topological minor
relation.

Corollary 3.2.22. The Vazsonyi's Conjecture 3.1.6 holds.

Proof. It follows immediate from Proposition 3.2.2 and Corollary 3.2.21

3.2.2 A shorter proof of Vazsonyi's conjecture

Theorem 3.2.23. The set T ♯ is well­quasi­ordered by the topological minor relation and hence by
the minor relation.

Definition 3.2.24 (tree­order in rooted trees). Given a rooted tree T , we define the binary relation
tree­order < on the set of its vertices as follows: Let u, v ∈ V (T ) then u < v if and only if the
unique path from the root to v passes through u.

We shall base the proof of Theorem 3.2.23 on the following notion of embedding between rooted
trees.

Definition 3.2.25 (≤ relation on T ♯). Let T, T ′ be two rooted trees and let r, r′ be their roots
respectively. We will write T ≤ T ′ if there exist an isomorphism φ from some subdivision of T to
a subtree T ′′ of T ′, that preserves the tree­order on V (T ) i.e. if x, y ∈ V (T ) and x < y in T , then
φ(x) < φ(y) in T ′.

Observation 3.2.26. The above notion of embedding between rooted trees is stronger than the
usual embedding that witnesses the topological minor relation between two graphs.

Proof of Theorem 3.2.23. From our last observation it follows that to prove the theorem it is suf­
ficient to show that the set T ♯ is well­quasi­ordered by the relation ≤ as we defined this relation
on Definition 3.2.25.
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Towards a contradiction let us suppose that the set T ♯ is not well­quasi­ordered by the relation
≤. Thus by our assumption and Lemma 2.4.2, we can consider a minimal8 bad sequence (w.r.t. ≤)
in T ♯. Let (Tn)n∈N be such a sequence

For all n ∈ N we denote by rn the root of the tree Tn and by An the set of the connected
components of the graph Tn \ rn, considering its one of those components as a rooted tree, with
root the vertex that neighboring with rn in Tn. We remark that the tree­order in each tree of the set
An is the tree­order that induced by Tn. Our next goal is to prove the following claim:

Claim 3.2.27. The set of rooted trees A =
⋃

n∈NAn is well­quasi­ordered by the relation ≤.

Proof of claim. To prove our claim it is sufficient to show that every sequence in A is a good
sequence. Let (T k)k∈N be an arbitrary but fixed sequence in A. For every k ∈ N we choose a
natural number n = n(k) such that T k ∈ An. Let n0 = min{n(k)|k ∈ N} and k0 be one arbitrary
but fixed element of the set {k|n(k) = n0}. Then from the minimal choice of Tn(k) and the fact
that T k ⊊ Tnk0

, we derive that the sequence

T0, . . . , Tn(k0)−1, T
k0 , T k0+1, . . .

is a good sequence. We will show that both elements of every good pair of this sequence belong at
the sequence T k0 , T k0+1, . . . and hence every such a pair is a good pair of the sequence (T k)k∈N.
Let (T, T ′) be a good pair of the sequence T0, . . . , Tn(k0)−1, T

k0 , T k0+1, . . .. Since (Tn)n∈N is
a bad sequence, T cannot be among the first n(k) elements T0, . . . , Tn(k0)−1 of our sequence,
because then: T ′ would be some T i with i ≤ k0 and we would have:

T ≤ T ′ = T i ≤ Tn(i)

Remembering the choice of k0 we note that n(k0) − 1 < nk0 ≤ ni, and thus (T, Tn(i)) is a good
pair of (Tn)n∈N contrary to the fact that (Tn)n∈N is a bad sequence. Hence T indeed is not among
the first n(k) elements of the sequence T0, . . . , Tn(k0)−1, T

k0 , T k0+1, . . . and thus (T, T ′) is a good
pair of (T k)k∈N. The sequence (T k)k∈N was an arbitrary but fixed sequence inA, and hence every
sequence in A is a good sequence and the proof of our claim is complete.

Note that since A is well­quasi­ordered by the relation ≤, Theorem 2.5.5 implies that the set
[A]<ω is well­quasi­ordered by the expansion of ≤ on it. Hence the sequence (An)n∈N of [A]<ω

has at least one good pair, let (Ai, Aj) be such a pair. Let f : Ai → Aj be the injection that
witnesses the relation Ai ≤ Aj , then T ≤ f(T ) for every T ∈ Ai. For each T ∈ Ai there is an
embeddingφT that witnesses the relationT ≤ f(T ). We consider the functionφ : V (Ti)→ V (Tj)
with φ = (

⋃
T∈Ai

φT ) ∪ (ri, rj). Now the function φ is an embedding that witnesses the relation
Ti ≤ Tj . By our assumption that the set T ♯ is not well­quasi­ordered by the relation ≤ we have
derive the contradiction that the bad sequence (Tn)n∈N has a good pair, the pair (Ti, Tj). Hence
our assumption was false and the proof of Theorem 3.2.23 is complete.

3.3 Symmetric submodular functions and branch­decompositions

In this section we consider symmetric submodular functions, we introduce the concept of their
branch­decompositions, we define the branch­width of a symmetric submodular function and we

8The minimality is relevant to the number of vertices of each element of the sequence.
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prove some results which will be used in the proofs of some of the main results of this chapter such
as the well­quasi­ordering of graphs of bounded branch­width by the minor relation.

A set function is said to be submodular if it has the property that the difference in the incre­
mental value of the function that a single element makes when added to an input set decreases as
the size of the input set increases.

The symmetric submodular functions that we will consider throughout this chapter are the
connectivity functions of graphs. The branch­decompositions and branch­width of a given graph
are the branch­decompositions and branch­width of its connectivity function. The graph invari­
ant of branch­width is a measure of "global connectivity" of the graph, broadly speaking, a graph
has small branch­width if it can be decomposed across non­crossing separations into small pieces.
Branch­width was first defined by Roberson and Seymour in [111], a survey of results, open prob­
lems and bibliography considering the branch­width of graphs can be found in [49].

Definition 3.3.1 (submodular function). Given a finite set S and a function λ defined on P(S),
the function λ is called submodular if the following condition holds:

(∀A,B ∈ P(S))[λ(A) + λ(B) ≥ λ(A ∩B) + λ(A ∪B)]

The set S is called the ground set of λ.

Definition 3.3.2 (symmetric submodular function). Given a finite set S and a submodular function
λ whose ground set is S, the function λ is called symmetric if the following condition holds:

(∀A ∈ P(S))[λ(A) = λ(S \A)]

Definition 3.3.3 (partial branch­decomposition of a symmetric submodular function). Given a
finite set S and a symmetric submodular function λ that has as ground set the set S, a partial
branch­decomposition of λ is a pair B = (T, τ), where T is a cubic tree T and τ : S → L(T ) is
an onto function, mapping the elements of S to the leaves of T . A leaf l ∈ L(T ) will be said to be
loaded if |τ−1(l)| > 1. An edge of T is loaded if it is incident to some loaded leaf.

Definition 3.3.4 (valency of a partial branch­decomposition). LetB be a partial branch­decomposition
of a symmetric submodular function. We define as the valency of B the number |L(T )|.

Definition 3.3.5 (incomplete and complete partial branch­decomposition). Let S be a finite set,
let also λ a symmetric submodular function that has as ground set the set S and B = (T, τ) be
a partial branch­decomposition of λ. We will call B incomplete if |S| > |L(T )| and complete if
|S| = |L(T )|. In this case, τ is a bijection from E(G) to L(T ).

Definition 3.3.6 (branch­decomposition of a symmetric submodular function). Given a symmetric
submodular function λ, a branch­decomposition of λ, is a complete partial branch­decomposition
of λ.

Notation 3.3.7 (B = (T, τ) ≡ T ). Let B = (T, τ), be a branch­decomposition of a symmet­
ric submodular function λ. When our purposes do not impose us to refer to the function that
corresponds to a branch­decomposition we identify the reference to the branch­decomposition
with the reference to its correspondent cubic tree, i.e. we refer to the cubic tree T as the branch­
decomposition of λ. In particular, this is the case for the proofs of Theorems 3.3.21, 3.4.2.
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Comment 3.3.8 (unlabeled leaves). In the proofs of Theorems 3.3.21, 3.4.2 we allow ­by violating
Definition 3.3.6­ for convenience and for technical reasons respectively, a branch­decomposition to
have some leaves that do not correspond to elements of the ground set of the symmetric submodular
function. We call such leaves unlabeled and remark that branch­decompositions with unlabeled
leaves are easily turned onto branch­decompositions with the same width but no unlabeled leaves:
just delete the unlabeled leaves and suppressing vertices of degree 2 until the tree is cubic again.

Notation 3.3.9. Let S be a finite set and λ submodular function on P(S). Given two disjoint
subsets A and B of S we denote by λ(A,B) the value

min{λ(X)|(X ⊆ S) ∧ (A ⊆ X) ∧ (X ∩B = ∅)}

Clearly if λ is a symmetric submodular function, then:

(∀A,B ∈ P(S))[A ∩B = ∅ ⇒ λ(A,B) = λ(B,A)].

Definition 3.3.10. Let S be a finite set, λ a symmetric submodular function whose ground set is
S, and let B = (T, τ) be branch­decompositions of λ.

• Given a subtree T ′ of T , letA = τ−1(L(T )∩L(T ′)), we will say thatA is displayed by T ′.

• A subset of S is displayed by an edge e of T if it is displayed by one of the two connected
components of T \ e.

Observation 3.3.11. Whenever two sets are displayed by edges in a branch­decomposition are
either disjoint, or their union is equal with the ground set of the symmetric submodular function or
are comparable by inclusion.

Definition 3.3.12 (width of an edge of a branch­decomposition). Given a finite set S, a symmetric
submodular function λ whose ground set is S, a branch­decomposition B = (T, τ) of λ and an
edge e in T , we define the width of e to be the value that the function λ takes at the one of the two
sets displayed by e, note that due to the symmetry of λ this two values are equal. We denote the
width of e by λ(e).

Definition 3.3.13 (width of a branch­decomposition of a symmetric submodular function). The
width of a branch­decomposition is the maximum of the widths of its edges.

Definition 3.3.14 (branch­width of a symmetric submodular function). Given a symmetric sub­
modular function the branch­width of that function is defined to be the minimum of the widths of
all its branch­decompositions.

3.3.1 A Menger­like property of branch­width

The notion of tree­width is a cornerstone of Robertson and Seymour's Graph Minors series [104].
Informally the graph invariant of tree­width is ameasure of the "tree­likeness" of a graph. Although
we will not make use of the notions of tree­decompositions and tree­width at any of our proofs,
we define these notions formally below, because in the course of this chapter we refer a couple of
times to those and in order to be able to express some results considering tree­decompositions and
tree­width which are closely related with the main result of this section, which is Theorem 3.3.21,
and it will be used in the proof of the well­quasi­ordering of graphs of bounded branch­width by
the minor relation.

46



CHAPTER 3. WELL­QUASI­ORDERING GRAPHS BY THE MINOR RELATION

Definition 3.3.15 (tree­decomposition, width of a tree­decomposition, tree­width of a graph).
Given a graph G a tree­decomposition of G is an ordered pair (T,X ) where T is a tree and
X = {Xt ⊆ V (G)|t ∈ V (T )} is a collections of subsets of the vertex set of G, called bags
with the following properties:

(i)
⋃

t∈V (T )Xt = V (G);

(ii) (∀e ∈ E(G))(∃t ∈ V (T ))[e ⊆ Xt], that is every edge belongs to some bag; and

(iii) for every u ∈ V (G), the set of vertices {t ∈ V (T )|u ∈ Xt} induce a connected subgraph
of T .

The width of a tree­decomposition (T,X ) is max{|Xt||t ∈ V (T )} − 1, the tree­width of a graph
G, denoted by tw(G), is defined as the minimum width of a tree decomposition of G.

Roberson and Seymour in [109] proved Theorem 3.4.1 which states that any set of graphs of
bounded tree­width is well­quasi­ordered by the minor relation. Due to the fact (Theorem 3.3.33)
that branch­width and tree­width are within a constant factor, the statement of Theorem 3.4.1 is
equivalent with the statement that any set of graphs of bounded branch­width is well­quasi­ordered
by the minor relation. In order to derive the proof of Theorem 3.4.1 Roberson and Seymour proved
Theorem 3.3.17 which states the existence of tree­decompositions of "small" width which satisfies
a certain vertex­connectivity condition.

Definition 3.3.16 (linked tree­decomposition). A tree decomposition (T,X ) will be said to be
linked if for all k ∈ N and every t, t′ ∈ V (T ), eitherG contains k disjoint (Xt, Xt′)­paths or there
is a vertex c ∈ V (T ) in the unique path between t and t′ in T , such that |Xc| < k.

Theorem3.3.17 (Robertson and Seymour [108]). Every graphG admits a linked tree­decomposition
of width less than 3.2tw(G).

The exponential upper bound 3 · 2tw(G) for the width of the tree­decomposition the existence
of which is guaranteed by Theorem 3.3.17, was improved by Thomas [121] to its optimal value.

Theorem 3.3.18 (Thomas [121]). Every graph G admits a linked tree­decomposition of width
tw(G).

In fact Thomas showed a stronger result ­which we will not state here­, which states that every
graph G has a lean tree­decomposition of width tw(G). Later Kříž and Thomas [80] extended
Theorem 3.3.18 for infinite graphs, and Thomas [120] used it to prove Theorem 3.6.27 which
states that given any finite planar graph H the set of all graphs (finite and infinite) with no minor
isomorphic to H is well­quasi­ordered (actually the better­quasi ordered) by the minor relation.
There is a short proof of Theorem 3.3.18 by Bellenbaum and Diestel [10].

Similar results have been proved for several different width­parameters such as tree­cut width
[57], θ­tree­width [18, 56], path­width [85], directed path­width [73], DAG­width [75], rank­width
[98], linear­ rank­width [67], profile­width and block­width [40], matroid tree­width [8, 40, 53],
matroid branch­width [53].

Themain result of this section is Theorem 3.3.21which is the analog of Thomas' Theorem 3.3.18
for branch­decompositions. We first need to define the notion of linked branch­decomposition.
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Definition 3.3.19 (linked edges). Let S be a finite set, λ a symmetric submodular function whose
ground set is S and let B = (T, τ) be branch­decompositions of λ. Let e1, e2 be two edges of T ,
let E1 be the set displayed by the component of T \ e1 that does not contain e2 and let E2 be the
set displayed by the component of T \ e2 that does not contain e1. Let P be the shortest path in
T that contains both e1 and e2, then each edge on P displays a subset of S that contains E1 and is
disjoint from E2, thus the widths of the edges of P are upper bounds for the value λ(E1, E2).
We call e1, e2 linked if λ(E1, E2) is equal to the minimum width of an edge on P . It's immediate
from the definition that every edge is linked to itself.

Definition 3.3.20 (linked branch­decomposition). A branch­decomposition of a symmetric sub­
modular function will be said to be linked if and only if all its edge pairs are linked.

Theorem 3.3.21. For every positive integer n, if λ is an integer­valued symmetric submodular
function with branch­width n, then λ has a linked branch­decomposition of width n.

Proof. Let n ≥ 1 be an arbitrary but fixed positive integer and λ be an arbitrary but fixed integer­
valued symmetric submodular function, with ground set, the set S and branch­width n. As a first
step to our proof we will equip the setD of all branch­decompositions of λwith a strict partial order
<, then the core of our proof lies in the proof of Lemma 3.3.26, which states that every minimal
( w.r.t < ) element of D is a linked branch­decomposition of λ and since by Claim 3.3.25 every
such an element is a branch decomposition of width n of λ we will obtain the desired result.

For each branch­decomposition T of λ and each natural number k, we define Tk to be the forest
which is induced by the edges of T with width at least k. Note that subgraphs induced by edges
have no isolated vertices. For a graph H we denote by e(H) the number of edges of H and by
c(H) the number of connected components ofH .

Let T,R ∈ D, we write T < R if there exists a number k such that:

(i)
(
e(Tk) < e(Rk)

)
∨
(
(e(Tk) = e(Rk)) ∧ (c(Tk) > c(Rk))

)
(ii) (∀n ∈ N)[n > k ⇒

(
(e(Tn) = e(Rn)) ∧ (c(Tn) = c(Rn))

)
]

Comment 3.3.22. Recall Definition 3.3.13 and notice that by comparing two branch­decompositions
with only criterion their width, we are only looking at the width of their wider edges and we ignore
how many edges have this width and what happens with the width of their other edges. By the
definition of the strict partial order< onD, we intend to distinguish branch­decompositions of the
same width, when the one is in some sense better than the other. The underlying criterion to choose
among two branch­decompositions of the same width which motivates the particular definition of
< is the following:

Between two branch­decompositions of different width of course we prefer the one that has
the minimum width. Among two branch­decompositions of the same width the one, say T , may be
more preferable than the other, say R, if there exist a natural number k such that:

(i) the number of the edges of width k of T is less than the corresponding number of R or it is
equal, but T has more edges of width less than k than R, and

(ii) for every natural number n > k the number of edges of width n is equal to both T and R
and so does the number of edges of width less than n.
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Claim 3.3.23. The set D is strictly partially ordered by the relation < that we defined above.

Proof of claim. It is sufficient to show that the relation < is irreflexive, transitive and antisym­
metric on D. Let T,R,H ∈ D be three arbitrary but fixed branch­decompositions of λ such that
T < R,R < H . Then:

• Ιrreflexivity: T ≮ T , because for all natural numbers the first condition does not hold.

• Τransitivity: Let k1, k2 be the natural numbers that witness the relations T < R andR < H
respectively, then the natural number k = max{k1, k2} witnesses that T < H .

• Antisymmetry: The relation R < T ­through the transitivity of <­ would imply T < T
which contradicts the irreflexivity of <, thus R ≮ T .

Since T,R,H where arbitrary the claim follows.

...

D

bw(λ) = n

n+ 1

max{λ(x)|x ∈ S}

... ...

(D, < )

. . .

bw(λ) = n

n+ 1

max{λ(x)|x ∈ S}

...

. . .

. . .

. . . . . .

Figure 3.3.1: The strict partial order < on the set D of all branch­decompositions of λ distinguish
branch­decompositions of the same width in the way that is illustrated on Comment 3.3.22. Each
minimal (w.r.t <) element of D is a linked branch­decomposition of λ.

Claim 3.3.24. The set D has at least one minimal (w.r.t <) element.

Proof of claim. That's true for every strictly partially ordered set, it follows from the fact that every
partial order can be seen as a DAG (directed acyclic graph), and since every DAG has at least one
vertex with in­degree 0 the claim follows because every such vertex corresponds to a minimal
element of the partial order.

Claim 3.3.25. Every minimal (w.r.t <) element of D has width n.

Proof of claim. Let T be a minimal element ofD. Towards a contradiction suppose that the width
of T is k > n. Let l = max{m ∈ N|(m > n) ∧ (m ≤ k)} and let R be a branch­decomposition
of width n of λ, then l witnesses that R < T contradicting to the minimality of T .
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Lemma 3.3.26. Every minimal (w.r.t <) element of D is a linked branch­decomposition of λ.

Proof of Lemma 3.3.26. Let T be a minimal element of D. Towards a contradiction we suppose
that T is not linked. Let f, g be to edges in T witnesses that that T is not linked i.e. f, g is a
pair of unlinked edges. Clearly f ̸= g, since every edge is linked with itself. Let F be the set
displayed by the connected component of T \ f that does not contain g andG be the set displayed
by the connected component of T \ g that does not contain f . Let x, y be the end vertices of f, g
respectively such that the unique xy−path in T does not contain neither f nor g.

Given X,Y ⊆ S, we say that X splits Y if X ∩ Y ̸= ∅ and Y \X ̸= ∅. Note that splitting is
not a symmetric binary relation on P(S) i.e. X splitting Y does not implies Y splitting X .

We choose a subsetA of S \G such that F ⊆ A, λ(A) = λ(F,G), and A splits as few subsets
of S displaying by edges in T as possible. Note, that such a choice can be done since the set
{B|(B ⊆ S) ∧ (B ∩G = ∅) ∧ (F ⊆ B) ∧ (λ(B) = λ(F,G))} is non­empty.

We now proceed to the construction of a branch­decomposition T̂ of λ (see Figure 3.3.2) from
which we will derive the desired contradiction. Let T+ be a copy of the connected component of
T \g that contains the edge f and T− be a copy of the connected component of T \f that contains
the edge g.

Then the tree T̂ consists in T+ and T− connected with a new edge α incident to the copies
of x and y in T−and T+ respectively, T̂ is clearly cubic. We turn T̂ into a branch­decomposition
of λ as follows: Each element s of S ­which is a leaf of T ­ is identified with its copy in T+ if
s ∈ A and with its copy in T− otherwise. Notice, that from its construction T̂ contains twice the
connected component of T \ {f, g} that contains x and y.

Claim 3.3.27. Let e be an edge in T and ê one of its copies in T̂ . Then λ(ê) ≤ λ(e), and the
equality holds only if e has at most one copy in T̂λ(A)+1.

Proof of Claim 3.3.27. In order to prove this, by symmetry, there is no loss of generality if we
suppose that ê lies in T+. LetW be the set displayed by the component of T \e that does not contain
the vertex y. Then for the width of the edges e, ê we have λ(e) = λ(W ) and λ(ê) = λ(A ∩W )
respectively. From the submodularity of λ we have: λ(A ∩W ) + λ(A ∪W ) ≤ λ(A) + λ(W ),
and thus we have:

λ(ê) + λ(A ∪W ) ≤ λ(A) + λ(e) = λ(F,G) + λ(e) ≤ λ(A ∪W ) + λ(e).

It follows that λ(ê) ≤ λ(e), and the equality holds only if λ(W ∪A) = λ(A).

To complete the proof of Claim 3.3.27 it is sufficient to show that whenever the equality λ(ê) =
λ(e) holds the edge e has at most one copy in T̂λ(A)+1, and hence from the above it is sufficient to
show that whenever λ(W ∪A) = λ(A), the edge e has at most one copy in T̂λ(A)+1. For that, let
λ(W ∪A) = λ(A), then λ(W ∪A) = λ(F,G).

Claim 3.3.28. The set A does not splitW .

Proof of Claim 3.3.28. Towards a contradiction we suppose that A splits W . Note that by the
choice of the set A, it follows that the setW ∪A splits at least as many subsets of S displayed by
edges in T as A does. Since W \ (W ∪ A) = ∅ it follows that W ∪ A does not split W and thus
there exists a set Y displayed by an edge of T , such that the set W ∪ A splits Y but A does not.
Since W ∪ A splits Y we have Y \ (W ∪ A) ̸= ∅ and thus Y \ A ̸= ∅, since A does not split Y
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Figure 3.3.2: This figure is taken from [55] and illustrates the proof of Lemma 3.3.26.

this implies that A ∩ Y = ∅ and W splits Y . As A splits W the fact that A ∩ Y = ∅ implies that
W \ Y ̸= ∅. As Y andW are both displayed by edges of T and asW splits Y Observation 3.3.11
implies that Y ∪ W = S, hence A ⊆ W and thus F ⊆ W . Moreover as ê lies in T+, the
choice of W is such that W lies in S \ G. Hence, as the edges f, g are not linked in T , we have
λ(F,G) < λ(W ) = λ(e) = λ(ê) = λ(W ∩ A) = λ(A). We have thus derived the contradiction
that λ(A) > λ(F,G). Hence our assumption was false and the proof of the claim is complete.

SinceA does not splitW , it follows that eitherA∩W = ∅, orW \A = ∅. Note that combining
the symmetry and the submodularity of λ we take:

(∀B ⊆ S)[2λ(B) = λ(B) + λ(S \B) ≥ λ(∅) + λ(S) = 2λ(∅)].

It follows, that (∀B ⊆ S)[λ(B) ≥ λ(∅)]. We now distinguish the following two cases:

Case 1: A ∩W = ∅. In this case λ(ê) = λ(A ∩W ) = λ(∅) ≤ λ(A) < λ(A) + 1. Thus, in this
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case ê /∈ T̂λ(A)+1. So if e has a second copy in T̂ , only this copy is possible to belong in T̂λ(A)+1.
And hence in this case e has at most one copy in T̂λ(A)+1.

Case 2: W \A = ∅. If e has only one copy in T̂ we are done. So let us suppose that e has a second
copy in T̂ , say e∗, then this copy will lie in T−.

• If e ∈ P then λ(e∗) = λ(W ∪A) = λ(A) < λ(A) + 1

• If e /∈ P then λ(e∗) = λ(W \A) = λ(∅) ≤ λ(A) < λ(A) + 1

In any case λ(e∗) < λ(A) + 1 and hence λ(e∗) /∈ T̂λ(A)+1. Thus, at most one copy of e lies in
T̂λ(A)+1, and that completes the proof of Claim 3.3.27.

We now return to the proof of Lemma 3.3.26. Let us denote by B the set:

{n ∈ N |(n > λ(A)) ∧
(
(∀k > n)[e(Tk) = e(T̂k)]

)
}.

Note that if we set l = max{λ(e)|(e ∈ T ) ∨ (e ∈ T̂ )} then for every integer k greater than l both
Tk and T̂k have zero edges and hence B is nonempty, we can thus choose the minimum element
of B. Let p = min{n|n ∈ B},

• From Claim 3.3.27 it follows that for each k ≥ p each edge of Tk has at most one copy in
T̂k,

• Moreover since A is displayed by α in T̂ we have λ(α) = λ(A) and hence α /∈ T̂k for
k > λ(A).

So for every k ≥ p we have e(Tk) ≥ e(T̂k), with c(Tk) ≤ c(T̂k) whenever e(Tk) = e(T̂k).
However from the minimal choice of T we can't have T̂ < T so in fact:

(∀k ≥ p)[(e(Tk) = e(T̂k)) ∧ (c(Tk) = c(T̂k))].

Thus also Tp and T̂p have the same number of edges, which by definition of p implies that p =
λ(A) + 1. Moreover, as c(Tλ(A)+1) = c(T̂λ(A)+1) each component of Tλ(A)+1 is copied entirely
and as one in T̂λ(A)+1. In particular this holds also for the component P ∪ {f, g}, which lies
entirely in Tλ(A)+1. This is absurd, f has a copy only in T+, g has a copy only in T−, and α is
not in Tλ(A)+1. We have thus derived a contradiction by assuming that T is not linked, hence T is
indeed linked and the proof of Lemma 3.3.26 is complete.

As n was an arbitrary positive integer and λ was an arbitrary integer­valued symmetric sub­
modular function of branch­width n, the proof of Theorem 3.3.21 is complete.

3.3.2 Branch­decompositions & branch­width of graphs

The symmetric submodular functions that we will consider in the course of this chapter are the
connectivity functions of graphs.

Definition 3.3.29 (connectivity function of a graph). Given a graph G = (V,E), for A ⊆ E we
denote by ΓG(A) the set of vertices that are incident with an edge in A and also with an edge
in E \ A. We define the connectivity function of G to be the function γG : P(E) → N, with
γG(A) := |ΓG(A)|.
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Observation 3.3.30. Given a graph G = (V,E), it is immediate from Definition 3.3.29 to see
that:

• (∀A ⊆ E)[γG(A) = γG(E \A)]

• (∀A,B ⊆ E)[(γG(A) ≥ γG(A∩B))∧ (γG(A)+ γG(B) ≥ γG(A∪B))], hence (∀A,B ⊆
E)[γG(A) + γG(B) ≥ γG(A ∩B) + γG(A ∪B)].

Thus, the connectivity function of a graph, is a symmetric submodular function.

Definition 3.3.31 ((partial) branch­decomposition and branch­width of a graph). Given a graph
G, a (partial) branch­decomposition of G is a (partial) branch­decomposition of its connectivity
function. The branch­width of G is defined to be the branch­width of its connectivity function.

Notation 3.3.32 (branch­width of a graph). Given a graphG, we denote the branch­width ofG by
bw(G).

Theorem 3.3.33 (Robertson and Seymour [111]). Let G be a graph, then bw(G) ≤ tw(G) + 1 ≤
⌊3/2bw(G)⌋.

Comment 3.3.34. It immediate from Definition 3.3.31, that the branch­width of a graph is equal
with the maximum branch­width of its connected components and that if two graphs, sayG,H are
isomorphic then bw(G) = bw(H).

Definition 3.3.35 (middle set of an edge of a partial branch­decomposition). Let G be a graph,
B = (T, τ) be a (partial) branch­decomposition of G, e be an edge of T and A a set displayed
be e in T . We define as the middle set of e the set ΓG(A). We will denote the middle set of e by
mid(e). Note that |mid(e)| = |ΓG(A)| = γG(A).
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Figure 3.3.3: On the left hand side it is illustrated a graph and on the right hand side a branch­
decomposition of this graph. mid(e) = {v1, v3, v5}.

Observation 3.3.36. Given any graph G for any two sets of edges of G, say E1, E2, the value
γG(E1, E2) equals to the size of the minimum (Γ(E1),Γ(E2))­separator and thus by by Theo­
rem 1.2.73with themaximumnumber ofmutually internally vertex­disjoint (Γ(E1),Γ(E2))­paths.
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The following theorem is an immediate corollary of Theorem 3.3.21.

Theorem 3.3.37. Let n be a positive integer and G be a graph such that bw(G) = n, then G has
a linked branch­decomposition of width n.

Proposition 3.3.38. Let G,H be graphs. If H is isomorphic to a minor of G, then bw(H) ≤
bw(G).

Proof. We may assume that |E(H)| ≥ 2, since otherwise bw(H) = 0 and the is nothing to prove.
Let B = (T, τ) be a branch­decomposition of G with width bw(G). Let S be a minimal subtree
of T such that (∀e ∈ E(H))[τ−1(e) ∈ L(S)∩L(T )]. Let T ′ be the cubic tree obtained from S by
suppresing all vertices of degree 2 on it (that is, for any vertex of degree 2we delete this vertex and
its incident edges and we add a new edge joining its neighbors and we continue this process until no
such vertices remain). Let τ ′ be the restriction of T to the set L(T ′

) = L(T )∩L(S) ⊆ L(T ), then
B′ = (T

′
, τ

′
) is a branch­decomposition of H and its width is ≤ bw(G), thus bw(H) ≤ bw(G)

and the proof of the proposition is complete.

The following is an immediate corollary of [50, Lemma 3.1].

Theorem 3.3.39. The branch­width of every graph is equal to the maximum branch­width of its
blocks.

3.4 Graphs with bounded branch­width

Robertson and Seymour on [109] proved the following theorem:

Theorem 3.4.1 (Robertson and Seymour [109, Theorem 1.5]). For each positive integer n the set
of all graphs with tree­width at most n is well­quasi­ordered by the minor relation.

Theorem 3.4.1 is a central result of the Graph Minors series, for example it is one of the two
basic ingredients for the proof (presented in Section 3.6) of the Robertson ans Seymour's theorem
(Theorem 3.1.11) in the case that the graph G1 is planar. Another result in which Theorem 3.4.1
plays a crucial role, is the "Kuratowski's theorem for General Surfaces" (Theorem 3.1.5) whose
proof is presented in Section 3.7.

Recall the close relationship of the graph parameters branch­width and tree­width (Theorem 3.3.33)
that implies the equivalent of Theorem 3.4.1 with the following theorem:

Theorem 3.4.2. For each positive integer n the set of all graphs with branch­width at most n is
well­quasi­ordered by the minor relation.

In this section we give a proof of Theorem 3.4.2. The reason why we state Theorem 3.4.1 in
terms of branch­width is because working with branch­width makes the proof much simpler and
shorter. The proof of Theorem 3.4.2 is due to Geelen, Gerards, and Whittle [53]. In a lot points of
the proof we follow the presentation of Richter [102].

Another formulation of Theorem 3.4.2 wehich is useful for applications is the following.

Theorem 3.4.3. Let G be a set of graphs of bounded branch­width, then G is well­quasi­ordered
by the minor relation.
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The proof of Theorem 3.4.2 will run roughly as follows: We suppose towards a contradiction
that the theorem does not hold. Let n be an integer which witnesses our assumption, that is, the set
of graphs with branch­width ≤ n ­denoted by Gn­ is not well­quasi­ordered by the minor relation.
We will work in the forest which consists of the branch­decompositions of all the graphs of Gn.
In subsection 3.3.1 we prove "Lemma on Trees" (Lemma 3.4.9) which gives us some information
about the structure that this forest must have (actually in subsection 3.3.2 we prove a corollary of
the "Lemma on Trees" (Lemma 3.4.12) which is exactly what we will use). We will prove that this
structure does not occur in our forest, deriving by this way the desired contradiction.

3.4.1 Lemma on trees

"Lemma on Trees" was first proved on [109], the proof that we presented here is from [53, 55].

Definition 3.4.4 (Rooted forest). A rooted forest is a collection of countable many vertex disjoint
rooted trees. Its vertices with in­degree 0 are called roots and those with out­degree 0 are called
leaves. The edges that are incident to a root are called root edges and those that are incident to a
leaf are called leaf edges.

Notation 3.4.5. Given a rooted forest F and a set of edges S in F , we denote by uF (S) the set of
those edges in F whose tail is a head of an edge in S.

Definition 3.4.6 (n−edge labeling of a graph). Given a graphG an n−edge labeling of a graph is
a map from the set of the edges of G to the set {1, . . . , n}.

Definition 3.4.7 (λ− linked). Given a rooted forest F , a function λ that is n−edge labeling of F
and two edges e, f in F we say that e is λ−linked to f if F contains a directed path P starting with
e and ending with f such that λ(g) ≥ λ(e) = λ(f) for each edge g on P .

Observation 3.4.8. Given a rooted forest F and a function λ that is n−edge labeling of F , from
the above definition it follows that every edge is λ−linked to itself.

Lemma 3.4.9 (Lemma on Trees). Let F be a rooted forest with an n−edge labeling λ. Moreover,
let⪯ be a quasi order in the edges of F with no infinite strictly descending sequence and such that
e ⪯ f whenever f is λ−linked to e. If the edges of F are not well­quasi­ordered by ⪯ then there
exists an infinite antichain A of edges of F such that the set uF (A) is well­quasi ordered by ⪯.

Proof. Towards a contradiction we suppose that the lemma does not hold. Let

n = min{n ∈ N|F, λ, n are forming a counterexample}

Note, that from the choice of our counterexample it follows that:

1. Any n−edge labeled forest with no label equal to 0 satisfies the lemma, since otherwise we
could form a (n− 1)−edge labeled counterexample.

2. Moreover, any n−edge labeled forest in which the edges labeled 0 are well­quasi­ordered
by ⪯ it satisfies the lemma, since otherwise by deleting these edges we could get a n−edge
labeled counterexample for the lemma in which there is no edge labeled 0 and hence a (n−
1)−edge labeled counterexample.
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Let N be the set of edges in F with label 0, from the above observation it follows that N is not
well quasi­ordered by ⪯ and hence from Lemma 2.4.2 we may consider a minimal bad sequence
in N . Let (an)n∈N be such a sequence, that is,

• Badness: (an)n∈N is a bad sequence in N w.r.t ⪯, and

• Minimality: (∀k ∈ N)[(e ∈ N) ∧ (e ⪯ ak) ⇒ there is no bad sequence in N with
a1, . . . , ak−1, e as its initial segment ]

Since from our hypothesis does not exist an infinity strictly descending sequence w.r.t⪯, it follows
that infinite many elements of the sequence (an)n∈N are pairwise incomparable w.r.t≺, and hence,
the set of those elements forms an infinite antichain A in (an)n∈N. From our assumption that the
lemma does not hold it follows that uF (A) is not well­quasi­ordered by ⪯ and hence uF ({an|n ∈
N}) is not well­quasi­ordered by ⪯.

We now form another counterexample which would then help us get the desired contradiction.
Let R be the maximal ­with respect to the number of its edges­ subforest of F with all root edges
in uF ({an|n ∈ N}).

Claim 3.4.10. The rooted forest R with the n−edge labeling function λ constrained in E(R),
consists a counterexample for our lemma.

Proof of claim. Actually R inherits this property from F .

• Note that uF ({an|n ∈ N}) ⊆ E(R), and hence the set E(R) is not well­quasi­ordered by
the relation⪯, because that would imply that the set uF ({an|n ∈ N}) is well­quasi­ordered
by ⪯, which is not true.

• In addition, from our assumption that F with the n−edge labeling function λ consists a
counterexample for the lemma, and the fact that from the construction of the rooted forest
R, we have (∀B ⊆ E(R))[uR(B) = uF (B)], it follows that for every infinite antichain
B ⊂ E(R), the set uR(B) is not well­quasi­ordered by the relation ⪯.

Since R is a counterexample, the set of edges labeled with 0 in R is not well­quasi­ordered
by the relation ⪯ and hence by Lemma 2.4.2 we can find an infinite bad sequence in it. Let
(bn)n∈N ⊆ E(R) ∩N be such a sequence. From the construction of R it follows that:

(∀j ∈ N)(∃!s(j) ∈ N)[bj ⪯ as(j)]

Let l ∈ N, be such that, s(l) = min{s(j)|(bj ⪯ as(j))∧(j ∈ N)}. From the minimality of (an)n∈N
and the fact that (bl ∈ N) ∧ (bl ⪯ as(l)), it follows that the sequence

a1, . . . , as(l)−1, bl, bl+1, . . .

is a good sequence and hence has at least a good pair. Let us consider such a pair: Since (an)n∈N
is a bad sequence such a pair cannot have the form (ai, aj), but neither the form (ai, bj) because
for each j ≥ l and each i ≤ s(l)(≤ s(j)) we have that bj ⪯ as(j) and thus if ai ⪯ bj by the
transitivity of ⪯ would imply ai ⪯ as(j), i.e a good pair in the bad sequence (an)n∈N. Thus, the
good pair of the above sequence must have the form (bi, bj) but that contradicts to the badness of
(bn)n∈N. By assuming that the lemma does hold we have derive a contradiction, hence the lemma
follows.
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3.4.2 Lemma on cubic trees

A binary forest is a rooted orientation of a cubic forest with a distinction between left and right
outgoing edges.

Definition 3.4.11 (Binary forest). A binary forest is a triple (F, l, r) in which F is a rooted forest
where the roots have outdegree 1 and l, r are functions defined on nonleaf edges of F , such that
the head of each nonleaf edge e of F has exactly two outgoing edges, namely l(e) and r(e).

Lemma 3.4.12 (Lemma on cubic trees). Let (F, l, r) be an infinite binary forest with an n−edge
labeling λ. Moreover, let⪯ be a quasi­order on the edges of F with no infinite strictly descending
sequences, such that e ⪯ f whenever f is λ−linked to e. If the leaf edges of F are well­quasi­
ordered by ⪯ but the root edges of F are not, then F contains an infinite sequence (en)n∈N of
nonleaf edges such that:

(i) {e0, e1, . . .} is an antichain with respect to ⪯

(ii) l(e0) ⪯ . . . ⪯ l(ei−1) ⪯ l(ei) ⪯ . . .

(iii) r(e0) ⪯ . . . ⪯ r(ei−1) ⪯ r(ei) ⪯ . . .

Proof. Since the set of root edges of F is not well­quasi­ordered by the relation ⪯, neither the set
of all edges of F is. Hence by Lemma 3.4.9 it follows the existence of an infinite antichain A of
edges, such that the set uF (A) is well­quasi­ordered by the relation ⪯.
Note that since the set of leaf edges of F is well­quasi­ordered, the set A contains finitely many
leaf edges of F , because otherwise we could form inA an infinite sequence of leaf edges of F and
thus we could find inA a good pair of edges (w.r.t⪯) contradicting to fact thatA is an antichain of
edges. Hence if A contains any leaf edges of F we can omit them and deduce an infinite antichain
A′ ⊆ A that does contain any leaf edges. In this case uF (A′) ⊆ uF (A) and thus uF (A′) is well­
quasi­ordered by the relation ⪯.
Thus, without loss of generality we may assume that A contains no leaf edges. We now proceed
to the construction of the desired sequence of edges.

Since F is a binary forest, by definition the head of each nonleaf edge e of F is the tail of
exactly two edges in F , the edges l(e), r(e). Hence uF (A) = {l(e)|e ∈ A} ∪ {r(e)|e ∈ A}. Let
(en)n∈N be an arbitrary but fixed sequence inA. Provided that uF (A) is well­quasi­ordered by the
relation ⪯, and that (l(en))n∈N is an infinite sequence in uF (A), by Theorem 2.1.7 it follows that
(l(en))n∈N has an infinite increasing (w.r.t ⪯) subsequence. Let (l(ekn))n∈N be such a sequence.
For the same reason, the sequence (r(ekn))n∈N has an infinite increasing (w.r.t ⪯) subsequence.
Let (r(ekln ))n∈N be such a sequence. Then (l(ekln ))n∈N is a subsequence of (l(en))n∈N and hence
it is also increasing (w.r.t ⪯). It follows that the sequence (ekln )n∈N is the desired sequence of
nonleaf edges.

3.4.3 Well­quasi­ordering graphs with bounded branch­width

Definition 3.4.13 (rooted graph). We define a rooted graph, to be an ordered pair (G,X), such
that G is a graph and X is a subset of the vertex set of G.

Definition 3.4.14 (theminor relation on rooted graphs). Given two rooted graphs, say (G′, X ′), (G,X),
the rooted graph (G′, X ′) will be said to be a minor of the rooted graph (G,X) if and only if the
following hold:
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G[E1]

G[E2]
G[E(G) \ E2]

G

Figure 3.4.1: Illustration of the assumption of Theorem 3.4.16. In the case that is illustrated we
have γG(E1) = γG(E1, E(G) \ E2) = γG(E2) = 3.

• G′ is a minor of G obtained by deletion of edges, deletion of vertices not in X and by
contracting edges;

• X ′ equals withX except if an edge {u, v} ∈ E(G) with {u, v} ∩X ̸= ∅ contracted during
the deduction of G′ as a minor of G, in which case for every such an edge X ′ = {X ′ \
{u, v}} ∪ {vnew} where vnew is the contraction vertex.

Observation 3.4.15. The minor relation on rooted graphs is clearly a quasi­order with no infinite
strictly decreasing sequences.

Theorem3.4.16. LetG be a graph, andE1, E2 ⊆ E(G) such that: E1 ⊆ E2. We denote byG1, G2

the subgraphs of G induced by E1, E2 respectively. If γG(E1) = γG(E1, E(G) \E2) = γG(E2),
then the rooted graph (G1,ΓG(E1)) is a minor of the rooted graph (G2,ΓG(E2)).

Proof. ByMenger's Theorem 1.2.73, the graph induced byE2\E1 contains a collection of γG(E1, E(G)\
E2) vertex disjoint paths from the set of verticesΓG(E1) to the setΓG(E2). Contracting these paths
in (G2,ΓG(E2)) and deleting all remaining edges in E2 \ E1 yields (G1,ΓG(E1)).

Observation 3.4.17. Let (G1, X1), (G2, X2) be two rooted graphs such that |X1| = |X2|, and
let also H1,H2 be two graphs that are both obtained from (G1, X1), (G2, X2) by identifying the
vertices in X1 one­to­one with the vertices of X2. The graphs H1,H2 may be non­isomorphic
(depending of which vertices identified in the construction of each of them), however, up to iso­
morphism, there are only finitely many graphs ­at most |X1|!­ that can be obtained by such an
identification. That is the crux of the proof of Theorem 3.4.2.

We are now ready to prove the main result of this section.

Proof of Theorem 3.4.2. Towards a contradiction, we suppose that there exists n ∈ N such that,
the set of graphs with branch­width at most n ­ denoted by Gn­ is not well­quasi­ordered by the
minor relation.
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Recall that from Theorem 3.3.37, every graph G has a linked branch­decomposition of width
bw(G), hence for each G ∈ Gn we can choose a linked branch­decomposition TG of G that has
width bw(G) ≤ n. Without loss of generality, wemay assume that eachTG has at least one leaf that
does not correspond to any edge ofG, since otherwise we can deduce such a branch­decomposition
from TG by subdividing an edge of it and add a pendant edge to make it cubic again.

We now "transform" each of the chosen branch­decompositions to a rooted tree as follows:
Fix an unlabeled leaf r and orient the edges of the branch­decomposition in such a way that all

the vertices except r have in­degree 1.
Let (F, l, r) be the rooted binary forest composed of the rooted cubic trees {TG|G ∈ Gn}.

Given an edge e of F , let G be such, that e ∈ E(TG), we denote: by Ee the set of edges of G
displayed by the component TG \ e that does not contain the root of TG, by Ge the subgraph of G
induced by the set of edges Ee and by Xe the set ΓG(E

e). Moreover, we define a function λ on
the set of edges of F such that: (∀e ∈ E(F ))[e ∈ TG ⇒ λ(e) = γG(E

e)]. Notice that since for
each G ∈ Gn the width of TG is ≤ n, the function λ is an n−edge labeling of F . We also define
a binary relation ⪯ on the set of edges of F , as follows: If e, f are edges of F , then e ⪯ f if and
only if the rooted graph (Gf , Xf ) is a minor of the rooted graph (Ge, Xe).

Claim 3.4.18. The binary relation ⪯ is a quasi­order on the edges of F with no infinite strictly
decreasing sequences.

Proof of Claim 3.4.18. Immediate form Observation 3.4.15.

Claim 3.4.19. For any two edges e, f of the rooted binary forest (F, l, r), if f is λ­linked to e, then
e ⪯ f .

Proof of Claim 3.4.19. Let e, f be two arbitrary but fixed edges of the rooted binary forest (F, l, r)
such that f is λ­linked to e. Since f is λ­linked to e, there exist a graphG such that e, f ∈ TG and a
directed path P on TG which is starting with e and is ending with f such that (∀g ∈ E(P ))[λ(g) ≥
λ(e) = λ(f)]. Notice that Ef ⊆ Ee.

Recall Definition 3.3.19 and notice that since TG is a linked branch­decomposition of G it
follows that the edges e, f are linked and thus there exists an edge g ∈ E(P ) such that λ(g) =
γG(E

f , E(G) \ Ee), thus

(γG(E
e) = λ(e) ≤ γG(E

f , E(G) \ Ee)) ∧ (γG(E
f ) = λ(f) ≤ γG(E

f , E(G) \ Ee))

and since (γG(Ee) ≥ γG(E
f , E(G) \ Ee)) ∧ (γG(E

f ) ≥ γG(E
f , E(G) \ Ee))) and γG(E

e) =
λ(e) = λ(f) = γG(E

f ), it follows that γG(Ee) = γG(E
f , E(G) \ Ee) = γG(E

e).
Hence, by Theorem 3.4.16 it follows that the rooted graph (Gf , Xf ) is a minor of the rooted

graph (Ge, Xe) and thus e ⪯ f . Since e, f were two arbitrary edges of (F, l, r) the proof of the
claim is complete.

As can be easily checked the leaf edges of the rooted binary forest (F, l, r) are well­quasi­
ordered by the relation ⪯, as each of them corresponds to a rotted graph with at most one edge.

Claim 3.4.20. The root edges of the rooted binary forest (F, l, r) are not well­quasi­ordered by
the relation ⪯.

Proof of Claim 3.4.20. The root edges of F are not well­quasi­ordered by ⪯ as the associated
rooted graphs are the graphs {(G, ∅)|G ∈ Gn}.
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By Claims 3.4.18, 3.4.19, 3.4.20 and the fact that the leaf edges of the rooted binary forest
(F, l, r) are well­quasi­ordered by the relation ⪯ it follows that the rooted binary forest (F, l, r)
with the n­edge labeling λ and the quasi­order ⪯ meets the requirements of Lemma 3.4.12, and
thus there exist an infinite sequence (en)n∈N of non­leaf edges of F such that:

(i) {e0, e1, . . .} is an antichain with respect to ⪯ ;

(ii) l(e0) ⪯ . . . ⪯ l(ei−1) ⪯ l(ei) ⪯ . . . ;

(iii) r(e0) ⪯ . . . ⪯ r(ei−1) ⪯ r(ei) ⪯ . . . .

Let i ∈ Z+ be an arbitrary but fixed positive integer. Consider the non­leaf edge ei of the
above sequence and let TG be the cubic tree that ei belongs. Since TG has width at most n, it
follows that for each set of edges A ⊆ E(G) displayed by an edge in TG, γG(A) ≤ n. Hence
γG(E

l(ei)) ≤ n and γG(E
r(ei)) ≤ n, thus each of the sets of vertices X l(ei), Xr(ei) has at most n

elements. As i was arbitrary, it follows that (∀i ∈ N)[(|X l(ei)| ≤ n) ∧ (|Xr(ei)| ≤ n)], thus by
taking a subsequence of (en)nN (if needed), we may assume that the sets {X l(ei)|i ∈ N} all have
the same cardinality, say wL ∈ {1, . . . , n}, and also the sets {Xr(ei)|i ∈ N} all have the same
cardinality, say wR ∈ {1, . . . , n}.

Consider the following two sets, whose elements will be called labels:

(i) The set {1left, . . . , wleft
L }, whose elements will be called left labels;

(ii) The set {1right, . . . , wright
R }, whose elements will be called right labels.

Recall that l(e0) ⪯ . . . ⪯ l(ei−1) ⪯ l(ei) ⪯ . . . and note that for each i ∈ N we can assign a
left label to each vertex of the setX l(ei) in such a way, that: For each i, j ∈ Nwith i < j, the graph
Gl(ei) can be obtained as a minor of the graph Gl(ej) in such a way that a vertex of the set X l(ej)

"goes" to the vertex of the set X l(ei) with the same left label. Since r(e0) ⪯ . . . ⪯ r(ei−1) ⪯
r(ei) ⪯ . . ., we can assign right labels to the vertices of each set of {Xr(ei)|i ∈ N} in a similar
way.

What we are trying to prove is that there exist positive integers i, j with i < j such that the
rooted graph (Gei , Xei) is a minor of the rooted graph (Gej , Xej ) and derive by this way the
desired contradiction. Because in that case we have ei ⪯ ej contradicting to the fact that the set
{e0, e1, . . .} is an antichain with respect to ⪯. We need to show that, for some i < j, the two
pairs "glue" together in the same way. The understanding of Observation 3.4.17 is the key for the
understanding of the rest part of the proof.

Vertices in X l(ei) ∩ Xr(ei) get both left and right labels. Since there are only finitely many
different subsets of {1left, . . . , wleft

L }, infinitely often it is the same one that gives the lefts labels in
X l(ei)∩Xr(ei). Of these , infinitely often its is the set of right labels. Thus, we may relabel (going
to this subsequence) in such a way that, for each i, the set of left labels and the set of right labels
occurring in X l(ei) ∩Xr(ei) are always the same.

Notice that Xei ⊆ X l(ei) ∩ Xr(ei). Thus, every vertex of Xei has a label: some will have
only left­labels, some will have only right­labels, and other will have both. Again, there are only
finitely many possibilities for which labels can appear and for which combinations. Thus, we can
assume that

(i) The sizes of the sets Xei are all the same;
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(ii) the set of left­labels in the setsXei is always the same;

(iii) the set of right­labels in the setsXei is always the same.

Note that (ii) and (iii) combine to show that the set of left­only labels is always the same,
and that the set of right­only labels is always the same, because if a vertex has both left­label and
right­label, then these two labels always go together.

Now, for i < j, (
Gl(ei), X l(ei)

)
is a minor of

(
Gl(ej), X l(ej)

)
and (

Gr(ei), Xr(ei)
)
is a minor of

(
Gr(ej), Xr(ej)

)
We now show that

(
Gei , Xei

)
is a minor of

(
Gej , Xej

)
.

The graphGei is obtained fromGl(ei) andGr(ei) by identifying the vertices inX l(ei)∩Xr(ei); this
identification is the same in both Gei and Gej .

3.5 Planar graphs

The purpose of this section is to present the proof of the following special case of Robertson and
Seymour's theorem.

Theorem 3.5.1 (Robertson and Seymour [106]). If G1, G2, . . . is any infinite sequence of planar
graphs, then there exist i, j with j > i ≥ 1 such that Gi is isomorphic to a minor of Gj .

The main ingredient that we will need is the following:

Theorem 3.5.2 (Robertson and Seymour [106]). For any planar graph Γ the set of all planar graphs
we no minor isomorphic to Γ is well­quasi­ordered by the minor relation.

The above have the following immediate corollary.

Corollary 3.5.3. Let P be any set of planar graphs, then P is well­quasi­ordered by the minor
relation.

Definition 3.5.4 (Explicit definition of the (k × k)­grid graph). Let k ≥ 1 be a positive integer,
then the (k × k)­grid is the graph:(

{1, . . . , k}2, {{(x1, y1), (x2, y2)} : |x1 − x2|+ |y1 − y2| = 1}
)
.

Notation 3.5.5. We denote the (k × k)­grid by Λk.

Definition 3.5.6 (Recursive definition of the grid graph). Let k ≥ 1 be a positive integer, then the
(k × k)­grid Λk, is defined recursively as follows:

• For k ∈ {1, 2} Λk =
(
{1, . . . , k}2, {{(x1, y1), (x2, y2)} : |x1 − x2|+ |y1 − y2| = 1}

)
.

• For k ≥ 3, Λk is the graph that we obtain from Λk−2, if we:

(i) rename each of the vertices and the corresponding edges of Λk−2, as follows: for each
i, j ∈ {1, . . . , k − 2} the vertex (i, j) is renamed to (i+ 1, j + 2);
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(ii) add the 4k−4 vertices {(1, i), (i, 1), (i, k), (k, i)|1 ≤ i ≤ k} to the vertex set ofΛk−2;
(iii) add the edges {{(1, i), (1, i + 1)}|1 ≤ i ≤ k − 1 } ∪ {{(i, k), (i + 1, k)}|1 ≤ i ≤

k − 1 } ∪ {{(k, i), (k, i+ 1)}|1 ≤ i ≤ k − 1 } ∪ {{(i, 1), (i+ 1, 1)}|1 ≤ i ≤ k − 1 }
(iv) add the edges {{(1, i), (2, i)}|2 ≤ i ≤ k− 1}∪ {{(i, k), (i, k− 1)}|2 ≤ i ≤ k− 1}∪
{{(k, i), (k − 1, i)}|2 ≤ i ≤ k − 1} ∪ {{(i, 1), (i, 2)}|2 ≤ i ≤ k − 1}.

Notation 3.5.7. LetΠk be a statement concerningΛk, we denote byΠk(T ) the fact thatΠk is true.

Theorem 3.5.8 (Structural induction scheme for the grid graph). Let k0 be a positive integer and
let Πk be a statement concerning Λk, such that:

(i) Πk0(T ) and Πk0+1(T );

(ii) (∀k ≥ k0 + 2)[Πk−2(T )⇒ Πk(T )].

Then (∀k ≥ k0)[Πk(T )]

Proof. Immediate by the usual induction on integers.

. . .

. . .

. . .

. . .
Λ1

Λ2
Λ4

Λ2l+2

Λ2l+1

Λ3

Λ2l+4

Λ2l+3

Figure 3.5.1: Illustration of the recursive definition of the grid graph (Definition 3.5.6).

Robertson, Seymour, and Thomas [115] proved that every planar graph is isomorphic to a
minor of a large enough grid.

Theorem 3.5.9 (Robertson, Seymour, and Thomas [115]). If Γ is a planar graph with |V (Γ)| +
2|E(Γ)| ≤ n, then H is isomorphic to a minor of the (2n× 2n)­grid.

Let Γ be an arbitrary but fixed planar graph the transitivity of the minor relation on graphs and
the above theorem implies that when a planar graph, say Π has no minor isomorphic to Γ there is
a positive integer k, such that Π has not a minor isomorphic to the (k × k)­grid. Hence we may
deduce informations about the "rough" structure of planar graphs which exclude a fixed planar
graph as a minor, by studying the case in which the excluded minor is a grid.
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This case is studied on the Excluded Grid Theorem for planar graphs (Theorem 3.5.24) which
is one of the two basic ingredients for the proof of Theorem 3.5.2. Informally, the Excluded Grid
Theorem for planar graphs states that if a planar graph has large branch­width then it contains
a large grid as a minor. Thus if a planar graph excludes a grid as a minor then it has bounded
branch­width.

Hence, for any planar graphΓ, the set of all planar graphs with nominor isomorphic toΓ is a set
of graphs with bounded branch­width. Here comes the second ingredient which is Theorem 3.4.3
which states that any set of graphs with bounded branch­width is well­quasi­ordered by the minor
relation and has already been proved in Subsection 3.4.3.

3.5.1 Nooses and Θ­triples

Definition 3.5.10 (Jordan curve ­ Simple closed curve in the plane). A Jordan curve is the image
of a continuous function φ : [0, 1]→ R2 such that φ(0) = φ(1) and the restriction of φ to [0, 1) is
injective.

Theorem 3.5.11 (Jordan curve theorem). The complement of a simple closed curve in the plane
has exactly two connected components. The one of those is bounded and the other one unbounded.

Definition 3.5.12 (Noose of a plane graph). Let Γ be a plane graph and let N be a Jordan curve.
We say that a Jordan curve N is a noose of Γ when N ∩ Γ ⊆ V (Γ), i.e., N does not intersect any
of the edges of Γ. We denote by V (N) the set N ∩ Γ and by |N | the order of V (N).

Definition 3.5.13 (I­arc of a plane graph). Let Γ be a plane graph an I­arc of Γ is a subset I of
R2 that is homeomorphic to the open interval (0, 1) in R2, does not intersect the edges of Γ and,
moreover, there exist two vertices x and y of G, called endpoints of I , where I ∪ {x} ∪ {y} is
homeomorphic to the closed interval [0, 1] ofR2 (notice that an arc may intersect vertices ofΓ). We
also say that I is an arc between x and y and we use the notation V (I) = I∪Γ and |I| = |V (I)|+2.

Observation 3.5.14. Let Γ be a plane graph and let N be a noose of Γ. Then the connected
components of the set N \ Γ are |N | I­arcs where the endpoints of each such arc are vertices of G
that appear consecutively on N .

Definition 3.5.15 (Open disks bounded by N ). Let Γ be a plane graph and let N be a noose of Γ.
From the Jordan curve Theorem 3.5.11 it follows that R2 \N has two connected components, that
are open disks. We call them open disks bounded by N .

Definition 3.5.16 (A noose separates two vertices or two edge). Let Γ be a plane graph and let N
be a noose of Γ. If x and y are vertices of Γ \ V (N) or edges of Γ, we say thatN separates x and
y if they are in different open disks bounded by N .

Definition 3.5.17 (Equivalent nooses). Two nooses N1 and N2 of Γ are equivalent if N1 ∩N2 =
V (N1) = V (N2) bothN1 andN2 meet their vertices in the same cyclic ordering and for each pair
I, I ′ of connected components of (N1 ∪ N2) ∩ (N1 ∩ N2) with the same endpoints, it holds that
both I and I ′ are subsets of the same face of Γ.

Definition 3.5.18 (Θ­triple of a plane graph). LetΓ be a plane graph and letN1, N2, andN3 nooses
of Γ. We say that (N1, N2, N3) form aΘ­triple of Γ whenN1 ∩N2 ∩N3 is a set consisting of two
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N

I1

I2

I3

v1
v2 v3

v4
v5 v6

v7 v8

Γ

Figure 3.5.2: Illustration of Definitions 3.5.12, 3.5.13. The simple closed curve N drawn by red
color is a noose of the plane graph Γ such that N ∩ Γ = V (N) = {v2, v5, v7} ⊆ V (Γ). The three
I­arcs I1, I2, I3 are the connected components of N \ Γ.

vertices ofΓ andR2\(N1∪N2∪N3) has three connected components. If each of these components
contains an edge of Γ, we say that (N1, N2, N3) is proper. That way we say that any proper Θ­
triple (N1, N2, N3) generates a 3­partition {E1, E2, E3} of E(Γ) such that Ei is the set of the
edges contained in the open disk bounded byNi that does not contain the arc (N1∪N2∪N3)\Ni.

Observation 3.5.19. Let N1, N2, and N3 be a Θ­triple of a graph Γ and let I = N1 ∩N2. Then
|N1|+ |N2| = |N3|+ 2 · |I| − 2.

I1 I2

I3

I4

v1 v2

v3

v4

e1

e2

e3 e4

e5

e6

Γ

Figure 3.5.3: A proper Θ­triple of a plane graph.
Let N1 = I2 ∪ I3 ∪ I4 ∪ {v1, v2, v4}, N2 = I1 ∪ I4 ∪ {v1, v4} and

N3 = I1 ∪ I2 ∪ I3 ∪ {v1, v2, v4}, then (N1, N2, N3) is a proper Θ­triple of Γ that induce the
3­partition {E1, E2, E3} of E(Γ), where E1 = {e6}, E2 = {e1, e5}, E3 = {e2, e3, e4}.
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Lemma 3.5.20. Let Γ be a connected plane graph, and let x and y be two non­adjacent vertices of
Γ. Let also S be a minimum (x, y)­separator of Γ. Then Γ has a noose N where V (N) = S.

...

...

s1

s2

s3

sk

A B
. . .

. . .
c1 ci

ci+1

cj

cj+1
cl

N

. . .

Figure 3.5.4: The positions of the connected components of Γ \ S and the noose N in Case 3 of
the proof of Lemma 3.5.20.

Proof. We distinguish the following cases:

Case 1: |S| = 1. Given any vertex v ∈ V (Γ), it is trivial to consider a noose N of Γ such that
V (N) = {v}. Just consider one of the faces of Γ that have in their boundary the vertex v and draw
in there the noose N .

Case 2: |S| = 2. We call s1, s2 the two vertices of S. Consider on Γ the connected components
of the graph Γ \ S, contract each edges whose both endpoints are inside in one of those connected
components. On the resulting graph we call A/B the vertex that corresponds to the connected
component of Γ \ S that contains the vertex x/y respectively, we also call c1, . . . cm the vertices
that corresponds to the other connected components of Γ \ S.

Observe, that for each i ∈ {1, . . . ,m} in the resulting graph atmost two edges could be incident
to the vertex ci, one that has as its one endpoint the vertex s1 and one that has as its one endpoint
the vertex s2. This structure allows us to consider a new planar drawing of Γ which would then
make easy the drawing of the desired noose N .

LetD be the bounded disc that is defined by the cycle {A, s1}∪ {s1, B}∪ {B, s2}∪ {s2, A}.
We may transfer each of the connected components c1, . . . , cm insideD and then draw the desired
noose N , in the way that is illustrated in Figure 3.5.5.

Case 3: |S| ≥ 3. Consider on Γ the connected components of the graph Γ\S, contract each edges
whose both endpoints are inside in one of those connected components. We call Γ′ the resulting
graph. Clearly Γ′ is a minor of Γ. On Γ′ we call A/B the vertex that corresponds to the connected
component ofΓ\S that contains the vertex x/y respectively, we also call c1, . . . cm the vertices that
corresponds to the other connected components of Γ\S. Let s1, s2, . . . sk be an enumeration of the
vertices ofS, such that if i1 < j1 and i2 < j2 then the cycle {A, sj1}∪{sj1 , B}∪{B, si2}∪{si2 , A}
is inside the close disc that is defined by the cycle {A, si1} ∪ {si1 , B} ∪ {B, sj2} ∪ {sj2 , A}.
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s1

s2

A B
c1 cm

N

. . . . . .

Figure 3.5.5: The positions of the connected components of Γ \ S and the noose N in Case 2 of
the proof of Lemma 3.5.20.

Claim 3.5.21. Let i ∈ {1, . . . ,m}, then there exist at most two edges on Γ′ that are incident to the
vertex ci and that have their other endpoint to a vertex in S.

Proof of Claim 3.5.21. Let us suppose towards a contradiction that there exist i ∈ {1, . . . ,m}
such that the vertex ci is adjacent with at least three vertices, say sx, sy, sz , of the set S. Notice
that Menger's Theorem 1.2.73 guaranties the existence of three internally vertex disjoint paths, say
P1, P2, P3 inΓ, such that each of those has as its endpoints the verticesx, y and as an internal vertex,
the vertex sx, sy, sz respectively. It's now immediate to deduce that Γ has a minor isomorphic to
the complete bipartite graphK3,3 contradicting to Wagner­Kuratowski's Theorem 3.1.2.

The following observation relies on the fact that Γ′ is plane.

Observation 3.5.22. Let i ∈ {1, . . . ,m}, then if ci is adjacent with two vertices of S, then those
vertices are either successionals on the enumeration of S that we have consider either the vertices
s1, sk.

Thus, by Observation 3.5.22 and Claim 3.5.21 we can consider the drawing of Γ that corre­
sponds to the drawing of Γ′ that is illustrated in Figure 3.5.4 and the existence of the noose N
follows.

3.5.2 Sphere­cut decompositions

Definition 3.5.23 ((partial) Sphere­cut decomposition of a plane graph). Given a plane graph Γ
and a partial branch­decomposition B = (T, τ) of Γ. We say that B is a partial sphere­cut de­
composition of Γ if there is a function ω, mapping each edge e ∈ E(T ) to a noose Ne of Γ such
that V (Ne) = mid(e). If B is a complete partial branch­decomposition of Γ then we say that B is
sphere­cut decomposition

3.5.3 The excluded grid theorem for planar graphs

Our proof of the "Excluding Grid Theorem for planar graphs" is due to an unpublished manuscript
of Thilikos [117]. The least bound of the branch­width of a graph that is sufficient to guarantee the
containment of a (k × k)­grid minor that we prove in the following theorem, was proved in terms
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Figure 3.5.6: Illustration of Definition 3.5.23. A planar graph on the left hand side and a sphere­
cut decomposition of width 3 of it on the right hand side. The noose Ne ­drawn by red color­
corresponds to the edge e of the sphere­cut decomposition.

of tangles 9 by Robertson, Seymour and Thomas in [115, Theorem 6.3]. A better bound obtained
in 2012 by Gu and Tamaki [63].

Theorem 3.5.24 (Excluding Grid Theorem for planar graphs). Let k ≥ 2 be an integer and Γ be a
planar graph on n vertices. If bw(Γ) > 4k − 4, then Γ contains a (k × k)­minor.

Lemma 3.5.25. Let k ≥ 2 be an integer. Let Γ be a plane n­vertex graph embedded inside
a closed disk D of R2 with boundary N and such that S := Γ ∩ N of 4k − 4 vertices of
Γ. The clock­wise ordering of the vertices of S on N is v

up
1 , . . . , v

up
k = v

right
1 , . . . , v

right
k =

vdownk , . . . , vdown1 = vleftk , . . . , vleft1 = v
up
1 . Suppose also that Γ is the union of two collections of

paths P↔ = {P↔
1 , . . . , P↔

k } and P↕ = {P ↕
1 , . . . , P

↕
k } such that:

(i) for each i ∈ {1, . . . , k}, the endpoints of P↔
i are vlefti and vrighti and the endpoints of P ↕

i are
v
up
i and vdown

i ;

(ii) the paths in P↔ are pairwise vertex disjoint and also the paths in P↕ are pairwise vertex
disjoint.

Then Γ contains a Λk­minor.
Moreover, there exists an algorithm that given P↔ and P↕, outputs a minor model of (k× k)­grid
in O(n) steps.

Proof. LetΓ be a graph, we denote byΓk(T ) the fact thatΓmeets the requirements of Lemma 3.5.25
for the integer k.
In what follows, we prove the following slightly stronger statement:

9A tangle is a notion of a highly connected substructure of a graph, which was introduced in [111] and which is not
defined in the present work. We refer the interested reader in [33].
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Claim 3.5.26. For each integer k ≥ 2, the following statement concerning Λk is true:
If Γ is a graph such that Γk(T ) and η : V (Λk)→ V (Γ) is a partial function, which is defined as
follows:

η
(
(1, 1)

)
= v

up
1 , . . . , η

(
(1, k)

)
= v

up
k ,

η
(
(1, k)

)
= v

right
1 , . . . , η

(
(k, k)

)
= v

right
k ,

η
(
(k, k)

)
= vdownk , . . . , η

(
(k, 1)

)
= vdown1 , and

η
(
(k, 1)

)
= vleftk , . . . , η

(
(1, 1)

)
= vleft1 .

Then there exists a function α : V (Λk)→ V (Γ), such that η ⊆ α and Λk is an α­rooted minor
of Γ.

Let us denote by Πk the statement of Claim 3.5.26 for the grid Λk. Recall Observation 1.2.54
and notice that we shall have establishedΠk(T ) if we prove the following: There exist a procedure
which takes as an input a graph Γ such that Γk(T ) and the correspondents collections of pathsP↔,
P↕, and outputs a graph Γ̃ for which there exist a function α : V (Λk)→ V (Γ̃) such that:

(i) η ⊆ α;

(ii) α is an isomorphism between Λk and the graph Γ̃;

(iii) the graph Γ̃ is the result of a sequence of α(V (Λk))­maintaining contractions and edge re­
movals on Γ.

Fix k ≥ 2 and let Γ be an arbitrary but fixed graph such that Γk(T ). As a first step we set up
some terminology for the course of our proof.

We set C = {vup1 , v
right
1 , vdownk , vleftk } and L = S \ C. We call the vertices in C corner vertices

of Γ, the vertices in L lateral vertices of Γ and the vertices in Γ that are neither lateral nor corner
vertices are called central vertices. We also call the edges of the paths in P↔ horizontal edges and
the edges of the paths in P↕ vertical edges.

Consider the connected components of D \ Γ that contain points of N . We call these sets
border regions of Γ (notice that border regions are not open sets). We distinguish four types of
border regions:

(i) those that have in their boundary two vertices in {vup1 , . . . , v
up
k }, which we will call up­

regions,

(ii) those that have in their boundary two vertices in {vright1 , . . . , v
right
k }, which we will call right­

regions,

(iii) those that have in their boundary two vertices in {vdown1 , . . . , vdownk },whichwewill call down­
regions, and

(iv) those that have in their boundary two vertices in {vleft1 , . . . , vleftk }, which we will call left­
regions.

We now proceed to the presentation of the procedure that we described above. The procedure
consists in the successive application of a series of normalization operations. We remark that in
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what follows whenever we contract an edge of Γ that its one endpoint, say v, is in S we name the
contraction vertex by v.
Normalization 1: Apply the following operation on Γ as long as this is possible: If there is a central
vertex of degree 2 such that, only one of the 2k paths has edges that have this vertex as an endpoint,
then pick one of the two edges that has this vertex as endpoint and contract this edge.
Normalization 2: Apply the following operation on Γ as long as this is possible: If for two paths
P

↕
i ∈ P↕ and P↔

j ∈ P↔ there is a connected component Y of P ↕
i ∩P↔

j that is not a single vertex
of Γ, then contract all the edges of Y to a single vertex.

P
l
i

P↔
j

P
l
i

P↔
j

Figure 3.5.7: Illustration of Normalization 2.

Normalization 3: Apply the following operation on Γ as long as this is possible: if some vertex of
Γ ∩N has degree 1, then contract the edge that has it as an endpoint.

v
left
i

v
left
i+1

v
left
i+2

P
l
1 P

l
1

v
left
i

v
left
i+1

v
left
i+2

e1

e2

Figure 3.5.8: On the left hand side are illustrated two vertices of Γ ∩ N (vlefti , vlefti+1 ) that have
degree 1 and on the right hand side is illustrated the result of the application of the operation that
is described on Normalization 3 two times on that part of Γ.

Notice that, as a result of Normalization 1, Normalization 2 and Normalization 3, all central
vertices of Γ have degree 4, all lateral vertices have degree 3 and all corner vertices have degree 2.

Suppose now that Γ is the result of the above two normalizations and let f be a border region
of Γ. We say that f is regular if it is an up­region/right­region/down­region/left­region and all the
edges of Γ that are in its boundary are edges of P↔

1 /P ↕
k /P

↔
k /P ↕

1 respectively. Otherwise we say
that the boundary region f is irregular.
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Notice that if an up­region/down­region is irregular, this means that its boundary contains at least
one vertical edge. Analogously, if a right­region/left­region is irregular, this means that its bound­
ary contains at least one horizontal edge.

The next operation makes all border regions regular and is the following:
Normalization 4: Apply the following operation on Γ as long as this is possible: Let f be an
irregular up­region of Γ and let e = {x, y} be a vertical edge in the boundary of f . Clearly e is
the edge of some path P

↕
i ∈ P↕. Notice that x and y are the endpoints of a subpath P of P↔

1 .
Remove from Γ the edges of P . Also update P↔

1 by removing from it the edges and the internal
vertices of P and adding the edge e in the resulting graph. In case f is an irregular down­region,
the operation is defined in the same way by replacing P↔

1 by P↔
k . Also, in the cases where f is

a right­region/left­region, we again copy the above description by replacing P↔
1 by P

↕
k /P

↕
1 and

P
↕
i by P↔

i . After each such substitution operation apply Normalization 1, Normalization 2 and
Normalization 3 and proceed until all border regions are regular.

vupi vupi+1 vupi+2vupi−1 vupi vupi+1 vupi+2vupi−1

x

y

e

Figure 3.5.9: On the left hand side is illustrated an irregular up­region and on the right hand side
it is illustrated the same up­region after one application of the operation that is described on nor­
malization 4.

Let Γ be the graph obtained after Normalization 4. We call the faces of Γ that contain at least
one corner vertex, corner faces of Γ. A corner face is denoted by flu, fur, frd, and fdl if its
boundary contains the corner vertex vleft1 , vupk , vrightk , and vdown1 respectively. Notice that all edges
in flu are edges of P↔

1 , P↔
2 , P ↕

1 and P ↕
2 . We call Plu the maximum subpath of the boundary of flu

whose edges are edges from P↔
2 and P ↕

2 . Notice that the edges in Plu should be alternating edges
form P↔

2 and P ↕
2 .

If there are only two edges in Plu, one from P↔
2 and one from P

↕
2 , then we say that flu is regular.

Otherwise flu is irregular. The regularity of the faces fur/frd/fdl is defined by copying the same
definition with the difference that nowP↔

2 andP ↕
2 are replaced by: P↔

2 andP ↕
k−1/P

↔
k−1 andP

↕
k−1/

P↔
k−1 and P

↕
2 respectively.

The next and final operation of our procedure makes all corner faces regular and is the follow­
ing:
Normalization 5: If flu is non­regular, then let e = {x, y} ∈ E(Plu). Clearly, e is either an edge
of P↔

2 or an edge of P ↕
2 . If e ∈ E(P↔

2 ), then let P be the subpath of E(P↔
2 ) that has the same

endpoints as e. We remove the edges of P from Γ. Then we update P↔
2 by removing from it the

edges and the internal vertices of P and adding to the resulting graph the edge e. Then we apply
Normalization 1, Normalization 2 and Normalization 3.

If e ∈ E(P↔
1 ), we copy the same operation by exchanging the role of P↔

2 and P↔
2 . In the

70



CHAPTER 3. WELL­QUASI­ORDERING GRAPHS BY THE MINOR RELATION

vup1
vup2 vright1

vupk−1

vright2

vrightk−1

vdown
k

vdown
k−1vdown

2

vleftk

vleft2

Γ̃′′

vleftk−1

Λk

(1, 1)
(1, 2) (1, k − 1)

(1, k)

(2, 1)

(k − 1, 1)

(k, 1)

(k, 2) (k, k − 1)

(k, k)

(2, k)

(k − 1, k)

. . . . . .

. . . . . .

...

... ...

... Γ∗Λ̃k−2

. . . . . .

. . . . . .

...

... ...

...

v
up′
1

v
right′
1

vleft′
k

vdown′
k

Λk−2

α = η ∪ ρ ◦ β

β ρ

ρ ◦ β

η N

N ′

Figure 3.5.10: Illustration of the induction step on the proof of Claim 3.5.26

case where fur/frd/fdl is non­regular we copy the above with the difference that now P↔
2 and P ↕

2

are replaced by P↔
k−1 and P

↕
2 /P↔

k−1 and P
↕
k−1/P

↔
2 and P ↕

k−1.

We denote by Γ̃ the graph obtained after the above normalizations. Clearly Γ̃ is the result of a
sequence of η(V (Λk))­maintaining contractions and edge removals on Γ.

Proof of Claim 3.5.26. We will prove the claim using the induction scheme described in Theo­
rem 3.5.8.

Induction Basis: For k = 2, if Γ is a graph such that Γ2(T ) then it is straightforward that:

• α := η is an isomorphism between Λ2 and Γ̃;

• the graph Γ̃ is the result of α(V (Λ2))­maintaining contractions and edge removals on Γ.

Thus the graph Γ̃ and the function α witness Π2(T ).
For k = 3, if Γ is a graph such that Γ3(T ) then it is straightforward that the graph Γ̃ obtained

after the above normalizations has only one central vertex, say vcenter. Then:

• α := η ∪ {
(
(2, 2), vcenter

)
} is an isomorphism between Λ3 and Γ̃;

• the graph Γ̃ is the result of α(V (Λ3))­maintaining contractions and edge removals on Γ.

Thus the graph Γ̃ and the function α witness Π3(T ).

Induction Hypothesis: Let k be arbitrary but fixed integer such that k ≥ 4, we suppose Πk−2(T ).

Induction Step: We now prove Πk(T ). Let Γ be a graph such that Γk(T ). Let Γ̃ be the graph
obtained after executing the aforementioned procedure on Γ. Notice that, because of the above
normalizations, all the border regions and corner faces of Γ̃ are regular. Notice also that each
path in P↔ or P↕ remained a path with the same endpoints in Γ̃ as in Γ. We denote by P̃↔ =

{P̃↔
1 , . . . , P̃↔

k } and P̃↕ = {P̃ ↕
1 , . . . , P̃

↕
k } the resulting collections of paths, whose union is Γ̃.

Notice also that the graph P̃↔
1 ∪ P̃

↕
k ∪ P̃

↔
k ∪ P̃

↕
1 is a cycle of Γ̃ that contains the whole Γ̃ in one of

the closed disks that it defines. For i ∈ {1, . . . , k − 2}, we denote by vup′i /vright′i /vdown′i /vleft′i as the
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unique neighbor of vupi+1/v
right
i+1 /v

down
i+1 /vlefti+1 that is not in the cycle Γ̃∩N . Clearly, by this definition

v
up′
k−2 = v

right′
1 , vright′k−2 = vdown′k−2 , vdown′1 = vleft′k−2, and v

left′
1 = v

up′
1 .

Let N ′ be a noose in Γ̃ such that:

N ′ ∩ Γ̃ = {vup′1 , . . . , v
up′
k−2 = v

right′
1 , . . . , v

right′
k−2 = vdown′k−2 , . . . , vdown′1 = vleft′k−2, . . . , v

left′
1 = v

up′
1 }.

Notice that all vertices of N ∩ Γ̃, along with the edges of Γ̃ that have at least one endpoint in
N ∩ Γ̃ are in one, say D∗, of the open disks N ′ defines. We define Γ′ = Γ̃ \D∗. We also define
P↔′ = {P↔′

1 , . . . , P↔′
k−2} and P↕′ = {P ↕′

1 , . . . , P
↕′
k−2} such that each path P↔′

i /P
↕′
i is obtained

by P̃↔
i+1/P̃

↕
i+1 after removing its two endpoints. Notice that Γ′ is the union of the paths in P↔′ and

the paths in P↕′. Also the path collections P↔′, P↕′ and the vertices in N ′ ∩ Γ′ satisfy conditions
(i) and (ii) of Lemma 3.5.25. Thus Γ′

k−2(T ). We now consider the graph Λk−2 and we set up a
partial function η′ : V (Λk−2)→ Γ′ such that:

η′
(
(1, 1)

)
= v

up′
1 , . . . , η′

(
(1, k)

)
= v

up′
k ,

η′
(
(1, k)

)
= v

right′
1 , . . . , η′

(
(k, k)

)
= v

right′
k ,

η′
(
(k, k)

)
= vdown′k , . . . , η′

(
(k, 1)

)
= vdown′1 , and

η′
(
(k, 1)

)
= vleft′k , . . . , η′

(
(1, 1)

)
= vleft′1 .

Since Γ′
k−2(T ), by the induction hypothesis, there exist a function α′ : V (Λk−2) → V (Γ′) such

that: η′ ⊆ α′ and Λk−2 is an α′­rooted minor of Γ′.
This means that Γ′ can be transformed, by applying a series of α′(V (Λk−2))­maintaining edge

contractions and edge removals, to a new graph Γ∗ such that Λk−2 is isomorphic to Γ∗ via some
isomorphism ρ : V (Λk−2)→ V (Γ∗) where α′ ⊆ ρ.

Consider the graph that we obtain from Λk if:

(i) we remove the 4k − 4 vertices {(1, i), (i, 1), (i, k), (k, i)|1 ≤ i ≤ k};

(ii) we remove the edges {{(1, i), (1, i + 1)}|1 ≤ i ≤ k − 1 } ∪ {{(i, k), (i + 1, k)}|1 ≤ i ≤
k − 1 } ∪ {{(k, i), (k, i+ 1)}|1 ≤ i ≤ k − 1 } ∪ {{(i, 1), (i+ 1, 1)}|1 ≤ i ≤ k − 1 }

(iii) we remove the edges {{(1, i), (2, i)}|2 ≤ i ≤ k − 1} ∪ {{(i, k), (i, k − 1)}|2 ≤ i ≤
k − 1} ∪ {{(k, i), (k − 1, i)}|2 ≤ i ≤ k − 1} ∪ {{(i, 1), (i, 2)}|2 ≤ i ≤ k − 1}.

We call Λ̃k−2 this graph. As it is indicated by Definition 3.5.6 the graph Λ̃k−2 it is isomorphic
to the graph Λk−2. Let β : V (Λ̃k−2) → V (Λk−2) be an isomorphism which witness that Λ̃k−2

is isomorphic to Λk−2. Then the function ρ ◦ β : V (Λ̃k−2) → V (Γ∗) witnesses that Λ̃k−2 is
isomorphic to Γ∗.

Let Γ̃′′ be the graph that we obtain if we apply on Γ̃ the same sequence of operations that
transforms Γ′ to Γ∗. and consider the function α := η ∪ ρ ◦ β. Then

(i) η ⊆ α;

(ii) α is an isomorphism between Λk and the graph Γ̃′′;

(iii) the graph Γ̃′′ is the result of a sequence of α(V (Λk))­maintaining contractions and edge
removals on Γ.
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And thus we have Πk(T ).

Induction Conclusion: Claim 3.5.26 holds.

The proof of Claim 3.5.26 completes the proof of Lemma 3.5.25.

Lemma 3.5.27. There exists an algorithm, that given as an input a simple 2­connected n­vertex
plane graph Γ and an integer k ≥ 2, returns as an output either a minor model of the (k × k)­grid
in Γ, either a sphere­cut decomposition of Γ of width at most 4k − 4. Moreover, this algorithm
runs in O(n3) steps.

Proof. The lemma follows easily when k = 2. To see this observe that any 2­connected graph that
is not a triangle contains a cycle of at least 4 vertices and therefore a (2 × 2)­grid­minor and that
is it is trivial to construct a sphere­cut branch­decomposition of a triangle of width 2 ≤ 4 · 2− 4.

In what remains, we examine the non­trivial case where k ≥ 3. As Γ is 2­connected and
simple, the boundary of each of its faces is a cycle with at least 3 vertices.

The algorithm starts by picking an arbitrary edge e0 of Γ and constructs a partial sphere­cut
decomposition B0 = (T0, τ0) so that T0 has 2 leaves l, l′, τ−1

0 (l) = {e0}, and τ−1
0 (l′) = E(Γ) \

{e0}. Notice that the 2­connectivity of Γ implies that B0 has width 2 ≤ 4k − 4.
Algorithm 1: Grid minor or small branch­width.
Result: Either a sphere­cut branch­decomposition of Γ of width ≤ 4k − 4,
either a minor model of Λk in Γ

initialization ; // Let E(Γ) = {e0, . . . , em−1}
T ← ({l, l′}, {{l, l′}}), τ ← {(e0, l), (e1, l′), . . . (em−1, l

′)};
B ← (T, τ);
Λk ← False, σ ← ∅ ; // Λk is a boolean variable which is true iff Λk ≤m Γ.
Incomplete­SCBD← True ; // Incomplete-SCBD is a boolean variable which is true

iff B is not a complete branch-decomposition of Γ.
while (Incomplete­SCBD = True) and(Λk = False) do

(Incomplete­SCBD,Λk, B, σ)← Procedure(B) ; // "Procedure" is the procedure
described in the course of the proof.

end
if Λk = True, then

return σ;
else

return B;
end

The rest of the proof is dedicated to the presentation of the procedure that receives an incom­
plete partial sphere­cut decomposition B = (T, τ) of Γ of width ≤ 4k − 4 and outputs either the
model of a (k × k)­grid minor of Γ, either a partial sphere­cut decomposition B′ = (T ′, τ ′) of Γ
of width ≤ 4k − 4 and where such that |L(T ′)| > |L(T )|. Clearly, if we iteratively apply this
procedure, starting fromB0, until |L(T ′)| = |E(Γ)| the output is one of the two possible outcomes
of the lemma.
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We now proceed with the description of the above procedure. Let ω be the function certifying
that the input B = (T, τ) is a partial sphere cut decomposition. Let e be a loaded edge of B,
incident to some loaded leaf l1 of T . Let also Ne = ω(e). As Γ is 2­connected, we have that
|Ne| ≥ 2. We define the interior of Ne as the connected component of R2 \ Ne that contains
all the edges in τ−1(l1), and we denote it by in(Ne). Clearly, in(Ne) is an open disk. Let I =
{I1, . . . , I|Ne|} be the collection of arcs of Γ that constituting the connected components ofNe \Γ.
We distinguish two cases Case 1, Case 2. Each of them has two subcases. In the one subcase of
Case 2 the output is a minor model of the (k × k)­grid in Γ. In the other subcases the output is
two nooses N1 and N2 such that:

A. (N1, N2, Ne) is a proper Θ­triple of Γ that induces some partition {E1, E2, E3} of E(Γ)
where E3 = E(Γ) \ τ−1(e). and

B. |N1|, |N2| ≤ 4k − 4

Case 1. |Ne| < 4k − 4. Let I be some of the arcs in I and let f be the face of Γ that contains this
arc. Let also x and y be the endpoints of I and let ex = {x, x′} be the edge in the boundary of f
that is inside in in(Ne). We examine two subcases:

f

I

Ne x

x′

ex

Inew
D1 D2

f

I

Ne x

x′
ex

y

y

I2new

I1new

ey

Figure 3.5.11: Deducing the nooses N1, N2 in subcases 1.a, 1.b of the proof of Lemma 3.5.27.

Subcase 1.a. x′ ∈ V (Ne), i.e. x′ is a vertex of mid(e). Consider an arc Inew of Γ between x and
x′ and inside in in(Ne) such that one, say D1, of the two connected components of in(Ne) \ Inew
contains the edge ex and the other, say D2, contains some edge in τ−1(l1) \ {ex}. Let E1 and E2

be the sets of edges inside D1 and D2 respectively. We observe that E1 and E2 form a partition
of τ−1(e). The algorithm outputs the boundaries N1 and N2 of D1 and D2 respectively. By
construction, the triple (N1, N2, Ne) satisfies condition A. Observe that |N1| ≥ 2, |N2| ≥ 2 and,
from Observation 3.5.19, |N1| + |N2| = |Ne| + 2. Therefore, |N1|, |N2| ≤ |Ne| ≤ 4k − 4 and
condition B holds as well.

Subcase 1.b. x′ ̸∈ V (Ne), therefore x′ ∈ in(Ne). Let ey be the edge on the boundary of f that has
y as endpoint and is inside in(Ne). We can assume that ex and ey are different edges as, otherwise,
y = x′ and the previous subcase applies.
Consider an arc I1new between y and x′ and an arc I2new between x′ and x in a way that if N1 is the
union of I , I1new, I2new, and the points x, y, and x′, then the edges ex and ey are separated byN1. We
now partition the edges of τ−1(e) to two sets E1 and E2 where E1 contains the edges of τ−1(e)
that are inside one of the two open disks bounded by N1 and E2 contains the rest. Let also N2 be
the noose occurring if we remove the arc I from the union ofNe andN1. By construction, the triple
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(N1, N2, Ne) satisfies condition A. We also observe that |N1| = 3 and, from Observation 3.5.19,
|N1|+ |N2| = |Ne|+2. We conclude that |N1|, |N2| ≤ |Ne|+1 ≤ 4k− 4 and Condition B holds
as well.

Case 2. |Ne| = 4k − 4. We name the vertices in V (Ne) by

v
up
1 , . . . , v

up
k = v

right
1 , . . . , v

right
k = vdownk , . . . , vdown1 = vleftk , . . . , vleft1 = v

up
1 ,

following their clock­wise cyclic ordering on Ne. We also set V up = {vup1 , . . . , v
up
k }, V

right =

{vright1 , . . . , v
right
k }, V down = {vdown1 , . . . , vdownk }, and V left = {vleft1 , . . . , vleftk }. Let Γ↔ be the

graph obtained if we add in Γ the vertices zleft and zright and connect all vertices in V left with zleft

and all vertices in V right with zright. Also let Γ↕ be the graph obtained if we add in Γ the vertices
zup and zdown and connect all vertices in V up with zup and all vertices in V down with zdown.

Let S↔ be a minimum (zleft, zright)­separator of Γ↔ and let S↕ be a minimum (zup, zdown)­
separator of Γ↕. Because of the 2­connectivity of Γ, we have that both |S↔| and |S↕| have at least
2 vertices. We examine two subcases:
Subcase 2.a. |S↔| ≥ k and |S↕| ≥ k. From Menger's Theorem 1.2.73 there is a collection R↔

of k internally disjoint paths from zleft to zright in Γ↔ and a collection R↕ of k internally disjoint
paths from zup to zdown in Γ↕. Let P↔ = {P↔

1 , . . . , P↔
k } be the paths obtained from the paths in

R↔ after removing from them the vertices zleft to zright and let P↕ = {P ↕
1 , . . . , P

↕
k } be the paths

obtained from the paths in R↕ after removing from them the vertices zup to zup. We consider the
subgraph Γ′ of Γ obtained by the union of the paths in R↔ and the paths in R↕. Notice that the
paths in R↔ and R↕ meet the specifications of Lemma 3.5.25, therefore Γ′, and therefore Γ as
well, contains a (k × k)­grid as a minor.

Subcase 2.b. |S↔| < k or |S↕| < k. Without loss of generality we assume that |S↔| < k. From
Lemma 3.5.20, there is a nooseN in Γ↔ such that V (N) = S↔. Notice that, as Γ is 2­connected,
it holds that |S↔| = |N | ≥ 2 and this sub­case is applied only when k ≥ 3.

Let fout be the unique face of Γ↔ that contains both zleft and zright in its boundary. We insist
that the set I = N \fout is an arc of Γ↔ that is a subset of in(Ne)∪V (Ne), as we can always update
N with an equivalent one that has this property. By definition, I is also an arc of Γ. Observe that I
contains a sub­arc I ′ so that the one endpoint of I ′ is a vertex of V up, the other is a vertex of V down,
and I ′ does not contain any other vertex in V up ∪ V down except from its endpoints. Observe also
that |I ′| ≤ |I| = |N | = |S↔| < k and keep in mind that I ′ ⊆ in(Ne) ∪ V (Ne).

Claim 3.5.28. There is an arc I ′′ in in(Ne) with endpoints a, b ∈ V (Ne), such that I ′′ ∩Ne = ∅.
Moreover, if I(1) and I(2) are the two arcs in Ne that have a and b as endpoints, then |I ′′| <
|I(i)|, i ∈ {1, 2}.

Proof of claim. We examine first the case where I ′ contains a sub­arc I ′′ with one endpoint, say a,
in V left, the other, say b, in V right, and no other vertex in Ne. Notice that every arc I(i), i ∈ {1, 2}
in Ne that has one of its endpoints in V left and the other in V right contains either all the vertices of
V up or all the vertices of V down. This implies that k ≤ |I(i)|, i ∈ {1, 2}. Therefore, |I ′′| < |I ′| ≤
k ≤ |I(i)|, i ∈ {1, 2}, and the claim follows.

The case where I ′ contains a sub arc I ′′ with one endpoint in V up, the other in V down and no
other vertex inNe is the same as the above case if we replace V left with V up and V right with V down.
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Figure 3.5.12: Illustration of the possible cases that we face while trying to deduce the arc I ′′ in
the proof of Claim 3.5.28

In the remaining case, we have that either I ′ intersects V left \ {vup1 , vdown1 } or some vertex of
V right \ {vupk , vdownk } but not from both. W.l.o.g., we assume that I ′ contains some vertex from
V left \ {vup1 , vdown1 } but none from V right \ {vupk , vdownk }. Let I∗ be the arc in Ne with the same
endpoints as I ′ and with some endpoint in V left \ {vup1 , vdown1 }; notice that I∗ is well defined as
V left\{vup1 , vdown1 } is non­empty (because k ≥ 3). Clearly, V (I∗) ⊇ V left. This implies that |I∗| ≥
k, therefore |I ′| < |I∗|. Consider now the set (I ′ ∪ I∗) \ (I ′ ∩ I∗) and observe that its connected
components are arcs. Notice also that these arcs can be enumerated as I ′1, . . . , I ′ρ and I∗1 , . . . , Iρ∗
such that each I ′i is a sub­arc of I ′, each I∗i is a sub­arc of I∗, and, for i = {1, . . . , ρ}, either I ′i = I∗ρ
or I ′i and I∗i are disjoint and with common endpoints. Let R = {i ∈ {1, . . . , ρ}|I ′i ∩ I∗i = ∅} and
observe that |I ′| < |I∗| implies that

∑
i∈R |I ′i| <

∑
i∈R |I∗i |. This in turn implies that, for some

i ∈ R, |I ′i| < |I∗i |. We set I ′′ = I ′i and I(1) = I∗i and keep in mind that |I ′′| < |I(1)| ≤ k. Let a
and b be the endpoints of I ′′ and notice that I ′′ does not have any point in Ne, apart from a and b.
As I(1) ⊆ N , Ileft is one of the two arcs inN that have a and b as endpoints. Clearly, the other arc
inN with the same property is I(2) = (N \ Ileft)\{a}\{b}. As I(2) intersects or has as endpoints
all the vertices in V right, we have that |Iright| ≥ k. We conclude that |I ′′| < |I(1)| ≤ k ≤ |I(2)| and
this completes the proof of the claim.

From the above claim, there is an arc I ′′ such that I ′′ ⊆ in(Ne), the endpoints a and b of I ′′
are in V (Ne), and if I1 and I2 are the two arcs in Ne with endpoints a and b, then |I ′′| ≤ |I1|
and |I ′′| ≤ |I2|. Notice also that in(Ne) \ I ′′ has two connected componentsD1, D2 that are open
disks. For i ∈ {1, 2}, let Ei be the edges inside Di. By construction, none of E1, E2 is an empty
set, therefore they form a partition of τ−1(e). Let alsoN1 andN2 be the boundaries ofD1 andD2

such that N1 = I1 ∪ I ′′ and N2 = I2 ∪ I ′′. Clearly, the triple (N1, N2, Ne) satisfies condition A.
As, for every i ∈ {1, 2}, |Ni| = |Ii|+ |I ′′| − 2 ≤ |Ii|+ |I3−i| − 2 = |Ne| ≤ 4k− 4, Condition B
holds as well.

In each of the sub­cases 1.a, 1.b, and 2.b, we obtained two noosesN1 andN2 where conditions
A and B holds. Let {E1, E2, E3} be the partition of E(Γ) induced by the Θ­triple (N1, N2, Ne).
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T \ {l1}
l1

T \ {l1}
l1

e

l2

y

B = (T, τ) B′ = (T ′, τ ′)

Figure 3.5.13: Increasing the valency of the incomplete partial sphere­cut decomposition B =
(T, τ) of Γ in cases 1a, 1b, 2b of the proof of Lemma 3.5.27

We now define B′ = (T ′, τ ′) by modifying B = (T, τ) as follows: let T ′ be the tree obtained
from T if we subdivide the edge e and make the subdivision vertex y adjacent with a new leaf
l2. We then define τ ′ : E(G) → L(T ′) such that τ ′(li) = Ei, i ∈ {1, 2}, and τ ′(l) = τ(l), for
every l ∈ L(T ′) \ {l1, l2}. We also define the function ω′ such that ω′(li) = Ni, i ∈ {1, 2}, and
ω′(l) = ω(l) for every l ∈ L(T ′)\{l1, l2}. This definition, together with ConditionB, implies that
B′ = (T ′, τ ′) is a partial sphere­cut decomposition ofΓ of width≤ 4k−4where |L(T ′)| > |L(T )|,
as required in the specifications of the main procedure of the algorithm.

Notice that the main procedure is applied O(n) times and its running time is dominated by the
computation of the k­disjoint paths or the separator of size < k in Subcase 2.b, which, in planar
graphs, can be done in O(n2) steps. The claimed overall running time follows.

Proof of Theorem 3.5.24. Immediate from Theorem 3.3.39 and Lemma 3.5.27.

3.5.4 Well­quasi­ordering planar graphs

Proof of Theorem 3.5.2. Let Γ be an arbitrary but fixed planar graph and let us denote by P the set
of all planar graphs with no minor isomorphic to Γ.

Since from Theorem 3.5.9 there exist an integer k such that the graph Γ is isomorphic to a
minor of the (k × k)­grid, it follows from the transitivity of the minor relation that no graph in P
has a minor isomorphic to the (k × k)­grid.

By the Excluded Grid Theorem for planar graphs (Theorem 3.5.24) every planar graph with
branch­width greater than 4k− 4 contains the (k× k)­grid as a minor. Thus (∀G ∈ P)[bw(G) ≤
4k − 4].

Hence by Theorem 3.4.2 it follows that the set P is well­quasi­ordered by the minor relation.
Since Γ was an arbitrary planar graph the proof is complete.

Proof of Theorem 3.5.1. LetG1, G2, . . . be an arbitrary but fixed infinite sequence of planar graphs,
such that the graphG1. If there exists a positive integer j > 1 such thatG1 is isomorphic to a minor
ofGj , we are done. If for every positive integer j > 2 the graphGj has no minor isomorphic to the
planar graph G1 then by Theorem 3.5.2 the set of graphs {Gj |j > 1} is well­quasi­ordered by the
minor relation (as a subset of the set of all planar graphs without a minor isomorphic toG1). Thus
the sequence (Gj)j≥2 is an infinite sequence of a well­quasi­ordered set, and hence must contain
at least one good pair of graphs, that is, there exist i, j with j > i such that that Gi is isomorphic
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to a minor of Gj . Since G1, G2, . . . was an arbitrary infinite sequence of planar graphs, our proof
is complete.

3.6 Graphs which exclude a fixed planar graph as a minor

The purpose of this section is to present the proof of the following special case of Robertson and
Seymour's theorem.

Theorem 3.6.1 (Robertson and Seymour [109]). If G1, G2, . . . is any infinite sequence of graphs,
such that G1 is planar. Then there exist i, j with j > i ≥ 1 such that Gi is isomorphic to a minor
of Gj .

The main ingredient that we will need is the following:

Theorem 3.6.2 (Robertson and Seymour [108]). For any planar graphH , the set of all graphs with
no minor isomorphic toH is well­quasi­ordered by the minor relation.

Since ­by Theorem 3.5.9­ every planar graph is minor of a large enough grid, the transitivity
of the minor relation on graphs implies that when a graph, say G, does not contain a fixed planar
graph as a minor then there is a positive integer k, such that G has not a minor isomorphic to
the (k × k)­grid. Hence we can deduce informations about the "rough" structure of graphs which
exclude a fixed planar graph as a minor, by studying the case in which the excluded minor is a grid.

This case is studied on the Excluded Grid Theorem (Theorem 3.6.3) which is one of the two
basic ingredients for the proof of Theorem 3.6.2. Informally, the Excluded Grid Theorem (The­
orem 3.6.3) states that if a graph has large tree­width (or, similarly, ­due to Theorem 3.3.33­,
branch­width) then it contains a large grid as a minor. Thus if a graph excludes a grid as a minor
then it has bounded tree­width and thus bounded branch­width.

Hence, for any planar graph H , the set of all graphs with no minor isomorphic to H is a set
of graphs with bounded branch­width. Here comes the second ingredient which is Theorem 3.4.2
which states that any set of graphs with bounded branch­width is well­quasi­ordered by the minor
relation and has already been proved in Subsection 3.4.3.

3.6.1 The excluded grid theorem

The ExcludedGrid Theorem (also calledGrid Theorem andGridMinor Theorem), is the following:

Theorem3.6.3 (ExcludedGrid Theorem, Robertson and Seymour [108]). For each positive integer
k, there is an integer g(k) such that every graph with tree­width at least g(k) has an (k × k)­grid
minor.

It was first proved by Robertson and Seymour [108, Theorem 7.3] and the first short proof was
given byDiestel, Jensen, Gorbunov, and Thomassen [34]. In this subsection we prove the Excluded
Grid Theorem. Actually due to the close relationship of the graph invariants branch­width and tree­
width (Theorem 3.3.33), which implies the equivalent of Theorem 3.6.3 with Theorem 3.6.4 and
the fact that the proof of the Excluded Grid Theorem is slightly easier in the branch­width version,
we are working with branch­width and we prove Theorem 3.6.4. The proof is based on [34], and
the presentation follows [102].
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Theorem 3.6.4 (Excluded Grid Theorem (branch­width version)). For each positive integer k,
there is an integer f(k) such that every graph with branch­width at least f(k) has an (k × k)­grid
minor.

From now and on when we refer to the Excluded Grid Theorem ­if it is not stated otherwise­
we refer to its branch­width version, that is, to Theorem 3.6.4.

Let us now outline the course of the proof of the Excluded Grid Theorem. Our basic ingredients
are two lemmas, Lemma 3.6.13 and Lemma 3.6.19.

The first lemma states that given three positive integers, say k, s and t, and provided a specific
structure (see Definition 3.6.5) ­which is depended on k, s and t­ on a graph we can find on this
graph either a (k × k)­grid minor or a set of s+ t disjoint paths which meets some requirements.

In the second lemma we prove that given a graph with "sufficiently" large branch­width we
can find a specific structure ­which depends on the branch­width of the graph­ in it.

Then, given an integer k, the proof of Excluded Grid Theorem lies in choosing the right integer
f(k) which is such that if a graph, say G, has branch­width at least f(k) then the structure which
exists by our second lemma on G is appropriate for applying a generalization (Corollary 3.6.18)
of the first lemma and find ­either directly or by making use of the disjoint paths (the existence of
which is guaranteed by Corollary 3.6.18)­ the desired (k × k)­grid minor on G.

In order to state the two lemmas that we need for the proof of the Excluded Grid Theorem we
first need to set up some notation and to state some definitions.

For the rest of this section when it is clear from the context in which graph we refer, we do not
use subscript for the connectivity function of this graph. Recall from Observation 3.3.36 that given
a graph G and two sets of vertices A,B ⊆ V (G), the number γ(A,B) equals with the maximum
size of a set of disjoint (A,B)­paths, where γ is the connectivity function of the graph G.

Definition 3.6.5 ((p, q)­path­system). A sextuple (G,A,B,X, Y,P) consisting of a graphG, four
disjoint subsetsA,B,X, Y of V (G), and a setP of disjoint (A,B)­paths will be said to be a (p, q)­
path­system if |P| ≥ p and there exist q disjoint (X,Y )­paths in G.

Notation 3.6.6. Let G be a graph, let alsoW,X and Y be subsets of V (G) such thatW separates
X from Y . We denote by EW the set of edges of G which contains those e ∈ E(G) for which
there is a path P inG, containing e, such that P has its one endpoint atX \W and P ∩W consists
of at most one end of P .

Observation 3.6.7. If G is a graph and W,X, Y are subsets of V (G) such that W separates X
from Y , then Γ(EW ) ⊆W and Γ(EW ) ∪ (W ∩ (X ∪ Y )) separates X from Y in G.

Notation 3.6.8. Let G be a graph, X,Y ⊆ V (G) and E′ ⊆ E(G). We denote by Γ(X,Y )(E
′) the

union of Γ(E′) with all x ∈ X which are incident with an edge of E(G) \ E′ and with all y ∈ Y
which are incident with an edge in E′.

Observation 3.6.9. Let G be a graph, X,Y ⊆ V (G) and E′ ⊆ E(G). The set Γ(X,Y )(E
′) is not

in general equal with the set Γ(Y,X)(E
′), they differ as to which elements ofX and Y are included.

Proposition 3.6.10. Let G be a graph, X,Y ⊆ V (G) and E′ ⊆ E(G), then the set Γ(X,Y )(E
′)

separates X from Y in G.
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X Y

Γ(EW )

Γ(X,Y )(EW )

Figure 3.6.1: Illustration of Notations 3.6.6, 3.6.8. With fatter lines are drawn the edges of the set
EW and the vertices ofW are colored with red.

Proof. Let P be an arbitrary but fixed (X,Y )­path, we distinguish the following cases:

Case 1: The path P consists in exactly one edge, say e = {u, v} with u ∈ X, v ∈ Y .
Sub­case 1a: e ∈ E′.
In that case v ∈ Γ(X,Y )(E

′)

Sub­case 1b: e /∈ E′.
In that case u ∈ Γ(X,Y )(E

′)

Case 2: The path P = (u, . . . , v) consists in at least 2 edges.
Sub­case 2a: All the edges of P are in E′.
In that case v ∈ Γ(X,Y )(E

′).
Sub­case 2b: None of the edges of P is in E′.
In that case u ∈ Γ(X,Y )(E

′).
Sub­case 2c: P has at least one edge in E′ and one edge in E \ E′.
In that case P contains at least one vertex of Γ(E′) and thus Γ(X,Y )(E

′) contains at least one vertex
of P .

In any case, one vertex of P is in Γ(X,Y )(E
′). Since P was an arbitrary (X,Y )­path it follows

that the set of vertices Γ(X,Y )(E
′) is a (X,Y )­separator.

It is easy to see that the following holds.

Proposition 3.6.11. If G is a graph and W,X, Y are subsets of V (G) such that W separates X
from Y , then Γ(X,Y )(EW ) ⊆W .

Corollary 3.6.12. Let G be a graph, X,Y ⊆ V (G), then all minimal sets separating X from Y
are of the form Γ(X,Y )(E

′) for some E′ ⊆ E(G).

Lemma 3.6.13. Let k, s and t be given positive integers. Then there exist positive integers p and
q such that, for any (p, q)­path­system (G,A,B,X, Y,P), either G has an (k × k)­grid minor, or
there is a subset P ′ of P of size s and a setQ of (X,Y )­paths of size t such that P ′ ∪Q is a set of
disjoint paths.

Proof. Given k, s and t, let r and q ≥ 2s + t be large enough so that the bipartite Ramsey result
holds, i.e. any coloring of the edges of the complete bipartite graphK2r,q with two colors (red and
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blue) either has a redKs,t subgraph or a blueK2k2k+1,k2 subgraph. Set p := s+ (2r+2)q and let
(G,A,B,X, Y,P) be a (p, q)­path­system.

We begin with some simple observations. IfG has an edge e not in any path in P , so that there
are at least q disjoint (X,Y )­paths in G \ e, then we may freely delete e and continue with G \ e
in place of G. Similarly, consider an edge e in a path P ∈ P such that P has length at least 2. If
G/e has at least q disjoint (X,Y )­paths, then we proceed with G/e in place of G.

Thus, we may assume that any edge not in any path in P is in every collection of q disjoint
(X,Y )­paths inG, and likewise, every edge in a path in P , as long as it is not the only edge in that
path, joins vertices in a (X,Y )­separation of size q.

If there are at least s paths of length 1 in P , then we may use these paths for P ′. As long as
q ≥ t+2s, any set of q disjoint (X,Y )­paths contains at least t paths that are all disjoint from the
paths in P ′. So we may suppose that P contains less than s paths of length 1. Furthermore, we
may assume that |X| = q = |Y |. Notice that Γ(X,Y )(∅) = X and Γ(X,Y )(E(G)) = Y .

Our next step is to find an appropriate set of cuts. Let P1 denote the subset of P consisting of
all the paths of length at least 2.

Claim 3.6.14. We shall find a sequence of 2r + 2 sets E0 = ∅ ⊆ E1 ⊆ E2 ⊆ . . . ⊆ E2r ⊆
E(G) = E2r+1 of edges such that, for each i, |Γ(X,Y )(Ei)| = q, and each Γ(X,Y )(Ei) contains
the endpoints of an edge of some path Pi ∈ P1 such that V (Pi) is disjoint from all the other
ΓX,Y (Ej).

Proof of Claim 3.6.14. Suppose that, for somem ≥ 0, we have found sets of edges
E0 = ∅, E1, . . . , Em, Em+1 = E(G) and paths P1, P2, . . . , Pm so that Ei are nested, for each
i, |Γ(X,Y )(Ei)| = q, and each Pj has an edge whose endpoints are in Γ(X,Y )(Ej) but not in any
other Γ(X,Y )(Ek). It is easy to see that, as long as |P1| ≥ (m + 2)q + 1, there is a path P ∈ P1
that is disjoint from all the sets Γ(X,Y )(Ei) for i ∈ {0, 1, . . . ,m+ 1}.

Let i be least such that E(P ) ⊆ Ei. Then, because P is disjoint from all the Γ(X,Y )(Ej),
E(P ) ⊆ Ei \ Ei−1.

Contract any edge e of P . From the basic reductions, there do not exist q disjoint (X,Y )­paths
in G. This easily implies that there are not q disjoint (Γ(X,Y )(Ei−1),Γ(X,Y )(Ei))­paths. Thus,
there is anE′ such thatEi−1 ⊆ E′ ⊆ Ei, the endpoints of e are in Γ(X,Y )(E

′), and |Γ(X,Y )(E
′)| =

q. We proceed to the next iteration with the sequence E0, E1, . . . , Ei−1, E
′, Ei, . . . , Em, Em+1

and the paths P1, . . . , Pi−1, P, Pi, . . . , Pm.
Since p ≥ s− 1+ (2r+2)q+1, we now have the desired sequences E0, E1, . . . , E2r, E2r+1

and P1, P2, . . . , P2r.

Next fix any setQ of q disjoint (X,Y )­paths and let P ′ = {P1, P2, . . . , P2r}. By the bipartite
Ramsey result, either there are s paths in P ′ and t paths in Q that are all disjoint (in which case
we are done) or there are a subset P ′′ of P ′ of size 2k2k+1 and a subset Q′ of Q of size k2 so that
every path in P ′′ intersects every path in Q′.

The latter outcome is the only one left to consider. Let P ′′ = {P ′
1, P

′
2, . . . , P

′
2k2k+1} be labeled

in increasing order of how they appear in P ′. In particular, the paths {P ′
2, P

′
4, . . . , P

′
2k2k+1} are all

separated from each other by cuts of size q, and are all disjoint from these cuts. As we proceed from
X to Y , every path in Q′ intersects each of these separating cuts in a single vertex, and therefore
intersects the (A,B)­paths in precisely the order P ′

2, P
′
4, . . . , P

′
2k2k+1 .
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Figure 3.6.2: Illustration of the induction step of the proof of Claim 3.6.14

To complete the proof, we show that the subgraph {P ′
2, P

′
4, . . . , P

′
2k2k+1}∪Q′ ofG ­and hence

G­ contains an (k × k)­grid minor.

Lemma 3.6.15. Let l ≥ 2 and p ≥ 1 be integers. Let T be a tree with l leaves and a longest path
of length at most p. Then |V (T )| ≤ (l − 2)(p− 1) + p+ 1.

Proof. We proceed by induction on l, the base case l = 2 being trivial. If l > 2, then T has a path
P that has as one end a leaf, as the other end a vertex v of degree at least 3, and all internal vertices
having degree 2. Clearly P ′ := P \ v has length at most p − 2, T ′ := T \ V (P ′) is a tree with
l − 1 leaves, and |V (T )| = |V (T ′)|+ |V (P ′)|.

Lemma 3.6.16. Let k ≥ 2, and let (G,A,B,X, Y,P) be a (k2k+1, k2 − 3k + 5)­path­system.
SupposeQ is a set of k2−3k+5 disjoint (X,Y )­paths such that the paths inP are all edge­disjoint
from the paths in Q and every path in Q meets the paths in P in the same order. Then G contains
an (k × k)­grid minor.

Proof. Let m := k2k+1, and let P = {P1, P2, . . . , Pm} be such that every path in Q meets the
paths in P in the order P1, P2, . . . , Pm. For each i ∈ {1, 2, . . . ,m}, let Ki be the graph whose
vertices are the paths in Q an the vertices Q and Q′ in Q are adjacent in Ki if and only if there is
a subpath of Pi that has one end in Q and one end in Q′ and is otherwise disjoint from all paths in
Q. Since Pi intersects all the paths in Q, the graphKi is connected.

Let Ti be a spanning tree of Ki. Since Ti has (k − 2)(k − 1 − 1) + (k − 1) + 2 vertices,
Lemma 3.6.15 implies that either Ti has at least k leaves or Ti has a path of length at least k − 1.
Let (Qi,1, Qi,2, . . . , Qi,k) be a sequence of vertices of Ti which are either all leaves of Ti or (in
order) the vertex sequence of a path in Ti. Thus, for each j = 2, 3, . . . , k, there is a subpath Pi,j of
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Pi whose ends are in the pathsQi,j−1 andQi,j and is otherwise disjoint fromQi,1∪Qi,2∪. . .∪Qi,k.
There are only s = k2−3k+5 paths inQ and consequently there are only s!/(s−k)! ≤ sk ≤ k2k

different possible sequences (Qi,1, Qi,2, . . . , Qi,k). Thus, some sequence occurs at leastm/sk ≥ k
times. Let (Q1, Q2, . . . , Qk) be such a sequence, and let i1 < i2 < . . . < ik be among those indices
i such that:

(Qi,1, Qi,2, . . . , Qi,k) = (Q1, Q2, . . . , Qk).

The paths Qm, for m = 1, 2, . . . k, will be the "horizontal" paths in the (k × k)­grid, while the
paths Pij for j = 1, 2, . . . , k will provide the "vertical" paths in the (k × k)­grid. Specifically,
the vertical paths will be the subpaths of Pij from Qm−1 to Qm, form = 2, 3, . . . , k − 1, that are
otherwise disjoint from Q1 ∪Q2 ∪ . . . ∪Qk.

In order to see exactly the (k × k)­grid minor, we contract the portions of Qm, for m =
2, 3, . . . , k − 1, between the ends in Qm of the segments of Pij joining Qm to Qm−1 and Qm+1.
It is here that we use the fact that all Qm meet the Pij in the same order.

The proof of Lemma 3.6.13 is completed by observing that

|{P ′
2, P

′
4, . . . , P

′
2k2k+1}| = k2k+1 and |Q′| = k2 ≥ k2 − 3k + 5.

Corollary 3.6.17. Let G a graph, k, n and mi, i ∈ {1, 2 . . . , r}, be positive integers, and let G
be a graph. Let X,Y,Ai, Bi, i ∈ {1, 2 . . . , r} be pairwise disjoint subsets of V (G). For each
i ∈ {1, 2 . . . , r} let Pi be a set of disjoint (Ai, Bi)­paths, so that

⋃r
i=1 Pi is a set of disjoint paths.

If, for i ∈ {1, 2 . . . , r}, the numbers |Pi| and γ(X,Y ) are sufficiently large (as functions of k, n
and the mi), then either G contains an (k × k)­grid minor or there exist, for i ∈ {1, 2 . . . , r} sets
P ′
i ⊆ Pi and a set Q of (X,Y )­paths, such that (for i ∈ {1, 2 . . . , r}), |P ′

i| ≥ mi, |Q| ≥ n, and(⋃r
i=1 P ′

i

)
∪Q is a set of disjoint paths.

Proof. The proof is by induction on r.

Induction Basis: For r = 1 the statement of Corollary 3.6.17 is the same with the statement of
Lemma 3.6.13.

Induction Hypothesis: Let l > 1 be a positive integer, we assume that Corollary 3.6.17 holds for
r = l − 1.

Induction Step: We prove that Corollary 3.6.17 holds for r = l.
Let G a graph, k, n and mi, i ∈ {1, 2 . . . , l}, be positive integers, and let G be a graph. Let
X,Y,Ai, Bi, i ∈ {1, 2 . . . , l} be pairwise disjoint subsets of V (G). For each i ∈ {1, 2 . . . , l} let
Pi be a set of disjoint (Ai, Bi)­paths, so that

⋃l
i=1 Pi is a set of disjoint paths.

The induction hypothesis implies that there exist positive integers p1, . . . , pl−1, q (depended on
k, n and themi, i ∈ {1, . . . , l−1}) such that if |Pi| ≥ pi, i ∈ {1, . . . , l−1} and γ(X,Y ) ≥ q, then
eitherG contains an (k× k)­grid minor, or there exist, for i ∈ {1, 2 . . . , l− 1} sets P ′

i ⊆ Pi and a
setQ of (X,Y )­paths, such that (for i ∈ {1, 2 . . . , l−1}), |P ′

i| ≥ mi, |Q| = n, and
(⋃l−1

i=1 P ′
i

)
∪Q

is a set of disjoint paths.
From Lemma 3.6.13 for the positive integers k, q andml, the disjoint vertex sets X,Y,Al, Bl

and the collection of disjoint paths Pl there exist positive integers pl and q′ such that, if |Pl| ≥ pl
and γ(X,Y ) ≥ q′ either G has an (k × k)­grid minor (in which case we are done), or there is a
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subsetP ′
l ofPl of sizeml and a setQ′ of (X,Y )­paths of size q such thatP ′

l∪Q′ is a set of disjoint
paths.

Let us now consider the latter outcome. We first delete every (X,Y )­path in G that is not in
Q′ and apply the induction hypothesis for the positive integers k, n and mi, i ∈ {1, . . . , l − 1},
the disjoint vertex sets X,Y,Ai, Bi, i ∈ {1, . . . , l − 1}, and the sets of disjoint paths Pi i ∈
{1, 2 . . . , l}. Either G has a (k × k)­grid minor (in which case we are done), or there exist, for
i ∈ {1, 2 . . . , l− 1} sets P ′

i ⊆ Pi and a setQ of (X,Y )­paths, such that (for i ∈ {1, 2 . . . , l− 1}),
|P ′

i| ≥ mi, |Q| = n, and
(⋃l−1

i=1 P ′
i

)
∪Q is a set of disjoint paths, since Q ⊆ Q′ we are done.

Induction Conclusion: Corollary 3.6.17 holds.

Corollary 3.6.18. Let G be a graph, k,mi, i ∈ {1, 2 . . . , r} and nj , j ∈ {1, 2, . . . , s} be positive
integers, and let G be a graph. Let (Ai, Bi), i ∈ {1, 2 . . . , r} and (Xj , Yj), j ∈ {1, 2, . . . , s} be
pairwise disjoint subsets of V (G). For i ∈ {1, 2 . . . , r}, let Pi be a set of (Ai, Bi)­paths so that⋃r

i=1 Pi is a set of disjoint paths. If the numbers |Pi| for i ∈ {1, 2 . . . , r}, and γ(Xj , Yj) for
j ∈ {1, 2, . . . , s} are sufficiently large (as functions of k,mi and nj), then either G contains a
(k× k)­grid minor or there exist P ′

i ⊆ Pi for i ∈ {1, 2 . . . , r} and for each j ∈ {1, 2, . . . , s} a set
Qj of (Xj , Yj)­paths, such that (∀i ∈ {1, 2, . . . , r})[|P ′

i| ≥ mi], (∀j ∈ {1, 2, . . . s})[|Qj | ≥ nj ]
and

(⋃r
i=1 P ′

i

)
∪
(⋃s

j=1Qj

)
is a set of disjoint paths.

Proof. The existence is established by induction on s.

Induction Basis: For s = 1 the statement of Corollary 3.6.18 is the same with the statement of
Corollary 3.6.17.

Induction Hypothesis: Let l > 1 be a positive integer, we assume that Corollary 3.6.18 holds for
s = l − 1.

Induction Step: We prove that Corollary 3.6.18 holds for s = l.
From the induction hypothesis there exist positive integers p1, . . . , pr, q1, . . . , ql−1 (depended on
k,mi and nj) such that if |Pi| ≥ pi for i ∈ {1, 2 . . . , r}, and γ(Xj , Yj) ≥ qj for j ∈ {1, 2, . . . , l−
1}, either G contains a (k × k)­grid minor or there exist P ′

i ⊆ Pi for i ∈ {1, 2 . . . , r} and for
each j ∈ {1, 2, . . . , l − 1} a set Qj of (Xj , Yj)­paths, such that (∀i ∈ {1, 2, . . . , r})[|P ′

i| ≥ mi],
(∀j ∈ {1, 2, . . . l − 1})[|Qj | ≥ nj ] and

(⋃r
i=1 P ′

i

)
∪
(⋃l−1

j=1Qj

)
is a set of disjoint paths.

From the Corollary 3.6.17, for the positive integers k, nl and pi, i ∈ {1, 2 . . . , r}, the pairwise
disjoint vertex sets Xl, Yl, Ai, Bi, i ∈ {1, 2 . . . , r} and the sets of disjoint (Ai, Bi)­paths Pi for
i ∈ {1, 2 . . . , r} there exist positive integers p′1, . . . , p′r, q′, such that if (∀i ∈ {1, . . . , r})|Pi| ≥ p′i
and γ(Xl, Yl) ≥ q′, then either G contains an (k × k)­grid minor (in which case we are done)
or there exist, for i ∈ {1, 2 . . . , r} sets P ′

i ⊆ Pi and a set Ql of (Xl, Yl)­paths, such that (for
i ∈ {1, 2 . . . , r}), |P ′

i| = pi, |Ql| = nl, and
(⋃r

i=1 P ′
i

)
∪Ql is a set of disjoint paths.

Let us now consider the latter outcome. We apply the induction hypothesis for the positive
integers k, nj , j ∈ {1, . . . l − 1} and mi, i ∈ {1, . . . , r}, the disjoint vertex sets Xj , Yj , j ∈
{1, . . . l − 1}, the disjoint vertex sets Ai, Bi, i ∈ {1, . . . , l − 1}, and the sets of disjoint paths P ′

i

i ∈ {1, . . . , r} (which are sufficient large). There exist positive integers q1, . . . , ql−1 (depended
on k,mi and nj) such that if γ(Xj , Yj) ≥ qj for j ∈ {1, 2, . . . , l− 1}, then eitherG has a (k×k)­
grid minor (in which case we are done), or there exist P ′′

i ⊆ Pi for i ∈ {1, 2 . . . , r} and for each
j ∈ {1, 2, . . . , l − 1} a set Qj of (Xj , Yj)­paths, such that (∀i ∈ {1, 2, . . . , r})[|P ′′

i | ≥ mi],
(∀j ∈ {1, 2, . . . l − 1})[|Qj | ≥ nj ] and

(⋃r
i=1 P ′

i

)
∪
(⋃l−1

j=1Qj

)
is a set of disjoint paths. Since
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(∀i ∈ {1, . . . , r})[P ′′
i ⊆ P ′

i], we have that
(⋃r

i=1 P ′′
i

)
∪
(⋃l

j=1Qj

)
is a set of disjoint paths, and

thus we are done.

Induction Conclusion: Corollary 3.6.18 holds.

Lemma 3.6.19. Let h ≥ k ≥ 2 be positive integers and let G be a graph. Then either G has
branch­width at most h or there is a subset E of E(G) such that:

(i) γ(E) = h;

(ii) Γ(E) is k­connected in G \ E;

(iii) there is a path P such that E(P ) ⊆ E and P contracts in G onto Γ(E).

v0

vr

vi1

vi2

vi3

vis−1

vis

P

Figure 3.6.3: The correct image for the path P on Lemma 3.6.19 is the following: P =
(v0, v1, . . . , vr) has its ends v0, vr ∈ Γ(E) and there are indices 0 < i1 < . . . < is < r and
a set {P1, P2, . . . , Ps} of s = γ(E)− 2 disjoint paths, such that for each j ∈ {1, . . . , s} the path
Pj joins vij to a vertex of Γ(E) \ {v0, vr}, and meets P only in vij .

Proof. We suppose that the branch­width of the graph G is greater than h. Let E∗ be a maximal
subset of E(G) such that:

(i) γ(E∗) ≤ h;

(ii) if (T, τ) is a branch­decomposition such that the set E∗ is displayed by an edge of T , say
e1, then some edge e′1 in the component of T \ e1 not containing τ(E∗) has width greater
than h, i.e., γ(e′1) > h;

(iii) there is a path P in G such that E(P ) ⊆ E∗ and P contracts in G onto Γ(E∗).

To see that such a choice of a set is possible, it suffices to observe that ∅ satisfies the above
conditions. Moreover, condition (ii) implies that E∗ ̸= E(G).
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Claim 3.6.20. γ(E∗) = h

Proof of Claim 3.6.20. Let us suppose toward a contradiction that γ(E∗) < h. Let v ∈ Γ(E∗) be
an end of P . By the definition of the set Γ(E∗), it follows that there exists an edge e ∈ E(G) \E∗

incident with v. The submodularity of γ implies that:

γ(E∗ ∪ {e}) ≤ 1 + γ(E∗) ≤ h

, and there is a path P ′, whose edges are all in E∗ ∪ {e}, that contracts onto Γ(E∗ ∪ {e}). Since
E∗ ⊊ E∗ ∪ e, it follows by the maximality of E∗ that there exist a branch­decomposition of G,
say (T, τ), such that the set E∗ ∪ {e} is displayed by an edge, say e1, and for every edge e2 in the
component of T \ e1 not containing γ(e) the width of e2 is ≤ h i.e., γ(e2) ≤ h.

Let T1, T2 be the components of T \ e1, so that the function τ maps the edge e at a leaf of
the component T1. We now proceed to the construction of a new branch­decomposition (T ′, τ ′)
of the graph G which will give us the desired contradiction. The branch­decomposition (T ′, τ ′)
is obtained as follows: The vertices of T ′ are those of T , with two new vertices t1, t2 that are
adjacent in T ′. In addition, t2 is adjacent to the two vertices of T incident with the edge e1. All
other adjacencies in T ′ are in complete agreement with adjacency in T \ e1.

We set τ ′(e) = t1, and for all the other edges e′ of G we set τ ′(e′) = τ(e′). Clearly the width
of the edge {t1, t2} of the tree T is at most 2, the edge joining T1 to t2 has width γ(E∗) which is
less than h by our assumption, the edge joining t2 to T2 has width γ(E∗ ∪ {e}) ≤ h, and every
other edge e′ in T2 we have τ ′(e′) = τ(e′) that is, at most h contradicting to (ii). Thus, the claim
holds.

Claim 3.6.21. The set of vertices Γ(E∗) is k­connected in G \ E∗.

Proof of Claim 3.6.21. Let us suppose towards a contradiction that the claim does not hold. Let
A,B be subsets of Γ(E∗) with |A| = |B| = s, such that s is as small as possible and they witness
our assumption, that is, there is no set of s disjoint (A,B)­paths in the graph G \ E∗ with each
path disjoint from the Γ(E∗) except its ends.

LetH be the subgraph of G which is induced by the edges of E(G) \E∗, with the vertices of
Γ(E∗) \ (A ∪ B) deleted. Since we need to work in both G and H for the next few paragraphs,
we include as a superscript, the name of the graph (G or H) in which we are determining Γ(F ),
for some set F of edges.

Let E′ ⊆ E(H) be such that S = ΓH
(A,B)(E′) is a smallest set that separates A from B in H .

Clearly, |S| = s − 1 (by the choice of s). By Menger's Theorem 1.2.73, there is a set Q of s − 1
disjoint (A,S)­paths in H .

Claim 3.6.22. ΓG(E∗ ∪ E′) ⊆ (ΓG(E∗) \A) ∪ S.

Proof. Let z be an arbitrary but fixed vertex in ΓG(E∗ ∪ E′), then z is incident with an edge
ē /∈ E∗ ∪ E′ and an edge e ∈ E∗ ∪ E′. If e ∈ E∗, then z ∈ ΓG(E∗), while if e ∈ E′, then
z ∈ ΓH(E′) ⊆ S. As z was arbitrary it follows that ΓG(E∗ ∪ E′) ⊆ ΓG(E∗) ∪ S

Let u ∈ A \S. Then u is not incident with an edge of E(H) \E′, so every edge inG incident
with u is in E∗ ∪ E′. Hence u /∈ ΓG(E∗ ∪ E′).

It follows immediately from the Claim 3.6.22 that γG(E∗ ∪ E′) < h (since A ⊆ ΓG(E∗) and
|S| < |A|). The set Q of the disjoint (A,S)­paths shows that there is a path P ′ using only edges
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in E∗ ∪ E′ that contracts to Γ(E∗ ∪ E′). Since E∗ ⊊ E∗ ∪ E′, the maximality of E∗ implies the
existence of a branch­decomposition, say (TA, fA), of G with the property that, for some edge τA
of TA, fA(E∗ ∪E′) is contained in the set of leaves of the one component, say T 1

A, of TA \ τA and
fA(E(G) \ (E∗∪E′)) is contained in the set of leaves of the other component, say T 2

A, of TA \ τA
so that, (∀τ ∈ E(T 2

A))[γG(τ) ≤ h].
In exactly the same way, we can proceed with B in place of A. For ease of notation, let

E′′ := E(H) \ E′. Then there are a branch­decomposition (TB, fB) of G and an edge τB of
TB such that fB(E∗ ∪ E′′) is contained in the set of leaves of the one, say T 1

B , of TB \ τB and
fB(E(G)\ (E∗∪E′′)) is contained in the set of leaves of the other component, say T 2

B , of TB \τB
so that, (∀τ ∈ E(T 2

B))[γG(τ) ≤ h].
We now proceed to the description of a third branch­decomposition which will give us the

desired contradiction. Let T be any cubic tree containing a vertex t such that the graph T \ t has
three components, one isomorphic to T 2

A, one isomorphic to T 2
B , and the third, say T3, with at least

|E∗| leaves that are also leaves of T . Moreover, the edge joining T 2
A to t is incident with the end of

τA in T 2
A, and similarly the edge joining T 2

B to t is incident with the end of τB in T 2
B . We define the

function f as follows: (∀a ∈ E′′)[f(a) := fA(a)], (∀b ∈ E′)[f(b) := fB(b)] and for each e ∈ E∗,
f(e) is any leaf of the component T3 that is also a leaf of T , chosen so that f is an injection. It is
easy to see that if τ is the edge of T joining T3 to t, then E∗ is displayed by τ , while if τ ′ is any
edge of T 2

A ∪ T 2
B , then γ(τ ′) ≤ h, thereby contradicting the choice of E∗. Thus, indeed the set

Γ(E∗) is k­connected in G \ E∗ and the proof of Claim 3.6.21 is complete.

The proof of Lemma 3.6.19 is completed since we have found the desired set which is the set
E∗ as it is witnessed by condition (iii) for the set E∗ and Claims 3.6.20, 3.6.21

We are now ready to prove the Excluded Grid Theorem.

Proof of Theorem 3.6.4. Let k be an arbitrary but fixed positive integer, by Corollary 3.6.18 (with
r = 0, s = 2k2 and each ni = 1), there is an integer F (k) such that:

If G is a graph and {Xj , Yj |1 ≤ j ≤ 2k2} are disjoint subsets of V (G) with the property that
(∀j ∈ {1, 2, . . . , 2k2})[γ(Xj , Yj) ≥ F (k)], then

• either the graph G has an (k × k)­grid minor

• or there is for each j ∈ {1, 2, . . . , 2k2} a (Xj , Yj)­pathPj such that the set {P1, P2, . . . , P2k2}
is a collection of disjoint paths.

Let G be an arbitrary but fixed graph such that bw(G) > 2k2F (k). By Lemma 3.6.19, there
is a subset E∗ of E(G) such that:

(i) γ(E∗) = 2k2F (k);

(ii) the set of vertices Γ(E∗) is
(
2F (k)

)
­connected in E(G) \ E∗ and

(iii) there is a path P such that E(P ) ⊆ E∗ and P contracts in G onto the set Γ(E∗).

Let {v1, v2, . . . , v2k2F (k)} be the vertices of the set Γ(E∗) enumerated in the order in which they
appear in the contraction of P and consider the partition V1, V2, . . . , Vk2 of Γ(E∗) obtained by
putting 2F (k) consecutive vertices into each of these sets, i.e. for l ∈ {1, . . . , k2} Vl = {vm|l ≤
m ≤ m+ 2k − 1}.
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V1 V2 V3

V4 V5 V6

V7 V8 V9

V4,1 V5,2

V5,8 V6,9

V9,6

V2,5

V8,5

V1,4

P

Figure 3.6.4: In the proof of the excluded grid Theorem 3.6.4 we are trying to deduce the desired
(k× k)­grid minor as follows: We are using the path P to take a Hamiltonian path of the (k× k)­
grid, and each of the k2 disjoint vertex sets Vi, i ∈ {1, . . . , k2} corresponds to one vertex of the
grid. Having the Hamiltonian path, to complete the grid minor we need to connect some vertex
sets\vertices of the grid with disjoint paths\edges of the grid, if we cannot find the desired disjoints
paths to do that and show fail to constuct the grid minor by the above way then Corollary 3.6.18
ensure the existence of an (k× k)­grid minor on G. The case illustrated on the above figure is for
k = 3, the desired paths to complete the grid minor have been drawn by red color.

Thinking of the path P as giving us a Hamiltonian path in the (k × k)­grid minor that starts
and ends in different corners of the grid, we see that we only need to connect some of the sets Vi in
pairs in order to make the (k×k)­grid minor. We will attempt to join these pairs of sets using only
edges in E(G) E∗, in order not to interfere with the Hamiltonian path. For each i ∈ {1, . . . , k2}
the set Vi is to be joined to at most two others sets.

For each i ∈ {1, . . . , k2} let j and j′ be the indices for which we are trying to join Vi to both
Vj and Vj′ , note that for some indices i there exist only one such index j. Arbitrarily partition the
set Vi into two sets Vi,j and Vi,j′ .

Consider the pairs (Vi,j , Vj,i). SinceΓ(E∗) is
(
2F (k)

)
­connected inE\E∗, Vi,j , Vj,i ⊆ Γ(E∗)

and |Vi,j | = |Vj,i| = F (k) it follows that γ(Vi,j , Vj,i) ≥ F (k). Hence, by the choice of the integer
F (k), it follows that eitherG has an (k×k)­grid minor or we can find disjoint paths inE(G)\E∗

between the required pairs so that we can complete the (k × k)­grid minor in G. In either case, G
has an (k × k)­grid minor as required.

The initial upper bound [108] on the tree­width sufficient for the (k× k)­grid minor was enor­
mous; «it involved iterated exponentiation where the number of iterations also involved iterated
exponentiation (and so on, twice more)» as remarked by Robertson, Seymour and Thomas in [115]
where they improved that ([115, Theorem 1.6]) to g(k) ≤ 202k

5 . In the same paper they note
that, by use of a probabilistic argument, they have proved the existence of graphs which have no
(k × k)­grid minor and have tree­width at least proportional to k2 log k and they also conjectured
«that O(k2 log k) is closer to the right answer» than the bound that they obtained.
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As we have already mention the first short proof of the Excluded Grid Theorem was given
by Diestel, Jensen, Gorbunov, and Thomassen [34] (see also [32]), but the upper bound that they
obtained there, where 25k

5 log k, which is slightly worse than the bound provided by Robertson,
Seymour, and Thomas [115]. Kawarabayashi and Kobayashi [69] proved that g(k) ∈ 2O(k2 log k),
and Leaf and Seymour [86] proved that g(k) ∈ 2O(k log k). The function g(k) was first shown
to be polynomial by Chekuri and Chuzhoy [19] who showed g(k) ∈ O(k98poly log k), this was
further improved to g(k) ∈ O(k36poly log k) by Chuzhoy [23] and later ­again by Chuzhoy [24]­
to g(k) ∈ O(k19poly log k)which is ­as far as we know­ is the best known upper bound. Demaine,
Hajiaghayi, and Kawarabayashi [28] conjectured that all graphs with tree­width Ω(k3) have a(
Ω(k)× Ω(k)

)
­grid minor and that this bound is tight.

The Excluded Grid Theorem has an interesting application. Recall the Erdős­Pósa theorem
(Theorem 4.1.5), it is natural to ask if a similar result holds for other structures instead of cycles.

Definition 3.6.23 (Erdős­Pósa property). A classH of graphs is said to have the Erdős­Pósa prop­
erty if and only if the number of vertices in a graph which is needed to cover all its subgraphs in
H is bounded by a function of its maximum number of disjoint subgraphs inH.

Robertson and Seymour [108] proved using the Excluded Grid Theorem the following gener­
alization of the Erdős­Pósa theorem.

Theorem 3.6.24 (Robertson and Seymour [108]). LetH be a fixed connected graph, and consider
the classH of all graphs which contract to a graph isomorphic toH . H has the Erdős­Pósa property
if and only ifH is planar.

The Erdős­Pósa property is well­studied and has several applications. For a survey of results
we refer the interested reader in [101].

3.6.2 Well­quasi­ordering graphs which exclude a fixed planar graph as a minor

Proof of Theorem 3.6.2. Let H be an arbitrary but fixed planar graph and let us denote by G the
set of all graphs with no minor isomorphic withH .

Since from Theorem 3.5.9 there exists an integer k such that the graph H is isomorphic to a
minor of the (k × k)­grid, it follows from the transitivity of the minor relation that no graph in G
has a minor isomorphic to the (k × k)­grid.

By the Theorem 3.6.4, there exist an integer f(k) such that every graph with branch­width
greater or equal to f(k) has aminor isomorphic to the (k×k)­grid, thus (∀G ∈ G)[bw(G) < f(k)].

Hence by Theorem 3.4.2 it follows that the set G is well­quasi­ordered by the minor relation.
Since H was an arbitrary planar graph the proof is complete.

Proof of Theorem 3.6.1. LetG1, G2, . . . be an arbitrary but fixed infinite sequence of graphs, such
that the graph G1 is planar. If there exist a positive integer j > 1 such that G1 is isomorphic
to a minor of Gj , we are done. If for every positive integer j > 2 the graph Gj has no minor
isomorphic to the planar graph G1 then by Theorem 3.6.2 the set of graphs {Gj |j > 1} is well­
quasi­ordered by the minor relation (as a subset of the well­quasi­ordered set of all graphs with no
minor isomorphic to the planar graphG1). Thus the sequence (Gj)j≥2 is an infinite sequence of a
well­quasi­ordered set, and hence must contain at least one good pair of graphs, that is, there exist
i, j with j > i such that thatGi is isomorphic to a minor ofGj . SinceG1, G2, . . . was an arbitrary
infinite sequence of graphs, our proof is complete.
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The path­width of a graph is the minimum value k such that the graph can be obtained from
a sequence of graphs G1, . . . , Gr each of which with at most k + 1 vertices, by identifying some
vertices of Gi pairwise with some vertices of Gi+1 (1 ≤ i < r). As a forerunner of the Excluded
Grid Theorem and Theorem 3.6.2, Robertson and Seymour [105] proved in 1983 the following:

Theorem 3.6.25 (Robertson and Seymour [105]). For every forest F , there exist a positive integer
n(|V (F )|) such that every graph with path­width at least n(|V (F )|) has a minor isomorphic to F .

In 1991 Bienstock, Robertson, Seymour, and Thomas [11] obtained a shorter proof and they
brown down the bound of path­width to the best possible. A shorter proof which re­obtain the
optimal bound was given by Diestel [31] in 1995.

Theorem 3.6.26 (Bienstock, Robertson, Seymour, and Thomas [11], Diestel [31]). For every forest
F , every graph with path­width at least |V (F )| − 1 has a minor isomorphic to F .

Thomas [120] proved the following generalization of Theorem 3.6.1.

Theorem 3.6.27 (Thomas [120]). IfG1, G2, . . . is any infinite sequence of graphs, such thatG1 is
a finite planar graph and for each i > 1 the graph Gi is finite or infinite, then there exist i, j with
j > i ≥ 1 such that Gi is isomorphic to a minor of Gj .

3.7 A Kuratowski theorem for general surfaces

We present a proof of Theorem 3.1.5 which states that embeddability in any fixed surface can be
characterized by forbidding finitely many graphs as minors. As we mentioned in the introduction
of this chapter, Theorem 3.1.5 was conjectured by Erdős and König in the 1930s. The first positive
result was the finiteness of the set of forbiddenminors for the projective plane which was proved by
Glover and Huneke [58] in 1978. One year later Glover, Huneke, and San Wang [59] presented a
list of 103 minimal forbidden subgraphs for the projective plane. Finally, Archdeacon [2, 4] proved
in 1980 that this list is complete. The set of forbidden minors for the projective plane contains 35
graphs (see [92, p. 198]). Archdeacon and Huneke [3] gave a constructive proof of the finiteness
of the set of forbidden minors for any non­orientable surface. For orientable surfaces, Bodendiek
andWagner [16] proved the finiteness of the set of forbidden minors for the torus and finally a non­
constructive proof for general surfaces was given by Roberson and Seymour in [110]. For the case
of general surfases see also [17]. The first short proof of Theorem 3.1.5 was given by Thomassen
[122]. Until today, the only other than the sphere surface for which the forbidden minors are
known is the projective plane, the number of forbidden minors appears to grow enormously even
for simple surfaces, for example it was recently announced in [94] that the forbidden minors of
torus are at least 17.523.

The proof presented in this section is due to Geelen, Richter, and Salazar [54], and the presen­
tation follows [33]. Our main ingredient considers the embedding of grids in surfaces. We prove
that when a large grid is embedded in a surface, most of the grid is embedded in a planar way. This
has as an immediate consequence that for any fixed surface Σ the minor­minimal graphs which
are not embeddable in Σ cannot contain arbitrary large grid minors, then the Excluded Grid Theo­
rem implies that their branch­width is bounded and finally the desired result comes combining the
well­quasi­ordering of graphs of bounded branch­width (Theorem 3.4.2) by the minor relation and
the fact that the set of forbidden minors for any fixed surface is an antichain, and since there exist
no infinite antichains in well­quasi­ordered spaces this set is finite.
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3.7.1 Embedding grids in surfaces

Definition 3.7.1 (hexagonal grid, central face of hexagonal grid, canonical subgrid, ring of hexag­
onal grid). Let k be a positive integer, the hexagonal grid k ­denoted by Hk­ is a finite subgraph
of the hexagonal tiling of the Euclidean plane. We let H1 be a cycle of length 6. For each k ≥ 2,
we defineHk as the union ofHk−1 and all those 6­cycles in the hexagonal tiling of the Euclidean
plane which have common neighbors with Hk−1. The face corresponding to the central vertex of
the dual of an hexagonal grid is its central face. Given positive integers m < k, the subgrid Hm

of Hk will be said to be canonical if and only if its central face coincidences with the central face
ofHk. We denote by Sm the perimeter cycle of the canonical subgridHm inHk. The ringRm the
subgraph ofHk formed by Sm and Sm+1 and the edges between them. Clearly, for each k > 1,Hk

is a subdivision of a 3­connected graph.

Comment 3.7.2. For each positive integer k, the hexagonal grid Hk contains an (k × k)­grid
minor and is a subgraph of the (4k × 2k)­grid.

f

R1

R4

Figure 3.7.1: The hexagonal gridH5 and its rings R1, R4. The central face ofH5 is denoted by f .

Lemma 3.7.3. For every surface Σ there exists an integer k such that no graph that is minor­
minimal with the property of not being embeddable inΣ contains aminor isomorphic to the (k×k)­
grid.

Recall Proposition 1.2.59 and notice that since the hexagonal grid is a subcubic graph, whenever we
exclude a hexagonal grid as a topological minor of a graph we exclude it also as a minor. Moreover,
since the hexagonal grid is a planar graph, Theorem 3.5.9 implies that whenever we exclude as a
minor a hexagonal grid we exclude also a square grid. Thus, in order to prove Lemma 3.7.3 we
can prove the following:

Lemma 3.7.4. For every surfaceΣ there exist an integer r such that no graph that is minor­minimal
with the property of not being embeddable in Σ contains a topological minor isomorphic toHr.

Proof. LetΣ be an arbitrary but fixed surface, and let ε denote the Euler genus ofΣ, i.e. ε := ε(Σ)
Let r be large enough to ensure thatHr contains ε+3 disjoint copies ofHm+1, wherem := 3ε+4.
Let G be a graph that cannot be embedded in Σ and is minor­minimal with that property. The rest
of the proof lies in showing thatHr ≰tm G .
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Let e′ = {u′, v′} be an arbitrary but fixed edge of G, the choice of G implies that the graph
G \ e′ is embeddable in Σ. Let σ′ be an embedding of G \ e′ in Σ. Choose a face with u′ in its
boundary and a face with v′ in its boundary. Cut a disc out of each face and add a handle between
the two holes. We denote by Σ′ the resulting surface. By Lemma 1.4.24, the Euler genus of Σ′ is
ε+ 2. Embedding e′ along this handle, extend σ′ to an embedding of G in Σ′.

Let us suppose towards a contradiction thatHr ≤tm G, letH be a subgraph ofG and f : Hr →
H be a function which witness our assumption. i.e., f maps the vertices ofHr to the corresponding
branch vertices ofH , and its edges to the corresponding paths inH between those vertices

Claim 3.7.5. The hexagonal grid Hr has an hexagonal subgrid Hm (not necessarily canonical)
whose hexagonal face boundaries correspond (by σ′ ◦ f ) to cycles in Σ′ that bound disjoint open
discs there.

G

H

Hr Σ′

f

σ′

σ′ ◦ f

σ′(e′)

σ′(u′) σ′(v′)

T

Figure 3.7.2: On the left hand side disjoint copies of Hm (for m = 3) are linked up by a tree T
in the rest of Hr. In the middle is illustrated the graph G and its subgraph H which contains the
hexagonal grid Hr as a topological minor. In the right hand side is illustrated the surface Σ′ in
which the graph G is embedded via the embedding σ′ and the union of the faces of f(Hm) for the
special copy ofHm in Hr ­the existence of which guaranteed Claim 3.7.5­ is a disc.

Proof of Claim 3.7.5. By the choice of r, we can find ε + 3 disjoint copies of Hm+1 in Hr. The
canonical subgridsHm of theseHm+1 are not only disjoint, but sufficiently spaced out inHr that
their deletion leaves a tree T ⊆ Hr which sends an edge to each of these copies ofHm in Hr.

Hence whenever we pick one hexagon from each of theseHm and delete the images C of those
hexagons in Σ′, the componentD0 of the remainder of Σ′ that contains (σ′ ◦f)(T )meets all those
C in its boundary. By Lemma 1.4.25 and ε(Σ′) = ε + 2, therefore, it can not be true that none of
our circles C bounds a disc in Σ′ that is disjoint from (σ′ ◦ f)(T ). Hence for one of our copies of
Hm inHr, the image of every hexagon in S′ bounds an open disc that is disjoint from (σ′ ◦ f)(T ).

Let us show that these discs are disjoint. If not, then one of them, say D, contains a point,
say x, from the boundary of another such disc. But then D also contains (σ′ ◦ f)(T ), contrary
to assumption, because we can walk from x to (σ′ ◦ f)(T ) in (σ′ ◦ f)(Hr) ⊆ Σ′ avoiding the
boundary of D.

From now on, we shall work with this fixedHm and no more consider its supergraphHr. We
write Ci := f(Si) for the images inG of the concentric cycles Si of thisHm, (i = 1, . . . ,m). Let
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e = {u, v} be an arbitrary but fixed edge of C1 and choose an embedding σ of G \ e in Σ.

Claim 3.7.6. One of the ε + 1 disjoint rings R3i+2, (i = 0, . . . , ε) in our Hm, say Rk, has the
property that its hexagons correspond (by σ◦f ) to circles inΣ that bound disjoint open discs there.

T

Figure 3.7.3: A tree linking up hexagons inHm selected from the rings R2, R5, R8, . . .

Proof of Claim 3.7.6. For each i ∈ {0, . . . , ε} we choose one arbitrary but fixed hexagon of the
ring R3i+2. Let C be the set of the images (via σ ◦ f ) of those hexagons in Σ.

If we delete those hexagons inHm, in the remainder ofHm there exist a tree T which is linking
up all those hexagons. If we delete the images C of those hexagons in Σ, the component D0 of
Σ \ C that contains (σ ◦ f)(T ) meets all those C in its boundary. By Lemma 1.4.25 and ε(Σ) = ε,
therefore, it can not be true that none of our circles in C bounds a disc in Σ that is disjoint from
(σ ◦ f)(T ) because then we would have ε ≥ |C| = ε + 1. Hence for one of these ε + 1 rings,
say Rk, the image of every hexagon of this ring in S bounds an open disc that is disjoint from
(σ ◦ f)(T ).

Let us show that these discs are disjoint. If not, then one of them, say D, contains a point,
say x, from the boundary of another such disc. But then D also contains (σ ◦ f)(T ), contrary to
assumption, because we can walk from x to (σ◦f)(T ) in (σ◦f)(Hm) ⊆ Σ avoiding the boundary
of D.

Let R ⊇ (σ ◦ f)(Rk) be the closure in Σ of the union of those discs, which is a cylinder in Σ
and observe that one of the two boundary circles ofR is the image under σ of the cycleC := Ck+1

in G to which f maps the perimeter cycle Sk+1 of our special ring Rk ⊆ Hm.
Let H ′ := f(Hk+1) ⊆ G, where Hk+1 is canonical in our Hm. Recall that σ′ ◦ f maps the

hexagons of Hk+1 to circles in Σ′ bounding disjoint open discs there. The closure in Σ′ of the
union of these discs is a disc D′ in Σ′, bounded by σ′(C). Deleting a small open disc inside D′

that does not meet σ′(G), we obtain a cylinder R′ ⊆ S′ that contains σ′(H ′).

We shall now combine the embeddings σ : G \ e ↪→ Σ and σ′ : G ↪→ Σ′ to an embedding
σ′′ : G ↪→ Σ, which will give us the desired contradiction.

Let φ : σ′(C) → σ(C) be a homeomorphism between the images of C in Σ′ and in Σ that
commutes with these embeddings, i.e., is such that σ|C = (φ ◦ σ′)|C . Then extend this to a
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Σ′

σ′(e′)

σ′(u′) σ′(v′)

σ′(C)

R′

σ′(e)

Σ
σ(u)

σ(v)

σ(C)

φ

σ(Ck+2)

R

Figure 3.7.4: In the construction of the embedding σ′′, we will make use of the homeomorphism
φ between the cylinders R′ and R to embed in the area of Σ that is embedded via σ the cylinder R
the subgraph of G which is embedded via σ′ in Σ′ into the disk D′. This subgraph of G contains
also the edge e in which σ is undefined. The rest of G will be embedded by σ′′ in Σ in the way
that is embedded from σ in Σ but maybe in different parts of Σ.

homeomorphism φ : R′ → R. The idea now is to define σ′′ as φ ◦ σ′ on the part of G which σ′

maps to D′ (which include the edge e on which σ is undefined), and as σ on the rest of G.

We start by defining the function σ′′ on C as σ|C = (φ ◦ σ′)|C . Next, we define σ′′ separately
on the components of G \ C. Since σ′(C) bounds the disc D′ in Σ′, we know that σ′ maps each
component J of G \ C either entirely to D′ or entirely to Σ′ \D′. On all the components J such
that σ′(J) ⊆ D′, and on all the edges they send to G, we define σ′′ as φ ◦ σ. Thus, σ′′ embeds
these components in R. Since e ∈ f(Hk) = H ′ \ C, this includes the component of G \ C that
contains the edge e.

It remains to define σ′′ in the components ofG\C which σ′ maps toΣ′ \D′. As σ′(Ck) ⊆ D′,
these do not meet Ck. Since σ(C ∪Ck) is the frontier of R in S, this means that σ(J) ⊆ Σ \R or
σ(J) ⊆ R for every such a component J .

For the component J0 ofG\C that containsCk+2 we cannot have σ(J0) ⊆ R: as Sk+2∩Rk =
∅, this would mean that σ(Ck+2) lies in a disc D ⊆ R corresponding to a face of Rk which is
impossible since Sk+2 sends edges to vertices of Sk+1 outside the boundary of that face. We thus
have σ(J0) ⊆ S \R, and define σ′′ as σ on J0 and on all J0 − C edges of G.

Next, consider any remaining component J ofG\C that sends no edges toC. If σ(J) ⊆ Σ\R,
we define σ′′ on J as σ. If σ(J) ⊆ R then J is planar. Since J sends no edge to C, we can have
σ′′ to map J to any open disc in R that has not so far been used by σ′′.

It remains to define σ′′ in the components J ̸= J0 of G \ C which σ′ maps to Σ′ \D′ and for
whichG contains a J −C edge. Let J be the set of all those components J . We shall group them
by the way they attach to C, and define σ′′ for these groups in turn.

Sincem ≥ k+2, the discD′ lies inside a larger disc inΣ′, which is the union ofD′ and closed
discs D′′ bounded by the images under σ′ ◦ f of the hexagons in Rk+1. By the definition of J ,
the embedding σ′ maps every J ∈ J to such a disc D′′.
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On the path P in C such that σ′(P ) = σ′(C) ∩D′′ (which is the image under f of one or two
consecutive edges on Sk+1), let v1, . . . vn be the vertices with a neighbor in J0, in their natural
order along P , and write Pi for the segment of P from vi to vi+1.

Σ′

σ′(e′)

σ′(u′) σ′(v′)

σ′(C)

D′

Σ

σ(C)

R

σ′(Ck+2)

D′′

D′′
σ′(Ck+2)

σ′(C)σ′(v1)

σ′(vn)

σ′(vi)· · · σ′(vi+1)
· · ·

Q w

J1
i

J2
i

J3
i

fi

σ′(Pi)

σ(Pi)

Di

φi

Figure 3.7.5: Illustration of the definition of σ′′ on the components J ̸= J0 of G \ C which σ′

maps to Σ′ \D′ and for which G contains an edge witch joins J and C.

Claim 3.7.7. Let D′′ be an arbitrary but fixed closed disc which is bounded by the image under
σ′ ◦ f of one hexagon of Rk+1. Then, there exists an integer i ∈ {1, . . . , n− 1} such that: Every
J ∈ J with σ′(J) ⊆ D′′ has all its neighbors on C in Pi, and σ′ maps J to the face fi of the plane
graph σ′(G[J0 ∪ C]) ∩D′′ whose boundary contains Pi.

Proof of claim. For any vi with 1 < i < n, pick a vi − J0 edge and extend it though J0 to a path
Q from vi to Ck+2 (which exists by the definition of J0); let w be its first vertex that σ′ maps to
the boundary circle ofD′′. By Lemma 1.4.26 applied to σ′(viQw) and the two arcs joining σ′(vi)
to σ′(w) along the boundary circle ofD′′, there is no arc throughD′′ that links σ′(Pi−1) to σ′(Pi)
but avoids σ′(viQw).

We shall define σ′′ jointly on all those J ∈ J which σ′ maps to this fi, for i = 1, . . . , n− 1 in
turn. To do so, we choose an open discDi inΣ\R that has a boundary circle containing σ(Pi) and
avoids the image of σ′′ as defined until now. SuchDi exists in a strip neighborhood of σ(C) in Σ,
because components J ′ ∈ J attaching to a segment Pj ̸= Pi of C send no edge to P̊i. Choose a
homeomorphism φi from the boundary circle of fi to that of Di so that σ|Pi = (φi ◦ σ′)|Pi , and
extend this to a homeomorphism φi from the closure of fi in S′ to the closure ofDi in S. For every
J ∈ J with σ′(J) ⊆ fi, and all J − C edges of G, define σ′′ as φi ◦ σ′.

3.7.2 Characterizing embeddability in any fixed surface

Proof of Theorem 3.1.5. Let Σ be an arbitrary but fixed surface and let Forb(Σ) be the set of all
the graphs which are not embeddable in Σ and are minimal with respect to the minor relation with
this property. Lemma 3.7.3 implies the existence of an positive integer k, which is such that no
graph in Forb(Σ) has an (k× k)­minor, now by Theorem 3.6.4 there exist a positive integer f(k)
such that for eachG ∈ Forb(Σ) bw(G) ≤ k. Hence the set Forb(Σ) is a set of graphs of bounded
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branch­width, which by Theorem 3.4.2 implies that it is well­quasi­ordered by the minor relation.
Since Forb(Σ) is an antichain, Theorem 2.1.7, implies its finiteness.
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CHAPTER4
OTHER GRAPHS' RELATIONS AND WELL­QUASI­ORDERING: A

SURVEY OF RESULTS

In this last chapter we survey results regarding the well­quasi­ordering of certain graphs' classes
by other than the minor graphs' relations. All ­but two­ of the examined relations are not well­
quasi­ordering graphs in general. Those two exceptions are the weak and the strong immersion,
the former has been proved by Neil Robertson and Paul Seymour to be a well­quasi­order for the
class of all graphs and the latter has been conjectured from Nash­Williams to be also, but although
Robertson and Seymour stated that: «It seemed to us at one time that we had a proof of the stronger,
but even if it was correct it was very much more complicated, and it is unlikely that we will write
it down», it is still open whether or not graphs are well­quasi­ordered by the strong immersion
relation.

4.1 The topological minor relation

As we have already mentioned in the introduction of Chapter 3, the topological minor relation does
not well­quasi­ordering graphs in general and is the first graphs' relation where studied extensively
from the perspective of well­quasi­ordering. Recall the conjecture that Vázsonyi made in 19371
for the well­quasi­ordering of finite trees which was independently proved in 1960 by Kruskal [81]
and Tarkowski [116] with a shorter proof given by Nash­Williams [95] in 1963. Nash­Williams
[97] also generalized the Tree Theorem by proving the well­quasi­ordering of all trees ­finite and
infinite­ by the topological minor relation in 1965, which was a Kruskal's conjecture ([81, Conjec­
ture 1]).

Theorem 4.1.1 (Nash­Williams [97]). The set of all trees (finite or infinite) is well­quasi­ordered
by the topological minor relation.

In addition to these results Mader [90] proved in 1972 Theorem 3.1.17 ­by making use of the
structural characterization of graphs without k disjoint cycles which was given by Erdős and Pósa
in [43] in 1965­ which states that for every fixed positive integer k the set of all graphs with no

1The year of the conjecture is remarked by Lovász [88]
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k disjoint cycles is well­quasi­ordered by the topological minor relation. Vázsonyi made also the
following conjecture:

Conjecture 4.1.2 (Vázsonyi's conjecture). The set of all subcubic graphs is well­quasi­ordered by
the topological minor relation.

Recall that the topological minor relation is the samewith theminor relation on subcubic graphs
(Proposition 1.2.59). Hence Robertson and Seymour's theorem implies the above Vázsonyi's con­
jecture.

For each positive natural number n let An be the graph illustrated in Figure 4.1.1. In 1996
Ding [36] proved the following.

Theorem 4.1.3 (Ding [36]). Let G be a minor­closed class of graphs. Then G is well­quasi­ordered
by the topological minor relation if and only if the intersection of G and A is finite, where A =
{An|n ∈ N}.

An

x1 x2 xn

. . .

Figure 4.1.1: The graph An of the statement of Ding's Theorem 4.1.3.

Definition 4.1.4 (feedback vertex set). Let G be a graph and X ⊆ V (G). The set X will be said
to be a feedback vertex set of G, if and only if the graph G[V (G) \X] contains no cycles.

After the above definition we can restate the Erdős­Pósa Theorem 4.1.5 as follows:

Theorem 4.1.5. Given a natural number k there exists a natural number k′ such that for every
graph G

• Either G has k vertex­disjoint cycles, or

• G has a feedback vertex set of order at most k′.

In 2012 Fellows, Hermelin, and Rosamond [48] gave a proof of the following theorem which
­due to the above restatement of the Erdős­Pósa Theorem 4.1.5­ is equivalent with Mader's Theo­
rem 3.1.17 but their proof is considerably simpler than the original proof of Mader.

Theorem 4.1.6 ([48, Theorem 1]). Let k be a natural number, then the set of all graphs which have
a feedback vertex set of order at most k is well­quasi­ordered by the topological minor relation.

Definition 4.1.7 (Robertson chain of length k, ends of the Robertson chain of length k). Let k be
a positive natural number, consider the graph which we obtain by doubling the edges of the path
of length k, any graph isomorphic to this graph will be said to be a Robertson chain of length k.
The vertices which correspond to the ends of the original path will be said to be the ends of the
Robertson chain.
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In the late 1980’s, Robertson conjectured that the Robertson chain is the only obstruction for
the well­quasi­ordering of graphs by the topological minor relation.

Conjecture 4.1.8 (Robertson’s conjecture). For every positive integer k, the set of all graphs with
no topological minor isomorphic to the path of length k with each edge duplicated, is well­quasi­
ordered by the topological minor relation.

. . . . . .

G1 G2 Gk

Figure 4.1.2: An infinite antichain of graphs with respect to the topological minor relation.

In 2014 in his PhD thesis Liu [87], proved Robertson Conjecture 4.1.8.

Theorem 4.1.9 (Liu [87]). For every positive integer k, the set of all graphs with no topological
minor isomorphic to the path of length k with each edge duplicated, is well­quasi­ordered by the
topological minor relation.

Actually Liu proved the following stronger theorem:

Theorem 4.1.10 (Liu [87]). Let k, l, be nonnegative integers, the set of all graphs that contain at
most l different topological minors isomorphic to the Robertson chain of length k is well­quasi­
ordered by the topological minor relation.

Liu's Theorem 4.1.10 has the following immediate corollary:

Corollary 4.1.11. LetQ be a graph property which is closed under the topological minor relation,
then for every positive integer k there exists a positive integer n and graphsH1, . . . , Hn, such that
for every graph G that does not contain a topological minor isomorphic to the Robertson chain of
length k, G satisfies the property Q (G ∈ Q) if and only if for every i ∈ {1, . . . , n} the graph G
has no topological minor isomorphic to the graphHi.

Grohe, Kawarabayashi, Marx, and Wollan [62] proved in 2011 that topological minor contain­
ment is polynomial­time decidable.

Theorem 4.1.12 (Grohe, Kawarabayashi, Marx, and Wollan [62, Theorem 1.1]). For every fixed
graph H , there is a O(|V (H)|3)­time algorithm that decides ifH is a topological minor of G.

The above theorem together with Corollary 4.1.11 have the following immediate corollary:

Corollary 4.1.13. For every fixed positive integer k, testing any topological minor­closed property
in the class of graphs that do not contain a topological minor isomorphic to the Robertson chain of
length k can be done in polynomial time.

Althoughwe do not state it here, we remark that Grohe andMarx [61] proved in 2011 a structure
theorem which describes the "rough" structure of graphs which exclude a fixed graph as a topo­
logical minor and thus they generalized the structure theorem of Robertson and Seymour [113]. A
shorter proof of this theorem was given by Erde and Weißauer [41] in 2019.
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4.2 The weak and the strong immersion relations

In 1963 Nash­Williams [96] conjectured that graphs are well­quasi­ordered by the weak immersion
relation and in 1965 [97] he made the analogue conjecture for the strong immersion relation, which
is still widely open.

Conjecture 4.2.1 (Nash­Williams [97]). The class of all graphs is well­quasi­ordered by the strong
immersion relation.

Conjecture 4.2.2 (Nash­Williams [96]). The class of all graphs is well­quasi­ordered by the weak
immersion relation.

The conjecture considering the weak immersion relation was proved by Robertson and Sey­
mour [103] in the last paper of their Graph Minors series [104] in 2010.

Theorem 4.2.3 (Robertson and Seymour [103, Theorem 1.1]). The class of all graphs is well­
quasi­ordered by the weak immersion relation.

Robertson and Seymour's above theorem have the following immediate corollary:

Corollary 4.2.4. Let Q be a graph property which is closed under the weak immersion relation,
then there exists a positive integern and graphsH1, . . . , Hn, such that an arbitrary graphG satisfies
the property Q (G ∈ Q) if and only if (∀i ∈ {1, . . . , n})[Hi ≰wi G].

One year after the proof of Theorem 4.2.3, Grohe, Kawarabayashi, Marx, and Wollan [62]
obtained the following result:

Theorem 4.2.5 (Grohe, Kawarabayashi, Marx, and Wollan [62, Corollary 1.2]). For every fixed
graphH , there is aO(|V (H)|3)­time algorithm that decides if there is an immersion ofH intoG.

The above theorem together with Corollary 4.2.4 has the following immediate corollary.

Corollary 4.2.6. Every weak immersion­closed property of graphs can be tested in polynomial
time.

For the strong immersion relation Andreae [1] proved in 1986 the following theorem:

Theorem4.2.7 (Andreae [1]). The following classes of graphs are well­quasi­ordered by the strong
immersion relation:

(i) The class of all simple graphs that do not containK2,3 as a strong immersion.

(ii) The class of all graphs whose blocks are complete graphs, cycles or complete bipartite
graphs.

Below we survey some results considering the weak and the strong immersion relations on
directed graphs.

Definition 4.2.8 (weak and strong immersion relations on directed graphs). Let G,H be directed
graphs. A weak immersion of H in G is a map η such that the following conditions hold:

100



CHAPTER 4. OTHER GRAPHS' RELATIONS AND WELL­QUASI­ORDERING: A SURVEY OF
RESULTS

(i) (∀v ∈ V (H))[η(v) ∈ V (G)];

(ii) (∀v, u ∈ V (H))[v ̸= u⇒ η(v) ̸= η(u)];

(iii) for each edge e = (u, v) of H , η(e) is a directed path of G from η(u) to η(v);

(iv) and if e, f ∈ E(H) are distinct, then the paths ofG η(e) and η(f) have no edges in common
although they may share vertices.

If in addition we add the condition:

(v) if v ∈ V (H) and e ∈ E(H), and e is not incident with v in H , then η(v) is not a vertex of
the path η(e).

we call the relation strong immersion.

Observation 4.2.9. The class of all directed graphs is not well­quasi­ordered by the weak immer­
sion relation. In order to see that observe that the set {C2k|(k ∈ N) ∧ (k ≥ 2)} where C2k is
a cycle on 2k vertices with its edges alternately oriented clockwise and counter­clockwise, is an
infinite antichain of directed graphs with respect to the weak immersion relation.

. . .

C4 C6 C8

Figure 4.2.1: An infinite antichain of directed graphs for both the weak and the strong immersion
relations.

Definition 4.2.10 (tournament). A directed graph G is said to be a tournament if and only if it is
a complete graph, i.e. (∀v, u ∈ V (G))[((u, v) ∈ E(G)) ∧ ((v, u) ∈ E(G))].

Chudnovsky and Seymour [20] in 2011 proved the following:

Theorem 4.2.11 (Chudnovsky and Seymour [20]). The set of all tournaments is well­quasi­ordered
by the strong immersion relation.

Definition 4.2.12 (semi­complete directed graph). A directed graphG is said to be semi­complete
if and only if (∀v, u ∈ V (G))[((v, u) ∈ E(G)) ∨ ((u, v) ∈ E(G))].

Since the class of semi­complete directed graphs contain tournaments, Barbero, Paul, and
Pilipczuk [9] in 2018 generalized the aforementioned result of Chudnovsky and Seymour [20]
by proving the following:

Theorem 4.2.13 (Barbero, Paul, and Pilipczuk [9]). The set of all semi­complete directed graphs
is well­quasi­ordered by the strong immersion relation.
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Theorem 4.2.14 (Chudnovsky, Fradkin, and Seymour [22]). For every directed graph H there
is an algorithm which for every semi­complete directed graph G decides in O(|V (G)|3) whether
there is a strong or weak immersion ofH in G

Corollary 4.2.15. For every directed graph propertyQwhich is closed under the strong immersion
relation there exists a cubic time algorithm which presented a semi­complete directed graph D,
decides whether or not D ∈ Q.

4.3 The subgraph and the induced subgraph relations

The set of all graphs is not well­quasi­ordered neither by the subgraph relation nor by the induced
subgraph relation, in Figure 4.3.1 is illustrated an infinite antichain of graphs for both the subgraph
and the induce subgraph relations, but there are several positive results ­a lot of them we survey
below­ if we restrict the problem to smaller classes of graphs.

. . .

C3 C4 C5

Figure 4.3.1: The set of all cycles consist an infinite antichain of graphs for both the subgraph and
the induce subgraph relations.

Theorem 4.3.1 (Damaschke [27]). The set of all graphs that do not contain a graph isomorphic to
P4 as an induced subgraph is well­quasi­order by the induced subgraph relation.

Theorem 4.3.2 (Damaschke [27]). The set of all graphs that do not contain neither a graph isomor­
phic toK3 nor a graph isomorphic to the disjoint union ofK2 and two copies ofK1 as an induced
subgraph is well­quasi­order by the induced subgraph relation.

Theorem 4.3.3 (Damaschke [27]). The set of all graphs that do not contain neither a graph iso­
morphic to K3 nor a graph isomorphic to P5 as an induced subgraph is well­quasi­order by the
induced subgraph relation.

Theorem 4.3.4 (Ding [35]). Let k be a positive integer. The set of all graphs that do not contain a
subgraph isomorphic to Pk is well­quasi­ordered by the induced subgraph relation.

Theorem 4.3.5 (Ding [35]). Let k be a positive integer. The set of all directed graphs that their
underlying graph do not contain a subgraph isomorphic to Pk is well­quasi­ordered by the induced
subgraph relation.

Ding [35] proved also the following negative result.

Theorem 4.3.6 (Ding [35]). The set of all graphs that do not contain a graph isomorphic to P5 as
an induced subgraph is not well­quasi­ordered by the induced subgraph relation.
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Ding [35] proved that essentially the cycles C3, C4, . . . and the graphsH1,H2,H3, . . . are the
only two infinite antichains with respect to the subgraph relation. More formally, Ding proved that
a class of graphs closed under taking subgraphs is well­quasi­ordered by the subgraph relation if
and only if it contains finitely many graphs Cn and Hn.

Definition 4.3.7 (ideal with respect a quasi­order). LetX be a set that is quasi­ordered by a relation
≤ and I ⊆ X . The set I will be said to be an ideal (w.r.t. ≤) if and only if (∀x, y ∈ X)[(x ≤
y) ∧ (y ∈ I)⇒ x ∈ I].

Theorem 4.3.8 (Ding [35]). Let I be an ideal of graphs with respect to the subgraph relation. Then
the following are equivalent:

(i) The set I is well­quasi­ordered by the subgraph relation.

(ii) The set I is well­quasi­ordered by the induced subgraph relation.

(iii) There exists a positive integer k such that I does not contain any cycle of length greater or
equal to k and any graph that can be obtained from a path of length greater or equal to k by
attaching two vertices to each end of the path.

Definition 4.3.9 (vertex cover of a graph). Let G be a graph a X ⊆ V (G) will be said to be a
vertex cover of G if and only if (∀e ∈ E(G))[e ∩X ̸= ∅].

Theorem 4.3.10 (Fellows, Hermelin, and Rosamond [48]). Let k be a positive integer. The set of
all graphs that have a vertex cover of size at most k is well­quasi­ordered by the induced subgraph
relation.

Below and at the next sections we state some results which involve terms which are not defined
in the present.

Theorem 4.3.11 (Korpelainen, Atminas, Brignall, Vatter, and Lozin [79]). Let k be a positive
integer. The set of all permutation graphs that do not contain neither a graph isomorphic to P5

nor a graph isomorphic toKk as an induced subgraph is well­quasi­order by the induced subgraph
relation.

Korpelainen, Atminas, Brignall, Vatter, and Lozin [79] proved the following negative result:

Theorem 4.3.12 (Korpelainen, Atminas, Brignall, Vatter, and Lozin [79]). The following three
sets of graphs are not well­quasi­ordered by the induced subgraph relation:

(i) The set of all permutation graphs that do not contain neither a graph isomorphic to P6 nor a
graph isomorphic toK6 as an induced subgraph.

(ii) The set of all permutation graphs that do not contain neither a graph isomorphic to P7 nor a
graph isomorphic toK5 as an induced subgraph.

(iii) The set of all permutation graphs that do not contain neither a graph isomorphic to P8 nor a
graph isomorphic toK4 as an induced subgraph.

Theorem 4.3.13 (Petkovšek [99]). Let k be a positive integer. The set of all k­letter graphs is
well­quasi­ordered by the induced subgraph relation.
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Figure 4.3.2: The figure illustrated above is from [79] and shows the known results regarding
well­quasi­ordering from≤is for sets of graphs and sets of permutation graphs avoiding paths and
cliques, including the results of [79]. Filled circles indicate that all graphs avoiding the specified
path and clique are well­quasi­ordered by ≤is. Half­filled circles indicate that the corresponding
class of permutation graphs are well­quasi­ordered by ≤is, but that the corresponding class of all
graphs are not. Empty circles indicate that neither class is well­quasi­ordered by≤is. For the three
unknown cases (indicated by question marks), it is known that the corresponding class of graphs
contains an infinite antichain w.r.t. ≤is.

Theorem 4.3.14 (Korpelainen and Lozin [78]). The set of all bipartite graphs that do not contain a
graph isomorphic to P7 as an induced subgraph is not well­quasi­ordered by the induced subgraph
relation.

Theorem4.3.15 (Korpelainen and Lozin [78]). The following sets of graphs arewell­quasi­ordered
by the induced subgraph relation:

(i) The set of all bipartite graphs that do not contain neither a graph isomorphic to P7 nor a
graph isomorphic to

(ii) The set of all bipartite graphs that do not contain neither a graph isomorphic to P7 nor a
graph isomorphic to C4 as an induced subgraph.

(iii) For any positive integer k, the set of all bipartite permutation graphs that do not contain a
graph isomorphic to Pk as an induced subgraph.

Other results considering the well­quasi­ordering by the subgraph and the induced subgraph
relations can be found at [5, 6, 7, 21, 26, 48, 77].

4.4 The induced minor relation

The set of all graphs is not well­quasi­ordered by the inducedminor relation, Figure 4.4.1 illustrates
an infinite antichain of graphs with respect to the induced minor relation.
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. . .

C3 C4 C5

Figure 4.4.1: An infinite antichain of graphs with respect to the induced minor relation.

Thomas [118] in 1985 proved that planar graphs are not well­quasi­ordered by the induced
minor relation but series­parallel graphs are.

Theorem 4.4.1 (Thomas [118]). The set of all series­parallel graphs is well­quasi­ordered by the
induced minor relation.

Theorem 4.4.2 (Thomas [118]). The set of all graphs with no induced minor isomorphic toK4 is
well­quasi­ordered by the induced minor relation.

Definition 4.4.3 (clique number of a graph). Let G be a graph, the clique number of G is the
maximum positive integer n such that G has aKn­subgraph.

Ding [37] proved in 1998 the following theorems.

Theorem 4.4.4 (Ding [37]). For every positive integer n the set of all chordal graphs with clique
number at most n is well­quasi­ordered by the induced minor relation

Theorem 4.4.5 (Ding [37]). The set of all interval graphs is not well­quasi­ordered by the induced
minor relation.

The following is due to Fellows, Hermelin, and Rosamond [48].

Theorem 4.4.6 (Fellows, Hermelin, and Rosamond [48]). Let k be a positive integer. The set of
all graphs with circumference at most k is well­quasi­ordered by the induced minor relation.

Figure 4.4.2: The graphK+
4 on the left hand side and the graph Gem in the right hand side.

Błasiok, Kamiński, Raymond, and Trunck [15] in 2015 gave a complete characterization of
graphs H such that the set of H­induced­minor­free graphs is well­quasi­ordered by the induced
minor relation.

Theorem 4.4.7 (Błasiok, Kamiński, Raymond, and Trunck [15]). Given a graph H the set of all
graphs with no induced minor isomorphic toH is well­quasi­ordered by the induced minor relation
if and only ifH is an induced minor ofK+

4 or of the Gem.
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4.5 The contraction relation

The set of all graphs is not well­quasi­ordered by the induced minor relation, in Figure 4.5.1 it is
illustrated an infinite antichain of graphs with respect to the contraction relation.

. . .

K2,1 K2,2 K2,3

Figure 4.5.1: An infinite antichain of graphs with respect to the contraction relation.

Kamiński, Raymond, and Trunck [66] in 2016 gave a complete characterization of graphs H
such that the set ofH­contraction­free graphs is well­quasi­ordered by the contraction relation.

Definition 4.5.1 (diamond graph). A graph will be said to be a diamond graph if and only if it is
isomorphic to the graph obtained fromK4 if we delete an arbitrary edge.

Theorem 4.5.2 ( Kamiński, Raymond, and Trunck [66]). The class of connected H­contraction­
free graphs is well­quasi­ordered by contractions if and only ifH is a contraction of the diamond.
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