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ABSTRACT

A graph is an expander if it is sparse and has strong connectivity properties. Expanders are widely
studied graphs, mainly due to their numerous applications in many different mathematical fields.
The purpose of this thesis is to analyze the connections between expanders and other notions
of graph theory, and study their substructures. Specifically, we will focus on the connection of
balanced separators and expanders and provide an introduction on how the expansion of a graph
is connected to the eigenvalues of its adjacency matrix. We will also study in detail the minors
one can find in expanders.





ΣΥΝΟΨΗ

΄Ενα γράφημα ονομάζεται εξαπλωτής αν είναι αραιό αλλά ταυτόχρονα έχει ισχυρές ιδιότητες συνεκ-

τικότητας. Οι εξαπλωτές είναι μία κατηγορία γραφημάτων η οποία, κυρίως λόγω των πολλών εφαρ-
μογών τους σε διαφορετικά πεδία των μαθηματικών, έχουν μελετηθεί εκτενώς. Ο στόχος αυτής της
εργασίας είναι να αναλύσουμε τη σύνδεση των εξαπλωτών με άλλες έννοιες της θεωρίας γραφημάτων,
και να μελετήσουμε τις δομές που μπορούμε να βρούμε σε αυτούς. Συγκεκριμένα, θα επικεντρωθούμε
στους ισορροπημένους διαχωριστές και πώς αυτοί συνδέονται με τους εξαπλωτές. Επιπλέον θα δούμε
πιο σύντομα, πώς οι ιδιοτιμές του πίνακα γειτνίασης ενός γραφήματος συνδέονται με την εξάπλωσή
του αλλά και με άλλες ιδιότητές του. Τέλος, θα ασχοληθούμε ιδιαίτερα με τα ελάσσονα γραφήματα
ενός εξαπλωτή.
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CHAPTER 1
INTRODUCTION

A graph G is said to have a balanced separator S, if there exists a vertex set S ⊆ V (G) that
disconnects the graph into two relatively equal connected components, namely each of size at
most 2|V (G)|/3. The problem of minimizing the size of a balanced separator in a graph, occurs
naturally after studying the connectivity of graphs and its implications on the size and density of
their subgraphs and minors. Although these two notions seem to be quite close, this is not the case.
Notice that, adding an isolated vertex to a graph, affects its connectivity but not the existence of
a small sized balanced separator, thus these two properties of graphs are essentially different.

Balanced separators have been widely studied, mainly due to their significance on applying the
divide-and-conquer technique on developing algorithms that efficiently solve graph problems. One
of the first results on this field was the

√
n-separator theorem which, Lipton and Tarjan proved

[LT79] in 1979, and states that any planar n-vertex graph has a balanced separator of size O(
√
n).

In the same paper they provided a polynomial time algorithm that computes this separator, while
one year later they issued a paper [LT80] that describes some applications of this theorem on
known NP -complete graph problems, on planar graphs, such as the maximum independent set
problem.

Later, in 1984, Gilbert, Hutchinson, Tarjan and Erde [GHT84] generalized this theorem for
graphs that are embeddable on surfaces other than the plane. In particular, they showed that if
an n-vertex graph can be drawn on a surface of genus g, then it has a balanced separator of size
O(√gn). Moreover they provided an algorithm that computes this balanced separator in linear
time (in the number of edges of the graph), given an embedding of the graph in its genus surface.
Alon, Seymour and Thomas [AST90b] proved a similar result for all non-planar graphs, namely,
that every n-vertex graph either has a balanced separator of size h3/2√n, or contains a clique of
size h as a minor, and they also provided a O(h1/2n1/2m1/2) algorithm that realizes this theorem,
where m is the number of edges in a graph.

Ideally, we would like also to have a polynomial time algorithm that computes a minimal
balanced separator in a graph. However this problem has proven to be NP -complete (known as
minimum bisection problem), so such an algorithm exists only if P = NP . However, due to the
importance of this problem in complexity theory, much effort has been made to develop heuristics
and approximation algorithms. The first heuristics for this problem were given by Kernighan
and Lin [FM82] and subsequently improved in terms of running time by Fiduccia and Mattheyses
[KL70]. Saran and Vazirani [SV95] provided the first non-trivial approximation algorithm for
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this problem, with approximation ratio n/2. Subsequently, the ratio was improved by Feige,
Krauthgamer and Nissim [FKN00] to O(

√
n · polylog(n)). Feige and Krauthgamer [FK02] were

able to improve the ratio to O(log2 n). The currently best known bound of an approximation
algorithm for this problem is O(log1/2 n) and was developed by Andreev and Räcke [AR06].

Sparse graphs that do not have small balanced separators are called expanders or expanding
graphs. They were first defined by Bassalygo and Pinsker [BP73], and their existence was first
proven by Pinsker [Pin73] in the early 70’s. The original motivation for studying expanders was
their applications on communication theory. Since then, in the past 40 years, substantial progress
has been made on the properties and explicit constructions of expander graphs. That is mainly,
due to the applications expanders have in numerous different fields, such as computer science,
computational complexity and cryptography. In computer science, expanders have found extensive
applications in designing algorithms, error correcting codes, extractors, pseudorandom generators,
sorting networks [AKS83] and robust computer networks. In computational complexity, they have
been used in proofs of many important results, such as SL = L [Rei08] and the PCP theorem
[Din07], while in cryptography they are used to construct hash functions.

Some of the many applications of expanders are due to their similarity, as far as edge distribution
is concerned, to random and pseudorandom graphs. This similarity is expressed through the
Expander Mixing Lemma and its converse. This lemma states that, for any two subsets S, T of
a d-regular expander G, the number of edges between S and T is approximately what you would
expect the number of edges between these two sets in a random d-regular graph to be. Although
this lemma was observed by several researchers, it probably appeared in print first in [AC88]. The
converse was proven later by Bilu and Linial [BL06].

Expanders are usually constructed using probabilistic, existential arguments (see [Pin73]), as
this method is much easier than providing an explicit construction. Margulis [Mar73] gave the first
construction of expander graphs which was later generalized in the theory of Ramanujan graphs
[LPS88]. This construction is still among the most elegant and most easy to generate of all known
constructions. The most recent explicit construction is, a combinatorial method for constructing
expanders suggested by Reingold, Vadhan and Widgerson [RVW02] called the zig-zag product.
They showed that the zig-zag product of two expanders is an expander as well, which lead to an
iterative construction of an explicit family of expanders (i.e. expanders are closed under the zig-zag
product operation).

Given the prominence of expanders and their usability it is also natural to study their sub-
structures. As far as subgraphs of expanders is concerned, Krivelevich [Kri16] showed that every
expander contains not only a path but also a cycle, of length that is affected only by its expan-
sion parameter and its size. As it is natural, a lot more results occur when studying minors of
expanders. They usually have the following form: if a graph G is sufficiently dense, or has suffi-
ciently large average degree (plus possibly additional conditions imposed), then G contains a large
minor. Kostochka [Kos82], [Kos84] and Thomasson [Tho84], independently showed, probably the
most known result of this sort, that there exists an absolute constant c, such that every n-vertex
graph G of average degree d contains a clique of size cd/

√
log d as a minor. The asymptotic value

of c was later determined by Thomasson [Tho01].
The first results on finding minors in expanders arise through their connection to balanced

separators. In particular, Plotkin, Rao and Smith [PRS94] proved that an expanding graph on n

vertices , contains the complete graph K
c
√
n/ logn as a minor, where c depends from the expansion

of the graph. An even stronger result has been announced by Kawarabayashi and Reed [KR10a],
who showed that an expander of size n and maximum degree bounded by d, contains the complete
graph of size Ω(c

√
n) as a minor. Here c depends from the expansion and d. Recently, Krivelevich
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CHAPTER 1. INTRODUCTION

and Nenadov [KN18] improved the dependence on the expansion α and the maximum degree d
under a somewhat stronger definition of expansion.

Kleinberg and Rubinfield [KR96] also considered the same problem. Building on (the random
walk-based) techniques of Broder, Frieze, and Upfal [BFU92], they showed that every expander G
on n vertices contains every graph with O(n/ logk n) vertices and edges as a minor. The exponent
k depends on the expansion and the maximum degree of the graph. They also provided an efficient
algorithm for finding a model of such a graph in G. While this result appears to be quite useful
in finding large minors in sparse graphs, they used a rather weak definition of expansion, so it
appears to be of limited value for the denser case and can not be used to show the existence of a
clique minor of size larger than Ω(

√
n/ logn). This result was later extended (as fas as the type

of expansion is concerned and how it affects the constant of the clique minor) by Krievelevich and
Sudakov [KS09], who improved the result of Kühn and Osthus [KO04].

As one can expect many of the results already stated arise from different fields of mathematics,
such as finite geometry, spectral graph theory and extremal graph theory. Hence, in this thesis we
will present only some of these results in detail. In particular, this thesis is organized as follows:

Chapter 2: This chapter is divided in 4 sections and its goal is to present important results on
connectivity, minors and expanders, and to provide some basic tools about them that we will need
further in this thesis. Specifically, in the first section we state some basic definitions from graph
theory and some useful properties of the DFS algorithm. The second section is about connectivity,
since the balanced separators come to answer questions that naturally occur from the study of
connectivity in graphs and its implications. The next section, is focused on minors and especially
on how the average degree of a graph can force a given minor, while in the last section we will
introduce expanding graphs. Specifically, we will state some basic definitions, provide two examples
of construction of expanders, and prove the existence of some substructures in expanders.

Chapter 3: In this chapter we will state and prove in detail some theorems about balanced
separators, and is divided in three sections. In the first section, we provide some definitions about
balanced separators that are essential about the proofs of the theorems that will follow. In the
second and third section we will prove in detail some results on balanced separators by Lipton and
Tarjan [LT79] and by Alon, Seymour and Thomas [AST90b] respectively.

Chapter 4: The last chapter of this thesis is about expanding graphs. There, first we will prove
the connection balanced separators and expanders have, that is that expanders are graphs without
small balanced separators. Next, we will provide a brief introduction in spectral graph theory,
state the Expander Mixing Lemma and also state a connection between the combinatorial and
the spectral definitions of expanders. We close this chapter by proving in detail the results about
minors in expanders by Sudakov and Krivelevich [KS09].
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CHAPTER 2
PRELIMINARIES

2.1 Definitions

A simple graph G, is a pair (V (G), E(G)) where V (G) is a set of vertices and E(G) ⊆
(
V (G)

2
)

is a
set of edges. For every edge e = {x, y} ∈ E(G) we call x, y ∈ V (G) endpoints of the edge e, and we
usually denote e by xy. We also denote by n(G) and m(G) the number of vertices and the number
of edges of G respectively. We call two vertices x, y ∈ V (G) adjacent, if xy ∈ E(G) and we say
that an edge e ∈ E(G) is incident to a vertex x ∈ V (G) if x is an endpoint of e. If we allow E(G)
to be a multiset then G is called multigraph. Furthermore, when we refer to the order of a graph
G, we mean the number of its vertices.

A graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a subgraph of G. An alternative
definition of the subgraph relationship between two graphs is the following: Let G and H be two
graphs and φ : V (H)→ V (G) an injective mapping such that ∀uv ∈ E(H), φ(u)φ(v) ∈ E(G). We
then say that H s a subgraph of G and denote it by H ⊆ G.

Given a graph G and a set S ⊆ V (G) we will denote by G\S the induced subgraph G[V (G)\S]
that we obtain after the removal of the vertices in U and their incident edges, from G. If S = {v}
is a singleton, we simply write G \ v. Similarly if F is a subset of E(G) we denote by G \ F the
graph G′ = (V (G), E(G) \ F ) that is obtained after the removal of the edges in F from G, and
write G \ e if F = {e}.

The number of edges incident to a vertex v is called degree of v in G and is denoted by degG(v).
If it is clear to which graph we refer, we simply write deg(v). We can now define the maximum
and the minimum degree of a graph G, which we will denote by ∆(G) = maxv∈V (G) deg(v)
and δ(G) = minv∈V (G) deg(v) respectively. We also define the average degree of a graph to be

d(G) =
∑

v∈V (G)
deg(v)

n(G) . The ratio m(G)
n(G) is often denoted by ε(G). Each vertex adjacent to a

vertex v is a neighbor of v while the set of those vertices is called neighborhood of v and is denoted
by N(v). Similarly, given a set S ⊆ V (G) we call neighborhood of S the set {u ∈ V (G)|u 6∈
S and N(u) ∩ S 6= ∅} and denote it by N(S). If a vertex has degree 0 it is called isolated. Notice
that if G is a simple graph and v ∈ V (G), deg(v) = |N(v)|. A graph is called d-regular if each of
its vertices has degree exactly d.

A path P of length k is a graph with k + 1 vertices v0, . . . , vk and edges ei = vivi+1 for

5



2.1. DEFINITIONS

0 ≤ i ≤ k− 1. The vertices v0 and vk are called endpoints of the path P , whereas v1, . . . , vk−1 are
called internal vertices of P . Given a graph G we say that a path in G that connects the vertices
u, v ∈ V (G) is a subgraph of G which is a path with endpoints u, v. We will denote such a path
by stating its vertices, for example P = v0, . . . , vk is the graph mentioned above. When we want
to refer to a subpath of P we will write P[vi,vj ], where vi, vj are its endpoints. We say that two
paths that connect the same two vertices of a graph are internally disjoint if they have no common
internal vertex and edge disjoint if they have no common edge.

The distance between two vertices u, v ∈ V (G) is the length of the shortest path in G that
connects them or infinity if there is no such a path, and is denoted by distG(u, v) (if it is obvious
to which graph we refer to, we simply denote it by dist(u, v)). The maximum distance that two
vertices have on G is called diameter of G and is denoted by diam(G).

The graph Cl = ({v1, . . . , vl}, {v1v2, . . . , vl−1vl, vlv1}) is called cycle of length l. The length of
the smallest cycle in a graph G, is called girth of the graph and is denoted by g(G). Furthermore,let
Vr = {1, . . . , r}, and consider the graph (Vp × Vq, {(x1, y1)(x2, y2)| |x1 − x2|+ |y1 − y2| = 1}). We
call this graph (p× q)-grid.

A clique of size r ≥ 0 is the graph ({v1, . . . , vr}, {vivj |1 ≤ i < j ≤ r}) and is denoted by Kr.
An independent set of a graph G is a set S ⊆ V (G) of pairwise non-adjacent vertices. A maximum
independent set of G is an independent set of the largest possible size, and we will denote its size
by α(G). Similarly we can define an independent set of edges, which is called a matching. We
call a matching perfect if its cardinality is n(G)

2 . A graph G is bipartite if we can partition V (G)
into to sets X,Y ⊆ V (G) such that X and Y are independent sets of G and we say that a graph
is complete bipartite and denote it by Kn,m if X,Y are maximal independent sets and |X| = n,
|Y | = m.

The complement of a given graph G is defined to be the graph Ḡ = (V (G), {xy|xy 6∈ E(G)}),
and its line graph to be L(G) = (E(G), {e1e2|e1, e2 ∈ E(G) and e1 ∩ e2 6= ∅}). We will also state
here the definitions of some operations between graphs. Given two graphs G1, G2 and an integer
k ≥ 0 we define their union to be the graph G1∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)) and their
intersection to be G1 ∩G2 = (V (G1) ∩ V (G2), E(G1) ∩ E(G2)).

We say that a given graph G is connected if ∀x, y ∈ V (G) there is a path P connecting x and y in
G. A maximal (to the number of vertices) connected subgraph of G is called a connected component
of G. Notice that this is an equivalence relation on V (G) with the connected components being its
equivalence classes. A vertex cut of a graph G is a set S ⊆ V (G) such that G \ S is disconnected.
Similarly an edge cut of a graph G is a set F ⊆ E(G) such that G \ F is disconnected. The vertex
connectivity of a graph G is denoted by κ(G) and equals to κ(G) = min{|S| : S is a vertex cut}.
The edge connectivity is defined similarly and in this thesis we will refer to vertex connectivity
simply as connectivity. Moreover, we define the connectivity of a graph to be 0 if it is disconnected,
and r − 1 if it is a clique of size r. Given a positive integer k, a graph G is called k-connected if
for every subset S ⊆ V (G) with cardinality k− 1, the graph G \ S is connected. For S, T ⊂ V (G),
we denote the set of edges of G from S to T by EG(S, T ).

A graph T is called a tree if it is connected and has no cycle as a subgraph. Given a graph G,
we say that T is a spanning tree of G, if V (T ) = V (G), E(T ) ⊆ E(G) and T is a tree. The radius
of a graph G is denoted by rad(G) and equals to min

v∈V (G)
max
u∈V (G)

dist(u, v).

Given a graph G and an edge e = xy ∈ E(G), the graph G/e is obtained from G by contracting
the edge e. That means, that its endpoints x, y are replaced by a new vertex vxy which is adjacent to

6



CHAPTER 2. PRELIMINARIES

N(x)∪N(y)\{x, y}. A graph H obtained by a sequence of edge-contractions is called a contraction
of G. Given two graphs G and H we say that H is a minor of G if it can be obtained from G via
a sequence of edge and vertex removals, and edge contractions, and denote it by H ≤m G. Notice
also that this is equivalent to H being a contraction of some subgraph of G. We will now mention
an equivalent definition of the minor relationship which will be useful later in this thesis.

A graph H = (U,F ) with a vertex set U = {u1, . . . , uk} is a minor of a graph G = (V,E) if
for every vertex ui ∈ U there is a connected subgraph Gui

of G such that all subgraphs Gui
are

pairwise vertex disjoint, and G contains an edge between Gui
and Guj

whenever uiuj ∈ F .

We define the density of a simple graph G to be 2m(G)
n(G)(n(G)−1) , which measures how close

is G to the complete graph on n(G) vertices. Notice that density of a graph is equal to 1 if
m(G) = n(G)(n(G)−1)

2 which is the number of edges of the complete graph and 0 if G is composed
just of isolated vertices. We say that G is dense if it has high density and sparse otherwise.

Let f(n), g(n) be two function of n. We will write f(n) = o(g(n)), whenever limn→∞
f(n)
g(n) = 0,

f(n) = O(g(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all n. Also, f(n) =
Ω(g(n)) if g(n) = O(f(n)), and f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) are
satisfied.

Depth First Search: DFS is a graph search algorithm that visits all vertices of a graph. The
algorithm receives as an input a graph G; it is also assumed that an order σ on the vertices of G
is given, and the algorithm prioritizes vertices according to σ. The algorithm maintains three sets
of vertices: Let S be the set of vertices whose exploration is complete, T be the set of unvisited
vertices and U = V (G) \ (S ∪ T ), where the vertices of U are kept in a stack (the last in, first out
data structure).

It initializes S = U = ∅ and T = V , and terminates once U ∪ T = ∅. At each iteration, if the
set U is non-empty, the algorithm queries T for neighbors of the last vertex v that has been added
to U , scanning T according to σ. If v has a neighbor u in T , the algorithm deletes u from T and
inserts it into U . Else, v is popped out of U and is moved to S. If U is empty, the algorithm chooses
the first vertex of T according to σ, deletes it from T and pushes it into U . In order to complete
the exploration of the graph, whenever the sets U and T have both become empty (at this stage,
the connected component structure of G has already been revealed), we make the algorithm query
all remaining pairs of vertices in S = V , not queried before.

Observe that the DFS algorithm starts revealing a connected component C of G at the moment
the first vertex of C gets into (empty beforehand) U and completes discovering all of C when U

becomes empty again. One can verify the following properties of DFS:
(P1) at each iteration one vertex moves, either from T to U , or from U to S,
(P2) at any stage of the algorithm, it has been revealed already that the graph G has no edges
between the current set S and the current set T ,
(P3) the set U always spans a path (indeed, when a vertex u is added to U , it happens because u
is a neighbor of the last vertex v in U , thus u augments the path spanned by U , of which v is the
last vertex).

2.2 Connectivity

The definition we gave in the previous section is somewhat unintuitive, as it only says what we
need to do to disconnect the graph and does not give us any information about the “connections”
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2.2. CONNECTIVITY

vertices have between them. In this section we will refer to some results about connectivity, in
order to understand better what a graph being k-connected means.

Proposition 2.1. Let G be a graph of order n ≥ 2. Then

κ(G) ≥ 1⇒ ∃v ∈ V (G) : κ(G[V (G) \ {v}]) ≥ 1

Proof. Let, G be a connected graph of order n and P be a path that realizes the diameter of G,
with w, u its end vertices. For each v ∈ V (G) we denote by Gv the induced subgraph G[V (G) \ v],
of G. Consider now the graph Gw, and let G1, . . . , Gl be its connected components. Without loss
of generality, suppose that G1 is the connected component such that u ∈ V (G1), and let z 6= u

be an arbitrary vertex of Gw, where z ∈ V (Gi). Since κ(G) ≥ 1 there is a path P ′ of length at
most |P | = diam(G) from u to z in G. Obviously w 6∈ P ′, else |P ′| > |P |. That means, that z and
u are connected through P ′ also in Gw, so i = 1. Since z was an arbitrary vertex of Gw, Gw is
connected.

We can observe that the connectivity of a graph G is at most equal to its minimum degree,
since in order to disconnect a vertex of minimum degree from the rest of the graph is suffices to
delete its neighbors in G.

Lemma 2.2. Let G be a connected graph of order n and x ∈ V (G)

κ(G[V (G) \ x]) ≥ κ(G)− 1

Proof. Let G be a connected graph of order n and x ∈ V (G). Suppose that κ(G \ x) ≤ κ(G)− 2.
Then there exists a vertex set, S, of size κ(G) − 2 that separates G. However that would mean
that the set S ∪ {x} separates the graph G and since its size is at most κ(G) − 1, we have a
contradiction.

Lemma 2.3. Let G be a k-connected graph. Let also G′ be the graph obtained from G by adding
a new vertex x adjacent to at least k vertices of G. Then G′ is also k-connected.

Proof. Let S be a vertex set that disconnects G′. We will show that |S| ≥ k. If x ∈ S, then S \ x
must disconnect G and since G is k-connected, then |S \ x| ≥ k so, |S| ≥ k+ 1. Suppose now that
x 6∈ S. If N(x) ⊆ S then |S| ≥ k, since |NG′(x)| = k. Else, if N(x) \ S 6= ∅, then N(x) \ S belongs
to a unique connected component of G′ \S (the one that x also belongs). Hence, S disconnects G.
Thus |S| ≥ k because G is k-connected.

Notice that the same result holds for G \ e, where e ∈ E(G) and can be proven using similar
arguments. As one can expect the average degree of a graph can affect the connectivity of its
subgraphs. This relationship is expressed by Mader’s theorem as we will see below:

Theorem 2.4 (Mader 1972). Let k be a positive integer and G be a graph such that d(G) ≥ 4k.
Then there exists a (k + 1)-connected subgraph H ⊆ G such that d(H) > d(G)

2 .

Proof. Let k be a positive integer and G be a graph of average degree at least 4k. Consider the
family G of graphs such that for every H ∈ G, H ⊆ G and

|V (H)| ≥ 2k and |E(H)| > d(G)
2 (|V (H)| − k) (2.1)

We can observe that since G satisfies these conditions G 6= ∅. Let H be the graph in G that satisfies
minG′∈G |V (G′)|.

8
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Claim i. |V (H)| ≥ 2k + 1

Proof of Claim i. Suppose, for contradiction, that |V (H)| = 2k. Since H is in G, we have that

|E(H)| > d(G)
2 (V (H)− k) = d(G)

2 k ≥ 2k2 >

(
2k
2

)
=
(
|V (H)|

2

)
However that leads to a contradiction, since the complete graph on n vertices has

(
n
2
)

edges.

The minimality of |V (H)| implies that δ(H) > d(G)
2 . If not, there exists a vertex v ∈ V (H)

such that deg(v) < d(G)
2 . Consider the graph G′ = G[H \ v]. We will show that G′ satisfies (2.1).

Due to Claim i, |V (G′)| ≥ 2k. Moreover, |E(G′)| > |E(H)| − d(G)
2 > d(G)

2 (|V (H)| − k) − d(G)
2 >

d(G)
2 (|V (G′)| − k), but that contradicts the minimality of |V (H)|. Hence δ(H) > d(G)

2 , and as a
result d(H) > d(G)

2 .
It is now left to show that κ(H) ≥ k+1. Assume, for contradiction, that there exists a vertex set

S ⊆ V (H) of size at most k that disconnects H, and let H1, H2 be the two connected components
of G[H \ S]. Since S disconnects H, NH(H1) ⊆ V (H1) ∪ S. Hence, |H1 ∪ S| > 2k, and as a result
the subgraph of G that is induced by V (H1) has more than 2k vertices. Since H is minimal, and
|V (H1)∪S| ≤ |V (H)|, the number of edges spanned by V (H1) must be at most d(G)

2 (|V (H1)|−k).
Similarly, the number of edges spanned by V (H2) must be at most d(G)

2 (|V (H2)| − k). Hence,

|E(H)| ≤ d(G)
2 (|V (H1)| − k) + d(G)

2 (|V (H2)| − k)

≤ d(G)
2 (|V (H1)|+ |V (H2)| − 2k)

≤ d(G)
2 (|V (H)| − k)

which contradicts the conditions (2.1) that H satisfies. Note that the last inequality holds because
|V (H1) ∩ V (H2)| ≤ k.

The following theorem is one of the cornerstones of graph theory.

Theorem 2.5 (Menger 1927). Let G be a graph and A,B ⊆ V (G). Then the minimum numbers
of vertices separating A from B in G is equal to the maximum number of pairwise vertex disjoint
paths with one endpoint in A and the other in B.

Proof. Given a graph G and two sets A,B ⊆ V (G), we will denote by k the minimum number of
vertices separating A from B in G. Clearly, G cannot contain more than k pairwise disjoint A−B
paths, so our goal is to show that k such paths exist. We will show that, by applying induction on
|E(G)|.

If G has no edge, then |A∩B| = k and we have k trivial A−B paths. So we may assume that
there exists an edge e = xy in G. Let Ge be the graph obtained by the contraction of e, and ve be
the vertex of Ge that occurs from this contraction. If one of x, y is in A then we count ve also in A
and similarly if one of x, y is in B then ve is also counted in B. Note that, if G has no k pairwise
disjoint A−B paths then neither does G/e. By the induction hypothesis Ge contains a vertex set
S that disconnects A from B of size less than k. If ve 6∈ S, then S also disconnects A from B in G
which contradicts our original assumption that k is the minimum number of vertices separating A
from B in G. Hence ve ∈ S, and as a result S′ = (S \ ve) ∪ {x, y}), separates A from B in G and
has exactly k vertices.

Consider now the graph G′ = G[G\ e]. Since x, y ∈ S′, every set that separates A from S′, also
separates A from B in G, hence contains at least k vertices. So by induction there exist k pairwise

9
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disjoint A−X paths in G′. Similarly there also exist k pairwise disjoint X −B paths in G′. As X
disconnects A from B, these two sets of paths do not meet outside S′, and thus can be combined
to k pairwise disjoint A−B paths.

Theorem 2.6 (Global Version of Menger’s Theorem). A graph is k-connected if and only if it
contains k independent paths between any two vertices.

Proof. If a graph G contains k independent paths between any two vertices, then |G| > k and G

cannot be separated by fewer than k vertices. Hence, κ(G) ≥ k.
Conversely, suppose that G is k-connected (and, in particular, has more than k vertices) but

contains two vertices a, b ∈ V (G) that are not connected by k pairwise disjoint paths. If ab 6∈ E(G),
by applying Theorem 2.5 to the graph G′ = G[V (G) \ {a, b}] and the vertex sets A = NG(a) and
B = NG(b) we have that the minimum number of vertices separating A from B is equal to the
number of pairwise disjoint paths A − B paths. Due to the selection of A and B, and because
ab 6∈ E(G) the number of pairwise disjoint paths in G that connect a to b, is equal to the minimum
number of vertices needed to separate in G, a from b which is at least k since κ(G) ≥ k.

If ab ∈ E(G), let G′ = G\ab. Due to our original assumption G′ contains at most k−2 pairwise
disjoint paths that that connect a and b. Hence there exists a set S ⊆ V (G′) of size at most k− 2,
such that κ(G[V (G)′ \ S]) = 0. As |V (G)| > k there exists a vertex v ∈ V (G) \ (S ∪ {a, b}).Then
S separates v in G′ either from a, or b, say from a. But then, S ∪ {b} is a set of at most k − 1
vertices that disconnects G, contradicting the k-connectedness of G.

2.3 Minors

Minors is one of the most central notions in modern graph theory. Thus, it is natural to expect the
appearance of results that connects minors to the main subjects of this thesis, balanced separators
and expanders. Indeed, as we will also see later, many progress has been made in combining these
notions. Generally speaking the results of extremal minor theory can be stated as finding sufficient
conditions for the existence of a minor from given family, or a concrete minor (say, a clique minor)
in a given graph. For example, such a result is the following: Every graph G on n vertices with
more than 3n− 6 edges, contains the complete graph K5 or the complete bipartite graph K3,3 as a
minor. Of course, this is nothing more than combining and rephrasing the following two theorems.

Theorem 2.7. Any planar graph G of order n ≥ 3 contains at most 3n− 6 edges.

Theorem 2.8 (Kuratowski-Wagner). A graph G is planar if and only if it contains neither K5

nor K3,3 as a minor.

When looking for large minors, one should remember that there is a limit to the size of the
minor one can find in a graph. This limit occurs as a corollary of the following proposition.

Proposition 2.9. If H, G are simple graphs the following holds

H ≤m G⇒ |E(H)| ≤ |E(G)|

Corollary 2.10. A graph G of order n and average degree d cannot contain a graph H of average
degree k >

√
nd as a minor.

As we will see by the results stated below the average degree of a graph affects its minors. We
will focus on this relationship as the results that combine minors with expanders usually have the
following form: If a graph G is sufficiently dense or has sufficiently large average degree, then G

contains a large minor.

10
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Proposition 2.11. Every graph G contains a subgraph G′ such that d(G′) ≥ d(G) and δ(G′) ≥
d(G)

2 .

Proof. We prove this proposition by induction on the number of vertices of G. For |V (G)| = 1 the
assertion is trivial. Assume that this also holds for every graph on n vertices and let G be a graph
such that |V (G)| = n + 1. If δ(G) ≥ d(G)

2 then the proof is complete. Otherwise there exists a
vertex v such that deg(v) = k < d(G)

2 . Consider the graph G′ = G[G \ v]. Since deg(v) < d(G)
2 we

remove at most d(G)
2 degrees of the total degree of the graph. Notice now, that G′ is an n-vertex

graph with average degree

d(G′) ≥
∑
v∈V (G) deg(v)− d(G)

n
≥ d(G)

and as a result of the induction hypothesis G′ has a subgraph of minimum degree at least d(G′)
2

(hence the same is true for G).

There is some interest in knowing the maximum size of graphs not having the complete graph
Kr as a minor, not least because of the relationship between this extremal problem and the
conjecture of Hadwiger [Had43], asserting that Kr ≤m G if χ(G) ≥ r. Wagner [Wag64] showed
that a sufficiently large chromatic number (depending only on r) guarantees a Kr-minor, and
Mader [Mad67] proved that a sufficiently large average degree will do.

The proof of the following early bound on the average degree needed to force a Kr minor
contains a key idea from which all the later results were developed.

Proposition 2.12. Every graph of average degree at least 2r−2 has a Kr minor.

Proof. We apply induction on r. For r = 2 the result holds, since graphs of average degree at least
20 must have an edge (so they contain K2 as a minor). For the induction step let r ≥ 3 and let

G be an arbitrary graph such that d(G) ≥ 2r−2. Then ε(G) = m(G)
n(G) =

∑
v∈V (G)

deg(v)
2n(G) ≥ 2r−3.

Let H be a minimal minor of G with ε(H) ≥ 2r−3, and let x be an arbitrary vertex of H. By
the minimality of H, it is connected, so x is not isolated. Moreover, each of its neighbors has
at least 2r−3 common neighbors with x. Suppose, for contradiction, that there exists a vertex
y ∈ NH(x) such that NH(x) ∩NH(y) < 2r−3. Consider the graph H ′ = G/xy and notice that by
the contraction of the edge xy |E(H)| − |E(H ′)| ≤ 2r−3, so ε(H ′) ≥ 2r−3, which contradicts the
minimality of H.

Hence, the subgraph induced by the neighbors of x in H, has minimum degree, and as a result
also average degree, at least 2r−3. By the induction hypothesis, this graph contains Kr−1 as a
minor. Together with x this yields the desired Kr minor of G.

Kostochka [Kos82], [Kos84] and Thomasson [Tho84] independently proved the following The-
orem, which, as we will see in the fourth chapter, Sudakov and Krivelevich [KS09] used to find
complete minors in expanding graphs.

Theorem 2.13 (Kostochka, Thomasson 1982). There exists a constant c ∈ R such that, for every
r ∈ N, every graph G of average degree d(G) ≥ cr

√
log r contains Kr as a minor.

The correct value of the average degree needed to force a Kr minor is known almost precisely.
Thomasson, in 2001 [Tho01] determined, asymptotically, the smallest constant c that makes The-
orem 2.13 true. It can be written as c = α + o(1), where o(1) stands for a function of r tending
to zero as r → ∞ and α = 0.319 . . . is an explicit constant. Later, in 2005, Kühn and Osthus
[KO04] proved that, if G is a locally sparse graph, in the sense that it does not contain a fixed
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complete bipartite graph Ks,s as a subgraph , then G has a Kp minor where p is asymptotically
much larger than the average degree of G. Formally they proved the following theorem, which was
later improved by Krivelevich and Sudakov [KS09] as we will see in more detail in chapter 4.

Theorem 2.14 (Kühn, Osthus 2004). For every integer s ≥ 2 there exists an rs such that every
Ks,s-free graph of average degree at least r ≥ rs, contains a Kp minor for all

p ≤ r1+ 1
2(s−1)

(log r)3

2.4 Expanding Graphs

The basic concept of this thesis is expanding graphs. Informally a graph is said to be an expanding
graph, or an expander, if every subset X of V (G) has relatively many neighbors outside X. This
is what is usually called vertex expansion. Sometimes an alternative notion of edge expansion is
used, where every set X ⊆ V (G) is required to be incident to many edges crossing between X and
its complement in G. Of course a formal definition is required, firstly to measure the expansion
quantitatively, and secondly to distinguish between the expansion of small and large sets (note that
a set X ⊆ V (G) containing half the vertices of G cannot have more than |X| outside neighbors in
G, while a much smaller set X can expand by a much larger factor). There are several definitions
of expanders in common use, capturing sometimes rather different expansion properties. In this
section we will provide two definitions of vertex and edge expansion and we will later see some
alternative algebraic definitions specifically for edge expansion.

Definition 2.15 (Vertex Expansion). Let t > 0, 0 < α < 1. A graph G = (V,E) is (t, α)-expanding
if

∀X ⊆ V (G) : |X| ≤ α|V (G)|
t

⇒ |NG(X)| ≥ t|X|

that is, that every set X of size |X| ≤ α|V |
t expands by a factor of at least t.

Definition 2.16 (Edge Expansion). A cut in G is a bipartition (S, S̄) of its vertices, that is ,
S ∪ S̄ = V , S ∩ S̄ = ∅ and S, S̄ 6= ∅. The sparsity of the cut (S, S̄) is eG(S, S′)/min{|S|, |S′|}. The
edge expansion of a graph G, is denoted by φ(G), is the minimum sparsity of any cut in G.

Given a parameter α > 0, we say that a graph G is an α-edge-expander if and only if φ(G) ≥ α.
Equivalently, for every subset S of at most |V (G)|/2 vertices of G, EG(S, S̄) ≥ α|S|.

As one can easily notice, the complete graph is an expander with respect to both edge end
vertex expansion. However, when we talk about expansion we usually want the graph we refer to,
to have as few edges as possible. Informally we say that a graph G is a good expander if it has low
degree and high expansion properties. That means that good expanders are sparse graphs which
can’t be separated into two large components.

Now we will provide two examples of explicit constructions of good expanders. Usually we
are interested in the additional property that these graphs are regular (although we allow parallel
edges and self-loops) and have a fixed constant degree independent of n. Ideally, we would like
to have a construction with n vertices for every n, however usually the constructions work only
for some subsets of integers n. The two main approaches in constructing expanders are the al-
gebraic approach and the combinatorial one. The first example that we will provide is Margulis
construction [Mar73], which arises from the algebraic approach, and is the following:

12
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For every n, we construct the graph, G, of order n2, and we think V (G) as the group of pairs
Zn × Zn. A vertex (x, y) is connected to the vertices

(x± 2y, y), (x± (2y + 1), y), (x, y ± 2x), (x, y ± (2x+ 1))

so that G is 8-regular (notice that all operations are modulo n). The analysis of this construction
is due to Gabber and Galil [GG81].

Another example that its proof depends on a deep result of number theory, the Selberg’s 3/16
theorem [Sel65], and is a construction of a family of 3-regular graphs, of order p, where p is a prime
number. Each vertex x of this graph is adjacent to the following vertices

x+ 1, x− 1, x−1.

Notice that all operations are modulo p and we define the inverse of 0 to be 0.
Next, we will see some elementary results about the substructures one can find in an expanding

graph. The following statement was proved by Krivelevich [Kri16], from which it follows that if G
is an α-edge-expander on n vertices, G contains a path of length at least αn

2 (set k = n
2 and l = αn

2
in the following Proposition).

Proposition 2.17. Let k, l be positive integers. Assume that G is a graph on more than k vertices
such that

∀S ⊆ V (G) : |S| = k ⇒ |NG(S)| ≥ l

Then G contains a path of length l.

Proof. Run the DFS algorithm on G, with σ being an arbitrary ordering of V . Consider the
moment during the algorithm execution when the size of the set S of already processed vertices
becomes exactly k (there is such an instance due to Property (P1) of DFS, as the vertices of G
move into S one by one, till eventually they all move there). By Property (P2), the current set
S has no neighbors in the current set T , and thus NG(S) ⊆ U implying |U | ≥ l. During the last
iteration a vertex from U is moved to S, so before this move U is one vertex larger. The set U
always spans a path in G, by Property (P3), hence G contains a path of length l.

Krivelevich [Kri17] also proved the following theorem (still based on the DFS algorithm and its
properties), from which he deduced that for every α, a (k, α)-expander contains a cycle of length at
least αk

2 . The linear dependence on α is optimal in the range 0 < α < 1, as shown by the example
of the complete bipartite graph with parts of size k and dαke, where the longest cycle has length
2dαke.

Theorem 2.18 (Krivelevich 2017). Let k > 0, t ≥ 2 be integers. Let G be a graph of order at
least k, satisfying

|N(S)| ≥ t for every S ⊆ V (G) : k2 ≤ |S| ≤ k

Then G contains a cycle of length at least t+ 1.

The following results are about vertex expansion and will be useful to the proof of Theorem 4.21.

Proposition 2.19. Let G be a (t, α)-expanding graph of order n. Then

∀X ⊆ V (G) : αn
t
≤ |X| ≤ αn

2 ⇒ |N(X)| ≥ αn

2
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Proof. We observe that |X| ≥ αn
t ⇒ ∃Y ⊆ X : |Y | = an

t . Since Y ⊆ X, its neighbors will either
be in X \ Y or in N(X). Moreover, G is (t, α)-expanding and |Y | = αn

t , so |N(Y )| ≥ αn. We can
now deduce that

|N(X)| ≥ |N(Y )| − |X| ≥ t|Y | − |X| = αn− |X| ≥ αn

2

Lemma 2.20. Let G be a connected (t, α)-expanding graph of order n. Then

diam(G) ≤ 3
α

logn
log t

Proof. Let G be a connected (t, α)-expanding graph of order n.
We will first prove by induction on q, that for every v ∈ V (G) and every q ∈ N there exist at least
min{tq, αn} vertices of G in distance at most q, from v.
Let v be an arbitrary vertex of G and denote by Yi the set of vertices of G, in distance at most i
from v. We observe that Yi = Yi−1 ∪N(Yi−1), ∀i ≥ 2. Since G is (t, α)-expanding, we have that
|Y1| = |NG(v)| ≥ t so the above condition holds for i = 1. We suppose that |Yi| ≥ min{ti, αn},
∀i ≤ q − 1.

• If |Yq−1| ≥ αn, since Yq−1 ⊆ Yq, we have |Yq| ≥ αn.

• If tq−1 ≤ |Yq−1| ≤ αn
t , since G is (t, α)-expanding we have |Yq| ≥ |N(Yq−1)| ≥ t|Yq−1| ≥ tq.

• If |Yq−1| ≥ αn
t , using Proposition 2.1 as many times as needed, we can find a connected

subgraph of G[Yq−1], W , such that |V (W )| = αn
t . Since G is (t, α)-expanding we have that

|N(W )| ≥ t|V (W )| = αn, and because every v ∈ V (W ) is either in Yq−1 or in N(Yq−1) we
have that |Yq| ≥ αn.

Let now, q =
⌈

logn
log t

⌉
, so for every v ∈ V (G), |Yq| ≥ min{n, αn}. Suppose that

∃u,w ∈ V (G) : d(u,w) ≥ 3
α

logn
log t

and let P = {u = v1, . . . , vl = w} be a path that realizes this distance. That means, that there
are k < 1

α vertices in V (P ), v1 = u, . . . , vk = w, such that the distance between each pair of them
is at least 2 logn

log t . We now observe that for each of these vertices, the corresponding sets Yq(vi)
are pairwise disjoint and each of size at least αn. Thus, |

⋃k
i=1 Vi| ≥ kan > n which lead us to a

contradiction, because we have supposed that the order of G is n.

Proposition 2.21. Let G be an α-edge-expander of order n. Then

diam(G) ≤
⌈

2(logn− 1)
log(1 + α)

⌉
+ 1

Proof Sketch. We can prove this proposition using similar arguments as in the proof of Lemma 2.20.
The basic difference is that in order to apply the basic argument described in detail in that proof,
we first have to prove by induction that the number of vertices at distance at most d in an α-edge-
expander is at least min{n2 , (1 + α)t}.

In the next chapters we will see more results on substructures of expanding graphs, especially
on minors. However, first we will see in detail some results about balanced separators and how
they are connected to expanders.
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“Divide and conquer” is one of the classic and most widely used techniques for designing efficient
algorithms. Divide-and-conquer algorithms partition their inputs into two or more independent
subproblems, solve those subproblems recursively, and then combine the solutions to those sub-
problems to obtain the final output. In order for this technique to succeed the following three
conditions must be satisfied. (i) the subproblems must be of the same type as the original and
independent of each other (in a suitable sense), (ii) the cost of solving the original problem given
the solutions of the subproblems must be small, and (iii) the subproblems must be significantly
smaller than the original. Notice, that this strategy can be successfully applied to several graph
problems, provided we can quickly separate the graph into roughly equal subgraphs (so that the
previous conditions are satisfied).

Balanced separators serve to measure quantitatively the connectivity of large vertex sets in
graphs. The fact that all balanced separators of a graph G are large, indicates that it is costly
to break G into large pieces not connected by any edge and sometimes, if G is well connected
finding a small sized separator might be impossible. Balanced separators came into prominence
with the celebrated result of Lipton and Tarjan [LT79], to which we refer to, with more details in
the section “Planar Graphs” of this chapter, asserting that every planar graph on n vertices has
a balanced separator of size O(

√
n). Later, Alon, Seymour and Thomas [AST90b] proved than a

graph will either have a small balanced separator or a large minor which we will see in more detail
in the section “Non-planar graphs” of this chapter, while Kawarabayashi and Reed [KR10b], and
Plotkin, Rao and Smith [PRS94], also addressed that issue.

As we will see in the next chapter expanders and balanced separators are closely related, since
expanders are graphs that do not have small balanced separators.

3.1 Definitions

Definition 3.1. Let G be a graph of order n. We say that the vertex set S ⊆ V (G) is a balanced
separator of G if V (G) can be partitioned into the sets A,B, S such that |EG(A,B)| = 0 and
|A| ≤ 2n

3 , |B| ≤ 2n
3 .

Definition 3.2. A finite element graph G is any graph formed from a planar embedding of a
planar graph by adding all possible diagonals to each face (the finite element graph has a clique
corresponding to each face of the embedded planar graph). The embedded planar graph is called
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the skeleton of the finite element graph and each of its faces is an element of the finite element
graph.

Definition 3.3. Let G be a graph of order n and a vertex set X ⊆ V (G). An X-flap is the vertex
set of some component of G \X.

Definition 3.4. Let G be a graph of order n. By a haven of order k in G we mean a function β,
which assigns to each subset X ⊆ V (G), of size at most k, an X-flap β(X), in such a way that if
X ⊆ Y and |Y | ≤ k, then β(Y ) ⊆ β(X).

Definition 3.5. Let G be a graph of order n. A covey in G is a set C of (non-null) trees of G,
mutually vertex-disjoint, such that for all distinct C1, C2 ∈ C, there is an edge with one endpoint
in C1 and one in C2.

3.2 Planar graphs

The basic results stated in this section were proved by Richard J.Lipton and Robert Endre Tarjan
[LT79]. They proved that any planar graph on n vertices has a balanced separator of size at most
2
√

2
√
n, and also provided a polynomial-time algorithm that computes this balanced separator.

Their motivation was to apply the divide and conquer technique to solve efficiently a number of
problems defined on graphs. Since in some applications it is useful to have a result more general, as
we will se in Lemma 3.8, first planar graphs with non-negative costs on their vertices are considered
and the desired balanced separator theorem occurs as a special case, where the assigned costs on
the vertices is equal. Previously known balanced separator theorems include the following: (i)
Any binary tree of order n, can be separated into two subtrees, each with at most 2n/3 vertices,
by removing a single edge, (ii) Any n-vertex tree has a balanced separator S, such that |S| = 1,
and (iii) Any grid of order n has a balanced separator of size

√
n, hence, a

√
n-separator theorem

holds for the class of grid graphs.

Theorem 3.6 (Jordan curve theorem [WG55]). Let C be any closed curve in the plane. The
removal of C divides the plane into exactly two connected regions, the “inside”and the “outside”
of C.

Lemma 3.7. Let G be any planar graph. Contracting any edge of G to a single vertex preserves
planarity. This implies that contracting any connected subgraph of G to a single vertex, preserves
planarity.

Proof. Let G be a planar graph. Suppose, for contradiction, that there exists an edge e = v1v2 ∈
E(G) such that, the resulting graph, G∗ = G/e, is not planar. Let, also, v be the resulting vertex
from the contraction of e, in G∗. From Theorem 2.8, G∗ contains either K5 or K3,3 as a minor,
and let H be the induced subgraph of G∗ that contains exactly the vertices which contribute in
the resulting K5 or K3,3. Obviously x ∈ E(H), or else H ⊆ G and as a result G would not be
planar. Suppose that K5 ≤m G∗. Then x is either a vertex of K5 or has “disappeared” from the
contractions on H. If the second case holds, then K5 ≤m G which leads to a contradiction. In the
first case K5 can occur from one of the following three graphs,

v1 v2 v1 v2 v1 v2
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all of which lead to G containing K5 as a minor, which contradicts the original hypothesis that
G is planar. Suppose now that K3,3 ≤m G∗ and consider the graph H as we did in the previous
case. Using similar arguments as in the case of K5, one can see that both of the following possible
graphs lead to a contradiction to the planarity of G,

v1 v2 v1v2

which completes our proof for the case where one edge is contracted. The case where a connected
subgraph is contracted is immediate, by applying induction on the number of vertices in the
subgraph to be contracted.

As mentioned in the beginning of this section, in order to have a more general result, we
will fist prove that any graph, to which non-negative costs are assigned to its vertices, can be
separated into two parts, each with cost at most 2/3 of the total cost, by removing O(

√
n) of its

vertices. The following two Lemmata will be useful for the proof of Theorem 3.10, of which the
√
n-balanced-separator theorem is a corollary.

Lemma 3.8. Let G be any planar graph of order n and f : V (G) → [0, 1) a cost assignment to
the vertices of G, such that f(V (G)) ≤ 1. Let also T be a spanning tree of G such that rad(T ) = r

and root t. Then there exists a set S ⊆ V (G) such that t ∈ S and |S| ≤ 2r+ 1, that disconnects G
into the sets A,B such that f(A) ≤ 2

3 and f(B) ≤ 2
3

Proof. Let G be a planar graph and f , T , the function and the spanning tree described in the
lemma, respectively. Without loss of generality, we can suppose that ∀v ∈ V (G), f(v) ≤ 1

3 , since
otherwise the lemma would be true. Now, we embed G on the plane and we make each “internal”
face a triangle by adding a suitable number of edges toG. Let E+ be the set of added edges to obtain
this triangulation of G and G∗ the resulting graph. Notice that any edge e ∈ E(G∗) \ (E+ ∪E(T ))
forms a cycle with some of the tree edges (otherwise it would be an edge of T ). Since rad(T ) = r

each of these cycles is of length at most 2r + 1 if it contains t and at most 2r − 1 otherwise. Due
to Theorem 3.6 each of these cycles divides the plane into two parts. Now it suffices to prove that
there exists a cycle such that neither the inside nor the outside contains vertices whose total cost
exceeds 2

3 (due to the triangulation we know that there exists at least one cycle). Let C be a cycle
in G∗. We will denote by IN(C) the set of vertices that lie inside C, and by OUT (C) the set of
vertices outside C.

Claim i. There exists a cycle C ⊆ G∗, such that the f(IN(C)) ≤ 2
3 and f(OUT (C)) ≤ 2

3

Proof of Claim i. Let xz be an edge in E(G∗) \ (E+ ∪ E(T )) such that its corresponding cycle
C minimizes the maximum cost either inside or outside the cycle. Break ties by choosing the
nontree edge whose cycle has the smallest number of faces on the same side as the maximum
cost and suppose that, that side is the inside of C. Suppose, without loss of generality, that
f(IN(C)) ≥ f(OUT (C)), therefore if f(IN(C)) ≤ 2

3 the proof of the Claim is complete. Suppose
that f(IN(C)) ≥ 2

3 .
Notice that the face that has xz on its boundary forms a triangle in G∗ and let y be its third

vertex. By examining each of the 6 possible cases which are illustrated below and by using the
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way we selected xz, one can show that it is impossible for the total cost of the vertices inside the
cycle to exceed 2

3 , and that proves the claim.
The first case leads to a contradiction due to our assumption that f(IN(C)) ≥ 2

3 , hence
IN(C) 6= ∅. In the second case we suppose that xy ∈ E(C) (alternatively yz ∈ E(C) which
can lead to a contradiction using similar arguments). Then yz 6∈ E(T ) and it defines a cycle
C ′, such that IN(C ′) = IN(C), and has one less face than C which contradicts to the selection
of xz. The third case is not possible since T cannot contain a cycle by the definition of the
spanning tree. For the next case, we suppose that xy ∈ E(T ) (alternatively yz ∈ E(T ) which
can lead to a contradiction using similar arguments). Let C ′′ be the cycle in G∗ defined by
yz. Notice that IN(C ′′) = IN(C) \ {y}, hence f(IN(C ′′)) ≤ f(IN(C)). Moreover C ′′ contains
one less face than C, thus if f(IN(C ′′)) ≥ f(OUT (C ′′)), yz would have been chosen instead
of xz. Else, if f(IN(C ′′)) ≤ f(OUT (C ′′)), then f(OUT (C ′′) = f(OUT (C)) + f(y). However,
since f(OUT (C)) ≤ 1

3 and f(y) ≤ 1
3 , then f(OUT (C ′′)) ≤ 2

3 which would lead to the selection
of yz instead of xz. If neither xy nor yz are in E(T ), one of the two last cases would occur.
Then, as we see in case (e), each of xy and yz defines a cycle, we denote them by C1 and C2

respectively. In that case, IN(C) = IN(C1) ∪ IN(C2) ∪ (E(C1) ∩ E(C2)). Suppose, without loss
of generality, that f(IN(C1)) ≥ f(IN(C2)). Then f(IN(C1)) ≤ f(IN(C)) and C1 contains less
faces than C. Thus, if f(IN(C1)) ≥ f(OUT (C1)), xy would have been chosen in place of xz.
On the other hand, suppose that f(IN(C1)) ≤ f(OUT (C1)). Then, since f(IN(C)) ≥ 2

3 and
f(IN(C1)) ≥ f(IN(C2)), f(C1) + f(IN(C1)) ≥ 1

3 and f(OUT (C1)) ≤ 2
3 , which would lead to the

selection of xy instead of xz. The same arguments apply, in case (f), and lead to a contradiction.
Thus, all cases are impossible and C satisfies Claim i.

Consider now the cycle C, whose existence we proved in Claim i. Since |C| ≤ 2r + 1, and
f(IN(C)) ≤ 2

3 , f(OUT (C)) ≤ 2
3 , C is the desired vertex set, and that completes our proof.

Lemma 3.9. Let G be a connected planar graph of order n and f : V (G)→ [0, 1) be a cost assign-
ment to the vertices of G such that f(V (G)) ≤ 1. Suppose that the vertices of G are partitioned into
levels according to their distance from some vertex v ∈ V (G), and that L(l) denotes the number of
vertices on level l. If r is the maximum distance of any vertex from v, let r + 1 be an additional
level containing no vertices. Given any two levels l1, l2 such that levels 0 through l1 − 1 have total
cost at most 2

3 and levels l2 + 1 through r + 1 have total cost at most 2
3 , it is possible to find a
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vertex set S ⊆ V (G) of size at most L(l1) + L(l2) + max{0, 2(l2 − l1 − 1)} that separates G into
two sets A,B such that f(A) ≤ 2

3 , f(B) ≤ 2
3 .

Proof. If l1 ≥ l2 we can set S to be all vertices on level l1. That separates G into two sets A,B,
which contain all the vertices on levels 0 through l1 − 1 and through the levels l1 + 1 through r

respectively. Since all the vertices on levels l2 + 1 through r have total cost at most 2
3 and l1 ≥ l2

that holds also for the vertices on levels l1 + 1 through r, so the lemma is true.
If l1 < l2 consider the vertex sets of G that occur after the removal of the vertices of both of

those levels. Those are, the vertices on levels 0 through l1 − 1, l1 through l2 and l2 + 1 through
r + 1. The only part of those which can have total cost exceeding 2

3 is the vertices on level l1
through l2. If it does not, the lemma is true. Else, consider the graph G∗ that occurs after the
removal of the vertices on levels l2 through r and the contraction of all vertices on levels 0 through
l1 to a single vertex v∗ and set f(v∗) to be 0. Due to Lemma 3.7, G∗ is planar and also remains
connected due to the separation of the vertices into levels according to their distance from a vertex
v. G∗ has a spanning tree with root the vertex v∗ of radius l2 − l1 − 1.

After applying Lemma 3.8 to G∗, we can find a set S ⊆ V (G∗) such that v∗ ∈ S of size at
most 2(l2 − l1 − 1) that disconnects G∗ into sets A,B such that f(A) ≤ 2

3 and f(B) ≤ 2
3 and

suppose without loss of generality that f(A) ≥ f(B). Consider now the following partition of
V (G): S′ = S ∪ V (l1) ∪ V (l2) \ v∗, A′ = A and B′ = V (G) \ (S′ ∪A′). By Lemma 3.8 f(A′) ≤ 2

3 .
Moreover since f(A′ ∪ S) ≥ 1

3 (since f(B) ≤ 2
3 ) we have that f(B′) ≤ 2

3 . After the observation
that |S′| ≤ L(l1) + L(l2) + 2(l2 − l1 − 1), we can conclude that the lemma is true.

Now, we will present the proof of the main theorem of this section, on which, the polynomial-
time algorithm for finding a balanced separator in any planar graph G, was based.

Theorem 3.10. Let G be a planar graph of order n and f : V (G)→ [0, 1) be a cost assignment to
the vertices of G such that f(V (G)) ≤ 1. Then there exists a vertex set S ⊆ V (G) of size at most
2
√

2
√
n that separates G into two sets A,B such that f(A) ≤ 2

3 , f(B) ≤ 2
3 .

Proof. Let G be a connected graph and v an arbitrary vertex of G. Using BFS we can partition
the vertices of G into levels according to their distance from v. Suppose that the furthest vertex
from v lies in the level r. We will denote by L(l) the number of vertices on the level l (as we did
in Lemma 3.9) and we will add two additional levels, −1 and r + 1, each containing 0 vertices.

Consider a level l1, such that the total cost of the vertices from the level 0 through the level
l1 − 1 is less than 1/2, but the total cost of the vertices from the level 0 through l1 is at least 1/2.
We can suppose that such a level exist, otherwise the total cost of all vertices in G is less than 1/2,
so the Theorem is satisfied for B = S = ∅. Let k be the number of vertices on levels 0 through l1.
Now, we want to find a level l0, such that l0 ≤ l1 and

L(l0) ≤ 2
√
k − 2(l1 − l0)

and a level l2 such that l1 + 1 ≤ l2 and

L(l2) ≤ 2
√
n− k − 2(l2 − l1 − 1)

Suppose that two such levels exist. Notice that, due to the selection of the level l1, the total
cost of the vertices on levels 0 through (l0 − 1), and l2 through r + 1 is not exceeding 2/3. Then
by applying Lemma 3.9, there exist a vertex set S ⊆ V (G) that separates G into two vertex sets
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A, B, each with total cost at most 2/3 and

|S| ≤ L(l0) + L(l2) + max{0, 2(l2 − l0 − 1)}

≤ 2
√
k − 2(l1 − l0) + 2

√
n− k − 2(l2 − l1 − 1) + 2(l2 − l0 − 1)

≤ 2(
√
k +
√
n− k)

But 2(
√
k +
√
n− k) ≤ 2(

√
n/2 +

√
n/2) = 2

√
2
√
n, hence, the theorem holds if suitable levels l0

and l2 exist.
Suppose, now, that a suitable level l0 does not exist. Then ∀i ≤ l1, L(i) ≥ 2

√
k − 2(l1 − i).

Since L(0) = 1, this means that 1 ≥ 2
√
k − 2l1 ⇒ l1 + 1

2 ≥
√
k. Thus, l1 = bl1 + 1

2c ≥ b
√
kc, and

k =
l1∑
i=0

L(i) ≥
l1∑

i=l1−b
√
kc

2
√
k − 2(l1 − i)

≥ (b
√
kc+ 1)2

√
k − 2

b
√
kc∑

i=0
i

≥ (b
√
kc+ 1)2

√
k − b

√
kc(b
√
kc+ 1)

≥ (b
√
kc+ 1)(2

√
k − b

√
kc)

≥
√
k(b
√
kc+ 1) > k

which is a contradiction. A similar contradiction occurs if a suitable level l2 does not exist, and
this complete the proof in the case where G is connected.

Let G be a graph that is not connected, and let G1, G2, . . . , Gk be its connected components,
with vertex sets V1, V2, . . . , Vk respectively. Suppose that f(Vi) ≤ 1

3 ,∀i ∈ [k]. Let i be the minimum
index such that

∑i
j=1 f(Vi) ≥ 1

3 , and also let A = ∪ij=1Vj , B = ∪kz=i+1Vz. Since the total cost of
Vi does not exceed 1/3 and i is the minimum index that satisfies the previous condition, the total
cost of both A and B does not exceed 2/3. Thus, the theorem holds for S = ∅.

If for some connected component, say Gi, 1
3 ≤ f(Vi) ≤ 2

3 , the theorem holds for A = Vi,
B = ∪kj=1Vj \ Vi and S = ∅.

Finally, if for some connected component, say Gi, f(Vi) ≥ 2
3 , consider the partition A∗, B∗, S∗,

that occurs after applying the same arguments as we did in the case where G is connected, to the
component Gi. Now let A be the set among A∗, B∗ with the greater cost, say A∗, S = S∗ and B

the remaining vertices of G. Notice that f(A) ≤ 2
3 and f(B) ≤ 2

3 (because f(∪kj=1Vj \Vi) ≤ 1
3 and

f(B∗) ≤ 1
3 since f(A∗ ∪ B∗ ∪ S∗) ≥ 2

3 and A∗ is the vertex set with the maximum total cost), so
S is a balanced separator of the desired size.

Now, the proof is complete, since we showed that, in all cases, a planar graph G has a balanced
separator which is either empty, or connected in only one connected component of G.

The following Theorem is a corollary of the Theorem 3.10 if we set the cost function to be
1

|V (G)| for each vertex of a planar graph G.

Theorem 3.11 (
√
n-separator theorem). Let G be a planar graph of order n. Then G has a

balanced separator of size at most 2
√

2
√
n.

Richard J.Lipton and Robert Endre Tarjan [LT79] also proved that the total cost of each of the
sets A, B of Theorem 3.10 can be reduced to at most 1/2, if we allow the balanced separator to have
size at most 2

√
2
√
n

1−
√

2/3
. It is natural to ask whether a similar theorem is true for non-planar graphs.

Richard J.Lipton and Robert Endre Tarjan [LT79] showed that to be the case for “almost” planar
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graphs, referring to finite element graphs, a result which was later “extended” by Noga Alon, Paul
Seymour and Robin Thomas [AST90a] for nonplanar graphs with a fixed excluded minor, as we
will see in more detail in the next section.

3.3 Non-planar Graphs

The results stated in this section were proved by Alon, Seymour and Thomas[AST90a], who also
provided an algorithm that runs in time O(h1/2n1/2m), which given a graph G, computes either a
Kh minor of G or a balanced separator of G, of size at most h3/2√n. This result was later improved
(for h >>

√
logn) by Plotkin, Rao and Smith [PRS94], who proved that any graph that excludes

Kh as a minor, has a balanced separator S of size O(h
√
n logn). In 2010, Kawarabayashi and

Reed [KR10a] proved, what was earlier conjectured by Alon, Seymour and Thomas, that for each
t, there is a balanced separator of size O(t

√
n) in any graph G, of order n, with no Kt minor and

they also provided an O(n2) time algorithm to obtain such a balanced separator. This bound is
the best possible, since every 3-regular expander graph G, of order n, is a graph with no Kt minor
for t = c

√
n and with no balanced separator of size dn for appropriately chosen positive constants

c, d. Moreover, this result generalized the result of Gilbert, Hutchinson and Tarjan [GHT84],that
every graph on n vertices and genus g has a balanced separator of size O(√g

√
n), as Kh has genus

at least Ω(h2).
The results proved in the previous section also hold if we extend the cost function f to

R+ = (0,+∞), and use 2f(V (G))
3 as an upper bound on the total cost of each set of the parti-

tion. Therefore, Theorem 3.10 can be expressed in the following form:
Let G be a planar graph of order n and f : V (G)→ R+ be a function that assigns costs to each

vertex of G. Then there exists a vertex set S ⊆ V (G) of size at most 2
√

2
√
n that separates G into

two sets A,B such that f(A) ≤ 2f(V (G))
3 , f(B) ≤ 2f(V (G))

3 .

Lemma 3.12. Let G be a graph of order n, A1, . . . , Ak subsets of V (G) and r ≥ 1 a real number.
Then one of the following holds:

(i) Either there exists a tree T in G of size at most r such that V (T ) ∩Ai 6= ∅ for i ∈ [k],

(ii) or, there exists a vertex set Z ⊆ V (G) of size at most (k−1)n
r , such that no Z-flap intersects

all of A1, . . . , Ak.

Proof. Let G be a graph of order n, A1, . . . , Ak subsets of V (G) and r ≥ 1 a real number. We
may assume that k ≥ 2. Let G1, . . . , Gk−1 be isomorphic copies of G, mutually disjoint. For each
vertex v ∈ V (G) and 1 ≤ i ≤ k − 1, let vi be the corresponding vertex of Gi. Now consider the
graph G′ obtained from

⋃k−1
i=1 G

i by adding for 2 ≤ i ≤ k − 1 and all v ∈ Ai the edge vi−1vi, and
let X = {v1 : v ∈ A1}, Y = {vk−1 : v ∈ Ak}. Let d(u) be the number of vertices in the shortest
path in G′ that connects X to any vertex u (or ∞ if no such path exists). Now we will examine
the following two cases:

There exists a vertex u ∈ Y , such that d(u) ≤ r. Let P be a path that realizes that d(u) for
this vertex u ∈ Y . Let S = {v ∈ V (G) : vi ∈ V (P ) for some i, 1 ≤ i ≤ k− 1}. Since each vertex of
S corresponds to at least one vertex in P , we have that |S| ≤ |V (P )| ≤ r. Moreover, because each
Gi is isomorphic to G and P is a path, G[S] is a tree in G. We can think of G′ as a graph that
has k levels (the copies of G and G), in which the only way to go from the ith level to the (i− 1)th

level is through a vertex in Ai, and the only way to go from the ith level to the (i− k)th level is to
pass through all the levels between them. After that observation, we see that in order to connect
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a vertex in Y to a vertex in X we have to pass from each level, so V (S)∩Ai 6= ∅ for i ∈ [k]. That
means that case (i) is satisfied.

The next case to examine is, the case where d(u) > r, ∀u ∈ Y . Let t = dre and define for all
j ∈ [t] the sets Zj = {u ∈ V (G′) : d(u) = j}, which are mutually disjoint (by the definition of d(u)
for a vertex u). Moreover, since |V (G′)| = (k − 1)n, at least one of the sets Z1, . . . , Zt, say Zj has
cardinality at most (k−1)n

t . That means that |Zj | ≤ (k−1)n
t ≤ (k−1)n

r . Since d(u) > r ∀u ∈ Y , every
path between X and Y has a vertex in Zj . Let Z = {v ∈ V (G) : vi ∈ Zj for some i, 1 ≤ i ≤ k− 1}
and notice that |Z| ≤ |Zj | ≤ (k−1)n

r . Suppose, for contradiction, that F is a Z-flap of G which
intersects all of A1, . . . Ak, and let ai ∈ F ∩ Ai, ∀i ∈ [k]. Since G[F ] is a connected component of
G \ Z there exist a path, Pi, that connects ai to ai+1 for all i ∈ [k − 1]. Let P i be the path of Gi

corresponding to Pi and consider the vertex set V (P 1) ∪ . . . ∪ V (P k−1). Due to the observation
of the graph G′ we did in the previous case, that vertex set includes a path of G′ between X and
Y , which as we assumed has length at least r. However, since F is a Z-flap, that path should be
disjoint from Z = Zj , which lead us to a contradiction. Thus, there exists no Z-flap that intersects
all of A1, . . . , Ak so case (ii) is satisfied.

The proof of this lemma is now complete since for any graph and any real number r we either
found a tree that satisfies the first condition or a vertex set that satisfies (ii).

Theorem 3.13. Let h ≥ 1 be an integer, and G be a graph of order n with a haven of order
h3/2n1/2. Then G has a Kh-minor.

Proof. Let G be a graph of order n and β be a haven in G of order h3/2n1/2. We can choose a
vertex set X ⊆ V (G) and a covey C with |C| ≤ h such that

1. X ⊆ ∪C∈CV (C)

2. |X ∩ V (C)| ≤ h1/2n1/2 for each C ∈ C

3. V (C) ∩ β(X) = ∅ for each C ∈ C

4. subject to 1, 2 and 3, |C|+ 3|β(X)|+ |X| is minimum.

Such a set X and covey C exists, since all the above conditions are satisfied for X = C = ∅. Let
C = {C1, . . . , Ck} and suppose, for a contradiction, that k < h. Let also, for 1 ≤ i ≤ k, Ai to
be the set of all vertices v ∈ β(X) adjacent to a vertex in Ci and G′ = G[β(X)]. By applying
Lemma 3.12 to G′ with r = h1/2n1/2 one of the following cases holds.

(i) There exists a tree T in G′ of size at most h1/2n1/2, such that V (T )∩Ai 6= ∅, ∀i ∈ [k]. In this
case we can replace C by C′ = C ∪ {T} and X by X ′ = X ∪ V (T ). Since X ⊆ ∪C∈CV (C), we
have that X ′ ⊆ ∪C∈C′V (C). Moreover, because |V (T )| ≤ h1/2n1/2 and T ∩X = ∅ condition
2 also holds for X ′ and C′. Furthermore, X ′ ⊆ X and |X ′| ≤ h3/2n1/2, so β(X ′) ⊆ β(X).
Moreover, since V (T ) ⊆ X ′, no vertex of T is in β(X ′), so β(X ′) ⊆ β(X) \T . As a result, C′

is a covey and for each C ∈ C′,

V (C) ∩ β(X ′) ⊆ V (C) ∩ (β(X) \ V (T )) = ∅

so condition 3 is also satisfied. Notice that T ⊆ G′ so |β(X ′)| ≤ |β(X)\T | = |β(X)|−|V (T )|,
and that |X ′| ≤ |X ∪ V (T )|, but X ∩ T = ∅, so |X ′| ≤ |X|+ |V (T )|. Thus,

|C′|+ 3|β(X ′)|+ |X ′| ≤ |C|+ 1 + 3|β(X)| − 3|V (T )|+ |X|+ V (T ) ≤ |C|+ 3|β(X)|+ |X|

which contradicts to the minimality of the fourth condition.
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(ii) There exists a vertex set Z ⊆ β(X) of size at most (k−1)|β(X)|
h1/2n1/2 ≤ h1/2n1/2 such that no Z-flap

of G′ intersects all of A1, . . . , Ak. Let Y = X ∪ Z be a vertex set. From condition 2 that
X satisfies, |X| ≤ n1/2h1/2k and because of our assumption that k ≤ h − 1 we have that
|X| ≤ (h − 1)h1/2n1/2. Because |Z| ≤ h1/2n1/2, we have that |Y | ≤ h3/2n1/2. That means
that β(Y ) exists and β(Y ) ⊆ β(X). Since β(Y ) is a Z-flap of G′ there exists an index i ∈ [k]
such that β(Y ) ∩ Ai = ∅. We now extend Ci to be a maximal tree C ′i of G that is disjoint
from β(Y ) and from each Cj , (j 6= i). We also define Z ′ = V (C ′i)∩Z, X ′ = Z ′∪ (X−V (Ci))
and W = V (C ′i) ∪ (V (G)− β(X)). We will show that β(X ′) ∩W = ∅.

Suppose for a contradiction that β(X ′) ∩W 6= ∅. Notice that X ′ ⊆ Y , so β(Y ) ⊆ β(X ′)
and hence there exists a path P that connects W to β(Y ), in G[β(X ′)] (so it is disjoint
from X ′). Due to our assumption that β(X ′) ∩W 6= ∅ and the fact that β(Y ) ⊆ β(X ′),
β(Y ) ∩W = ∅. Hence, there exist two consecutive vertices u, v ∈ P , such that u ∈ W and
v ∈ V (G) \W ⊆ β(X). Since uv ∈ E(G) and v ∈ β(X), u ∈ X ∪ β(X) and because also
u ∈W and P ∩X ′ = ∅,

u ∈ (X ∪ β(X)) ∩ (W \X ′) ⊆ V (C ′i)

Since v 6∈ W , it follows by the maximality of C ′i that v ∈ β(Y ) (else since u ∈ W and
uv ∈ E(G) we can extend C ′i). Moreover, since u ∈ V (C ′i) and u 6∈ β(Y ) we deduce that
u ∈ Y , and as a result

u ∈ Y ∩ (V (C ′i) \X ′) ⊆ V (Ci)

However, by the definition ofAi, v ∈ Ai, which contradicts our assumption thatAi∩β(Y ) = ∅,
so β(X ′) ∩W = ∅.

Hence, β(X ′) ⊆ β(X). Let C′ = (C \ {Ci})∩ {C ′i}, which is a covey (since C ′i is disjoint from
all elements of C \ {Ci}). We observe that

1. X ′ ⊆ ∪(V (C) : C ∈ C′), for Z ′ ⊆ V (C ′i)

2. |X ′ ∩ V (C)| ≤ h1/2n1/2 for each C ∈ C′, if C 6= C ′i then X ′ ∩ V (C) = X ∩ V (C), and
X ′ ∩ V (C ′i) = Z ′

3. V (C) ∩ β(x′) = ∅ for each C ∈ C′ (since β(X ′) ∩W = ∅).

By the minimality stated in 4, the following should hold

|C′|+ 2(|β(X ′)|+ |X ′ ∪ β(X ′)|) ≥ |C|+ 2(|β(X)|+ |X ∪ β(X)|)

However, since |C′| = |C|, β(X ′) ⊆ β(X) ⊆ (X ∪ β(X)) \ (X ∩ V (Ci)), and because X ∩
V (Ci) = ∅, we have that |C|+ 2(|β(X)|+ |X ∪ β(X)|) ≥ |C′|+ 2(|β(X ′)|+ |X ′ ∪ β(X ′)|)⇒
|C| + 2(|β(X)| + |X ∪ β(X)|) = |C′| + 2(|β(X ′)| + |X ′ ∪ β(X ′)|). Hence, C \ {Ci}, X satisfy
the conditions 1, 2, 3 and contradict 4.

Since both cases resulted in a contradiction, k ≥ h. Hence, there exist h vertex disjoint trees such
that any two of them are connected through an edge. By contracting each such a tree to a vertex,
we can conclude that Kh ≤m G as required.

Proposition 3.14. Let h ≥ 1 be an integer and G be a graph of order n with no Kh-minor. Let
also, f : V (G)→ R+ be a cost assignment to the vertices of G. Then there exists a set X ⊆ V (G)
of size at most h3/2n1/2 such that f(F ) ≤ 1

2f(V (G)) for every X-flap F .
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Sketch of Proof. Suppose for a contradiction, that for each set X ⊆ V (G) of size at most h3/2n1/2,
there exists an X-flap F , such that f(F ) > 1

2f(V (G)). Notice that if we define for each X of
that size the function β(X) = F (where F is the vertex set with the properties that we described
before), then β is a haven of order h3/2n1/2 and thus, by Theorem 3.13, G should have Kh as a
minor, which leads to a contradiction.

Note that since the complete graph Kh contains every simple graph of order h as a subgraph,the
above results hold for every H of order h, so the following Theorem is a corollary of them.

Theorem 3.15. Let G, H be graphs of order n and h respectively and f : V (G) → R+ a cost
assignment to the vertices of G. Then exactly one of the following is true:

(i) Either H ≤m G,

(ii) or, there exist a vertex set S ⊆ V (G) of size at most h3/2√n that separates G into two sets
A,B such that f(A) ≤ 2f(V (G))

3 , f(B) ≤ 2f(V (G))
3 .

As we did in the previous section, by assigning the same cost, 1
|V (G)| , to each vertex of a graph

G, we can obtain the following result.

Corollary 3.16. Let G, H be graphs of order n and h respectively. Then exactly one of the
following is true:

(i) Either H ≤m G,

(ii) or, there exist a balanced separator S ⊆ V (G), of size at most h3/2n1/2.

Alon, Seymour and Thomas [AST90a] also provided an algorithm that realizes Corollary 3.16
in time O(h1/2n1/2m) by converting the proofs of Lemma 3.12 and of Theorem 3.13.
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CHAPTER 4
EXPANDERS

4.1 Expanders and Balanced Separators

In this section we will prove what we have previously mentioned, that expanders are graphs that do
not have small balanced separators. This simple yet powerful connection between two central graph
theoretic notions (expanders and separation), usually perceived as belonging to quite different
worlds (extremal graph theory and structural graph theory, respectively) can be quite fruitful and
illuminating.

Proposition 4.1. Let G be an α-edge-expander of order n and S ⊆ V (G) be a balanced separator
of G. Then |S| ≥ αn

3(1+α) .

Proof. Let G be an α-edge-expander of order n and S ⊆ V (G) be a balanced separator that
separates G into the vertex sets A,B. By the definition of a balanced separator of a graph |A|, |B| ≤
2n
3 , and suppose without loss of generality that, |A| ≤ |B|. Since |B| ≤ 2n

3 , A∪B ∪S = V (G) and
A,B, S are pairwise disjoint subsets of V (G),

|A|+ |S| ≥ n

3 (4.1)

Moreover, because |S| is a balanced separator, we have that NG(A) ⊆ S. Now, notice that by the
definition of an α-edge-expander and because |A| ≤ n

2 , we know that |EG(A, Ā)| = |EG(A,S)| ≥
α|A| from which we conclude that

|S| − α|A| ≥ 0⇔
1
α

(|S| − α|A|) ≥ 0⇔
1
α

(|S| − α|A|) + |A|+ |S| ≥ n

3 ⇔

|S|
(

1
α

+ 1
)
≥ n

3 − |A|
(

1− 1
α

)
⇔

|S| ≥
n
3 − |A|

(
1− 1

α

)( 1
α + 1

) ⇔

|S| ≥ αn

3(1 + α)

Notice that the second inequality holds since α > 0 while the third one occurs after adding the
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4.2. EXPANDERS AND EIGENVALUES

inequality (4.1) to the second one. Since S was an arbitrarily chosen balanced separator of G, our
proof is now complete.

The following Proposition shows that the opposite implication is also true, in the sense that
graphs without small balanced separators contain large induced edge-expanders.

Proposition 4.2. Let α > 0 be a constant and G a graph of order n. If all balanced separators of
G are of size at least αn, then G contains an induced

( 3α
2
)
-edge-expander of at least 2n

3 vertices.

Proof. Let G be a graph and α > 0 be a constant as described above. If every vertex subset of
size at most n

2 has edge expansion at least
( 3α

2
)
, then, by the definition of edge expansion, G is an( 3α

2
)
-edge-expander so our proof is complete.

Else, there is a subset V1 ⊆ V (G) of size at most n
2 such that |EG(V1, V̄1)| <

(
3α|V1|

2

)
. Consider

now the graph G1 = G[G \ V1] and observe that since all balanced separators of G have size at
least αn, G1 is connected. If G1 is still not an

( 3α
2
)
-edge-expander we can construct the graph G2

by deleting a subset of it vertices as we did while constructing G1. Consider Z to be the union of
the sets of vertices that are deleted at each iteration. Suppose that kth is the first iteration after
which |Z| ≥ n

3 and let Vk be the set that is deleted from Gk−1 in order to obtain Gk. Due to the
selection of Vk we have that |Vk| ≤ n−|Z\Vk|

2 and |Z \ Vk| < n
3 . Combining these two inequalities,

we have

|Z| ≤ 2n
3 (4.2)

The set NG(Z) forms a balanced separator in G (separating Z and V (G) \ (Z ∪ NG(Z))), hence
its size is at least αn. However, due to inequality (4.2), we have that αn ≥ 3α|Z|

2 , which leads to
a contradiction (because at each iteration we select the set Vi such that NG(Vi) < 3α|Vi|

2 ).
Hence, the removal process stops with |Z| < n

3 and the final graph of this process is a
( 3α

2
)
-

edge-expander on at least 2n
3 as required.

Thus, when aiming to prove results about graphs without sublinear balanced separators, we
can choose instead to operate on expanders.

4.2 Expanders and eigenvalues

There are various matrices that are naturally associated with a graph, such as the adjacency
matrix, the incidence matrix and the Laplacian. One of the main problems of algebraic graph
theory is to determine precisely how or whether, properties of graphs are reflected in the algebraic
properties of such matrices. Hence, apart from balanced separators, another scope from which
we can operate when studying expanders, is the properties of the matrices related to them. In
order to do so, we will need some basic definitions and properties from linear algebra (mainly for
symmetric matrices).

Definition 4.3. The trace of a square matrix A is the sum of its diagonal entries and is denoted
by tr(A).

Definition 4.4. Given a matrix A, a vector x is defined to be an eigenvector of A if and only if
there exists a λ such that Ax = λx. In that case λ is called an eigenvalue of A.

Proposition 4.5. Let A be a square matrix. Then the sum of its eigenvalues is equal to tr(A).

Lemma 4.6. Let A be a symmetric matrix with real entries. If u and v are eigenvectors of A with
different eigenvalues, then u and v are orthogonal.

26



CHAPTER 4. EXPANDERS

Lemma 4.7. The eigenvalues of a real symmetric matrix A are real numbers.

Definition 4.8. Let G be a graph of order n.

• The edge boundary of a set S ⊆ V (G), denoted by ∂S, is ∂S = E(S, S̄).

• The (edge) expansion ratio of G, denoted h(G), is defined as

h(G) = min
{S⊆V (G)||S|≤n

2 }

|∂S|
|S|

Definition 4.9. A sequence of d-regular graphs {Gi}i∈N of size increasing with i, is a family of
expander graphs if there exists ε > 0 such that h(Gi) ≥ ε for all i.

Definition 4.10 (Algebraic definition of expansion). The Adjacency Matrix of an n-vertex, simple
graph G, denoted A = A(G), is an n×n matrix whose (u, v) entry is 1 if uv ∈ E(G) and 0 otherwise.
Notice that since A is a symmetric matrix with integer values, it has n real eigenvalues which we
denote by λ1 ≥ λ2 ≥ · · · ≥ λn. We refer to those eigenvalues as the spectrum of the graph G.

Observation 4.11. If G is a d-regular simple graph, then the eigenvalues of its adjacency matrix
satisfy the equality

∑
i∈[n] λi = 0 (since

∑
i∈[n] λi = tr(A) for any matrix, and G is a simple graph,

so the elements of its diagonal are 0).

As we can see from the following proposition, the spectrum of a graph encodes a lot of infor-
mation about it.

Proposition 4.12. Let G be a d-regular graph of order n and λ1 ≥ λ2 ≥ · · · ≥ λn be its spectrum.
Then,

(i) λ1 = d, and the corresponding eigenvector is v1 = ( 1√
n
, . . . , 1√

n
).

(ii) λ1 = max‖x‖=1 x
TAx = maxx 6=0

xTAx
‖x‖2

(iii) G is connected if and only if λ1 > λ2.

(iv) G is bipartite if and only if λ1 = −λn.

Proof. (i) Let x = (xv)v∈V (G) 6= 0 be an eigenvector corresponding to the largest eigenvalue,λ1,
and xu be the entry of x with maximum absolute value. By the definition of an eigenvector
we have that λ1 · x = A(G) · x, and since A is the adjacency matrix of G, we have that,

λ1xu =
∑

v∈N(u)

xu,

so, due to the selection of xu and the fact that G is d-regular,

|λ1 · xu| =

∣∣∣∣∣∣
∑

v∈N(u)

xv

∣∣∣∣∣∣ ≤
∑

v∈N(u)

|xv| ≤
∑

v∈N(u)

|xu| = d|xu|.

Now, it is easy to verify that d is indeed an eigenvalue of A(G), and that its corresponding
vector is v1 = ( 1√

n
, . . . , 1√

n
), using the fact that G is d-regular.

(ii) Let x ∈ Rn, such that ‖x‖ = 1. If x is an eigenvector of an eigenvalue λ of A then

Ax = λx⇒ xTAx = xTλx⇒ xTAx = λ ≤ λ1
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If x is not an eigenvector of A. Let x1, . . . , xn be the orthonormal basis of the eigenvectors of
A (notice that if two eigenvectors of an adjacency matrix correspond to different eigenvalues,
they are orthogonal to each other). Then there exist k1, . . . , kn ∈ R such that x = k1x1 +
. . .+ knxn, and because ‖x‖ = 1, 1 = ‖x‖2 = k2

1 + . . .+ k2
n. Hence

xTAx = (k1x
T
1 + . . .+ knx

T
n )A(k1x1 + . . .+ knxn) = (4.3)

k2
1λ1 + . . .+ k2

nλn ≤ (k2
1 + . . .+ k2

n)λ1 = λ1

As a result λ1 ≥ max‖x‖=1 x
TAx, and sunce for the corresponding normalized eigenvector of

λ1, x1, λ1 = xT1 Ax1, we have that

λ1 = max
‖x‖=1

xTAx

Moreover if x ∈ Rn, we know that for x′ = x
‖x‖ , {x

′} = 1. Thus

λ1 = max
‖x‖=1

xTAx = max
x∈Rn

xTAx

‖x‖‖x‖

(iii) Suppose that G is a disconnected graph and let C be one of its connected components.
Consider the vectors x = (x1, . . . , xn), where xi = 1 if the corresponding vertex is in C and
0 otherwise and and y = (1, . . . , 1). Notice now that since each connected component of G
is d-regular, d · x = A(G) · x but also d · y = A(G) · y, so λ1 = λ2.

Now, supose that G is a d-regular connected graph and that there exists an eigenvector
that correspond to the eigenvalue d other than, v = ( 1√

n
, . . . , 1√

n
). Let that vector be

x = (x1, . . . , xn), and let also vm be the vertex that corresponds to the largest xm. As we
have seen before, d · xm =

∑
v∈N(vm) xv, and because xi ≤ xm for all i, xi = xm, for all

vi ∈ N(vm). By repeating this, for the vertices that are not neighbors of vm,because G is
connected, we have that xi = xm for all i, which contradicts our assumption that x 6= v.

(iv) (⇒) Let G be a d-regular bipartite graph. Since G is bipartite we can re-index its vertices
such that

A(G) =
[

0 B

BT 0

]

We proved that d is an eigenvalue of A(G) and let v =
[
x

y

]
be its eigenvector. Then we have

[
0 B

BT 0

][
x

y

]
= d

[
x

y

]

and as a result By = dx and BTx = dy. Hence[
0 B

BT 0

][
x

−y

]
=
[
−By
BTx

]
=
[
−dx
dy

]
= −d

[
x

−y

]

So, −d is an eigenvalue of A(G) and its corresponding eigenvector is
[
x

−y

]
.

(⇐)Now suppose that G is a connected graph such that λ1 = −λn. Let also xn be the
eigenvector corresponding to the eigenvalue λn and y be the vector that its ith entry is
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|xn(i)|. We now have,

|λn| = | − d| = |xTnAxn| ≤
∑
i,j

Aij |xn(i)||xn(j)|

=
∑
i,j

Aijy(i)y(j)

= yTAy

≤ λ1

The assumption that λn = −λ1 implies that all the above inequalities are equalities, so y

is an eigenvector corresponding to λ1. Because y ≥ 0 and G is connected (so we know the
eigenvector that corresponds to λ1), we have that y > 0 and as a result xn(i) 6= 0 for all
i ∈ [n].

Since all inequalities are equalities we have
∑
i,j Aij |xn(i)||xn(j)| = |

∑
i,j Aijxn(i)xn(j)|, so

xn(i)xn(j) has the same sign whenever Aij is positive. Since λn = −d = xTnAxn < 0, all of
these products must be negative. This implies that for any vivj ∈ E(G), either xn(i) > 0
and xn(j) < 0, or xn(j) > 0 and xn(i) < 0. This induces the bipartition

V = {i : xn(i) < 0}

W = {i : xn(i) > 0}

which shows that G is bipartite (v1, v2 ∈ W and v1v2 ∈ E(G), imply that xn(1), xn(2) > 0
and xn(1)xn(2) < 0 respectively which is a contradiction).

Given a d-regular graph G of order n, we denote λ = λ(G) = max{|λ2|, |λn|} (that means that
λ is the largest absolute value of an eigenvalue other than λ1 = d). As we will see below, the
graph’s second eigenvalue is closely related to its expansion parameter.

Theorem 4.13. Let G be a d-regular graph with spectrum λ1 ≥ λ2 ≥ · · · ≥ λn. Then

d− λ
2 ≤ h(G) ≤

√
2d(d− λ)

This theorem is due to Cheeger [Che69], and Buser [Bus82] in the continuous case. In the
discrete case, it was proved by Dodziuk [Dod84] and independently by Alon-Milan [AM85], and
by Alon [Alo86]. More concretely we see that d− λ, also known as the Spectral Gap, provides an
estimate on the expansion of a graph. In particular, a d-regular graph has an expansion ratio h(G)
bounded away from zero if and only if its spectral gap is bounded away from zero.

The following lemma shows that a small second eigenvalue in a graph implies that its edges are
“spread out”, a hallmark of random graphs. This useful bound probably appeared in print first by
Alon and Chung [AC88].

Lemma 4.14 (Expander Mixing Lemma). Let G be a d-regular graph of order n and set λ = λ(G).
Then for all S, T ⊆ V (G): ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ√|S||T |
The left-hand side of the above inequality measures the deviation between two quantities: one

is |E(S, T )|, the number of edges between the two sets and the other, the expected number of edges
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between S and T in a random graph of edge density d
n , namely d|S||T |

n . A small λ implies that this
deviation is small, so the graph is nearly random in this sense.

When the spectral gap of G is much smaller than d, the upper and the lower bounds of theo-
rem 4.13 differ substantially. This is expressed through the converse of the expander lemma, which
was proven by Bilu and Linial [BL06].

Lemma 4.15. (Converse of the Expander Mixing Lemma) Let G be a d regular graph and suppose
that there exists a positive number ρ, such that the following inequality holds for every two subsets
S, T , of V (G). ∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ ρ√|S||T |
Then, λ ≤ O(ρ(1 + log(dρ )). This bound is tight.

Although many results occur through the algebraic notion of spectral expansion, in some con-
texts it is more convenient to use the definition of vertex expansion, such as when constructing
expander codes, as Sipser and Spielman did in [SS94]. As one can imagine there is a connection be-
tween these two definitions. This relationship was discovered in a series of works by Alon, Milman
and Tanner ([Alo86] [AM85], [Tan84]), and is expressed through the following two theorems.

Theorem 4.16. Let G be a graph of order n and let, its second largest eigenvalue be λ. Then G

is also a (αn, 1
(1−α)λ2+α )-vertex expander.

Notice that the relationship expressed by this theorem behaves as we would expect, that means,
the smaller the λ, the greater the vertex expansion of the graph. The next theorem gives the
converse relationship.

Theorem 4.17. Let G be a d regular, (1 + α)-vertex expander, of order n. Then, there exists a
real number γ = Ω(α2/d) such that the second largest eigenvalue, λ, of G is equal to (1− γ).

In the next section we will see how through the combinatorial definition of vertex expansion
we can obtain results about minors in expanders.

4.3 Minors in Expanders

Given the prominence of theory of minors it is only natural to expect to see meaningful research
connecting expanding graphs and minors. Indeed, there have been several papers addressing this
subject directly or indirectly. The theorems we are going to see in detail in this section are about
vertex-expanders, were proved by Krivelevich and Sudakov [KS09] and are an extension of results
of Alon, Seymour and Thomas [AST90b], Plotkin, Rao and Smith [PRS94] and of Kleinberg and
Rubinfeld [KR96], who cover basically the case of expansion by a constant factor t = Θ(1). The
main theorem of this section, states that

If G is a (t, α)-expanding graph of order n and t ≥ 10, then G contains a minor with average
degree at least

cα3
√
nt log t√
logn

where c > 0 is some absolute constant independent of α.
The idea of the proof of this theorem is to repeat the following iterative procedure p times. In

the beginning of iteration k + 1 we will have k pairwise disjoint sets of vertices of G, B1, . . . , Bk

30



CHAPTER 4. EXPANDERS

each of size |Bi| = q, such that all induced subgraphs G[Bi] are connected. We will construct a
new subset Bk+1, also of size q, such that the induced subgraph G[Bk+1] is connected and there
are at least αk

8 indices 1 ≤ i ≤ k such that there is an edge from Bi to Bk+1. In the end of this
algorithm if we contract all subsets Bi, and choose the values of p and q carefully, we will obtain
a graph of the desired average degree .The construction and the proof of the properties of the set
Bk+1, will be completed in two stages

Stage 1: We will first prove that there exists a subset X ⊆ V (G)\B such that, every connected
component, Gi, of the resulting graph G′′ = G[V (G) \ (B ∪X)] is a ( t2 ,

α
2 )-expander.

∪ki=1Bi

X

G1 G2

. . .

Gl−1 Gl

Stage 2: Using probabilistic arguments we will show that there exists one connected component
Gj that is connected with at least αk

8 of the sets Bi through an edge.

B1

B2

···

Bαk/8

···

Bk
X

Gj
···

In order to prove the existence of a set X that is described in Stage 1, which will also be useful
for the proof of Proposition 4.24 we will need the following lemmata:

Lemma 4.18. Let G be a (t, α)-expanding graph of order n, and t ≥ 10. Let also, B ⊆ V (G) be
a vertex set of G, of size at most 0.06αn. Then, for the graph G′ = G[V (G) \ B], the following
holds:

∀X ⊆ V (G′) : 2|B|
t
≤ |X| ≤ an

t
⇒ |NG′(X)| ≥ t|X|

2
Proof. Suppose, for contradiction, that,

∃X ⊆ V (G′) : 2|B|
t
≤ |X| ≤ an

t
⇒ |NG′(X)| < t|X|

2
Hence,

|NG(X)| ≤ |NG′(X)|+ |B| < t|X|
2 + |B| ≤ t|X| (4.4)

The first inequality of (4.4) holds due to the fact thatG′ = G\B, the second one as |NG′(X)| < t|X|
2 ,

while the last one comes as a result of the size of |X|. However, since G is (t, α)-expanding and
X is a vertex set of G of size, |X| ≤ αn

t , by the definition of (t, α)-expanders we have that
|NG(X)| ≥ t|X|, which contradicts inequality (4.4).
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Using now Lemma 4.18, we will prove the following.

Lemma 4.19. Let G be a (t, α)-expanding graph of order n, and t ≥ 10. Let also, B ⊆ V (G) be
a vertex set of G, of size at most 0.06αn, and denote by C the vertex set V (G) \B. Then, for the
graph G′ = G[C], the following holds:

∃X ⊆ C
(
|X| < 2|B|

t
∧ ∀Q ⊂ C \X(|Q| ≤ αn

t
⇒ |NG[C\X](Q)| ≥ t|Q|

2 )
)

Proof. During the proof of this lemma we will denote DX = C \X, G′′X = G[DX ]. Suppose, for
contradiction, that

∀X ⊆ C
(
|X| < 2|B|

t
∧ ∃Q ⊆ DX (|Q| ≤ αn

t
⇒ |NG′′

X
(Q)| < t|Q|

2 )
)
. (4.5)

Let X = ∅. From the above assumption, ∃Q∅ ⊆ D∅ : |Q∅| ≤ αn
t ∧ |NG′′∅ (Q∅)| < t|Q∅|

2 . Let Q∅ be
such a maximal set. Since G′ = G′′∅ , we can apply Lemma 4.18 to G′′∅ and deduce that |Q∅| < 2|B|

t

(otherwise, NG′′∅ ≥
t|Q∅|

2 ).
Since (4.5) is true for every subset of C, of size less than 2|B|

t , it will also be true for Q∅. For
the rest of this proof, we will denote the set Q∅ by X̄. Due to the choice of X̄, and because G is
(t, α)-expanding we conclude respectively that

|NG′(X̄)| = |NG′′∅ (X̄)| <
t|X̄|

2 (4.6)

|NG(X̄)| ≥ t|X̄| (4.7)

Let QX̄ ⊆ DX̄ be a vertex set, such that |QX̄ | ≤ αn
t and

|NG′′
X̄

(QX̄)| < t|QX̄ |
2 (4.8)

We now observe that QX̄ 6= ∅, in order for inequality (4.8) to hold, and that X̄,QX̄ are disjoint
subsets of C. Thus, one of the following cases should be true:

(i) |X̄ ∪QX̄ | <
2|B|
t

This case, since QX̄ 6= ∅, contradicts the choice of X̄ as a maximal set with the required
properties.

(ii) 2|B|
t ≤ |X̄ ∪QX̄ | ≤

αn
t

In this case we have that

|NG′′
X̄

(QX̄)|+ |NG′(X̄)| ≥ |NG′(X̄ ∪QX̄)|

≥ t(|X̄|+ |QX̄ |)
2

≥ |NG′(X̄)|+ t|QX̄ |
2

The second inequality is a result of Lemma 4.18, while the third, of the inequality (4.7).
However the fact that |NG′′

X̄
(QX̄)| ≥ t|QX̄ |

2 contradicts the inequality (4.8).

(iii) |X̄ ∪QX̄ | > an
t .

In this case, since |X̄| ≤ 2|B|
t − 1, we have that

αn− 2|B|
t

< |QX̄ | ≤
αn

t
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and because G is (t, α)-expanding, |NG(QX̄)| ≥ t|QX̄ | > αn − 2|B|. Moreover because
|X̄| ≤ 2|B|

t − 1 we know that NG[B](QX̄) ≤ |B| and NG[X̄](QX̄) ≤ 2|B|
t − 1. Observe now

that NG′′
X̄

(QX̄) = NG(QX̄)−NG[B](QX̄)−NG[X̄](QX̄) and |B| ≤ 0.06an so

NG′′
X̄

(QX̄) ≥ αn− 2|B|+ 1− |B| − 2|B|
t

+ 1 ≥ αn− 0.18αn− 0.12αn
t

+ 2

= 0.82αn− 0.12
t

+ 2 ≥ 0.82αn ≥ αn

2 ≥
t|QX̄ |

2
which contradicts inequality (4.8)

Since all three possible cases resulted to a contradiction, X̄ is a vertex set of size at most 2|B|
t that

does not satisfy the relationship (4.5) so we obtain the desired contradiction and the proof of this
lemma is now complete.

Lemma 4.20. Let G be a (t, α)-expanding graph of order n, and t ≥ 10. Let also, B ⊆ V (G) be
a vertex set of G, of size at most 0.06αn, and denote by C the vertex set V (G) \ B. Then there
exists a vertex set X ⊆ C, such that every connected component of G′′ = G[C \X] has size at least
αn
2 .

Proof. We will show that the vertex sets X that satisfy Lemma 4.19 also satisfy this lemma. Let
X be such a vertex set and denote by D the set C \ X and by G′′ the induced subgraph G[D].
Let also, v be an arbitrary vertex of G′′, and V1 its connected component. Denote by Yi the set of
vertices in V1, in distance at most i from v. Obviously Yi ⊆ Yi+1. Also from Lemma 4.19 we have
that |Y1| = |NG′′(v)| ≥ t

2 . We will now repeat the following procedure until we find an index j for
which |Yj | ≥ αn

2 .

1. We set Z = Y1.

2. If |Z| ≤ αn
t we notice that from Lemma 4.19, and because t ≥ 10

|Yj+1| ≥
t|Z|

2 > |Yj |

and we repeat this step for Z = Yj+1.

3. If |Z| ≥ αn
t , we terminate the procedure.

This procedure will terminate since each time we repeat step 2 we increase the size of Z. Moreover,
once we reach step 3, from Proposition 2.1, we can repeatedly remove as many vertices as needed
from G[Z] in order to obtain a connected subgraph of V1, H, of size exactly αn

t . Now, from
Lemma 4.19, we have that

|N(H)| ≥ t|H|
2 ⇒ |N(H)| ≥ αn

2
Since v is arbitrary, and because we will eventually reach step 2, every component of G′′ has size
at least αn

2 .

Now we are ready to use these lemmata to prove the following theorem:

Theorem 4.21. Let G be a (t, α)-expanding graph of order n and let t ≥ 10. Then G contains a
minor with average degree at least

cα3
√
nt log t√
logn

where c > 0 is some absolute constant independent of α.
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Proof. Let

p = α2

100

√
nt log t√
logn

, q = 6
α

√
n logn√
t log t

Consider being in the k+ 1 iteration, hence we already have constructed the k subsets of V (G)
with the properties that are described above. Denote

B =
k⋃
i=1

Bi and b = |B|

Since k is at most p, b = kq ≤ pq = 0.06αn. We will denote C = V (G) \ B and by G′ the
induced graph G[C]. Hence, we can apply Lemma 4.18, to G, B, and have as a result that
∀X ⊆ C : 2b

t ≤ |X| ≤
an
t ⇒ |NG′(X)| ≥ t|X|

2 .
Now, let X be a subset of C that satisfies Lemma 4.19, which we have proved that also satisfies

Lemma 4.20. For the rest of this proof we will denote D = C \X and by G′′ the induced subgraph
G[D]. We will also denote the connected components of G′′ by G1, . . . , Gl, where l ≤ 2

α due to
Lemma 4.20.

Let Gk be a connected component of G′′, and Y ⊆ V (Gk) : |Y | ≤ α|V (Gk)|
t . Obviously |Y | ≤ αn

t ,
since V (Gk) ≤ n, so from Lemma 4.19 we have that |NG′′(Y )| = |NGk

(Y )| ≥ t|Y |
2 . Since α

2 ≤ 1
and Gk is arbitrary, each connected component of G′′ is ( t2 ,

α
2 )-expanding. From Lemma 2.20 we

have that

diam(Gi) ≤
7 logn
α log t , 1 ≤ i ≤ l (4.9)

We will now proceed into proving the second stage of this proof.

Claim i. There exists an index i, such that there are at least r = k
2l sets Bj, each having at least

t|Bj |
2l neighbors in Gi.

Proof of Claim i. Suppose that for every Gi there exist at most r− 1 sets Bj , which have at least
t|Bj |

2l neighbors in it. Thus, there exist k − l k2l = k
2 sets Bj , each having at most l t|Bj |

2l = tq
2

neighbors in G′′ =
⋃l
i=1Gi (since each has at most tq

2l neighbors in each Gi). We know that each
Bj is of size q, and that they are pairwise disjoint, so the union of these k

2 sets, B′, has size kq
2 = b

2 .
Now, considering the size of B′ we will examine the following cases:

(i) If |B′| ≤ αn
t , since G is a (t, α)-expanding graph

|NG(B′)| ≥ t|B′| = tb

2 (4.10)

Moreover, due to the above assumption, B′ has at most k
2
tq
2 = tb

4 neighbors in G′′. So the
rest tb

4 neighbors of B′ in G must be in X ∪B. However,

|X ∪B| = |X|+ |B| ≤ 2b
t
− 1 + b <

2b
t

+ b = b(2 + t)
t

We also observe that for t ≥ 10, b(2+t)
t < tb

4 , because (t − 2)2 − 12 > 0 ⇒ t2 − 4t − 8 >

0 ⇒ 2+t
t < t

4 and b > 0. So B′ can not have tb
4 neighbors in X ∪ B, which contradicts

inequality (4.10).

(ii) If |B′| ≥ αn
t , we can select bαntq c subsets of B′, Bj , whose union has size at most αn

t (this is
possible since αn

tq ≤
k
2 in this case). Because G is (t, α)-expanding, it has at least tb

2 neighbors
in G, which lead us to a contradiction, using the same argument as in the first case.
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Due to Claim i, without loss of generality, we suppose that each of B1, . . . , Br has at least tq
2l

neighbors inside G1. Denote these sets of neighbors by U1, . . . , Ur, respectively.
Pick uniformly at random with repetition |G1|

tq
2l

vertices of G1 and denote this set by W . Let also,
Ω be the set of all the possible sets W after the end of the selection that is described above and
define the random variables

A(W ) := #{i ∈ [r] : Ui ∩W 6= ∅}

Ai(W ) :=

0, if W ∩ Ui = ∅

1, if W ∩ Ui 6= ∅

Claim ii. E[A] > r
2

Proof of Claim ii. First, we will prove that

P[W ∩ Ui = ∅] ≤
(

1− |Ui|
|G1|

)|W |
≤ 1
e
.

Let v ∈ G1 be a vertex uniformly at random selected. Notice that the probability that v /∈ Ui is
equal to |G1|−|Ui|

|G1| = 1 − |Ui|
G1

, so for every Ui , P[W ∩ Ui = ∅] =
(

1− |Ui|
|G1|

)|W |
. Moreover, since

|Ui| ≥ tq
2l and |W | = |G1|

tq
2l

we have that

(1− |Ui|
|G1|

)|W | ≤ (1−
tq
2l
|G1|

)|W | = (1− 1
|W |

)|W | ≤ 1
e

We also know that E[A] = E [
∑r
i=1Ai] =

∑r
i=1 E[Ai] and

E[Ai] =
∑
W⊆G1

Ai(W )P[W ] =
∑

W⊆V (G1)
W∩Ui 6=∅

P[W ] = P[W ∩ Ui 6= ∅] ≥ 1− 1
e

so, E[A] ≥ r
(
1− 1

e

)
> r

2 .

Due to Claim ii there is a set W , such that
r∑

Ui∩W 6=∅
i=1

1 ≥ r

2 ≥
k

4l ≥
αk

8 (4.11)

with the last inequality being true because l ≤ 2
α . Let w0 be a vertex of W and Pw0 be a collection

of paths that realize the distance from w0 to any other vertex of W . We now have

|V (Pw0)| ≤ 7|W | logn
a log t = 14l|G1| logn

tqa log t ≤ 7ln logn
tq log t

= 7αl
√
n logn

6
√
t log t

≤ 14
√
n logn

6
√
t log t

< q

The above inequalities hold due to equation (4.9), |W | = 2l|G1|
tq , |G1| ≥ αn

2 , q = 6
α

√
n logn√
t log t

and

l ≤ 2
α respectively. Obviously the induced graph G[Pw0 ] is connected. By adding in Pw0 as much

vertices with their corresponding edges, as needed, we can obtain a connected subgraph of G1, of
size q, which contains W . We denote this set by Bk+1 and due to equation (4.11) we have that
this set is connected with at least αk

8 sets Bi, 1 ≤ i ≤ k.
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After p repetitions of this procedure, and by the contraction of the sets B1, . . . , Bp we obtain the
vertices b1, . . . , bp respectively, each of a degree at least α(i−1)

8 . We denote the induced graph of
these vertices by Gm and we notice that the average degree of this graph is

d(Gm) =
∑p
i=1 deg(bi)

p
≥
∑p
i=1

2α(i−1)
8

p
= α

4p

p∑
i=0

i

= α

4p
p(p− 1)

2 = α(p− 1)
8

= α

8

(
α2

100

√
nt log t√
logn

− 1
)

which completes the proof of Theorem 4.21.

Corollary 4.22. Let G be a (t, α)-expanding graph of order n, and let t ≥ 10. Then G has a
clique of size

cα3
√
nt log t
logn

as a minor, where c is an absolute constant, independent of α.

Proof. Let G be a (t, α)-expanding graph of order n, and also let t ≥ 10. Due to Theorems 4.21
and 2.13 we deduce that G has a clique of size

Ω

 cα3
√
nt log t√
logn√

log cα3
√
nt log t√
logn


as a minor. Notice that t ≤ n, α ≤ 1 and c ≤ 1 so

c1

 cα3
√
nt log t√
logn√

log cα3
√
nt log t√
logn

 ≥ c1

cα3
√
nt log t

√
logn

√
log c

√
n2 logn√

logn


≥ c1

(
cα3

√
nt log t√

logn
√

logn

)
≥ c1

(
cα3
√
nt log t
logn

)

Lemma 4.23. Let G be a (t, α)-expanding graph of order n and A ⊆ V (G) a subset of size at
most αn

8 . Then G′ = G[V (G) \A] has a connected component of size at least αn
4

Proof. Let G′ be a graph as described above and suppose that all of its connected components
have size at most αn

4 . Then, by taking the union of some of those components we obtain a subset
of V (G), A′ such that αn

4 ≤ |A
′| ≤ αn

2 . Since A′ is a union of connected components of G′,
N(A′)∩G′ = ∅, so the neighbors of A′ is only inside the set A. However from Proposition 2.19 we
have that NG(A′) ≥ αn

2 , which contradicts to the size of A.

Proposition 4.24. Let G be a (t, α)-expanding graph of order n and t ≥ 10. Then G contains a
clique minor of size

Ω
(
α2

√
n log t
logn

)
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Proof. Let G be a (t, α)-expanding graph of order n, and

p = α

100

√
n log t
logn , q =

√
n logn
log t

We will now construct p pairwise disjoint subsets of V (G), B1, . . . , Bp each of size q, such that,
the induced subgraphs G[Bi] are connected, doing the following procedure:

1. Choose B1 to be an arbitrary subset of V (G) such that the induced subgraph G[B1] is
connected and |B1| = q.

2. In order to choose the sets Bi, 2 ≤ i ≤ p, we denote A =
⋃i−1
l=1 Bl. Since pq = αn

100 , we have
|A| ≤ αn

8 . Due to Lemma 4.23, there is a connected component of G[V (G) \ A], Gj , of size
at least αn

4 . Now, due to Proposition 2.1, we can choose Bi to be the set of vertices of a
connected subgraph of Gj , such that |Bi| = q.

Denote B′ =
⋃p
i=1Bi and let B′′ be a subset of V (G) of size at most |B

′|
10 , such that B′ ∩B′′ = ∅.

Also denote B = B′ ∪B′′.
Using the same arguments as in the proof of Theorem 4.21 and the fact that t ≥ 10, we can prove
that

∃X ⊆ V (G) \B, |X| ≤ 5|B|
t
≤ |B|2 :

• The graph G′ = G[V (G) \ (X ∪ B)] is ( t2 , α)-expanding, with at most l = 2
α connected

components G1, . . . , Gl, each of diameter at most 7 logn
α log t .

• There exists a connected component Gi, 1 ≤ i ≤ l such that at least p
2l ≥

αp
4 sets Bj have

neighbors in it.

We will now select B′′ in a way that it contains vertices of pairwise disjoint paths (that are not in
B′), each of them connecting a different pair of the sets Bj ,1 ≤ j ≤ p we have already constructed.
We will prove that, through this selection we can find αp

4 sets Bj that are pairwise connected by
disjoint paths. Notice that, if two sets Bi, Bj are connected through a path P , then |P | ≤ 7 logn

α log t +2,
since they should either be connected through one edge, or through a connected component Gi,
which, as we mentioned above, has diameter at most 7 logn

α log t . Also(
p

2

)
7 logn
α log t ≤ p2

2 =
(
p

2

)
7 logn
α log t = α2

104
n log t
logn

7 logn
α log t

= 7αn
104 ≤

αn

103 = pq

10 = |B
′|

10 (4.12)

so even if all sets in B′ were pairwise connected, the size of B′′ would still be at most |B
′|

10 (because
the endpoints of each path will obviously be in B′).
Consider now the following iterative procedure, which, in each iteration, adds in B′′, the vertices
of a path that connects two sets on B′ who were not connected before:

1. Let G′ be the graph that is constructed, using B, as described above. Then there exists a
connected component Gi which has neighbors in at least αp

4 of the sets in B′.

2. If those αp
4 sets are already pairwise connected, stop this procedure.

3. Else, there exists a pair Bl, Bk of them that is not connected through a path in B′′. Since
both have neighbors in Gi, and Gi is connected, we can find a path P , through Gi that
connects them. Select this path to be a minimal one, so it has at most 7 logn

α log t vertices in Gi.
Add these vertices to B′′ and repeat step 1.
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The above procedure will be repeated at most
(
p
2
)

times, so due to equation (4.12) there will always
be a component Gi with the required properties in G′, in order to add a path in B′′.
After the end of this procedure, we will have αp

4 sets Bj that are pairwise connected through
pairwise disjoint paths. The contraction of these sets and of the corresponding paths results in a
clique of size αp

4 = 1
400α

2
√

n log t
logn , which completes our proof.

One other well-known result in this area, due to Kawarbayashi and Reed [KR10b], shows
that every α-expander G with n vertices and maximum vertex degree bounded by d contains a
clique with Ω(α

√
n
d ) vertices as a minor. Recently, Krivelevich and Nenadov [KN18] improved the

dependence on the expansion α and the maximum vertex degree d under a somewhat stronger
definition of expansion.
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CHAPTER 5
CONCLUSION

In this thesis we proved in detail some basic theorems on balanced separators, and how they are
connected to expanding graphs. Moreover, we provided a brief introduction on spectral graph
theory, that is, how the eigenvalues of a graph are connected to its expansion. We also stated the
Expander mixing lemma and a correlation between the algebraic and the combinatorial definition
of expansion. As far as the substructures in expanding graphs is concerned we studied in detail
the minors one can find in them.

Finding large minors in expanders has been studied by several researchers, with the most recent
result being that of Chuzhoy and Nimavat [CN19], who proved the following, which also achieves
a tight dependence on n: There exists a universal constant c, such that every α-expander, G, of
order n and maximum degree at most d, contains every graph with at most n

c logn ·
(
α
d

)c vertices
and edges as a minor. They also provided a randomized algorithm with time poly(n, d/α) that
realizes this theorem.
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Normale Supérieure, volume 15, pages 213–230, 1982.

41



BIBLIOGRAPHY

[Che69] Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings
of the Princeton conference in honor of Professor S. Bochner, 1969.

[CN19] Julia Chuzhoy and Rachit Nimavat. Large minors in expanders. arXiv preprint
arXiv:1901.09349, 2019.

[Die12] Reinhard Diestel. Graph theory, volume 173 of Graduate texts in mathematics. Springer,
Heidelberg New York, 4 edition, 2012.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM (JACM),
54(3):12, 2007.

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain
random walks. Transactions of the American Mathematical Society, 284(2):787–794,
1984.

[FK02] Uriel Feige and Robert Krauthgamer. A polylogarithmic approximation of the minimum
bisection. SIAM Journal on Computing, 31(4):1090–1118, 2002.

[FKN00] Uriel Feige, Robert Krauthgamer, and Kobbi Nissim. Approximating the minimum
bisection size. 2000.

[FM82] Charles M. Fiduccia and Robert M. Mattheyses. A linear-time heuristic for improving
network partitions. In 19th Design Automation Conference, pages 175–181. IEEE, 1982.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators.
Journal of Computer and System Sciences, 22(3):407–420, 1981.

[GHT84] John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for
graphs of bounded genus. Journal of Algorithms, 5(3):391–407, 1984.

[GR01] Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Graduate texts
in mathematics. Springer, 2001.
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