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ABSTRACT

Bilattices are algebraic structures, stemming from the research on knowledge repre-
sentation and non-monotonic reasoning; they comprise a set equipped with two lattice
orders, one modelling degree of truth and one modelling amount of information. Galois
connections are very useful throughout mathematics, providing a unifying abstraction
for various correspondences between ordered sets, and being in close correspondence
with closure operators. We introduce notions of Galois biconnections, intended to be
the bilattice analogue of classical Galois connections between lattices.

The first distinction we make is between bidirectional and unidirectional Galois
biconnections. A bidirectional Galois biconnection is a (compatible) pair of Galois
connections between the truth orderings and the knowledge orderings of bilattices,
while a unidirectional Galois biconnection is actually a Galois connection equipped
with extra properties that seek to capture the bilattice structure. A further distinction is
between regular Galois biconnections, which induce order-isomorphic images of the
maps, strong Galois biconnections, which furnish bilattice-isomorphic images.

We investigate all four species of Galois biconnections on pre-bilattices and on bi-
lattices with negation and conflation. We examine both the survival of elegant proper-
ties of Galois connections (composability, invertibility, preservation of joins and meets,
etc.) and the preservation of interesting bilattice properties (distributivity, boundedness,
interlacing) for the images of the bilattices under the Galois biconnection. Finally, we
discuss the naturally emerging biclosure operators on bilattices and hint on the gener-
alisation of these concepts to sets equipped with more than two lattices.






XYNOYH

Ta dumAéypara (bilattices) sivar alyePpikég Sopég mpoepydueves amd To medio TG avo-
TOPACTAONG YVAOONS KOl TNG U1 LOVOTOVIKNG AOYIKNG OTOTEAOVVTOL 0td €vVoL GOVOAO
gpodlaopévo e dvo miéypata (lattices), 6mov to éva povtedonotel To Padud ainbeiag
Kot o 60 TEPO TNV TOocOTNTA TANpoPopiag. Otaviictoryieg Galois eivot TOAD yprioULES
OTO LOBNUOTIKG, SLOTL OTOTEAOVV iol EVOTOIMNTIKY 0PAipEST) S1APOP®V AVTIGTOL(LOV
peta&y datetaypévev cuvolmv, Kabmg Kat dt0Tt oxeTilovtal 6TEVE e TOVG TEAEOTES
KAELOTOTNTOC. Z€ 0T TNV EPYACia, ELGAYOVUE KATOLES évvoles dt-avtiotoridv Galois,
TOV QITOGKOTOVV GTO VO ATOTEAEGOVY TO OVGAOYO T®V avticToldv Galois yio SumAéy-
pota.

H mpdn d1dxpion mwov kdvoule ivar avapeca oe dravtiotoryieg Galois povig kot
dutAng korevBuvvong. OtduavtioTotyieg SutAng katevBuvong amotehobvot amd Eva (gd-
v0G (cvpfatdv peta&y Toug) aviistoymv Galois avipesa otic dtatdéelg aAndetog Kot
TANPOoeopiag, VA Ol dlavTioToryieg Lovig KatevBuvong ivor avtiototyieg Galois epo-
SL0OEVEG e EMMTALOV 1IOTNTEG TTOV EMLYELPOVY VO, GVALABOLVY TN SITAEYLLOTIKT doun.
Mia mepartépm d1akpion yivetar peta&d ocuvinfov Kot ioyvpdv dtavtictoydv Galois:
OTIC TPADTEG, Ol GLUVAPTHGELS TOV TOIPVOLV PEPOG £XOVV IGOUOPPEG EIKOVES MG OTA-
Eelg, evd oTIG deVTEPEG OL EIKOVES £lval IGOLOPQOA SUTAEYLOTOL.

E&etdlovpe 1o técoepa €idn davtiotoyudv Galois mov tpoxdnTov and Tig Tapa-
TAV® S10TOUNGELS, TOCO GE SIMAEYLATO [LE TEAEOTEG ApyNoNG OGO Kol og ALy oTa
KOPIG TETO10VGC TEAEGTEG. ALEPEVVODLE TV YEVIKEVGIUOTNTO TOV KOUY®V 1310THTOV
TV avtiotoyudv Galois (cLVOEGOTNTA, AVTIGTPEYIOTNTA, SLOTIHPTON VO Kot KAT®
PPAYHATOV KAT), KAOMG KOl TNV CUUTEPLPOPA TOV EIKOVOV OGOV APOPA EVOLOPEPOL-
6€G 1010 TEG TOV dMmheypdtov. TEAOG, avaPEPOLOOTE GTOVG OVTIGTOLYOVG TEAECTES
KAELGTOTNTOG TOV TPOKVTTOVV OO TIG SLOVTIOTOLYIEG KOl KAVOLE ol vOEN TOL TMG Ot
£€VVOLEG TTOV TTOPOVGIALOVIE HITOPOVV VO YEVIKELTOVV GE GUVOAD, EQOSIOGUEVD LIE TTE-
pLocdTEPES 0o 600 daThEELC.
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CHAPTER 1

INTRODUCTION AND NOTATION

1.1 Introduction

Bilattices were introduced in the '80s by M. Ginsberg with a view to problems of
default inference in Al [27]. Technically, bilattices are sets equipped with two lat-
tice orderings aimed to model simultaneously the validity of, and degree of knowledge
about, sentences from a logical language. Following their introduction, bilattices have
found applications in diverse fields and have been studied from different perspectives.
Within Computer Science, they have been used for the semantics of Logic Program-
ming [21, 23, [l]]. In Artificial Intelligence, they have been used to model situations in
which information has a hierarchical (‘prioritized’) structure (default bilattices, [27]),
as a tool for paraconsistent reasoning [2, 5, 4] and as a framework for multi-valued
logics (see for instance [4, 36]). Within Philosophical Logic, bilattices are treated as
a natural framework for generalizing Kleene's three-valued logic furnishing a tool for
investigations on the ‘theory of truth’ [20, 22, 24]. Finally, more recently, the alge-
braic theory of bilattices [28, [L(] and their duality theory [32, 29, (12, [13, 14] have been
thoroughly investigated.

In this thesis, we aim to contribute to the algebraic study of bilattices from an en-
tirely different perspective: that of Galeis connections, a simple, useful, and ubiqui-
tous concept in algebra, logic, and, as a matter of fact, in all mathematics; a concept
that ‘you will discover it hidden away in almost every corner of our subject, if you keep
your eyes open’ ([8, p. 38]). Technically, a Galois Connection (abbreviation GC) is a
pair of opposite order-preserving (or order-reversing, depending on the tradition fol-
lowed) mappings between partially ordered structures (we will only consider lattices).
The orderings in the two opposite ‘universes’ are preserved when using the mappings
to pass from the one structure to the other and, moreover, this ‘back-and-forth’ process
becomes stationary when iterated. Algebraists and category theorists know that there
is a certain advantage in such an ‘adjoint setting’: information about objects and rela-
tionships in one structure is used to obtain information in the other structure (and vice
versa). The canonical example is that of classical Galois theory, where properties of
permutation groups are used to study field extensions. Logicians frequently refer to the
W. Lawvere ‘syntax-semantics’ adjoint maps between the set of all logical ‘theories’
(sets of sentences of a logical language L) and the class of all structures interpreting L:
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the ‘semantics functor’ maps a set of sentences to its class of structures and the ‘syntax
functor’ maps a class of structures to the set os sentences validated in every structure;
this gives rise to a sub-ordering of theories closed under logical consequence, isomor-
phically mapped to the corresponding class of structures (see [38] for an exposition).

Within Universal Algebra, GCs can also be seen as a simple and general method
for producing closure and interior operators: the composition of the two Galois adjoints
provides a closure operator and an interior operator—or two closure operators for the
order reversing version [§, Sect. 2.5]. On the applications side, it is worth mention-
ing the field of Formal Concept Analysis (FCA, [26]), which is an application of GCs
to Knowledge Representation. This whole field arises from G. Birkhoff's ‘polarities
as Galois connections’ construction which provides a GC between power sets based
on a relation between the ground sets; actually, every GC between power sets can be
constructed from an underlying relation between sets. Starting from such a relation
between objects and their attributes, FCA is an important application of applied lattice
theory and GCs to conceptual data analysis and knowledge processing (see also [|16,
Chapters 3 & 7]).

Clearly, GCs constitute a useful and ubiquitous algebraic concept. Here, we exam-
ine its extension in the classes of pre-bilattices and bilattices. Our aim is to develop a
theory of Galois (bi)connections between pre-bilattices and bilattices with negation and
conflation, focusing on non-trivial notions of such adjoint situations that retain elegant
properties of the classical setting, in particular composability, invertibility, and image
isomorphism. In addition, we aim to investigate the preservation of structural bilat-
tice properties, like boundedness, interlacing, and distributivity, when passing from a
pair of bilattices to a pair of isomorphic images under the Galois biconnection adjoint
iteration.

The rest of the thesis is structured as follows: In Section we introduce some
general concepts and notation. In Sections R.1|, 2.2 and 2.3 we review the background
on lattices, Galois connections, and bilattices respectively, establishing notation and
terminology. Chapter [ contains our results: in Section B.1| we briefly set the stage by
considering the technical desiderata, in Section we explore Galois biconnections
between pre-bilattices, and in Section 3.3 we proceed to define some additional notions
of Galois biconnections for the general case of bilattices with negation and conflation.
It is quite customary to see applications of bilattices equipped only with negation and
thus we devote Section B.4 to this subclass. In Section B.J we discuss the naturally
emerging biclosure operators and in Section B.§ we hint on the extension of these no-
tions to sets with more than two embedded lattices. We conclude in Chapter f with a
short discussion. In Appendix [A] we present some failed definitions of Galois biconnec-
tions, in hope that they will serve as a hint of the intricacies of defining such a notion on
sets with multiple orders, while Appendix B contains a few remarks on a ‘monstrous’
(in the Lakatosian sense) yet interesting class of bilattices we came upon while working
for this thesis.

1.2 Notation

Notation. Tuples (and pairs) will be denoted using parentheses, e.g. (z1, 22, x3). The
subset relation will be denoted with C, while the symbol C will be reserved for proper
subsets.

Notation. 1f A is a set (we will usually use capital letters for sets), the identity function
on A will be denoted id 4, i.e. Vo € A :ida(z) =2. If f: A— Bandg: B — C are

2
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functions, ¢ f is their composition. If f: A — B and h: A — B are functions and R
is a binary relation (usually equality or order), f R hiff Vo € A : f(x) R h(z). The
image of the function f: A — B will be denoted by f(A).

Definition 1.1. A function f: A; — As is called
(a) an injection iff V1,29 € Ay @ f(21) = f(22) = 21 = 22,
(b) asurjection iff Vy € A3z € Ay : f(z) = v,
(c) a bijection iff it is an injection and a surjection.

If f is abijection, its inverse is the (unique) function f~': Ay — A; suchthat f~!(y) =
z iff f(z) = .

We use some terminology form Universal Algebra (see [8, |L1]) and related fields,
although slightly simplified.

Definition 1.2.

* A signature is a family (0;);c of (function or relation) symbols, each equipped
with a non-negative integer, its arity.

* A structure A over a signature ¥ is a non-empty set A (called the carrier set or
universe) equipped with a family ( f;);cr of operations, that is functions from A™
to A, and relations, that is subsets of A™, matching the symbols of 3J; the number
of arguments each f; can take (which for operations can be 0, in which case f;
is a constant of A) is called its rank and must be equal to the arity of the corre-
sponding symbol (so, abusing notation, we may use the notions of rank and arity
interchangeably). A reduct of a structure is a structure with the same universe
but with some operations or relations omitted (i.e. with a smaller signature).

* An algebra or algebraic structure is a structure with no relation symbols. If
() # B C A and the image each operator f; of A (of arity n;) when restricted to
B is a subset of B, then B forms a subalgebra of A.

Notation. As above, we will use calligraphic script for (algebraic) structures. We use
the notation |.A| or—when there will be no misunderstanding—plainly A for the carrier
set of A.

Definition 1.3. Let 4, B be structures with a common (and with the same arity n)
operator F' or relation R. A function f: A — B is said to preserve or respect F
iff f(F(z1,...,20)) = F(f(z1),..., f(zy,)), while F preserves or respects R iff
(1,...,2n) € R (f(x1),..., f(zn)) € R.

Definition 1.4. Let A;, A5 be structures with the same signatures and let f: A; —

Ay, f is a homomorphism iff it respects all operators and relations of A4;. f is an
isomorphism iff it is a bijection and a homomorphism.

Notation. When an operator (or relation) is shared by more than one structure, we will
use the structure (or its carrier set) as a subscript of the operator for disambiguation,
e.g. [ |4 or, for operators in display mode,

|:|.

Usually, the subscript will be omitted since the intended structure will be clear from
context.



CHAPTER 2

LLATTICES, GALOIS CONNECTIONS, BILATTICES

2.1 Orders and lattices

2.1.1 Partial orders

Definition 2.1. A binary relation < on a set P is called a preorder iff it is
* reflexive, i.e. forallz € P,z < z,
* transitive, i.e. forallz,y,z € P,z Syandy < z implies z < z,

A binary relation < on a set P is called a partial order iff it is a preorder and it is
also antisymmetric, i.e. forall z,y € P,z < y and y < x implies z = y.

Notation. x < y stands for z < y and = # y.

Notation. x || y (x is incomparable to y) iff neither z < y nory < x.
Definition 2.2. If Py, P, are (partial) orders, f: P, — P is called
* monotone or order-preserving or covariant iff x <y = f(x) < f(y),
* antitone or order-reversing or contravariant iff v <y = f(y) < f(z).

Remark 2.3. Every partial order homomorphism 4 is an injection, since

< h(zg) 1 <o
= = X1 = T2.
< h(z1) T2 < I

h(.]?l) = h(J?Q) =
Definition 2.4. If P = (P, <) is a partial order, Q C P, and x € P, then
* x is an upper bound of Q iff Vy € Q 1 y < z,
» xis a lower bound of Q iffVy € Q : x < y,

* x is the least upper bound or supremum or join of () (notation UQ) iff z is an
upper bound of @ and for all upper bounds z of Q, x < z,
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*» x is the greatest lower bound or infimum or meet of () (notation M@Q)) iff x is a
lower bound of @ and for all lower bounds z of @, z < =z,

* x is the maximum element of Q) iff x € ) and x is an upper bound of (),
* x is the minimum element of Q) iff x € @) and x is a lower bound of @,
» xisamaximal elementof Q iffr € Qand Ay € Q : x < v,

» x is a minimal element of Q iffz € Q and Ay € Q : y < z.

Observe that if < is a partial order (or even a preorder), then so is <ol {(y,z) |(z,
y) € < }. This gives rise to a duality: each time we establish something for <, we also
establish it for <°°. So, statements regarding maxima and/or upper bounds, such as
Remark 2.3, have dual versions regarding minima and lower bounds. Moreover, we
could have defined dual notions based on each other (for example, = is maximal in Q)
w.r.t. <iff z is minimal in @ w.r.t <),

Notation. Meets and joins of two elements will usually be written in infix notation; i.e.
def
zMNy = n{z,y} (same for LJ).

Observe than, when viewed as a binary operator, 1 (and L) is of course commuta-
tive, associative, and idempotent, in the sense of Remark P.11.

Remark 2.5. Let P be a partial order and Q C P. If z € @, then « is the maximum
(dually minimum) element of @ iff x is the supremum (dually infimum) of Q.

Proof. We shall present the proof for upper bounds; the one for lower bounds is dual.
(<) Ofcourse, if x is the supremum of (), it is an upper bound.

(=) Lety be an upper bound of Q). Since z € Q, z < y; z is also an upper bound of
@, so it is its supremum.

O

Notation. Let x <! y (x is an immediate predecessor of y) iff x < y and there is no z
such thatz < z < y.

Notation (Drawing partial orders). Partial orders can be drawn as follows:
(a) Each element is represented by a dot.
(b) If z <! y, the dots of x and y are connected by a line.

(c) Lines are not horizontal. The element at the lowest end of the line is smaller with
respect to the order.

Some examples are drawn in Figure R.1. Observe that reversing an order is equivalent
to turning the drawing upside down.
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$23%e!

(a) This partial order is a (b) This partial order is (c) This partial order is not (d) The finite to-

lattice. not a lattice, since it has a lattice, since a pair of el- tal order 4.
two maximal elements. ements has two minimal
upper bounds.

Figure 2.1: Some examples of partially ordered sets.

2.1.2 Lattices

Definition 2.6. A partial order £ = (L, <) is called a lattice iff each pair of elements
of L has a infimum and a supremum. A lattice £ = (L, <) is called

* bounded iff L has maximum (notation: T) and a minimum (notation: L),
* complete iff each (finite and infinite) subset of L has a infimum and a supremum,
o distributive iff Ve, y,z € L:zMN(yUz) = (zNy) U (M 2).

If £ = (L,<) is a lattice and P C L, then P = (P, <) is a sublattice of L iff P is a
lattice and meets and joins of P coincide with meets and joins of £. As expected, L
is (L, <°P).

Remark 2.7. Any finite lattice is complete, since, by associativity, a finite set has a
supremum (dually infimum) if each pair of its elements has a supremum (dually infi-
mum). Moreover, any complete lattice is bounded.

Lemma 2.8. Let £ = (L, <) be a lattice and w, z,y, z € L.
(@) fxr<yandw < z,thenzNMw <yMzandz Uw <yl z.
b)) zLyiffzNy=ziffcUy =y.

Proof.

(a) Letz < yand w < z. By definition, s NMw <z <y <yUzandzMNMw < w <
z < y Uz, so (by transitivity) 2 M w is a lower bound of { y, z } and y U z is an
upper bound of { z,w }; hence, r Mw < yMzandz Uw <y U z.

(b) Now letx < y. Then, by the property we just proved and reflexivity, z = zMz <
y Mz = x My; by definition, z My < z, so the antisymmetric property gives
x = x My. The inverse is a direct consequence of the definition of meet. The
property of L is dual.

O
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Example?2.9. Total orders, i.e. partial orders where every two elements are comparable,
are (trivially) lattices, by Lemma R.§. They are trivially distributive.

Lemma 2.10. Each finite total order is unique up to isomorphism.

Proof. Let A and B be finite total orders with the same number of elements n. Let ay
be the minimum element of A (there is one, by transitivity, finiteness, and totality), ao
be the minimum element of A\ { a; }, a3 be the minimum element of A\ { a1, as } etc,
sowe end up witha; < as < az, < ... < a,; do the same for Bto getb; < by < by <
... < by. Define f: A — Bas f(a;) = b;. Itis obvious that f is an isomorphism. [J

Notation. Since each finite total order is unique up to isomorphism, we can denote it
with a special symbol; we will use the number of its elements in bold typeface. For
example, 4 is the finite total order of four elements.

Remark 2.11. There are two very similar ways to study lattices: the order-theoretic,
where a lattice is viewed as a set equipped with a partial order as in the definition above,
and the algebraic, where a lattice is a set equipped with two binary operators (meet and
join) with a list of properties:

xMN(yNz)=(xNy)Nz xU(yUz)=(zUy)Uz (associativity)
rNy=yfx rUy=ylUzx (commutativity)
r=zxMNx r=xlUx (idempotency)
x=zM(zUy) x=zU(xMNy) (absorption)

The two ways are closely linked, since (a) for a partial order as in Definition .4 the
operators 1 and Ll have the algebraic properties of a lattice and (b) the last property of
Lemma P.§ allows one to define a partial order given M and LI (for a detailed treatment,
see [IL6, p. 39—41]). However, the two signatures are not totally interchangeable.
Indeed, consider the lattices £1 and £, of Figure andlet f: L1 — Lo with

Fila) = {b1 ifz € {ay,aq2,as3,a4}

b2 ifx e {a57a6,a77a8}

Since f; is not an injection, it is not an order-homomorphism, but it is trivial to see that

foreachxl, To € Ll, f1($1ﬂ.]32) = f1($1)|_|f1($2) and f1 (xll_lxg) = fl(ail)ufl(l‘g).
However, consider L3 and £, of Figure and let fo: Ly — L4 with

bs ifx=a
Polwy=4"
by ifx=a4i#4

It is obvious that for all x1,xo € Ls, it holds that fo(z1) < fo(z2) & 1 < 9, but

fa(az Uaz) # fa(as) U fa(az).

Lemma 2.12. Consider £ = (L, <, %), where (L, <) is a lattice and x* is a binary
operator on L such that forall z,y € L, * xx = x and z < y = *y < *xx. Then, for
any PC L,xMP=UxPand*«xUP =T"xP.

Proof. Letx € P. Then NP < x, so «xx < x 1 P; hence, % ' P is an upper bound of
*xP, so
Ux P<x%xMnP.
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as
a7 Qg
bg b5
[
as
ay aq b4
as as as as b3 ba
[}
ay b a by
(a) L1 (b) L2 (©) L3 (d) L4

Figure 2.2: The lattices of Remark R.11].

Now let xx € xP. Then, xz < Ux* P, so *x L *P < xxx = x; hence, * LU*P is a lower
bound of P, so *x LU xP < MP and

*xMNMP<UxP.

Hence, « M P = LU * P. Dually, * U P = * P. O

2.2 Galois connections and closure operators

The notion of Galois connection is an important and ubiquitous concept in mathemat-
ics. It originated from Galois theory which provides a prime example of a GC between
the intermediate fields of a Galois extension and the subgroups of the corresponding
Galois group. The modern view of GCs is primarily attributed to G. Birkhoff's ‘po-
larities’ [9] and O. Ore's ‘Galois connexions’ [33]; the interested reader can obtain a
detailed review of the origins and history of GCs in M. Erné's chapter [[19] from the col-
lective work [[17] which gives a detailed treatment of the topic, its emergence in various
areas of mathematics and its applications in various disciplines. For a succint technical
coverage, the reader is referred to [|L8, B1].

GCs are usually defined as correspondences between partially ordered sets; they can
be even defined as a correspondence between pre-ordered sets if one is willing to sac-
rifice some of their properties. In this thesis, we confine ourselves to GCs between lat-
tices. A GC is given by two opposite order-preserving maps, whose composition yields
a closure operator and an interior operator. Another tradition prefers order-reversing
maps (which give rise to two closure operators) and the literature seems to be equally
divided between the two [[16, p. 156]; we follow the order-preserving one.

2.2.1 Galois connections

Definition 2.13. Assume lattices £1 = (L1, <) and Lo = (L2, <) and a pair of maps
(f: L1 = La,g: Ly — Lq). The pair (f, g) is called a Galois connection (abbrevia-

8
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tion GC) or residuated pair between L1 and Lo iff forall x € Ly, y € Lo,

flx) <y & z<g(y).

Note. This kind of relationship between f and g is formulated in Category Theory as
adjunction. For this reason, order-preserving GCs are also called Galois adjunctions.
Hence, f is the lower adjoint of g and g is the upper adjoint of f.

It follows trivially that in case ¢ is an isomorphism between £; and Lo, then (¢,
¢~ ') is a GC between £; and L.

The following proposition collects many important properties of GCs. One of the
most important is property [a), which gives rise to yet another duality; for each property
below, we state both its dual forms, so the duality will become clear by reading on.
Another very important property is [j), stating that the images of the two functions
(which, by property [}, comprise the stable elements of the connection) are isomorphic.

Proposition 2.14 (Properties of Galois Connections). Let (f, g) be a GC between £
and L.

(@) (g, f) is a GC between L3" and L7".

(b) f and g are monotone.

(©) fgf = f,g9fg = g (cancellation).

(d) Ve € Ly :x < gf(x); Vy € L2 : fg(y) < v.

e VreLi:xeg(ls)eax=gf(x);Yye€ Ly:y€ f(L1) < y= fg(y). For
this reason, elements of f(L;) and g(Ls) are referred to as the stable elements
of L and Lo (under the GC at hand).

(f) f is an injection iff g is a surjection iff Va € L, : gf(z) = x;
g is an injection iff f is a surjection iff Vy € Lo : fg(y) = v.

(g) f and g uniquely determine one another; in fact,

gw) =| x| f(x) <y},

@) =[Hylz <o) -
(h) f preserves LI (of finite and infinite sets);
g preserves 1 (of finite and infinite sets).

(1) g(Ls)and f(Lq) (with the orders inherited from £ and £5) are lattices, although
they may not necessarily be sublattices of £; and Lo; in particular, if P C g(Ls)
and Q C f(L1) (and, if P or Q) is infinite, provided its meet, join, consensus and

gullibility exist),
L] P=gr( P, [1P=[]P

9(L2) g(L2)
[1 @=re( @, ] e=]]e

f(L1) f(Ly1)
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(G) f(L1) = g(Ls); in fact, (the restrictions of) f and g are inverse isomorphisms
between f(L1) and g(Ls).

(k) Ifone of L1, Lo is complete, so are both g(Ls) and f(L).
(1) If £ is bounded, then

e T g g(LQ),
* f(L1) is bounded by f(L) and f(T).

If L5 is bounded, then

e 1 € f(Ll),
* g(L2) is bounded by g(L) and g(T).

Proof.
(a) Forally € Lo,z € L1, g(y) >z e 1 < g(y) & flz) <y <y > flz).

(b) We will show monotonicity for f; monotonicity of g is shown similarly. For
T1,x9 € Ly with 21 < z9, we have

fx2) < f(x2) = 22 < gf(w2) = 21 < gf (w2) = f(21) < f(22).

(c) We will show the first property; the proof of the second is similar. Forallz € Ly,
gf(az) )S 9f(x) = fgf(x) < f(x)and f(z) < f(z) = = < gf(x) = fz) <
faf(x).

(d) Forallz € Ly, f(z) < f(x) = x < gf(x). Forally € Lo, g(y) < g(y) =
fg(y) < y. These, along with properties [b) and [c) imply that gf is a closure
operator and fg is an interior operator.

(e) We will show the property for g(L2); the proof for f(L;) is similar.
(<) Obviously, if x = gf(z), then x € g(La).
(=) = €g(La) = x=g(y) = 9f9(y) = 9/ (z)

(f) We will show the property for the first pack of equivalences; the proof for the
second is similar.

(i) = (ii) Letxz € L;. Then f(z) = fgf(x) and, since f is an injection, x = gf(x).
Hence, g(L2) = L;.

(if) = (iii) Let x € L;. Since g is a surjection, = ¢(y), so
v <g(y) = fl@)<y=gf(z) <gy) ==

Property [d] implies = = gf(z).
(iii) = (i) Forall z1,xe € L1, f(z1) = f(x2) = gf(z1) = 9f(z2) = 11 = 1.

(g) Letg': Ly — Ly with (£, ¢') a GC between £ and Lo. Then forall y € Lo,

gly)=x =2 <g(y) = flz) <y=g(y) =2 < g (y),
g =2"=2"<gy) = fla') <y=4'(y) =2 <gly),

10
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so g’ = g. Similarly, for any f’ such that (f’, g) is a GC between £ and Lo, it
follows that f/ = f.

Moreover, consider some y € Lg. Since f(z) < y = = < g(y), g(y) is an
upper bound of X = {x € L1 | f(z) <y }. Now let ¢’ be another upper bound
of X; since fg(y) <, g(y) € X,s0g(y) <y'. Hence, g(y) =| | X. Similarly
for f.

(h) Let P C L;. Since f is monotone, f(| | P) is an upper bound of f(P). Let y be
an upper bound of f(P); then, for all f(z) € f(P), f(z) < y (and = < g(y)),
so g(y) is an upper bound of P. Of course, | | P < g(y), so f(| | P) < y. Hence,
FUP) =L f(P). Similarly, for every Q € Lo, g(['1Q) = [19(Q).

(1) Of course, gf(| | P) € g(Ls) is an upper bound of P (since gf > idy,). Let
z € g(L2) be an upper bound of P. Since z is also an upper bound of P in L4,

[1P < zs0gf([1P) < gf(2) =z Hence, gf (LI P) = Lz, P-

For [, r,) P =[P, it suffices to show that [ | P € g(L2). Indeed, for all z €
P[P <z,50gf([1P) < gf(x) =z forallz € P, hence gf([1P) <[P
and, since [ |P < gf([|P),weget[|P = gf([]P).

Dually, we obtain the equations for f(L;). Since meets and joins are well-defined
for all (finite) subsets, f(L1) and g(L2) are lattices.

() Let fo: g(L2) — f(L1) be the restriction of f to g(L2) and go: f(L1) — g(L2)
be the restriction of g to f(Ls). Foreach y € f(L1), y = fg(y), so fo is onto
f(Ly); similarly, go is onto g(Ls). Since f is monotone, so is fo; in addition,

if fg(y1)) < fa(y2)), then g(y1) = gfg(y1)) < 9f9(y2)) = g(y2), so fo is
an order homomorphism. Similarly, g¢ is an order homomorphism. Partial order

homomorphisms are one-to-one. Hence, both fy and gg are order (and lattice)
isomorphisms. By property [d), they are inverse to each other.

(k) Without loss of generality, suppose £; is complete. By property [i), g(Lo) is
complete; since f(L) and g(Ls) are isomorphic, f(L1) is also complete.

(1) We will prove the statement for £;. The one for £, is proved dually.

Let T be the top element and L be the bottom element of L. Since T < gf(T),
T = gf(T),so T € g(L2). Moreover, the monotonicity of f implies that
f(L1) is bounded with f(L) < f(z) < f(T) forall € Ly (and of course
f(L), f(T) € f(L1), so they are the infimum and supremum respectively).

O
The following easy lemma can serve as an alternative definition of GCs.

Lemma 2.15 (Characterisation of Galois connections). (f, g) is a GC between £, and
Lo iff

(a) f and g are monotone,

() Vae Ly :x < gf(a),

(c) Yy € La: fg(y) <.
Proof.

11
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(=) Properties 2.14/[b) and R.14{d].

() Vo € L1,y € Loy : f(z) <k vy = gf () <k 9(y) = = <k g(y) = f(z) <k
fa(y) = f(z) <k y,s0 f(z) <k y &z <k g(y).

O

The following results state an important property (composability) of GCs and a
necessary and sufficient condition for the existence of a lower adjoint, given a function
f for the upper adjoint.

Proposition 2.16 (Composability of Galois connections). Let (f, g) be a GC between
L1 and Lo and (f’, g') be a GC between L5 and L3. Then (f'f, gg') is a GC between
L1 and Ls.

Proof. Ve € L1,z € Ly : 2 < g¢'(2) & f(z) < ¢'(2) & f' f(x) < z O

Proposition 2.17. Let £, and L5 be lattices and f: L1y — Ls. Then, there exists
g: Lo — Lj such that (f, g) is a GC between £, and Lo iff

(a) f preserves L

(b) foreveryy € Lo, | [{ x| f(z) <k y } exists.
Proof.

(=) Properties 2.14/[(h] and R.14{g].

(<) Letg(y) = | {z]| f(x) <k y }; g is a function since joins are unique. Since f
preserves L, f is monotone. g is also monotone, since y; < yo implies

{elf(@) <kyy S{z]f(2) <cy2}

Forzo € By, gf(wo) = [ {#|f(z) <« f(x0) }; since f(zo) < f(x0), w0 <
9f(wo). Foryo € Ba, fg(yo) = f(L{x[f(z) <k yo}); since f respects L,
f9(yo) = L f(2) | f(x) <k yo }, so, by the properties of V, fg(y0) < yo. The
characterisation of GCs implies that (f, g) is a GC.

O

Corollary 2.18. If £; is complete, all that f needs in order to be part of a GC is to
preserve L.

Definition 2.19. If (f,g) is a GC between £; and Lo, then 1,22 € L; are called
gf-equivalent if g f (x1) = gf(x2). Each equivalence class is called a level of L.
Levels of Ly are defined dually, as fg-equivalence classes.

Remark 2.20. By property R.14{c), each level of L; contains an element of g(B5); by
property .14 [e), this element is unique. So, naturally, each level will be represented
by the element of g(Bz) it contains.

Remark 2.21 (Drawing Galois connections). An elegant way to picture GCs is given
by Melton et al.:

12
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The subsets g(Ls) € L; and f(Lq1) C Lo are isomorphic skeletons with
the levels attached as ‘blossoms’ to the ‘buds’ on the skeletons. The blos-
soms in L; grow downwards; in Lo they grow upwards. The partial order-
ing within the levels is consistent with the ordering of the skeletons. ([31,
p. 303], notation adapted)

Hence, one can draw a GC as follows: (a) the representatives of levels are drawn as
filled circles, (b) the other elements are drawn as empty circles, (c) optionally, levels
are drawn as closed curves, starting on their representative and containing their elements
in their interior.

We do not give examples of drawing GCs here. Figures B.3 and B.4 can serve as
such examples, if we only consider the <j order.
Example 2.22 (‘Minimum’ Galois connections). Consider the bounded lattices £, and
Lo.

(a) Itis easy to check that the functions f: L1 — Lo, g: Lo — Lq, where f(z) = L
forallz € Ly and g(y) = T forall y € Ly, form a GC between the two lattices.

(b) Now pick z¢ € L1, yo € Lo. The functions f: Ly — Lo, g: Lo — L1, where

1 ifz <z T ify >y
flz) = . 9(y) = :
yo otherwise xo otherwise

form a GC between the two lattices. Indeed, if x < =z, then for all y € Lo,
f(@) = L < yand, since in any case 0 < g(y), f(x) < y & = < g(y)
trivially; if ¢ > g, then f(z) <y <y <y<gly) =T > .

(C) Pick aq,b1 € Ly witha; Mby = L and as LUby = T. Then,

1 ife=_1 T ify=T

ay ifl<zx<a ap ifas <y<T
f(x) = . g(y) = .

by fl<a<i by ifb <y<T

T  otherwise 1 otherwise

form a GC between £, and L. Indeed, by definition, x < gf(x) and fg(y) <y

follow trivially. Moreover, let z; < x5 in Lq; then,

« if f(x2) = T, obviously f(z1) < f(x2),

. 1ff<.’1?2) =ag,then L < x5 < ay,s0 L <z <aqand f((L‘l) < aog,
(z2) = bo, then L < xg < by,s0 L < x1 < by, hence f(z1) < ba,
(w2)

® lff To) =
= 1,thenzy = 1,s021 = L and f(z1) = L,

. if f(as

so f is monotone and, dually, g is monotone. By the characterisation of GCs, f
and g form a GC.

2.2.2 Residuated lattices

It is worth digressing a bit to introduce a very interesting structure which naturally gives
rise to some GCs.

13



CHAPTER 2. LATTICES, GALOIS CONNECTIONS, BILATTICES

Definition 2.23. A residuated lattice is an algebra £ = (L,M,L,-,\,/), such that
(L£,M, ) is a lattice, - is associative on L, and for all a, b, c € L,

a-b<ceb<a\cesa<c/b
That is, (fa, ga) and (fs, g), where

fa(z) =a =, 9a(y) = a\y, fo(z) =2 b, a(y) =y /b,

are GCs (hence the name ‘residuated lattice’; remember that GCs are also called ‘resid-
uated pairs’). As a consequence, - is monotone with respect to both its arguments, \
is monotone with respect to its second argument, and / is monotone with respect to its
first argument.

2.2.3 Closure operators

Closure and interior operators are encountered in algebra, topology, and logic. Here,
we are interested in the former ‘species’ which is closely related to GCs.

Definition 2.24. Given a lattice £ = (L, <), a function C: L — L is called a closure
operator (abbreviation CO) (resp. interior operator; abbreviation 10) on L iff for every
€L,

(a) x < C(x) (extensive) (resp. C(z) < x (intensive)),
(b) x < yimplies C(x) < C(y) (isotone or monotone),
(c) CC(x) = C(x) (idempotent).

The following proposition explains the intimate relationship between GCs and COs and
the next one provides a characterization of COs via the closed elements of £ [[1€].

Proposition 2.25. If (f, g) is a GC between £, and L, gf isa CO on £ and fg is
an IO on L. Conversely, if C is a CO on L, then (C,idy,), where idy, is the identity
function on L, is a GC between £ and C(L).

Proof.
(=) Properties R.14/[b), 2.14.(c), and 2.14.(d).
(<) Forallz € L,y = ¢(z) € ¢(L),

cx) <y=zr<y=z<id(y) = c(z) < c(id(y)) = cc(z) = c(z) = y.

O

Proposition 2.26. If C (resp. 1) is a closure (resp. interior) operator on L, then C(z) =
[HyeCl)|z <y} (esp. I(z) = [ {y e (L) |y <z}

Proof. c(x) is a lower bound of X = {y € ¢(L)|z < y}, since forall y € X,
x <y = c(z) <cly) =y. Moreover, c(z) € X, since < ¢(z) and ¢(z) € c(L).
Hence, ¢(z) =[] X. O

14
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2.2.4 Galois connections between lattices with some form of nega-
tion

In this subsection, we prove some useful facts about GCs between lattices equipped
with a sort of negation: a unary operation satisfying certain properties. The results will
be useful in Section B.1] and Appendix [A], but they may carry an independent interest.

Lemma 2.27. Consider (L1, <, ) and (Lg, <, %), where

* L1 =(L1,<)and Ly = (Ly, <) are lattices,

+ each * is a unary operator such that x < y = *y < *x.
If

* (f,g)is a GC between £ and Lo,

* f, g respect x,
then (L1, <,*) = (Lo, <, %), with isomorphism f and g = f~!.
Proof. From property .14(d), forall = € L;, z < gf(z) and *z < gf(*x). From the
defining property of *, we get

xgf(z) < *x < gf (xx)

and, since f and g respect * and < is a partial order, gf(xx) = *gf(z) = *x. Prop-
erty R.14/(e] implies that = € g(L). Hence, L, = g(Ly). Similarly, Ly = f(L,); by
property R.14[i), £1 = L, with isomorphism f and g its inverse. Since f and g respect
%, (L1, <, %) = (Lg, <, *) with isomorphism f and g = f~!. O

Lemma 2.28. Consider (L1, M, L, %) and (Lo, M, U, *), where

* Ly = (L1,M,U) and Ly = (Lo, M, L) are lattices,

» cach * is a unary operator such that «(z Ll y) = %z M xy and % *x z = x.
If

* (f,g)is a GC between L1 and Lo,

* f(B1), g(Bs2) are isomorphic subsets of (L, M, L, *) and (L, M, LI, %),

then g(L2) is a substructure of (L1, M, U, %) (i.e. g(L2) is closed with respect to M, LI,
and x); of course, the dual holds for f(L1).

Proof. Letx € g(L2) andy = f(z) € f(Ly). Since z € g(L2) and (f, g) is a GC,
x = gf(z) = g(y). Since g is an isomorphism and y € f(L1), g(*y) = *g(y) = *x,
so xx € g(L2).

Now consider 21,2 € g(Lo). Property R.14.(i] implies that g(L5) is closed with
respect to M and f(L;) is closed with respect to L. Thus, 21 M xzo € g(L2); since
xx1,*T2 € g(L2), and g, being an isomorphism, respects * for elements of f(L1), it
follows that:

x1 Uy = *(xxy Mxao) = *(xgf(x1) Mg f(z2))
= g(x(xf(z1) Mxf(22))) € g(L2).

15
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The following lemma provides a sufficient condition for a GC to respect a covariant
negation (that is, an operator akin to conflation in the truth order of bilattices): it only
has to respect it in the function images.

Lemma 2.29. Consider (L1, <,x) and (L2, <, %), where
* L1 =(L1,<)and Ly = (Ly, <) are lattices,
* each x is a unary operator such that x < y = xz < xy.
If
* (f,g)is a GC between £ and Lo,
e f,grespect xin g(Ls) and f(Lq),
then f, g respect *.
Proof. By property R.14.[g],
|zl f@) <y} =] [{xx|fl@) <y} =| [{=]fO2) <y},
LI{elf@) <y} =] J{z]+f(=) <y},
=+[ Nylz<gw)}=[ {xlz<gw)} =] fylz < g6},
[Nylxe<gw)}=[vlz <)}

For all z € Ly, since x < gf(x), it follows that xz < *gf(z). By hypothesis,
*xx < g(xf(x)),soxf(x) € {y|*x < g(y) } and, since f(*x) is a lower bound of this
set,

9y
g(xy

LI?

9(y)
)=
()
)

*il?

fOx) < %f(x). *)

For all y € Lo, since fg(y) < y, it follows that «fg(y) < xy. From inequality ()
above, we get f(xg(y)) < *y, so xg(y) € {z| f(x) < %y }; since g(xy) is an upper
bound of this set, xg(y) < g(*y).

Now consider € L; such that xf(z) < y. Inequality (f) implies that f(xz) < y,
so{z|xf(z) <y} C{z|f(*xr) < y}; hence, g(xy) < *g(y). The antisymmetric
property of < gives

9(xy) = x9(y).
Hence, forallxz € L1, {y|z < g(xy) } = {y|z < xg(y) }, so f(xx) = xf(z).
O

2.3 Bilattices

We will review the basic definitions and facts about bilattices, mainly for establishing
notation and terminology. The interested reader is referred to M. Fitting's survey [25]
and O. Arieli's tutorial [3]. Bilattices are sets equipped with two lattice orders, <; and
<k, along with some ‘compatibility’ requirements which ‘bind’ the two structures to-
gether. The connotation embodied in the orderings is that t denotes the ‘degree of truth’
and k denotes the ‘degree of knowledge’. There is no entrenched terminology in the
bilattice literature but usually the term ‘bilattice’ denotes a structure with a negation op-
eration. Structures with two orders and no negation operation are called pre-bilattices;
according to [B4, p. 8], this approach is becoming standard.
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2.3.1 Pre-bilattices

Definition 2.30. B = (B, <, <) is called a pre-bilattice iff (B, <) and (B, <) are
lattices; it is bounded iff both lattices are bounded; it is complete iff both lattices are
complete.

There is no general agreement on the definition of pre-bilattices. Some authors
require the underlying lattices to be bounded ([29]), others require them to be complete
([27, 4, B]), and in many cases no restriction is given ([IL0, 28]).

Moreover, pre-bilattices are usually required to have at least two incomparable el-
ements in each of their orders; we have not included this requirement in the definition
of pre-bilattices, but we have done so for bilattices; when needed, we will differentiate
between trivial and non-trivial pre-bilattices: non-trivial pre-bilattices have the said
property, will trivial pre-bilattices may not.

<\ is called the truth order; its meet and join will be denoted by A and V respec-
tively. <y is called the knowledge order; its meet and join of <y will be denoted by ®
(consensus) and @ (gullibility) respectively. When they exist, the top and bottom ele-
ments of <; will be denoted by t and £ respectively, while those of <y will be denoted
by T and L respectively.

Observe that the definition of a pre-bilattice is symmetric: if we swap the two lat-
tices, we also get a bilattice. This gives rise to one more duality, so each time we have
proven a statement on bilattices we can swap <, A, V with <y, ®, & (respectively) and
vice-versa to get another statement ‘for free’. This duality can be combined with the
duality of each of the two orders, so we have a ‘prove one , get four’ situation. We will
see some examples below.

Definition 2.31. Two pre-bilattices B; = (By, <, <k), B2 = (Ba, <, <) are called
isomorphic iff there exists a bijection ¢: By — By such that z <; y < ¢(z) <; ¢(y)
and z <y y & o(x) <k o(y).

What makes a (pre)-bilattice different from a pair of lattices is the connection be-
tween the lattices that comprise it; in general, two kinds of connections have been stud-
ied: connections that bind the two lattices with algebraic properties and connections
that arise from the usage of one or more involution operators.

Definition 2.32. Let B = (B, <, <y) be a pre-bilattice. B is interlaced iff for all
w,T,y,2 € B,

(@ z<;yandw <; zimply (z @ w) <, (y ® z) and (z ® w) <, (y & 2),
(b) = < yand w <y z imply (x A w) <k (y A z)and (z V w) < (y V 2).
B is distributive iff for all +,- € { A, V,®,® } and z,y, z € B,
r+(y-2)=(@+y) (z+2)
Proposition 2.33. Every distributive pre-bilattice is interlaced.
Proof. Leta; <; as and b; < by. Then, by distributivity,
a1 ®by = (a1 ANag) @ (by Aby)

= (a1 ®b1) A (a1 ®ba) A (ag ® b1) A (az @ ba) (2.1)
<t az ® by

Duality within <y gives us a; & b; <; as @ bs. By bilattice duality, a; <y as and
bl Sk b2 1mphes ay N\ b1 Sk as N\ bg and ay V b1 Sk as V b2. O]
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Proposition 2.34. In a bounded interlaced pre-bilattice,

(2)
(b)

Proof.

(a)

(b)

tRf=1,tef=T, TVL=t, TAL=TF,

for each element x of the pre-bilattice

and dually
f<r<le <ot (%)
T<rteot<ar < T ®.2"
e Tef<ae<s T &3

t < tand £ <, L, so interlacing gives t ® £ < L; dually (inversion of <),

1 < f®t. Hence, t ® £ = L. By duality within <;, wegett ®f = T.
Bilattice duality gives the two remaining equations.

Let 1 < x <; t. Of course, 1L <y =z, so it is enough to prove that x <y t.
Trivially, z <x « @ t and L <y t, so by interlacing z V L <, tV (z @ t).
Since 1 <; z, it holds that x V L = x; since t is the maximum element of <,
tV (x@®t)=t. Hence,

LSz <it= L < <kt

Although we could use duality to infer the opposite direction, we present the dual
proof. Let 1 <y x <y t. Of course, x <; t, so it is enough to prove that | <; x.
Trivially, L <; tand z A L <, z, so by interlacing L ® (z A L) <; t ® x.
Since x < t, it holds that t ® x = x; since _L is the minimum element of <y,
1 ® (z A L) = L. Hence,

L<r<site LS <kt

and we have established (2.2). () is the dual version of (2.2) obtained by

reversing <, while () is the dual version of (2.2) obtained by reversing <y;
finally, ) is the dual version of (R.2) obtained by swapping the two lattices.

O

Notation. In pre-bilattices, we write z || y iff x ||; y and z ||k y.

2.3.2 Bilattices

Definition 2.35. A unary operator — on a pre-bilattice B is called a negation iff for all
z,y €8],

@ <y ey <,

(b) z <y & —x <y -y,

(c) =z =ux.

18
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A<k T <k A<,

Hh
o

L St 1 < L <t

(a) FOUR = 232 is the sim- (b) The pre-bilattice SZX = (c) DEFAULT is a non-
plest bilattice. It has both con- 2 ® 3 is distributive with nei- interlaced bilattice. It has

flation and negation. ther conflation nor negation. negation but no conflation.
A<, T <k . < B
pf pt
£ t | v | .
daf dt
€L S; 1 < <

(d) The distributive bilattice (¢) The distributive bilattice (f) TWENTY — FIVE =
NINE =2 3®3hasbothcon- STXTEEN = 44 hasboth 5 @ 5 is distributive and has
flation and negation. conflation and negation. both conflation and negation.

Figure 2.3: Some of the most common (pre-)bilattices.

The operation of conflation (denoted —) is defined dually (swapping <; and <y). A
non-trivial pre-bilattice with a negation (and maybe also a conflation) operator is called
bilattice.

In the literature, bilattices are often defined over complete pre-bilattices; we have
not made this assumption for the sake of generality.

Definition 2.36. In a bilattice with negation and conflation, if -~— = ——, we say that
negation and conflation commute and the bilattice is called commutative.

Definition 2.37. Two bilattices By = (B1, <, <k, ), B2 = (B2, <, <k, —) are called
isomorphic iff there exists a bijection ¢: By — By such that z <, y < ¢(z) <, é(y),
T <y y & d(z) <k ¢(y), and ¢(~z) = —¢(x).

We will use the symbol 2 for all kinds of isomorphisms (bilattice, pre-bilattice). In
general, the intended kind will be the one of the signature we are considering; in cases
that confusion could arise, we will give a clarification.

Definition 2.38. If B = (B, <, <y, ) (resp. B = (B, <, <k, -, —)) is a bilattice and
C # () is a subset of B, then C = (C, <, <, ) (resp. C = (C, <, <k,—,—)) is a
sub-bilattice of B iff C' is closed with respect to — (resp. and also closed with respect
to —) and (C, <y), (C, <) are sublattices of (B, <), (B, <) respectively.
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The notions of interlaced, distributive, and complete pre-bilattices extend to bilat-
tices.

Remark 2.39. Any sub-bilattice of a complete (interlaced, distributive) (pre)-bilattice
is complete (interlaced, distributive).

Proof. Suppose B is complete and C is a sub-bilattice of 5.

* For each P C C, its meet, join, consensus, and gullibility in C' are those of B,
which exist, so C is complete.

e Let a,b,c,d € C witha <, candb <, dand - € {®,&}; then,a ¢ b =
a-b<ic-d=c-cd;similarly, ifa <, cand b <¢ d and - € { A,V }, then
a-cb=a-b<gc-d=c-cd. Hence,C is interlaced.

e Leta,b,ce Cand -, 4+ € {A,V,®, P }; it holds that
a-cb+cc)=a-(b+c)=(a-b)+(a-¢c)=(a-cb)+c (a-cc),
so C is distributive.
O

Notation. 1f B is a (pre-)bilattice, B is B where <, is reversed, B°P is B where <y is
reversed, and B° is B where both <; and < are reversed.

In bilattices, negation corresponds to mirroring in the direction of <;. This is why
bilattices like FOUR, SIXTEEN, TWENTY — FIVE, and DEFAULT have
negation while SZX does not, something that becomes clear when drawing them (see

Figure 2.3).

Remark 2.40. If B is a bilattice with negation, — is an isomorphism between 5 and

BoP..

Proof. Forallz € B, x = ——x, so — is a surjection.
Forallz,y € B, -~ = -y = x = ——x = ——y = y, s0 — is an injection.
By definition, x <; y < -2 >y ~yand z < y & —x <y .
- respects — trivially. O

Of course, dually, conflation corresponds to mirroring in the direction of <;. Ob-
serve DEFAULT (Figure R.3d), whose symmetry grants it with a negation but not
with a conflation.

2.3.3 Product and residuated bilattices

Definition 2.41. Let £, = (L1,<), L3 = (Lo, <) be lattices. Define the product
bilattice L1 ® Lo = (L1 x Lo, <, <), where

(a1,b1) <t (ag,b2) g%féh < agand by < by,

(a1,b1) < (agz,bs) & 4y <ayand by < by

If £1 = L5, we can define a negation for the product bilattice:
—(a,b) & (b, a).
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Moreover, if £1 = Lo = L has a de Morgan complement, i.e. an operator - such that
z==xandz < y = y < T, we can add a conflation to the product bilattice, as follows:

—(a,b) = (b,a).

Corollary 2.42. In a product bilattice,
(a1,b1) A (az,b2) = ( )
(a1,b1) V (az,bs) = (a1 Uag, by Mby)
(a1,b1) ® (az,be) = (a1 Mag, by Mby)
(a1,b1) @ (az,b2) = (a1 Uag, by Uby)

aq |_|a2,b1 |_|b2

Theorem 2.43 ([[7, Theorem 3.3]). Every bounded interlaced bilattice is isomorphic to
a product bilattice.

Corollary 2.44. The number of elements of any finite interlaced bilattice is not prime.

Proposition 2.45 ([[/, Proposition 3.7]). Every (complete, distributive) bounded inter-
laced bilattice with negation is isomorphic to a product of some (complete, distributive)
lattice with itself.

Corollary 2.46. The number of elements of any finite interlaced bilattice with negation
is a perfect square.

Intuitively, a product bilattice £; ® L2 encodes the evidence for (£;) and against
(L2) a proposition. [3|, p. 11-14] and [23, Sections 2.2, 3.1]) contain more information
and examples on product bilattices.

When the underlying lattice is residuated (Definition .23)), the product bilattice has
some extra properties.

Definition 2.47. Given a residuated lattice £ = (L,M,L,,\, /), one can algebraically
construct a residuated bilattice

B=LOL=(LXLAV,Q @ % ,—)
as follows:
e (LxL,A,V,®,®, ) is the product bilattice (L,M, 1) ® (L,M,L).
* Fora = (al,ag),b = (bl,bg) €L xL,
(a1,a2) — (b1,b2) = ((a1 \ b1) M (az / b2), b2 - a1)
a$b=-a—-b
axb=-(b——a)
Corollary 2.48. The definitions of these operators and the construction of residuated
lattices imply [28, Proposition 2.2] that for all a,b € L x L,
(axb) <feeb<(a—mc)ea<(cD)
that is, (fa, 9) and (fp, gs), where
fa@)=axz,  guly)=a—y,  filz)=xxb  @ly)=y<D,
are GCs in the <; order of .

Note. Here, we avoided to state the ‘actual’ definition of residuated bilattices and ac-
tually defined them as constructions on residuated lattices; in fact, these constructions
are called product residuated bilattices. By [28, Theorem 3.6], any residuated bilattice
is isomorphic to a product residuated bilattice, so our indirect approach is valid.
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CHAPTER 3

LGALOIS BICONNECTIONS AND RELATED
CONCEPTS

3.1 Requirements and constraints

Having quickly reviewed the ‘classical’ GCs, a discussion on the desired outcome of
this research is in order. Obviously, an extension of this ubiquitous construction in the
bilattice setting should preferably retain many of the elegant properties mentioned in
Section .2 The idea is that an iterated ‘back-and-forth’ passage between the two bi-
lattices should provide a pair of isomorphic images and the proposed Galois biconnec-
tions (abbreviation GB) should unconditionally enjoy composability and invertibility
(duality). To obtain an interesting notion of biclosure operator (abbreviation BCO) on
bilattices, the symmetry of the definition is highly desirable. In addition to that, the
proposed construction should reflect the bilattice structure to the larger possible extent,
clearly differentiating from a simple pair of GCs and should ideally (and perhaps, con-
ditionally) preserve the structural properties of the bilattices involved (completeness,
distributivity, interlacing) when jumping to their images under the GB. Finally, it is
certainly desirable to obtain mathematically useful characterizations of GBs and an ar-
ray of interesting examples; moreover, it would be nice if GBs existed between any two
bilattices.

The requirement that GBs have isomorphic images needs some further scrutiny re-
garding the kind of their isomorphism. Should one opt for a weaker notion and require
that images are just order-isomorphic, or is it preferable to require an algebraic bilat-
tice isomorphism of the images? The first case seems to violate the requirement that
GBs should take into account the structure of bilattices. The second case has serious
mathematical implications. The remark below will help us making this precise.

Remark 3.1. Let (f, g) be a pair of functions between bilattices 31 and B2 such that
f is a bilattice isomorphism between g(B2) and f(B) and g is its inverse. Then, for
all z, 1,29 € B1,y,y1,Y2 € Ba,e € {—,— },+ € {A,V,®,® }, it holds that

f(eg(y)) = ofg(y), fla(yr) +9(y2)) = fa(yr) + f9(y2),
g(ef(x)) = egf(x), g(f(z1) + f(x2)) = gf(x1) + gf (x2).
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Moreover, let (f’, g') be a pair of functions between bilattices B2 and B3 such that both
(f',g") and (f'f, gg’) have the same property as (f,g). Then, for all z, 21, 20 € B3

= f99'(z) = ' f(—g9'(2)) = [ (=fgd'(2)) (3.1
f'flgg' (1) A gg'(22)) = F'(fgg' (1) A fgg' (22))

32
= f'fg9'(z1) A f' fgg' (22) 32

and similarly for —, V, ®, and .

Hence, requiring that images are isomorphic as bilattices implies that (8.1, (B.2),
and the equations involving the other bilattice operators are necessary conditions for
composability. Intuitively, it seems that these conditions are very strong and would
probably fail for many interesting cases, implying in turn that GBs defined this way
would not be unconditionally composable. An effort to make the definition strict enough
to entail them may result in triviality such as an isomorphism (see Example [A.2 for such
a definition). Similar considerations apply to most restrictions that could be imposed
on the images of the functions that form a GB.

Since bilattices contain lattices with some form of negation, the limits of what we
can ask for a GC between lattices with negation apply also for bilattices. For exam-
ple, if we require that GBs have bilattice-isomophic images and that they also make a
GC between one of the lattices forming each bilattice, Lemma leads to a tighter
structure. This kind of restriction is more important in bilattices, since they comprise
two lattices (and the corresponding negation operators) firing interesting interactions:
for example, they are enough to invalidate definitions of GBs that seem natural at first
glance (Appendix [A)).

Taking stock of the situation: these considerations lead us to distinguish four
species of GBs. We make a distinction between strong and regular GBs, accord-
ing to what the definition entails for image isomorphism: strong GBs have bilattice-
isomorphic images, while regular GBs have order-isomorphic (isomorphic as pre-
bilattices) images. We further distinguish between bidirectional GBs, defined as pairs
of GCs (thus, consisting of four functions), and unidirectional GBs, defined as a ‘clas-
sical” GC with additional properties that reflect (a part) of the bilattice structure.

3.2 Galois biconnections between pre-bilattices

3.2.1 Regular bidirectional Galois biconnections

A straightforward proposal is to define Galois Biconnections as pairs of pairs of func-
tions, the first pair being a GC with respect to <y, the second being a GC with respect
to <. In order to end up with a single well-defined image of the GB in each bilattice,
we also add the requirement that the images of the two comprising GCs coincide.

Definition 3.2. ((f:, 9¢), (fx, gx)) is called a regular bidirectional Galois biconnection
between By = (B1, <, <k), B2 = (Ba, <, <i) iff

(a) (fi,g:¢) is a GC between (Bi, <), (Bz, <),

(®) (fx,gr) is a GC between (By, <y), (Ba, <),

() fi(B1) = fr(B1) and g:(B2) = gr(B2)

(d) Vo € gi(B2) : fi(x) = fr(x) and Vy € fe(B1) : 9:(y) = gr(y).
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A few remarks: it is straightforward that, if ¢ is an isomorphism between B; and
Ba, then ((¢, ¢~ 1), (¢, 1)) is a regular bidirectional GB between B; and Bs. Since
the images of f, and f; are the same, we will usually denote both of them with f(B).
Similarly, both images of g; and g will usually be denoted by g(Bs). The following
propositions list properties of regular bidirectional GBs, generalising those of GCs.

Proposition 3.3 (Properties of regular bidirectional Galois biconnections). Let ((ft,
9t), (fx, gr)) be a regular bidirectional GB between B; and Bs.

@) ((g¢, f1), (gr, fr)) is a regular bidirectional GB between B5° and B;F.
2 1

(b) fi, g+ are monotone with respect to <y;
fx> gr are monotone with respect to <.

(c) Fori,j,l e {k,t}, figfi = fis 9;/19: = 9:.
(d) Fori € {k,t},Vo € By : gifi(x) >; xand Vy € B : fig:(y) <; (y).
() Fori € {k,t},
Vo € By :x € g(Bs) & x = g;fi(x)
Vy € By:y € f(B1) €y = figi(y)
() Forie {kt},

fi is an injection iff g; is a surjection iff Va € By : g; fi(z) = «
Yy

gi 1s an injection iff f; is a surjection iff Vy € Bs : f;9:(y)

(g) Fori € {k,t}, f; and g; uniquely determine one another; in fact,

gk (W) =Pz fr@) <y}, fulz) = Q@ {ylr <kca) },
9:(w) =\ {z| fi(x) <y}, felx) = N{ylz <ca:) }.

(h) fi preserves @; gy, preserves ®; f; preserves V; g; preserves A.

(i) If P C g(B2) and Q C f(B;) (and, if P or Q is infinite, provided its meet, join,
consensus and gullibility exist),

@P:gkfk(@P), ®Q:fkgk(®Q)a

9(Bz2) f(B1)

R P=R~P P e=-Pe

9(Bz) F(B1)

\V P=an(\VP). A @=rfa(\Q).
9(B2) f(B1)

N P=A\P V e=Ve.

9(Bz) f(B1)

so f(B) is closed with respect to & and V, g(Bsz) is closed with respect to ®
and A, and, moreover, f(B;) and g(Bz) are (maybe trivial) pre-bilattices.
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() f(B1) = g(B2) (as pre-bilattices); in fact, fi (resp. f) is an isomorphism be-
tween them and gy, (resp. g¢) is its inverse.

(k) If By or By is complete, then so are both f(Bj) and g(Bs). Moreover, if one of
the following holds:

* f1 is <;-monotone, f; is <g-monotone, and B is interlaced
* gi is <(-monotone, g; is <g-monotone, and B is interlaced,
then both f(B;) and g(Bs) are interlaced.
(1) If B; is bounded, then
*t, T €g(Ba),
« f(By)isbounded by f(T), f(t), f(L), f(£).
If B5 is bounded, then
« £,1 € f(B1),
* 9(Bz) is bounded by g(T), g(t), g(L), g(£).

Proof. Properties [b), [d}-{i), and [T] follow directly from Proposition R.14.
[a] Follows from the definition and the corresponding property of GCs.

If i = 5 = [, the property follows from the corresponding property of GCs.
rty
Otherwise, the property follows from the definition and the case where i = j = [;

for example, frgrft = frgeft = frg9efe = fr.

(i f is an isomorphism between (f(B1), <y) and (g(B3), <x) with inverse gy,
since ( fx, gr) is a GC. As for the <, order, for all z1, x5 € g(Ba2),

11 <px2 & fi(wn) <o fi(we) & fr(zn) <o fe(w2).

Hence, f}, is an isomorphism between f(B;) and g(By); from property [c], gx
is its inverse. Similarly, we can show that f; is also an isomorphism between
f(B1) and g(B2) with inverse g;.

Without loss of generality, suppose that 3; is complete (if this happens for B,
we work dually). Then, by the corresponding fact for GCs, both the <y and the
< reduct of g(Bs) are complete. Hence, g(B>) is complete and, since f(By) is
isomorphic to g(Bz), it is complete as well.

Suppose now, without loss of generality, that fj, is monotone with respect to <,
ft is monotone with respect to <y, and B; is interlaced (if Bs is interlaced, gy, is
<{-monotone, and g; is <x-monotone, we work dually). Let a,b,c,d € g(Bs)
with a <; ¢ and b <; d; then,

a®g(By) 0=0a@b<tc®d=c@yp, d
and, by the interlacing conditions and by monotonicity of ¢; and f,

a®g(By) b= grfr(a®b) =g fr(a®b)
< Gefru(c®d) = gpfr(c® d)
= C®g(32) d.
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Similarly, if a <x cand b <y d, then a Ay(p,) b <x cAy(p,)dand aVy(p,) b <
¢ Vg(B,) d. Hence, g(B-) is interlaced, and, since they are isomorphic, f(B) is
interlaced as well.

O

The following theorem states the conditions for the composability of regular bidirec-
tional GBs. Note that unconditional composability can be regained if we drop the last
two clauses of Definition B.2. In this case, however, f;, and f; (and, of course, ¢; and
gi) need not have the same image. Thus, the two bilattices related with these functions
would not share a skeleton, an annoying feature that raises serious doubts about the
usefulness of such a construction.

Proposition 3.4 (Composability of regular bidirectional Galois biconnections). Let
((ft,9t), (fr, gx)) be a regular bidirectional GB between B; and B, and ((f;, g;), (f1,
g;,)) be a regular bidirectional GB between By and Bs. Then, ((f/f+, 9:9;), (f}. fx,
gr9},)) is a regular bidirectional GB between B; and Bj iff

fef(B1) = fif(B1), VYyeg' f'f(B1):g9:(y) = gx(y),
grg' (B3) = g+9'(Bs), Yy € f99'(Bs) : fi(y) = fr.(y)-

Proof.
(=) By definition,
fif(B1) = fi.f1(B1) = fife(B1) = fi f(B1)

and similarly for gx¢’(B3) = g:¢'(B3).

Lety € ¢'f' f(Bq) and let z = f;(y) (so, by the fact that f, f(B1) = f{f(B1)
and by property B.3/[c), we get 2 € £, f(B1) and y = g}, (2) = g,(2)). Since the
two regular bidirectional GBs compose, gxg;.(2) = g+9;(2), so

9k(y) = 9kgk(2) = 9:9:(2) = ge(y)-
Similarly, f{ and f;, coincide on fgg'(Bs3).

(<) Since GCs always compose, it suffices to demonstrate that properties [c] and [d)
of the definition hold.

First, since f; f(B1) = f{f(B1) (resp. grg'(Bs) = g:g'(Bs)), we have
fefr(Br) = frf(B1) = fif(B1) = fifi(B1),

(and similarly grg;,(Bs) = ¢+9;(Bs)) so it makes sense to use f’f(B1) (resp.
gg’(Bs)) for both.

Let z € f'f(B1) and y = g;(2) (so y = g.(2)). By hypothesis,
9:91(2) = 9:(y) = 9k (y) = gk (2).

Similarly, for all z € gg’(Bs), f.fr(z) = flfi(x).

An alternative characterization of the GBs we introduced in this section, follows.
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Proposition 3.5 (Characterisation of regular bidirectional Galois biconnections). ((ft,
9t), (fx, gr)) is a regular bidirectional GB between B and By iff

(a) g; and f; are <{-monotone; gi and f}, are <y-monotone,

(b) Forallz € By, y € B,

x < g fe(x), Jr9:(y) <t v,
x <y gifr(x), Trge(y) <k y

©) figufe = fr» fegefe = fto g fi9: = 9t 9t fugr = gk

Proof. By the characterisation of GCs, it suffices to show that the last two properties
of the definition are equivalent to the last property of the characterisation.

(=) Property B.3[c).

(<) Lety = fi(z) € fi(B1);since fi = frgifi, y € fx(B1). Similarly, figr fi =
fr implies fi(B1) C fi(Bi1), so fx(B1) = fi(B1) = f(Bi1). Moreover, for

cachy = fi(z) € f(B1),
9t(y) = g fe(@) = (g fege) (fe(2)) = g (frgefe(2)) = grfe(z) = gr(y),
so g; and gy, coincide on f(By). The rest of the proof works dually.

O

Notation (Drawing bidirectional Galois biconnections). We can draw bidirectional GBs
in a manner similar to the one for GCs. Since fi and f; (and, dually, g and g;) share
a common image, we keep drawing each of their elements with a filled circle and each
other element with an empty circle. The only difference is that each element may have
two different closures, one for <y and one for <; we draw the resulting levels as fol-
lows: levels for <y are drawn with solid coloring and levels for <, are drawn with
striped coloring, as in Figure B.1].

Example 3.6. Consider NZNE and let B be the pre-bilattice that is induced from the
subset { T, L,t,f,df } of [NZNE|. Figure B.2 features a regular bidirectional GB
between NZNE and B. Observe that the set of stable elements is not an interlaced
pre-bilattice, even though NZNE is; this differentiates regular bidirectional GBs from
the other kinds of GBs we present in this thesis. Moreover, neither fj, is monotone
with respect to <, (since df <; m in NZN & but df is not <,-related to T in the other
pre-bilattice) nor is f; monotone with respect to <y (again, observe df and m).

Example 3.7 (‘Minimum’ regular bidirectional Galois biconnections). Let 5; and Bs
be bounded bilattices. Then, ((ft, g¢), (fx, gx)), Where

) = =
K 1 otherwise 9y T otherwise
1 ifx <t T iff <, Yy

A\ T) = =
fil@) {f otherwise 9x(y) {t otherwise

is a regular bidirectional GB between the two bilattices. Indeed, by Example .22, (f;,
g¢) is a GC between the <, orders and ( f%, gx ) is a GC between the <y orders; moreover,
gt fr and g, fi. (vesp. firg: and frgi) have the same stable elements, T and t (resp. f
and 1), and f, f (resp. g:, gr) are equal on them. Observe that, in this case, the stable
elements form trivial pre-bilattices.
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A<, T A<, T

L <t

Figure 3.1: Drawing a regular bidirectional GB between NZN € and itself, with T, L,
t, and f as stable elements.

3.2.2 Regular unidirectional Galois biconnections

Inside the preceding section, a GB has been defined as a pair of GCs. Another possi-
bility is to define a GB between two bilattices as a GC between some projections of
the bilattices at hand, equipped with some additional properties. The current section
along with Section discuss this species of GBs. So, we proceed to define a GB
(f, g) as a GC with respect to <y, whose functions are both <;-monotone. Of course,
this definition has a dual construction requesting that the pair (f, g) makes a GC with
respect to <; and both its functions are <y-monotone; we will show that the two dual
definitions do not coincide. Since there are two kinds of regular unidirectional GBs we
could distinguish them by referring to the one presented here as k-directional and to
its dual as t-directional.

Definition 3.8. (f,¢) is called a regular k-directional Galois biconnection between
By = (B, <, k), Ba = (Ba, <, <) iff

(@) (f,9)isa GC between (B1, <), (B2, <)
(b) Both f and g are monotone with respect to <;

As expected, an isomorphism ¢ between B; and B5 gives rise to a regular unidirec-
tional GB (¢, ¢~!) between B; and B,. We can collect a list of properties of regular
k-directional GBs.

Proposition 3.9 (Properties of regular k-directional Galois biconnections). Let (f, g)
be a regular k-directional GB between B; and Bs.

(@) (g, f) is a regular k-directional GB between By’ and Bi".
(b) f and g are monotone (with respect to both <y and <;).
© fof =rf.9f9=g9.

(d) gf isaCOon (B1,<y); fgisanIO on (Ba, <i).
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Figure 3.2: A regular bidirectional GB between N'ZNE and a pre-bilattice it contains.

() Vxe By:x€g(Bs) & x=gf(x)
Vy € By:y € f(B1) ©y=fg(y)

() f is an injection iff g is a surjection iff Vo € By : gf(z) = x;
g is an injection iff f is a surjection iff Vy € By : fg(y) = y.

(g) f and g uniquely determine one another; in fact,
9(y) = P {=lf(@) <cy}, fl@) =@ {ylz <cg(y)}

(h) f preserves @; g preserves ®.

(1) g(B2) and f(By) are pre-bilattices; in particular, if P C g(Bs) and Q C f(By)
(and, if P or @ is infinite, provided its meet, join, consensus and gullibility exist),

P r=of (Dr). f((%))c?:fg(@)@),

9(Bz2)

RP=Q~r P e=pe
9(Bz2) f(B1)

\ P=gr(\V/P), A @=ri(A\@).
9(B2) F(B)

A P=af(A\P). V e=ss(\Va).
9(Bz2) f(B1)

so f(By) is closed with respect to @ and g(Bs) is closed with respect to ®.

() f(B1) = g(B>) (as pre-bilattices); in fact, (the restrictions of) f and g are inverse
isomorphisms between f(B;) and g(B>).

(k) If By or By is complete (resp. interlaced), then so are both f(B;) and g(B>).
(1) If B; is bounded, then
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* T €g(Ba),
* f(B1) is bounded by f(T), f(t), f(L), f(£).
If By is bounded, then

« Lef(B),
* g(Bz) is bounded by g(T), g(t), g(L), g(£).

Proof. Properties follow directly from the fact that (f, g) is a GC between the
<y orders of By and Bs.

Follow from the corresponding property for GCs and from the definition of reg-
ular k-directional GBs.

The equations for @ and ® follow from the corresponding property of GCs. We

will only extract the remaining equations for g(Bs); the ones for f(B;) can be
extracted dually.
Let P C g(Bs). Since f, g are <;-monotone and for all x = gf(x) € P,
AP < x (resp. x <; VP), it follows that g f(AP) < x (resp. x <; gf (VP)),
so gf (AP) (resp. gf(VP)) is a lower (resp. upper) bound of P. Now let 2’ =
gf(z") be an arbitrary lower (resp. upper) bound of P in g(Bs); then, of course
' <¢ AP (resp. VP <; '), so—again by <,-monotonicity—, we get 2’ <;
gf(AP) (resp. gf(VP) <, z').

(il Since (f,g) is a GC between the <y orders (so the result holds for <y), it suffices
to show that f is an isomorphism between the <; orders of f(B), g(B2) with
inverse g.

Letzq,z2 € g(Ba) withzy <, 5. Since f, g are monotone and 1, x» are stable

elements, z1 <; 2o = f(21) < f(z2) = x1 = gf(z1) <; gf(x2) = 22,80 f
is a <;-isomorphism and g is its inverse.

Similar to B.3 k).
Follows from the corresponding property of GCs and property [b).
O
Asa ‘reward’ for the simplification of GBs, we obtain unconditional composability.

Proposition 3.10 (Composability of regular unidirectional Galois biconnections). Let
(f, g) be aregular unidirectional GB between B and B, and (f’, ¢’) be a regular uni-
directional GB between B and Bs. Then (f’f, gg’) is a regular unidirectional GB
between B; and Bs.

Proof. Immediate from the composability of GCs and the fact that composing mono-
tone functions yields a monote function. O

Proposition 3.11 (Characterisation of regular k-directional Galois biconnections). (f,
g) is a regular k-directional GB between B, and B iff

(@) Vo € By :x <y gf(x), Yy € Ba: fg(y) <k ¥,

(b) f and g are monotone with respect to both <; and <.

30



CHAPTER 3. GALOIS BICONNECTIONS AND RELATED CONCEPTS

Proof. Immediate from the definition and the corresponding property of GCs. O

As mentioned above, Definition B.§ has a dual. It is easy to demonstrate that the
two definitions do not always coincide, by providing a pair of functions that respect the
one but not the other. Observe that for k-directional GBs t and £ may or may not be in
g(B2) and f(B7) respectively; this helps to differentiate this definition from its dual,
in which t and £ have to be in g(Bs) and f(B;) respectively, but there is no constraint
for T and L.

Example 3.12. Consider TWENTY — FIVE and SIXTEEN. The two bilattices
have NZNE embedded in them in various ways; many of these ways can give rise
to regular unidirectional GBs. Figure B.3 represents two such GBs between the two
bilattices, which only differ on the definition of the left adjoint function. Observe that
t (and £) of TWENTY — FIVE does not belong in its stable elements, so the dual
definition does not hold for this pair of functions. Notice that since t is not a stable
element for TWENTY — FIVE, the GBs of this example cannot be modelled by
bidirectional or diagonal GBs. Notice also that the second GB of this example can
neither be modelled by strong unidirectional GBs.

Proposition 3.13. Let £ = (L,M,l,+,\, /) be a residuated latticeand B = L ® L =
(LXL,A\,V,®,®,, %, <, —). If \ and / are monotone for both their arguments, then
(fa.7 ga) and (fba gb)a where

fa@)=axz,  guly)=a—y,  filz)=2xdb  gly) =y<b,
are regular t-directional GBs.

Proof. Recall that (f,, g,) and (f3, g») are GCs in the <; order of 5. It suffices to show
that fq, ga, fo, g» respect <y. Since *, <—, — are defined in terms of each other and
negation, this happens iff — is <x-monotone for both its arguments; equivalently, if
(a1, a2) <k (a},a%) and (b1, b2) <k (b}, b}), then the following hold:

(a1 \ b1) M (ag / b2),ba - a1) <k ((a} \ b1) M (a% / ba), b - a}),
((a1 \'b1) M (ag / b2), b2 - a1) <k ((a1 \ by) M (az / b5), b5 - a).

By definition of product bilattices, these are equivalent to

(a1 \ b1) M (az / b2)
(a1 \ b1) M (az / by)
Since -, /, and \ are monotone with respect to both their arguments and since M is always

monotone with respect to <, all the above hold and we have proven that f,, 9., /5, gb
respect <. O

(a} \ b1) M (ah / by) bo-ay < by-a)

<
S(al\bll)ﬂ(ag/bé) b2~a1§b'2~a1

Example 3.14 (‘Minimum’ regular k-directional Galois biconnections). Let 31 and B,
be bounded bilattices. Then, (f, g), where f(z) = L and g(y) = T is a regular k-
directional GB, since both functions are trivially <.-monotone and, by Example 2.22,
they form a GC between the <y orders.

3.2.3 Diagonal Galois biconnections

A special case of regular GBs is interesting in its own right and deserves a closer ex-
amination.
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n <

(a) TWENTY — FIVE as the left bilattice

in both GBs.
A< A<,
T a
£ t £ t
i < i <

(b) SIXTEEN as the right bilattice (¢) SZXTEEN as the right bilattice
in(f1,9). in (f2, g).

Figure 3.3: Representation of two regular k-directional GBs, (f1,¢9) and (f2,9),
demonstrating two of the ways that NZNE can be seen as a common core between
TWENTY — FIVE and SIXTEEN.

Definition 3.15. (f, g) is called a diagonal Galois biconnection between B; = (B1, <;
, <k)» B2 = (B2, <, <) iff (f, g) is a GC between (B, <;), (B2, <) and between
(B1, <k), (B2, <k).

Pre-bilattice isomorphisms are diagonal GBs. Observe also that diagonal GBs are
simultaneously regular unidirectional GBs (t-directional and k-directional) and regular
bidirectional GBs. The following propositions list properties of diagonal GBs.

Proposition 3.16 (Properties of diagonal Galois biconnections). Let (f, g) be a diago-
nal GB between B; and Bs.

(@) (g, f) is a diagonal GB between 5" and B .

(b) f and g are monotone (with respect to both <y and <;).
©) fgf=1r9f9=y
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(d) Fori e {t,k},Ve € By 1z <; gf(x)andVy € By : fg(y) <; y.
(€) Vo € By:w € g(Bs) & w=gf(x),Vy € Ba:y € f(B1) &y = fg(y)

(®) f isan injection iff g is a surjection iff g f = idp,;
¢ is an injection iff f is a surjection iff fg = idp,.

(g) f and g uniquely determine one another; in fact,
g) =\l f@) <y} =Pz @) <yl
f@) = N{ylz < g)} = Q{ulz <cay)}.

(h) f preserves V and @; g preserves A and ®.

(1) g(B2) and f(B;) are pre-bilattices (although they may not necessarily be sub-
pre-bilattices of B; and Bs); in particular, if P C g(Bs) and Q C f(B1),

P r=or(Dr). f((%)@zfg(@@),

9(Bz2)

R P=Q~r D e-Pe
9(B2) 1(B)

\ P=gr(\/P), A @=ri(A\@).
9(B2) £(By)

A P=A\P V e=Ve,

g(B2) f(B1)

so f(B7) is closed with respect to A and ® and g(Bz) is closed with respect to
V and .

(G) f(B1) = g(B2) (as pre-bilattices); in fact, (the restrictions of) f and g are inverse
isomorphisms between f(B;) and g(B>).

(k) If one of By, Bs is complete (resp. interlaced), so are both f(B;) and g(Bs).

(1) All bimaximal elements of B; (that is, all z for which no 2’ exists such that
x <; 2’ and © < z’) are in g(Bs). All biminimal elements of B> (that is, all y
for which no 4’ exists such that ¢y <, y and 3y’ <y y) are in f(By).

Proof. Properties follow directly from the corresponding ones for GCs. Prop-
erties [1) and [k] follow from the fact that diagonal GBs are regular unidirectional GBs.
Property [1) follows from properties [d] and [e). O

Composability and characterisation are immediate from the corresponding proper-
ties of GCs.

Proposition 3.17 (Composability of diagonal Galois biconnections). Let (f, g) be a
diagonal GB between B; and Bs and (f/,¢’) be a diagonal GB between B and Bs.
Then (f'f, gg’) is a diagonal GB between B, and Bs.

Proposition 3.18 (Characterisation of diagonal Galois biconnections). (f, g) is a diag-
onal GBs between By and By iff forall z € By andy € B, x <y gf(z), v < gf(x),
f9 <xy,and fg <iy.
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Proposition 3.19. Let 5; and Bs be pre-bilattices and f: B; — Bs. Then, there exists
g: Bas — Bj such that (f, g) is a diagonal GB between B, and B iff

(a) f preserves V and @,
(b) forevery y € By, \/{w| f(z) <cy}and @l x| f(z) iy} exist,
(©) forevery y € Ba, \V{ | f(@) <1y} = Bl | (@) <y}
The dual of the above holds if we have g and search for f.
Proof.
(=) Follows from proposition B.16.

(<) The first two conditions imply that there exist g and ¢’ such that (f, g) is a GC
between (B1, <;) and (Bs, <) and (f, g’) is a GC between (B1, <) and (B2,

<x). By the third condition, g = ¢'.
O

Example 3.20. Consider the bilattices B, and By of Figure B.4, which are refinements
of SZX™. Define f: By — Bs as follows: Vo € {T,L,t,f,df,dt} : f(z) =«
and f(a) = dt, f(a’) = df. By Proposition B.19, (f, g) is a diagonal GB, with g
defined as follows: Vz € { T, L, t,£,df,dt } : g(z) = z and g(b) = dt, g(V') = df.

A<, T A<y T

dt dt

df df

(@) By (b) B2
Figure 3.4: The GB of example .20

Not every couple of bilattices can be related through a diagonal GB. Consider
SIXTEEN and TWENTY — FIVE; by property B.16(1], all biminimal (or bimax-
imal, if we consider TWENTY — FIVE as a the left bilattice) elements of the bilat-
tice TWENTY — FIVE must be stable. There are five such elements, forming chain
which is simultaneously increasing with respect to <y and decreasing with respect to
<; no such chain can be found in SZXTEEN..
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3.3 Galois biconnections between bilattices with nega-
tion and conflation

The results of Section B.2 naturally carry through to bilattices with negation and con-

flation: they just ‘disregard’ these extra operators. We have hinted earlier on the dif-

ficulties of incorporating a unary operation of ‘negation’ into GCs and we experiment

here with variants of GBs that take into account the extended signatures of bilattices

with negation and conflation. Diagonal GBs cannot be strengthened in this manner as
they collapse to isomorphisms.

3.3.1 Strong bidirectional Galois biconnections

The following definition augments the one of Section with a few more properties
to ensure that the images of the functions are isomorphic bilattices.

Definition 3.21. ((f:, g¢), (fx, gx)) is called a strong bidirectional Galois biconnection
between By = (B1, <(, <, ~, —), B2 = (B2, <, <k, -, —) iff

@) ((ft,9¢), (fx,gr)) is a regular bidirectional GB,
(b) f: and g; respect —,
(¢) fr and g respect —.

Corollary 3.22. If ¢ is an isomorphism between B; and Bo, then ((¢, ¢~ "), (6,07 1))
is a regular bidirectional GB between 31 and Bs.

Proposition 3.23 (Properties of strong bidirectional Galois biconnections). Let ((ft,
9¢), (fx, gr)) be a strong bidirectional GB between 31 and 5. In addition to the prop-
erties of Proposition B.3, the following hold:

(@) ((9¢, ft), (gk, fr)) is a strong bidirectional GB between By’ and Bi*.

(b) Ve € By 1z € g(B2) & —x € g(Ba) & —x € g(Ba),
Yy e By:y€ f(B1) & —we f(B) & —y € f(By).

(c) Forallx ¢ g(B2), fi(z) # fr(z) or fi(—x) # fr(—);
forally ¢ f(B1), g:(y) # gx(y) or g:(~y) # gr.(—y).

(d) g(B2) and f(B;) with the orders inherited from 3; and B; are bilattices; in
particular, if P C g(Bs) and Q C f(B;) (P and Q finite),

D r-Or ®o-®a

9(Bz2) f(B1)

RP=R~r P e=-Pe.
9(Bz2) f(B1)
V P=\P N @=A\e
g(B2 f(B1)

)

N\ P=A\P Ve=Ve
9(B2 f(B1)

)

so g(Bz) and f(Bj) with the orders inherited from B; and B3 are sub-bilattices
of B and Bs.
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(©)

®

(2)

f(B1) = g(B>) (as bilattices); in fact, fy, (resp. f;) is an isomorphism between
them and gy, (resp. g;) is its inverse.

If By or By is complete (resp. interlaced, distributive), then so are both f(B7)
and g(Bs).

If B; is bounded, then t, £, T, L € g(B2);
if By is bounded, then t, £, T, L € f(By).

Proof.

[a]
o]

Follows from the definition and the corresponding property of regular bidirec-
tional GBs.

Let x = gx(y) = 9:(y') € g(B2). Since gy, preserves —, we have that ~z =
gk (—y) € g(B2) and since g; preserves —, —x = gi(—y’) € g(Bz). Now let
-z € g(Bs), s0o =~z = x € g(Bz). Similarly, —z € g(Bs) implies ——z =
x € g(Bs). The proof for f(B) is dual.

Letxz ¢ g(Bs). Itsuffices to show that f;(x) = fi(z) implies f;(—x) # fi(—x).
Indeed, by properties [b) and B.3[d), == <, g: f:(—z) and = <, g, f:(x), that is
=g fi(x) <¢ gefi(—x). Since fi(x) = fr(z), we get

=9 ft(x) = =g fi(2) = =g fx(2) = grfru(—2) = g4 fr.(—2),
80 gt fx(—x) <¢ gefi(—x), which of course implies fi(—xz) # fi(—x).

We shall prove the property only for g(Bs); the proof for f(B;) works dually. By
property [b), g(B>) is closed with respect to negation. The equation for A follows
by the corresponding property of regular bidirectional GBs. Let P C g(Bs).
Observe that \ =P = A p,) =P € g(B2) and, hence, gy, fu(\ ~P) = \ ~P.
By the corresponding property of regular bidirectional GBs,

 pen (V) -t (A1)
= 9k Sr (ﬂ/\—'P) = =gk fr (/\ﬁp) = \/P.

Similarly, g(Bs) is closed with respect to conflation, consensus, and gullibility.

Of course, fx and f; are pre-bilattice isomorphisms. fj respects — by definition.
As for —, for all z € g(By), since —z is also in g(Bs), fr(—z) = fi(—x) =
—fi(x) = —fr(x). Hence, fx is an isomorphism between f(B;) and g(Bs);
from property B.3{c), g is its inverse. Similarly, we can show that f; is also an
isomorphism between f(B;) and g(Bs) with inverse g;.

Let B; be complete (resp. interlaced; distributive); if so happens for Bs, we work
dually. By Remark g(B2) is also complete (resp. interlaced; distributive)
and, by isomorphism, so is f(Bj).

Let By be bounded (the proof for the case that B is bounded is similar). By
the corresponding property for regular bidirectional GBs, t and T are in g(Bs).
Since g(Ba) is closed with respect to negation and consensus, L and f are also

in g(Bz).
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O

Proposition 3.24 (Composability of strong bidirectional Galois biconnections). Let
((ft,9¢), (fr,9x)) be a strong bidirectional GB between B; and B, and ((f{, g;), (7.,
g;,)) be a strong bidirectional GB between By and Bs. Then, ((f/f+, 9:9;), (f}. fx,
grgy.)) is a strong bidirectional GB between B and B iff

frf(B1) = fif(By), 919’ (Bs) = 919’ (B3),
9'f' f(B1) C f(B), f99'(Bs) C ¢'(Bs).
Proof. Obviously, f/ f; and g;g; respect — and f}, fi and gxgj, respect —. Since strong
bidirectional GBs are also regular bidirectional GBs, it suffices to show that g; and gy,
coincideon ¢’ f' f(B1) iff ¢’ f f(B1) C f(B1) and that f/ and f;, coincide on fgg'(B3)
iff fgg'(Bs) C ¢'(Bs). We shall prove the first equivalence; the proof for the second
is similar.
Lety € ¢’ f' f(By). Of course, —y € ¢’ f' f(By).
(=) Since gi(y) = gr(y) and gi(=y) = gr(-y), property B.23[c], implies y €
f(B1).
(<) Since y € f(Bi), the definition of strong bidirectional GBs implies gx(y) =
9t(y)-
O

Proposition 3.25 (Characterisation of strong bidirectional Galois biconnections). ((ft,
9t), (fk, gr)) is a strong bidirectional GB between BB and B iff

(a) g; and f; are <{-monotone; gi and f are <y-monotone,
(b) Forallz € By,y € Bo,

x <¢ gefe(x), fra:(y) <y,
x <k grfr(z), Frar(y) <cy

(©) fegrfr = fr> frgefe = fos grfege = 9t 9t ek = Gks
(d) g; and f; respect —; g, and fj respect —.

Proof. Immediate by the characterisation of regular bidirectional GBs and the defini-
tion of strong bidirectional GBs. O

Example 3.26. Let Bbe suchthat B = {z € B|z ||y ~z orz ||y —x } # () (for such
a bilattice, see Appendix [B). Then (( f;, idp\pi), (fx,idp\ pi)) where

filz) = fu(x) =

T otherwise

xV —z ifzxe B x® -z ifx e B
T otherwise

is a strong bidirectional GB between B and B \ B'.
Example 3.27. Consider the bilattices B; and By of Figure B.3. Then ((f:,9:), (f,
Jk)), where

s fr(a) = m, fe(—=a) = m, fi(a) = m, fi(-a) = dt, fr(—a) = pf, fr(~—a) =
pt, fi(—a) =m, fi(-—a) = pt,

37



CHAPTER 3. GALOIS BICONNECTIONS AND RELATED CONCEPTS

b <y T

(@) By

(b) B2

Figure 3.5: The GB of Example B.27.

* fr and f; map every other element of B; to the element of By with the same
name,

* g, gr. are defined as in property B@,

is a strong bidirecational GB between B; and 5.

Strong bidirectional GBs are stronger than regular bidirectional GBs, but, of, course,
this strength comes at the price of rigidity: the sub-bilattice structure of the sets of stable
elements heavily limits the range of objects falling under the definition. The following
two examples bear witness to this fact.

Example 3.28 (‘Minimum’ strong bidirectional Galois biconnections). In general, there
may not be a strong bidirectional GB between every pair of bilattices. For example, the
bilattice B of Figure B.d has only two sub-bilattices: { T, L, T A L, TV L} and itself.
Since its stable elements must include t, it follows that all of its elements must be stable;
of course, not every other bilattice may contain a sub-bilattice isomorphic to .

However, let B; and B be bounded interlaced bilattices. Then, ((f, g¢), (f&, 9x)),
where

f ifx=f£ t ify=t
fi() . gt(y) .
L lff<tx§tJ_ 1 lfJ—éty<tt
t  otherwise f otherwise
1 ife=1 T ify=T
f oifl <gao<f f oiff <gy<xT
Jr() . ar(y) .
t ifl<gx<t t 1ft§ky<kT
T  otherwise 1 otherwise
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Figure 3.6: If this bilattice takes part in a strong bidirectional or k-directional GB, all
its elements must be stable.

is a strong bidirectional GB, since (fi,gx) and (f:,g;) are GCs by Example .22,
fe(B1) = f(B1) = {t.£, T, L}, gp(B2) = g(B2) = {t,£, T, L}, fi and f
are equal on {t,f, T, L}, g; and gy, are equal on {t,f, T, L}, and it is easy to see
that f;, g; preserve conflation and f, gi preserve negation.

Example 3.29. Consider TWENTY — FIVE. Contrary to the situation in Exam-
ple B.12, there is only one subset X of it that is isomorphic to N’ZNE and can serve as
the set of stable elements of a strong bidirectional GB, the one depicted in Figure B.7.
Indeed, the four extreme elements must be stable by property B.23{g), the only ele-
ment that can play the part of the ‘middle’ element of NZNE is the ‘middle’ element
of TWENTY — FIVE, and closure with respect to A and V forces the selection of
the rest. We can thus build a ‘canonical’ strong bidirectional GB between NZNE
and TWENTY — FIVE, by taking the isomorphism between N ZN E and X as both
fr: ININE| — X and fi: [NINE| — X and using Proposition to find g, and
gt resulting in the levels depicted in Figure B.7.

Observe that f;, and g;, fall also under the definition of strong k-directional GBs
below, since they are <;-monotone and they respect negation and conflation in X.

3.3.2 Strong unidirectional Galois biconnections

The definition below is a strong version of the one in Section B.2.2); in order to achieve
bilattice isomorphism, it contains properties for the preservation of negation and con-
flation in the images. Just like its regular version, this definition has a dual; once again,
we will demonstrate that the two dual definitions do not coincide.

Definition 3.30. (f,g) is called a strong k-directional Galois biconnection between
Bl - (Bl7 Sh Ska ) _)9 BQ - (BQ) Sta Skv ) _) lff

(a) (f,g) is a regular k-directional GB between 551 and B,

(b) g(=f(z)) = ~g(f(x)) and f(=g(y)) = ~f(9(v)),
(©) g(—f(z)) = —g(f(x)) and f(—g(y)) = —f(9(v))-
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A <y

Figure 3.7: TWENTY — FIVE as the right bilattice in a strong bidirectional GB
with a set of stable elements isomorphic to NZNE.

Corollary 3.31. If ¢ is an isomorphism between B; and Ba, then (¢, ') is a strong
unidirectional GB between 31 and Bs.

Proposition 3.32 (Properties of strong k-directional Galois biconnections). Let (f, g)
be a strong k-directional GB between B; and B-. In addition to the properties of Propo-
sition .9, the following hold:

(@) (g, f) is a strong k-directional GB between By’ and B7".

(b) Ve € By :x € g(Bs) & —x € g(Bs) & —x € g(Bs)
Vy € By : AS f(Bl) S TS f(Bl) = -y e f(Bl)

(c) f and g respect negation.

(d) g(B2) and f(B;) with the orders inherited from B; and B; are bilattices; in
particular, if P C g(Bg) and Q C f(B1) (P and Q finite),

b r-pr X 0=
9(B2) §(B1)

so f(B) and g(Bs) are closed with respect to (both) ® and .

(e) f(B1) = g(B>) (as bilattices); in fact, (the restrictions of) f and g are inverse
isomorphisms between f(B;) and g(B>).

(f) If By is bounded, then T, L € ¢(Bsy); moreover if B; is also interlaced, then
t,f e g(BQ)
If Bs is bounded, then T, L € f(B;); moreover, if Bs is also interlaced, then
t,f € f(Bl)

Proof.

[a] Follows from the definition and the corresponding property of GCs.
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[b) Similar to B.23[b).
Lemma P.29.

[d] Let P C g(B;). We know that, since (f,g) is a GC, Dy, P = 9f(DP).
But property [b) implies that —P C g(By); hence, @ —P € g(Bs) and @ P =
— Q@ —P € g(Bs). But this in turn implies that g f (D P) = € P and we are
done; this implies that g( Bs) is closed with respect to €. The equation for f(Bj)
can be proved dually.
Since strong k-directional GBs are also regular k-directional GBs, ¢g(B2) and
f(B1) are pre-bilattices. Property [b) implies they are also closed with respect
to = and —, so they are bilattices.

[e] (f(B1),<k) and (g(Bs), <) are isomorphic as lattices, since (f,g) is a GC.
Points [b) and [c) of the definition mean exactly that the restrictions of f and g
respect negation and conflation. It now suffices to show that Va1, ze € g(B3) :

f(x1) <¢ f(22) & 21 <t @2 and Vyr,y2 € f(B1) 1 9(y1) <t 9(y2) & y1 <
12; these follow directly from monotonicity and property B.9{b].

[f] Let B; be bounded (the proof for the case that By is bounded is similar). By
the corresponding property for regular k-directional GBs, T is in g(Bs). Since
g(B>) is closed with respect to conflation, L is also in g(Bs).

Now let By be bounded and interlaced (the proof for Bs is dual). Then, £ =
TALsof < Tandf < L. By <i-monotonicity, gf(£f) <, gf(T) = T and
gf(f) <¢ gf(L) = L,s0gf(f) <t T AL = f and, of course, gf(f) = £.
Dually, gf(t) = t.

O

Proposition 3.33 (Characterisation of strong k-directional Galois biconnections). (f,
g) is a strong k-directional GB between B; and By iff

(a) fand g are <;-monotone and <y-monotone,
(b) Vz € By :x < gf(x) and Vy € By : fg(y) <k v,
(c) f and g respect —,
() g(=f(x)) = —g(f(x)) and f(=g(y)) = —f(9(»)).
Proof.
(=) Follows from the definition, Proposition B.32, and Lemma R.13.

(<) Since f and g respect -, we immediately get g(— f(x)) = —g(f(z)) and f(—g(y)) =
—f(g(y)). Then, Lemma is enough to show that ( f, ¢) is a strong k-directional
GB.

O

Proposition 3.34 (Composability of strong k-directional Galois biconnections). Let (f,
g) be a strong k-directional GB between 131 and By and (f/, ¢) be a strong k-directional
GB between By and Bs. Then, (f'f, gg’) is a strong k-directional GB between ; and
By iff fgg'(Bs) € ¢'(Bs) and g' f' f(B1) € f(B1).
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Proof. From the corresponding property of GCs, (ff,gg’) is a GC between the <-
reducts of B; and Bs. Since all of f, g, f’, and ¢’ preserve —, A, and V, so do ff and
gg’. So, it only remains to prove that

99" (=f'f(x)) = —gg'f f(z) and ' f(—gg'(2)) = —f'fgg'(2)
iff
f9g' (Bs) C ¢'(B3) and ¢'f'f'(B1) C f(By).
(=) Letyo = fgg'(2). Then,

9 f'(=yo) =g f'(—f99'(2)) = 9" f' f(—g4'(2))
=9 (=f'fg9'(2)) = —4'f' f9d'(2)
=—9'f' (yo)-

Since Vy € Bz @ y <k ¢'f'y (and —y € By), we have —¢'f'y < —y <
g ' (—y), so ¢' f'(—yo) = —yo, which implies that —yg (and, in turn, yp) is in
g'(Bs3). Hence, fgg'(Bs) C ¢'(Bs). The other case can be proved dually.

(<) By the definition of strong k-directional GBs, if fg¢’(B3) C ¢'(Bs), then
F'f(=99' () = f'(=fg9'(2)) = ['(=g' ("))
=—f'9'(') = —f'fg9' ().
The other case can be proved dually.

O

Example 3.35 (‘Minimum’ strong k-directional Galois biconnections). As in the bidi-
rectional case, given two arbitrary bilattices, there may not exist a strong k-directional
GB between them. For example, take the bilattice 3 of Figure B.6. Its stable elements
have to include T, L, T A L,and T V L, since the closure of T V L must be greater
than or equal to T V L in both directions (and similarly for T A ). Hence, the only
options for the closure of —a are itself, t and T V L; however, since —a <y t and
TV L £ t, —a or t must also be a stable element. In both cases, all the elements of
B must be stable (if —a is stable, then t must be stable for the same reasonas T V L;
if t is stable, then ®-closure implies that —a is stable; closing with respect to — and —
completes the argument). Since a strong k-directional GB between B and some other
bilattice B’ would induce an isomorphism between 3 and (a subset of) B, it is obvious
that this may not always be possible.

Again, the situation is different if we restrict ourselves to interlaced bilattices. If By
and B, are bounded interlaced bilattices, then (f, g), where

1L ifa=1 T ify=T

f ol <ga<f f iff <ky <k T
fx) = . 9(y) = .

t il <gax<gt t ift <gy<e T

T otherwise 1 otherwise

is a strong k-directional GB between them. Indeed, by referring to Example and
the definitions of f and g, the only non-trivial property is <-monotonicity. Letz; < x5
in B;. We prove monotonicity by case analysis on the image of x;.
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 If f(x1) = £, there is nothing to prove.

o If f(x1) = L, thenzy = 1, so L <; x2 and, since B; is interlaced, x5 < t,
hence L < f(x2) <, t, meaning that f(x2) € {t, L }.

o If f(z1) = t,then L <y z7 <k t,so, by R.2) and 21 <; 2, we get L <j 29 <y
t, meaning f(x2) = t.

» If f(z1) = T, then, by the definition of f, L <y z7 <y f does not hold. Hence,
(2.2]) implies that £ <; x1 <; L does not hold, so neither does £ <; x5 <; L,

meaning (again by (2.2])) that f(z) € {t, T}

3.4 Galois biconnections between bilattices with nega-
tion

In this section, we consider how the definitions presented in Sections B.J and B.3 behave
when we limit ourselves to bilattices with negation and no conflation (of course, the case
of bilattices with conflation and no negation is dual).

Since the GBs of Section do not take negation into account, their properties as
demonstrated also hold in this case.

As for strong bidirectional GBs, an inspection of the proofs clearly shows that they
retain (almost) all their other properties, except of course those properties that directly
mention conflation. Given a strong bidirectional GB (f, g) between bilattices 5; and
Ba, while f(B;) and g(Bs) are still bilattices, they may fail to be sub-bilattices of
B; and B,: in particular, in property B.23{d), we can only have that @ 9(Bs) P =
9 fe(@ P) and @5,y Q = frgr(® Q), so f(Bi) is not necessarily closed with
respect to ® and g(Bs) is not necessarily closed with respect to @; the same holds for
property B.3/[i) of strong k-directional GBs. Moreover, in the absence of conflation,
their required stable elements do not include L.

Given their asymmetry, k-directional GBs are affected a little more deeply by the
removal of conflation. Since the condition on their composability has to do with con-
flation, in the case where there is none (or we disregard it), they have unconditional
composability. In addition, in the absence of conflation, their only required stable ele-
ments are those of regular unidirectional GBs and the functions of Example form
a strong k-directional GB between any pair of bilattices.

Of course, the situation for bilattices with conflation and no negation is dual.

3.5 Biclosure operators

Just like GCs give rise to COs, each notion of GB gives rise to a corresponding notion
of BCO.

Definition 3.36. (C;, Cy) is called a regular bidirectional biclosure operator on a bi-
lattice B iff

(a) C;isaCO on the <; reduct of 55,
(b) Cy is a CO on the <y reduct of B,
(c) forallz € B, Ci(x) =z & C(x) = 2.
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Definition 3.37. (C;, Cy) is called a strong bidirectional biclosure operator on a bilat-
tice B iff

(a) (Ct, Cy) is a regular bidirectional BCO,
(b) C; respects — and Cj, respects —.

Corollary 3.38. Let (C;, Cy) be a regular or strong bidirectional BCO on 5. Then,

Proof. x € C(B) & Ci(z) =z & Cy(z) =2 & x € Cy(B) O

Notation. Given the corollary above, if (C;, Cy) is a regular or strong bidirectional
BCO, we will use C(B) to denote both C;(B) and C¢(B).

Definition 3.39. Cis called a regular k-directional biclosure operator on a bilattice B
iff

(a) CisaCO on the <y reduct of 5,

(b) Cis monotone with respect to <;.
Regular t-directional BCOs are defined dually.
Definition 3.40. C is called a strong k-directional biclosure operator on a bilattice B
iff

(a) Citis aregular k-directional BCO,

(b) Crespects —,

(c) C(B) is closed with respect to —.

Strong t-directional BCOs are defined dually.

Definition 3.41. C is a diagonal biclosure operator on a bilattice B iff it is a CO for
both orders of B.

Definition 3.42. | will be called a bi-interior operator on a bilattice 5 iff | is a BCO on
B°P. Of course, each definition of BCO gives rise to a corresponding BIO.

In the manner of GCs and COs/10s, each kind of GB is closely related to the corre-
sponding kind of BCO/BIO. The correspondence between diagonal GBs and diagonal
BCOs is a direct consequence of the correspondence between GCs and COs. The rest

are proved in Propositions and

Proposition 3.43. If ((f:,9¢), (fx,9x)) is a regular (resp. strong) bidirectional GB
between B and Ba, then (g¢ ft, gi fx) is a regular (resp. strong) bidirectional BCO on
By and (figt, frgr) is a regular (resp. strong) bidirectional BIO on Bs. Conversely, if
(C4, Ck) is aregular (resp. strong) bidirectional BCO on 5, then ((C;,idp), (Cy,idp))
is a regular (resp. strong) bidirectional GB between B and ¢(B).

Proof. We will only prove the parts concerning biclosures. The parts for bi-interiors
are similar.
For regular bidirectional GBs:
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(=) From the corrresponding property for GCs and COs, it follows that g, f; is a CO
on the <; reduct of By, gi fx is a CO on the <i reduct of B;. Moreover,

g fi(x) =z oz € g(B) & € gp(B2) © grufulz) ==z,

s0 (gt f+, gk fx) is a regular bidirectional BCO on ;.

(<) From the corrresponding property for GCs and COs, it follows that (C;,idp) is
a GC between the <, reducts of B and C;(B) and (Cg,idg) is a GC between
the <y reducts of B and C(B). The last two properties of the definition of
regular bidirectional GBs follows from the fact that C,(B) = Cg(B) and the
idempotency of COs.

For strong bidirectional GBs:

(=) Since strong bidirectional GBs are also regular bidirectional GBs, it suffices to
show that g, f; respects — and g, fx respects —. These properties follow from the
definition of strong bidirectional GBs.

(<) Since strong bidirectional BCOs are also regular bidirectional BCOs, it suffices
for Cy, to respect — and C; to respect —, which they do by definition.

O

Proposition 3.44. If (f, g) is aregular (resp. strong) unidirectional GB between 55; and
Bs, then gf is a regular (resp. strong) unidirectional BCO on B; and fg is a regular
(resp. strong) unidirectional BCO on Bs. Conversely, if C is a regular (resp. strong)
unidirectional BCO on B, then (C,idg) is a regular (resp. strong) unidirectional GB
between 5B and C(B).

Proof. We will only prove the parts concerning biclosures. The parts for bi-interiors
are similar.
For regular k-directional GBs (t-directional work dually):

(=) From the corrresponding property for GCs and COs, it follows that g f is a CO
on the <y reduct of 1. Moreover, since f and g are <;-monotone, so is g f, so
it is a regular k-directional BCO.

(<) Let Cbe aregular k-directional BCO. By the corresponding property for COs, (C,
idp) is a CO between the < reducts of B and C(B). Moreover, since C respects
<, by definition (and id 5 respects it trivially), (C,idp) is a regular k-directional
GB.

For strong unidirectional GBs, the situation is similar to the one of strong bidirec-
tional GBs. O
3.6 Galois n-connections

Our definitions can be easily generalised to sets with more than two embedded lattices
(such as those studied in [35, B7]). We shall only present the generalised definitions,
without any properties; however, we expect that their properties will be analogous to
those of the corresponding biconnections.
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Note. In the literature, sets with more than two embedded lattices are called either
n-lattices of multilattices. The term multilattice has also been used for structures com-
prising of one partial order with some generalised notions of suprema and infima [|15];
for this reason, we will use the term n-lattice.

Definition 3.45. A n-lattice, is a set equipped with n (distinct) partial orders, such that
each of its partial orders is a lattice. Each of the lattices <; comprising a n-lattice may
have an associated negation, i.e. an operator —; such that —,—;z = z, x <; y =
-y <; 7, and, for all other lattices <; of N,z <Gy = i <oy,

Definition 3.46. If N; and \; are n-lattices, a regular n-directional Galois n-connection
is formed by n pairs of functions ( f;, g;), such that

(a) Each (f;, g;) is a GC between the <; orders of N7 and N3,

(b) forall f;, f;(N7) is the same set (f (V1)) and all g; restricted to f (N7 ) are equal;
for all g;, g;(IN2) is the same set (g(NN2)) and all f; restricted to g(N2) are equal.

Definition 3.47. If N; and N3 are n-lattices, a strong n-directional Galois n-connection
is a regular n-directional Galois n-connection such that each f; and g; respect the nega-
tion operators of all lattices except for <;.

Definition 3.48. If A/} and N> are n-lattices, a regular i-directional Galois n-connection
is a pair of functions (f, ) such that (f, g) is a GC between the <;-th orders of N7 and
N> and f, g are monotone with respect to all other lattices.

Definition 3.49. If \; and N5 are n-lattices, a strong i-directional Galois n-connection
is a pair of functions ( f, g), such that (f, g) is aregular i-directional Galois n-connection
and

(a) f, g respect the negation operators of all lattices except for <;,
(b) forallz € Ny, y € Na, g(—if (x)) = 7igf(x) and f(=ig(y)) = —ifg(y).

In the manner of biconnections and BCO, it is natural to expect that each kind of
Galois n-connection will give rise to a n-closure operator and vice versa.
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CONCLUSION

The Galois connection is an ‘old’, useful and widely used construction: it connects
two structures in an ‘adjoint situation’ which allows us to use information about one
structure to gain information about the other one, and vice versa. Technically speaking,

it has to be admitted that deep theorems rarely are immediate consequences
of the general theory of Galois connections, but usually require some extra
tools and ideas stemming from the specific theory under consideration. But
the general framework, supporting the intuition and suggesting the appro-
priate concepts, is established by the discovery of the ‘right’ underlying
Galois connection, followed by a good characterization of the ‘Galois-
closed’ (or ‘Galois-open’) elements or sets. And there is no doubt that
many proofs become shorter, more elegant and more transparent in the
language of Galois connections. ([|L7, Preface, p. viii], emphasis added).

To name one of its applications for Computer Science, the Galois connection has been
used to provide concept formation methods out of objects/attributes relations (Formal
Concept Analysis, [26]). On the other hand, bilattices is a recent (mid '80s) outcome of
considerations in logic-based Knowledge Representation [27] and have been recently
investigated from different perspectives.

In this thesis, we have contributed to the algebraic investigations on bilattices, by in-
troducing Galois biconnections, i.e. generalisations of Galois connections to bilattices.
The properties we aimed (or wished) for were: (a) isomorphic images, i.e. when two
bilattices are related via a Galois biconnection, a common skeleton is revealed between
them, (b) inversibility, giving rise to duality such as the one of Galois connections,
(c) unconditional composability, thus giving rise to a category, (d) symmetry, i.e. lack
of a distinct dual definition, (e) preservation of bilattice properties: completeness, in-
terlacing, distributivity, (f) existence of a biconnection between any arbitrary pair of
bilattices, (g) wide range of examples.

Due to the existence of more than one order (made even more complicated in the
presence of negation), the conflicting nature of some of the properties, and the power
of Galois connections, we did not manage to come up with a single definition equipped
with all the desired properties. However, we produced four definitions, each with its
own merits. Table compares our definitions regarding (some of) the above prop-
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erties; the only properties shared by all of them (and, for this reason, not included in
the table) are isomorphic images (however, there is a difference in the kind of isomor-
phism obtained) and inversibility. Regular biconnections are more widely applicable,
since they do not take negation and conflation into account; on the other hand, strong
biconnections, when they exist, reveal a greater similarity between bilattices. Bidirec-
tional biconnections are symmetric, thus giving rise to more elegant closure operators
(which, moreover, simultaneously provide a <;-closure and a <y-closure for each ele-
ment), but they do not always compose; on the other hand, definitions of unidirectional
biconnections come in distinct dual pairs, but their regular versions have unconditional
composability. Finally, diagonal Galois biconnections are a special case of both unidi-
rectional and bidirectional biconnections.

We hope that our results will help understanding the rich structure of bilattices.
Moreover, we hope that fresh ideas may emerge on the exploitation of bilattices in
Knowledge Representation, much like the way(s) Galois connections have led to the
ontology-theoretic construction of concept lattices in Al
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Biconneetion Fmage ) Composability Symmetry Image closed with respect to Required stable elements ]nherlt;d Alyvays
isomorphism - - properties exists
left right left right
regular (trivial)
bidirectional, pre-bilattice conditional full ®, A\ ®, VvV T,t 1,f completeness yes
Definition B-2 :
in general in general in general in general in general
stron ®, A ®, VvV T,t also L, f completeness,
rong | o ... with conflation with conflation with conflation  with conflation interlacing *
bidirectional, bilattice conditional full . . no (yes)
Definition also &, — also ®, — also L also T with conflation
with negation with negation with negation with negation and negation
also Vv, — also A, = also £ also t distributivity
regular ..
k-directional, g:évlln?llflttice unconditional has dual ® D T 1 icr?treri-ll);?iizess’ yes
Definition B.§ :
regular .
t-directional (tr1v1§1) . unconditional has dual A \% t f f:omplet‘eness, yes
(dual to above) pre-bilattice interlacing
strong no conflation no conflation no conflation no conflation no conflation with confl.
k-directional, bilattice ur}condmona.l has dual ®’, =l ) EB., - . T' ) J_. . 'complet'eness, no  (yes)
Definition B34 with conflation with conflation with conflation with conflation  with conflation interlacing no confl.
. * ¥
conditional D, ®, 7, — D, ®, 1, — T, L, (t, f) T, 1,(t, ) yes
stron: no negation no negation no negation no negation no negation with neg
ong | I unconditional A, — v, — t £ completeness, " .
t-directional bilattice . . has dual : . : . . : : . X . no  (yes)
(dual to above) with negation with negation with negation with negation with negation interlacing
conditional AV, =, — AV, =, — E (T, D" £ (T, 1) 1o neg. yes
diagonal,
Definition B.13 (trlvlz}l) . unconditional full N, ® V, @ all bimaximal all biminimal 'complet'eness, no
(only for pre-  pre-bilattice interlacing

bilattices)

NOISN'IONOD ¥ YALdVHD

Table 4.1: This table lists properties of GBs and their images between a given pair of bounded (pre-)bilattices (B1, Bz). In the table, ‘left’ refers to
the stable elements of By and ‘right’ to the stable elements of B2 under the biconnection. Conditions in bold (for example no conflation) refer to the
signatures of By and Bs. Entries marked with * are valid only when the (pre-)bilattices are interlaced.




APPENDIX A

L SOME TOO STRONG DEFINITIONS FOR GALOIS
BICONNECTIONS

Example A.1. Let By = (B1, <, <k, ), By = (B2, <, <k, ) be bilattices and let
f: Bl — BQ, qg: B2 — Bl such that

(@) (f,g)isaGC between (B, <), (B2, <) and between (B, <y), (B2, <),
(b) g(=f(x)) = —g(f(2)) and f(=g(y)) = =f(9(v))-

Then, f and g are isomorphisms.

Indeed, by Lemma R.29, f and g respect negation. Since (f,g) is a GC for the <;
orders, by Lemma R.27, (B;, <(,—) = (Bs, <;,—) with f an isomorphism between
them and g = f~!. Since (f, g) is a GC for the <y orders and f(B;) = Ba, g(Bs2) =
By, by property R.14({), (B1, <) = (Ba, <i) with f an isomorphism between them
and g = f~!. Hence, By = By with f an isomorphism between them and g = f~'.
Example A.2. Let By = (By, <, <k, ™), B2 = (B2, <, <k, ) be bilattices and let
fl B — Bs, g: By — B, such that

(@) (f,g) is a Galois connection between (B1, <;), (Ba, <i),

(b) f and g are order homomorphisms with respect to <y,

(©) g(—f(x)) = ~g(f(x)) and f(=g(y)) = ~f(9(y)).

Then, f and g are isomorphisms.

Indeed, Definition holds for (f, g), so properties B.32/{e] and B.9.[f] also hold
for (f, g). Every partial order homomorphism is an injection, so f and g are injections;
it follows (by property B.9(f]) that both f and g are surjections. Hence, By = f (B1)
and By = g(By), which implies (by property B.32{e)) B; = B, with f an isomorphism
between them and g = f~!.
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APPENDIX B

AN ASIDE: PRETTY BILATTICES

During our research on Galois biconnections, we came upon some monstrous (in a
Lakatosian sense [30] of the term ‘monstrous’) bilattices which, to our knowledge, have
not been studied. We chose the name ‘non-pretty’ for them; below, we state some
questions regarding their relation to other classes of bilattices (precise, commutative,
interlaced).

Definition B.1. A bilattice B is called pretty iff B! &f {z € Blz ||y ~zorz |
—z} =0

Remark B.2. z || ~z = z || ~z and, dually, z ||y —z = x || —=.

Proof. Letz ||y ~x. If x <y -z, then ~x <, ——a = x, so =& = x, which is absurd;
similarly ~z £ x. O

Example B.3. A non-pretty bilattice is shown in Figure B.1]; notice that, in this bilattice,
negation and conflation commute.

Remember that in Example we have shown that we can always find a strong
bidirectional BCO in a non-pretty bilattice B, such as the closed elements are exactly
those of B\ B'.

Definition B.4 ([6, Definition 5.(b)]). Let x <! y (resp. x <{ y) mean that z is an
immediate predecessor of y with respect to <; (resp. <y). A pre-bilattice is called
precise iff (a) <! y implies <} yory < x and (b) x <} y implies x <! y or
y <{ .

Example B.5. A non-precise bilattice is FZVE, shown in Figure B.2.
Proposition B.6 ([0, Theorem 3]). Every interlaced pre-bilattice is precise.
Conjecture. Every precise bilattice is pretty.

Remark B.7. The opposite does not hold. See, for example, FZVE (Figure B.2); it is
pretty but not precise.

Question. Are all pretty bilattices commutative?

51



APPENDIX B. AN ASIDE: PRETTY BILATTICES

T t
£ t 1
L f
(a) The knowledge order. (b) The truth order.

Figure B.1: A non-pretty bilattice: observe that a || —a and a || —a.

Figure B.2: FIVE
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